TWI617219B - Maintaining output capacitance voltage in led driver systems during pulse width modulation off times - Google Patents
Maintaining output capacitance voltage in led driver systems during pulse width modulation off times Download PDFInfo
- Publication number
- TWI617219B TWI617219B TW105115365A TW105115365A TWI617219B TW I617219 B TWI617219 B TW I617219B TW 105115365 A TW105115365 A TW 105115365A TW 105115365 A TW105115365 A TW 105115365A TW I617219 B TWI617219 B TW I617219B
- Authority
- TW
- Taiwan
- Prior art keywords
- input
- node
- feedback
- signal
- output
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Abstract
驅動LED負載的方法與系統。驅動器經配置以在PWM訊號為開啟時傳遞由控制訊號指示的位準的電流至LED負載,並在PWM訊號為關閉時停止傳遞此位準的電流。輸出電容元件耦接於跨於LED驅動器的差動輸出上。具有儲存電路的回饋路徑經配置以恰於PWM訊號轉變為關閉之後,儲存資訊作為所儲存回饋參考訊號,此資訊指示跨於輸出電容元件的第一電壓位準。恰於PWM訊號轉變為開啟之前回饋路徑使輸出電容元件位於第一電壓位準。 Method and system for driving an LED load. The driver is configured to pass a current indicative of the level indicated by the control signal to the LED load when the PWM signal is on, and to stop transmitting the current at the level when the PWM signal is off. The output capacitive element is coupled to a differential output across the LED driver. The feedback path with the storage circuit is configured to store the information as a stored feedback reference signal just after the PWM signal transitions to off, the information indicating a first voltage level across the output capacitive element. The feedback path is such that the output capacitive component is at the first voltage level just before the PWM signal is turned on.
Description
對於相關申請案的交互參照:本申請案依專利法第28條之規定,主張對於申請於2015年5月29日的名為「Maintaining LED Driver Operating Point During PWM OFF Times」的美國臨時專利申請案第62/168,156號以及名為「Maintaining Output Capacitance Voltage in LED Driver During PWM OFF Times」的美國臨時專利申請案第62/168,234號的優先權,在此併入此臨時專利申請案全文以作為參考。 Cross-reference to the relevant application: This application claims to apply for the US Provisional Patent Application entitled "Maintaining LED Driver Operating Point During PWM OFF Times" on May 29, 2015, in accordance with Article 28 of the Patent Law. U.S. Provisional Patent Application Serial No. 62/168,234, the entire disclosure of which is incorporated herein by reference.
本揭示內容一般而言相關於用於驅動發光二極體(light emitting diodes,LEDs)的方法與系統。更特定而言,本揭示內容相關於對LED驅動器維持輸出電壓跨於輸出電容元件上的LED驅動電路。 The present disclosure is generally related to methods and systems for driving light emitting diodes (LEDs). More particularly, the present disclosure relates to an LED driver circuit that maintains an output voltage across an output capacitive element for an LED driver.
LED為PN接面二極體,在適當的電壓施加至LED引線時LED發出光。對此,使用各種電路以對LED供電。此種電路不僅提供足以在所需亮度及色溫下點亮LED的電流,並也限制電流而防止損害LED。第1A 圖圖示說明一種範例先前技術LED驅動系統100,在脈衝寬度調變(pulse width modulation,PWM)節點105處的PWM訊號為開啟(ON)(亦即高(HI))時,LED驅動系統100將對LED 115的輸出電流101調節至由控制訊號輸入103處的控制訊號所指示的位準。在PWM訊號為關閉(OFF)(亦即低(LO))時,輸出電流101為零且LED負載115不發出光。因此,輸出電流101的平均值,係由PWM訊號的相對ON與OFF持續期間來控制。換言之,LED 115發出的光的強度,可由較高的節點105處PWM訊號的工作週期(duty cycle)提升,並可由減少工作週期而調暗(dimmed)。 The LED is a PN junction diode that emits light when a suitable voltage is applied to the LED leads. In this regard, various circuits are used to power the LEDs. Such a circuit not only provides sufficient current to illuminate the LED at the desired brightness and color temperature, but also limits current to prevent damage to the LED. 1A The figure illustrates an exemplary prior art LED drive system 100 in which the LED drive system 100 is turned "ON" (ie, high (HI)) when the PWM signal at the pulse width modulation (PWM) node 105 is ON. The output current 101 of the LED 115 is adjusted to the level indicated by the control signal at the control signal input 103. When the PWM signal is OFF (ie, low (LO)), the output current 101 is zero and the LED load 115 does not emit light. Therefore, the average value of the output current 101 is controlled by the relative ON and OFF durations of the PWM signal. In other words, the intensity of the light emitted by the LED 115 can be increased by the duty cycle of the PWM signal at the higher node 105 and can be dimmed by reducing the duty cycle.
如第1A圖圖示說明,LED驅動系統100可包含LED驅動器119、分壓網路(可包含串聯連接的電阻器123與125)、輸出電容元件117、電流感測器121以及電子開關111。 As illustrated in FIG. 1A, the LED drive system 100 can include an LED driver 119, a voltage divider network (which can include resistors 123 and 125 connected in series), an output capacitive component 117, a current sensor 121, and an electronic switch 111.
在PWM訊號105為關閉時,可由電子開關111將LED負載115斷接,且在PWM訊號105轉變為關閉之前跨於輸出電容元件117上的電壓可被輸出電容元件117維持。 When the PWM signal 105 is off, the LED load 115 can be disconnected by the electronic switch 111, and the voltage across the output capacitive element 117 can be maintained by the output capacitive element 117 before the PWM signal 105 transitions to off.
參考第1B圖可更加瞭解LED驅動系統100的特徵,第1B圖圖示說明LED驅動系統100的範例波形。在PWM開啟時,LED負載115開啟(亦即發光)且輸出VOUT處的電壓位準係由LED 115在一電流位準下的順向電壓的總和來決定,此電流位準由控制訊號輸入 103設定並經由電流感測器121由iLED回饋路徑調節。因此,由電阻123與125決定對於給定VOUT電壓的回饋節點FB處的電壓位準。在PWM轉變為關閉時,LED負載115關閉(例如停止發光),且輸出VOUT處的電壓以及回饋節點FB受到洩漏的影響。在PWM被轉變回開啟時,LED負載115發光,此光可不為所需的色溫及(或)強度,直到LED驅動器119使輸出VOUT與回饋節點FB處的電壓上升回到適當位準為止。 The features of the LED drive system 100 can be better understood with reference to FIG. 1B, which illustrates an example waveform of the LED drive system 100. When the PWM is turned on, the LED load 115 is turned on (ie, the light is emitted) and the voltage level at the output V OUT is determined by the sum of the forward voltages of the LED 115 at a current level, which is input by the control signal. 103 is set and adjusted by the i LED feedback path via current sensor 121. Therefore, the voltage levels at the feedback node FB for a given V OUT voltage are determined by resistors 123 and 125. When the PWM transitions to off, the LED load 115 is turned off (eg, stops emitting light), and the voltage at the output V OUT and the feedback node FB are affected by the leakage. When the PWM is turned back on, the LED load 115 illuminates, which may not be the desired color temperature and/or intensity until the LED driver 119 causes the output V OUT and the voltage at the feedback node FB to rise back to the appropriate level.
理想上,電容元件117在PWM關閉時間期間內應保持輸出電壓VOUT為定值。然而在現實條件下,輸出電容元件117在PWM訊號的關閉期間內衰減(例如損失電荷),此係由於內部洩漏及(或)連接至輸出電容元件117的任何電路(諸如第一電子開關111、回饋電阻元件(例如電阻器)R1(123)與R2(125))的洩漏。隨著PWM關閉持續期間增加,電壓降將變得更為顯著。在一段長的PWM關閉時間之後(例如多於一秒),跨於輸出電容元件117上的輸出電壓VOUT可低於在PWM開啟期間內跨於輸出電容元件117上的輸出電壓VOUT。 Ideally, capacitive element 117 should maintain output voltage VOUT constant for a period of PWM off time. However, under realistic conditions, the output capacitive element 117 attenuates (eg, loses charge) during the off period of the PWM signal due to internal leakage and/or any circuitry connected to the output capacitive element 117 (such as the first electronic switch 111, Feedback of leakage of resistive elements (such as resistors) R1 (123) and R2 (125)). As the PWM shutdown period increases, the voltage drop will become more pronounced. After a long period of PWM off time (e.g., more than one second) across the capacitive element to the output voltage on the output is lower than 117 V OUT may be turned over during the PWM output across the capacitive element to the output voltage of the 117 V OUT.
因此,在PWM訊號105於一段長關閉期間之後轉變回開啟時,LED驅動器119可受到回復時間的影響,直到輸出電容元件117返回原始輸出電壓為止。在需要LED負載115的色溫及(或)強度在LED負載115轉變為開啟之後隨即位於預定位準的應用中,此種延遲 可帶來問題。具有較長的PWM開啟時間以除了所需LED負載開啟時間之外包含額外的回復延遲的習知作法,不僅提升了功率消耗,也可不為有效的,因為回復延遲可隨著輸出電容元件117的尺寸、製程、溫度、所需LED光強度以及PWM關閉持續期間而改變。 Thus, when the PWM signal 105 transitions back to on after a long off period, the LED driver 119 can be affected by the recovery time until the output capacitive element 117 returns to the original output voltage. This delay is required in applications where the color temperature and/or intensity of the LED load 115 is then at a predetermined level after the LED load 115 transitions to on. Can cause problems. A conventional practice of having a longer PWM turn-on time to include additional recovery delays in addition to the required LED load turn-on time not only increases power consumption, but is also not effective because the return delay can be with the output capacitive component 117. The size, process, temperature, required LED light intensity, and duration of the PWM shutdown change.
本文揭露的各種方法與系統,相關於在PWM關閉時間期間內維持LED驅動系統中的輸出電容電壓。根據一個具體實施例,一驅動器經配置以在PWM訊號為開啟時傳遞由控制訊號指示的位準的電流至LED負載,並在PWM訊號為關閉時停止傳遞此位準的電流。輸出電容元件耦接於跨於LED驅動器的差動輸出上。具有儲存電路的回饋路徑經配置以恰於PWM訊號轉變為關閉之後,儲存資訊作為所儲存回饋參考訊號,此資訊指示跨於輸出電容元件的第一電壓位準。恰於PWM訊號轉變為開啟之前回饋路徑使輸出電容元件位於第一電壓位準。在各種具體實施例中,儲存電路經配置以將所儲存回饋參考訊號維持為數位碼或類比電壓。 The various methods and systems disclosed herein relate to maintaining an output capacitor voltage in an LED drive system during a PWM off time. According to one embodiment, a driver is configured to pass a current indicative of the level indicated by the control signal to the LED load when the PWM signal is on, and to stop transmitting the current at the level when the PWM signal is off. The output capacitive element is coupled to a differential output across the LED driver. The feedback path with the storage circuit is configured to store the information as a stored feedback reference signal just after the PWM signal transitions to off, the information indicating a first voltage level across the output capacitive element. The feedback path is such that the output capacitive component is at the first voltage level just before the PWM signal is turned on. In various embodiments, the storage circuit is configured to maintain the stored feedback reference signal as a digital code or analog voltage.
根據一個具體實施例,提供一種以一電路驅動LED負載的方法,此電路包含驅動器、輸出電容元件以及第一回饋路徑,此第一回饋路徑具有回饋節點與儲存電路。方法包含以下步驟:由驅動器接收PWM訊號、控制訊號、以及LED電流感測訊號。由第一回饋路徑的儲存電路,恰於PWM訊號轉變為關閉之後儲存在回饋節 點處的電壓位準作為所儲存回饋參考訊號。所儲存回饋參考訊號指示跨於輸出電容元件上的第一電壓位準。由第一回饋路徑比較所儲存回饋參考訊號以及在回饋節點處的當前電壓位準。基於比較的結果,恰於PWM訊號轉變為開啟之前使跨於輸出電容元件上的電壓位準位於第一電壓位準。在各種具體實施例中,儲存電路經配置以將所儲存回饋參考訊號維持為數位碼或類比電壓。 In accordance with a specific embodiment, a method of driving an LED load in a circuit is provided, the circuit including a driver, an output capacitive component, and a first feedback path having a feedback node and a storage circuit. The method includes the steps of: receiving, by the driver, a PWM signal, a control signal, and an LED current sensing signal. The storage circuit of the first feedback path is stored in the feedback section just after the PWM signal is turned off. The voltage level at the point is used as the stored feedback reference signal. The stored feedback reference signal indicates a first voltage level across the output capacitive element. The stored feedback reference signal and the current voltage level at the feedback node are compared by the first feedback path. Based on the result of the comparison, the voltage level across the output capacitive element is placed at the first voltage level just before the PWM signal transitions to on. In various embodiments, the storage circuit is configured to maintain the stored feedback reference signal as a digital code or analog voltage.
藉由下文對於發明較佳具體實施例的詳細說明,並參照附加圖式(其中類似的符號代表類似的部件),將可更明瞭本發明的各種目標、特徵、態樣以及優點。 The various objects, features, aspects and advantages of the present invention will become apparent from the Detailed Description of Description
100‧‧‧LED驅動系統 100‧‧‧LED drive system
101‧‧‧輸出電流 101‧‧‧Output current
103‧‧‧控制訊號輸入 103‧‧‧Control signal input
105‧‧‧節點 105‧‧‧ nodes
111‧‧‧電子開關 111‧‧‧Electronic switch
115‧‧‧LED負載 115‧‧‧LED load
117‧‧‧輸出電容元件 117‧‧‧ Output Capacitor
119‧‧‧LED驅動器 119‧‧‧LED driver
121‧‧‧電流感測器 121‧‧‧ Current Sensor
123‧‧‧電阻器 123‧‧‧Resistors
125‧‧‧電阻器 125‧‧‧Resistors
200‧‧‧LED驅動系統 200‧‧‧LED drive system
201‧‧‧電流iLED 201‧‧‧current i LED
203‧‧‧第二輸入 203‧‧‧ second input
205‧‧‧第一輸入節點 205‧‧‧first input node
211‧‧‧第一電子開關 211‧‧‧First electronic switch
215‧‧‧LED負載 215‧‧‧LED load
217‧‧‧輸出電容元件 217‧‧‧ Output Capacitor
219‧‧‧LED驅動器 219‧‧‧LED driver
221‧‧‧電流感測器 221‧‧‧ Current Sensor
223‧‧‧回饋電阻器 223‧‧‧Responsive resistor
225‧‧‧回饋電阻器 225‧‧‧ feedback resistor
233‧‧‧第三輸入 233‧‧‧ third input
237‧‧‧經縮放輸出回饋訊號(FBINPUT) 237‧‧‧Scaled output feedback signal (FB INPUT )
241‧‧‧儲存電路 241‧‧‧Storage circuit
243‧‧‧誤差放大器 243‧‧‧Error amplifier
300‧‧‧LED驅動系統 300‧‧‧LED drive system
303‧‧‧線性調節器 303‧‧‧Linear regulator
305‧‧‧反相器 305‧‧‧Inverter
400‧‧‧數位儲存電路 400‧‧‧ digital storage circuit
401‧‧‧反相器 401‧‧‧Inverter
403‧‧‧類比數位轉換器(ADC) 403‧‧‧ Analog Digital Converter (ADC)
405‧‧‧數位類比轉換器(DAC) 405‧‧‧Digital Analog Converter (DAC)
407‧‧‧儲存電容元件 407‧‧‧Storage Capacitor
409‧‧‧第一電子開關 409‧‧‧First electronic switch
411‧‧‧第二電子開關 411‧‧‧Second electronic switch
413‧‧‧控制輸入 413‧‧‧Control input
415‧‧‧第一輸出 415‧‧‧ first output
417‧‧‧輸出節點 417‧‧‧ Output node
419‧‧‧輸出節點 419‧‧‧Output node
500A‧‧‧類比儲存電路 500A‧‧‧ analog storage circuit
501‧‧‧第一開關 501‧‧‧First switch
503‧‧‧洩漏抵銷電路 503‧‧‧Leakage offset circuit
505‧‧‧反相器 505‧‧‧Inverter
507‧‧‧放大器 507‧‧Amplifier
509‧‧‧儲存電容元件 509‧‧‧ Storage Capacitor
511‧‧‧第二開關 511‧‧‧second switch
517‧‧‧第一輸入 517‧‧‧ first input
519‧‧‧節點 519‧‧‧ nodes
500B‧‧‧類比儲存電路 500B‧‧‧ analog storage circuit
507B‧‧‧放大器 507B‧‧Amplifier
圖式圖示說明性的具體實施例。圖式並未圖示說明所有具體實施例。可使用其他具體實施例以作為額外具體實施例或替代性具體實施例。可為顯然或非必要的細節可被省略,以節省空間或更有效率地圖示說明。可由額外部件或步驟,及(或)不由所圖示說明的所有部件或步驟,來實施一些具體實施例。在不同圖式中出現相同符號時,此符號代表相同或類似的部件或步驟。 The drawings illustrate illustrative specific embodiments. The drawings do not illustrate all of the specific embodiments. Other embodiments may be utilized as additional specific embodiments or alternative embodiments. Details that may or may not be necessary may be omitted to save space or more efficiently illustrate. Some specific embodiments may be implemented by additional components or steps, and/or without all of the components or steps illustrated. When the same symbol appears in different drawings, this symbol represents the same or similar components or steps.
第1A圖圖示說明先前技術發光二極體(light emitting diode,LED)驅動系統的範例。 FIG. 1A illustrates an example of a prior art light emitting diode (LED) drive system.
第1B圖圖示說明第1A圖LED驅動系統的範例波形。 FIG. 1B illustrates an example waveform of the LED drive system of FIG. 1A.
第2圖圖示說明LED驅動系統的範例,此LED驅動系統在PWM訊號為關閉時維持跨於輸出電容元件上的電壓,與示例性具體實施例一致。 Figure 2 illustrates an example of an LED drive system that maintains a voltage across the output capacitive element when the PWM signal is off, consistent with the exemplary embodiment.
第3圖圖示說明LED驅動系統的範例,此LED驅動系統藉由使用線性調節器在PWM訊號為關閉時維持跨於輸出電容元件上的電壓。 Figure 3 illustrates an example of an LED drive system that maintains a voltage across the output capacitive element when the PWM signal is off by using a linear regulator.
第4A圖圖示說明可用於實施第2圖與第3圖的儲存電路的數位儲存電路的範例。 Figure 4A illustrates an example of a digital storage circuit that can be used to implement the storage circuits of Figures 2 and 3.
第4B圖圖示說明操作在第2圖與第3圖的LED驅動系統中的第4A圖的電路的範例波形。 Fig. 4B is a diagram showing an example waveform of the circuit of Fig. 4A operating in the LED driving system of Figs. 2 and 3.
第5A圖與第5B圖圖示說明可用於實施第2圖與第3圖的儲存電路的類比儲存電路的範例。 5A and 5B illustrate an example of an analog storage circuit that can be used to implement the storage circuits of FIGS. 2 and 3.
第5C圖圖示說明操作在第2圖與第3圖的LED驅動系統中的第5A圖與第5B圖的電路的範例波形。 Fig. 5C is a diagram showing an example waveform of the circuits of Figs. 5A and 5B operating in the LED driving system of Figs. 2 and 3.
在以下實施方式中,作為範例而說明數種特定細節,以提供對於相關教示內容的通透瞭解。然而應顯然明暸本教示內容的實施可無須此種細節。在其他實例中,已由相對高的階層說明了習知方法、程序、部件及(或)電路系統而未說明其細節,以避免不必要地遮蔽本教示內容的態樣。可由額外的部件或步驟,及(或)可不由所說明的全部部件或步驟,來實施一些具體實施例。 In the following embodiments, several specific details are illustrated by way of example, in order to provide a thorough understanding of the relevant teachings. However, it should be apparent that the implementation of the teachings may not require such detail. In other instances, well-known methods, procedures, components, and/or circuitry have been described in the <Desc/Clms Page number> Some specific embodiments may be implemented by additional components or steps, and/or without all of the components or steps illustrated.
本文揭示的各種方法與電路,一般而言相關於對於LED驅動器維持輸出電壓參考位準的方法與電路,使得回復時間大量減少或消除。LED驅動器經配置以在PWM訊號為開啟時傳遞由控制訊號指示的一位準的電流至LED負載,並在PWM訊號為關閉時停止傳遞此位準的電流。耦接跨於驅動器差動輸出上的輸出電容元件鈍化(smooth out)跨於LED負載上的電壓。第一回饋路徑具有儲存電路,此儲存電路經配置以儲存資訊,此資訊指示在PWM訊號轉變為關閉時(恰於關閉之後)跨於輸出電容元件上的電壓位準。第一回饋路徑使跨於輸出電容元件上的電壓在PWM關閉期間內位於彼電壓位準,使得對於LED負載的回復時間被大量減少或消除。 The various methods and circuits disclosed herein are generally associated with methods and circuits for maintaining an output voltage reference level for an LED driver such that the recovery time is substantially reduced or eliminated. The LED driver is configured to pass a quasi-current indicated by the control signal to the LED load when the PWM signal is on, and to stop transmitting the current at the level when the PWM signal is off. The output capacitive element coupled across the differential output of the driver is smoothed out across the voltage across the LED load. The first feedback path has a storage circuit configured to store information indicative of a voltage level across the output capacitive element when the PWM signal transitions to off (just after shutdown). The first feedback path causes the voltage across the output capacitive element to be at a voltage level during the PWM off period such that the recovery time for the LED load is substantially reduced or eliminated.
第2圖圖示說明LED驅動系統200的範例,LED驅動系統在PWM訊號為關閉時維持跨於輸出電容元件217上的電壓,與示例性具體實施例一致。LED驅動系統200包含LED驅動器219,LED驅動器219具有可操作以接收PWM訊號的第一輸入節點205、可操作以接收控制訊號CTRL的第二輸入203、以及可操作以接收LED電流感測資訊訊號的第三輸入。存在經配置以接收電力(例如供應電壓)以操作LED驅動器219的輸入VIN。此外,驅動器219包含輸入FBINPUT 237,輸入FBINPUT 237經配置以接收經縮放的輸出回饋訊號。LED驅動器219具有差動輸出,包含第一輸出(例如 VOUT+)與第二輸出(例如VOUT-),在本文中有時將此等輸出集合稱為VOUT。存在耦接於LED驅動器219的第一與第二輸出之間的輸出電容元件217。輸出電容元件217經配置以鈍化(smooth out)跨於LED負載215上的訊號。例如,輸出電容元件217可濾除高頻交流(AC)電流與電壓,並減少通過LED負載215的電流漣波,從而提升在PWM為開啟時LED負載215的操作生命期。此亦可幫助在PWM為關閉時維持LED驅動器219的輸出電壓。 2 illustrates an example of an LED drive system 200 that maintains a voltage across the output capacitive element 217 when the PWM signal is off, consistent with the exemplary embodiment. The LED drive system 200 includes an LED driver 219 having a first input node 205 operable to receive a PWM signal, a second input 203 operable to receive the control signal CTRL, and operative to receive the LED current sensing information signal The third input. There is an input V IN configured to receive power (eg, supply voltage) to operate the LED driver 219. Further, the drive 219 includes an input FB INPUT 237, input FB INPUT 237 configured to receive a scaled output of the feedback signal. The LED driver 219 has a differential output comprising a first output (e.g., V OUT+ ) and a second output (e.g., V OUT- ), which are sometimes referred to herein as V OUT . There is an output capacitive element 217 coupled between the first and second outputs of the LED driver 219. Output capacitive element 217 is configured to smooth out signals across LED load 215. For example, output capacitive component 217 can filter out high frequency alternating current (AC) current and voltage and reduce current ripple through LED load 215, thereby increasing the operational lifetime of LED load 215 when PWM is on. This also helps maintain the output voltage of the LED driver 219 when the PWM is off.
LED驅動系統200包含分壓網路,分壓網路可包含串聯連接的回饋電阻器R1(223)與R2(225)。電阻器R1(223)的第一節點連接至驅動器219的第一輸出節點,且電阻器R1(223)的第二節點連接至回饋(FB)節點。第二電阻器R2(225)的第一節點連接至FB節點,且第二電阻器R2(225)的第二節點連接至驅動器219的第二輸出節點。R1(223)與R2(225)的分壓網路經配置以提供輸出電壓VOUT的經縮放值至驅動器219。在一個具體實施例中,回饋電阻器R1與R2為外部(例如晶片外)部件。 The LED drive system 200 includes a voltage divider network that can include feedback resistors R1 (223) and R2 (225) connected in series. A first node of resistor R1 (223) is coupled to a first output node of driver 219, and a second node of resistor R1 (223) is coupled to a feedback (FB) node. The first node of the second resistor R2 (225) is connected to the FB node, and the second node of the second resistor R2 (225) is connected to the second output node of the driver 219. The voltage divider network of R1 (223) and R2 (225) is configured to provide a scaled value of the output voltage V OUT to driver 219. In one embodiment, the feedback resistors R1 and R2 are external (eg, off-wafer) components.
存在誤差放大器243,誤差放大器243具有第一輸入與第二輸入,此第一輸入經配置以接收所儲存的回饋參考訊號FBREF,此第二輸入經配置以接收來自回饋節點FB的回饋訊號。誤差放大器243具有耦接至LED驅動器219的FBINPUT 237輸入的輸出。誤差放大 器243經配置以比較所儲存的回饋參考訊號FBREF與來自回饋節點FB的回饋訊號,以從差異(亦即FBREF-FB)產生輸出至驅動器219的FBINPUT 237輸入。 There is an error amplifier 243 having a first input and a second input, the first input being configured to receive the stored feedback reference signal FB REF , the second input being configured to receive a feedback signal from the feedback node FB. The error amplifier 243 has an output coupled to the FB INPUT 237 input of the LED driver 219. The error amplifier 243 is configured to compare the stored feedback reference signal FB REF with the feedback signal from the feedback node FB to generate an output from the difference (ie, FB REF - FB) to the FB INPUT 237 input of the driver 219.
LED驅動系統200包含儲存電路241,儲存電路241具有耦接至回饋節點FB的第一輸入以及耦接至PWM節點205的第二輸入。儲存電路241經配置以儲存在PWM開啟持續期間的跨於輸出電容元件217上的電壓(亦即回饋節點FB的電壓位準)的經縮放值,從而保存恰於節點205處PWM訊號轉變為關閉之前跨於輸出電容元件217上的電壓的經縮放值的最終值。例如,儲存電路241可在PWM訊號的下降邊緣儲存回饋節點FB處的電壓位準。藉由使用PWM訊號的下降邊緣,儲存電路241能夠儲存指示PWM開啟時間的回饋節點FB的電壓位準的訊號。 The LED drive system 200 includes a storage circuit 241 having a first input coupled to the feedback node FB and a second input coupled to the PWM node 205. The storage circuit 241 is configured to store a scaled value across the voltage across the output capacitive element 217 (ie, the voltage level of the feedback node FB) during the PWM on-duration, thereby preserving that the PWM signal is turned off at node 205. The final value of the scaled value of the voltage across the output capacitive element 217. For example, the storage circuit 241 can store the voltage level at the feedback node FB at the falling edge of the PWM signal. By using the falling edge of the PWM signal, the storage circuit 241 can store the signal of the voltage level of the feedback node FB indicating the PWM on time.
輸出電容元件217、回饋電阻器R1(223)與R2(225)、儲存電路241以及誤差放大器243一起操作以形成第一回饋路徑,第一回饋路徑經配置以提供回饋訊號至LED驅動器219。 Output capacitive element 217, feedback resistor R1 (223) operates with R2 (225), storage circuit 241, and error amplifier 243 to form a first feedback path that is configured to provide a feedback signal to LED driver 219.
存在第一電子開關211,第一電子開關211耦接於驅動器219的第一輸出VOUT+以及電子負載215的第一節點之間。在PWM訊號205為關閉時,第一電子開關211將LED負載215斷接,且在節點205處的PWM訊號被轉變為關閉之前(例如在PWM訊號的下降邊緣處擷取)跨於輸出電容元件217上的電壓被輸出電容元件 217維持。因此,電子開關211在PWM關閉時間期間內開路,且在PWM開啟時間期間內閉路。 There is a first electronic switch 211 coupled between the first output V OUT+ of the driver 219 and the first node of the electronic load 215. When the PWM signal 205 is off, the first electronic switch 211 disconnects the LED load 215 and crosses the output capacitive element before the PWM signal at the node 205 is turned off (eg, at the falling edge of the PWM signal). The voltage at 217 is maintained by output capacitive element 217. Therefore, the electronic switch 211 is open during the PWM off time and is closed during the PWM on time.
LED驅動系統200包含耦接至LED驅動器219的第二輸出的電流感測器221。電流感測器221經配置以感測正流過LED負載215的電流iLED 201,並提供此LED電流感測資訊至LED驅動器219的第三輸入233。儘管電流感測器被圖示說明為耦接至LED驅動器219的第二輸出,但將瞭解到在各種具體實施例中,電流感測器可被放置在任何適合的電路位置處以感測通過LED負載215的電流。 The LED drive system 200 includes a current sensor 221 coupled to a second output of the LED driver 219. Current sensor 221 is configured to sense current i LED 201 that is flowing through LED load 215 and provide this LED current sense information to third input 233 of LED driver 219. Although the current sensor is illustrated as being coupled to the second output of the LED driver 219, it will be appreciated that in various embodiments, the current sensor can be placed at any suitable circuit location to sense the pass LED Current of load 215.
在一個具體實施例中,感測器221感測到的電流iLED 201被提供至LED驅動器219的第三輸入,作為LED電流感測電壓。換言之,電流感測器221感測到的電流訊號被轉換成電壓訊號。電流感測器221為第二回饋路徑的部分,第二回饋路徑經配置以提供回饋訊號至LED驅動器219,使得LED驅動器219可提供適當的電流至LED負載215。 In one embodiment, the current i LED 201 sensed by the sensor 221 is provided to a third input of the LED driver 219 as an LED current sense voltage. In other words, the current signal sensed by the current sensor 221 is converted into a voltage signal. Current sensor 221 is part of a second feedback path that is configured to provide a feedback signal to LED driver 219 such that LED driver 219 can provide the appropriate current to LED load 215.
可包含一或更多個LED的LED負載215,耦接於LED驅動器219的第一與第二輸出之間。儘管系統200中的LED被作為範例而圖示說明為串聯連接,但將瞭解到在各種具體實施例中,可存在單一LED、LED可被並聯連接、或者LED可被由任何適合的串聯/並聯組合連接以實施所需的輸出。 An LED load 215, which may include one or more LEDs, is coupled between the first and second outputs of the LED driver 219. Although the LEDs in system 200 are illustrated as being connected in series as an example, it will be appreciated that in various embodiments, there may be a single LED, LEDs may be connected in parallel, or the LEDs may be connected by any suitable series/parallel. Combine the connections to implement the desired output.
在PWM訊號205為開啟(亦即位於「高(HI)」位準)時,LED驅動器219使流過LED負載215的輸出電流201符合由控制輸入203處控制訊號CTRL所指定的電流位準。對此,輸出電流201由電流感測器221測量,從而提供LED電流資訊至LED驅動器219。因此,基於LED電流感測訊號233,LED驅動器219調整傳遞至LED負載215的電流iLED 201,使得電流緊緊跟隨由控制節點CTRL 203處控制訊號所指定的訊號。 When the PWM signal 205 is on (i.e., at the "High (HI)" level), the LED driver 219 causes the output current 201 flowing through the LED load 215 to conform to the current level specified by the control signal CTRL at the control input 203. In this regard, the output current 201 is measured by the current sensor 221 to provide LED current information to the LED driver 219. Thus, based on the LED current sense signal 233, the LED driver 219 adjusts the current i LED 201 that is passed to the LED load 215 such that the current closely follows the signal specified by the control signal at the control node CTRL 203.
如先前所提及的,跨於輸出電容元件201上的輸出電壓VOUT由回饋電阻器R1(223)與R2(225)感測。輸出電壓VOUT的經縮放版本被提供於回饋節點FB處。誤差放大器243比較回饋節點FB處的先前感測到的電壓以及先前由儲存電路241儲存(例如在PWM訊號的下降邊緣)作為所儲存的回饋參考訊號FBREF的回饋節點處的電壓,並提供誤差放大器243的輸出電壓至LED驅動器219的FBINPUT節點。藉由使用FBINPUT節點處的此電壓,LED驅動器219可提供輸出電壓跨於LED驅動器219的差動輸出VOUT+與VOUT-上,使得在PWM關閉持續期間內跨於輸出電容元件201上的電壓被維持為與恰於PWM訊號轉變為關閉之前(例如在PWM訊號下降邊緣)的位準相同。 As previously mentioned, the output voltage VOUT across the output capacitive element 201 is sensed by feedback resistors R1 (223) and R2 (225). A scaled version of the output voltage V OUT is provided at the feedback node FB. The error amplifier 243 compares the previously sensed voltage at the feedback node FB with the voltage previously stored by the storage circuit 241 (eg, at the falling edge of the PWM signal) as the feedback node of the stored feedback reference signal FB REF and provides an error The output voltage of the amplifier 243 is to the FB INPUT node of the LED driver 219. By using this voltage at the FB INPUT node, the LED driver 219 can provide an output voltage across the differential outputs V OUT+ and V OUT- of the LED driver 219 such that it spans the output capacitive element 201 for the duration of the PWM off period. The voltage is maintained at the same level as just before the PWM signal transitions to off (for example, at the falling edge of the PWM signal).
因此,在PWM訊號為關閉(例如位於「低(LO)」位準)時,誤差放大器243基於跨於輸出電容 元件217上的當前經縮放的回饋電壓(FB)以及儲存於儲存電路241中的回饋電壓(現在作為目標回饋參考(FBREF))的差異,來產生輸出。在此階段期間內(例如在PWM訊號205為關閉時),電子開關211將LED負載215斷接,且LED驅動器219基於FBINPUT 237訊號維持跨於輸出電容元件217的電壓。 Therefore, when the PWM signal is off (eg, at the "Low" level), the error amplifier 243 is based on the current scaled feedback voltage (FB) across the output capacitive element 217 and stored in the storage circuit 241. The difference in the feedback voltage (now as the target feedback reference (FB REF )) is used to produce the output. During this phase (eg, when PWM signal 205 is off), electronic switch 211 disconnects LED load 215, and LED driver 219 maintains voltage across output capacitive element 217 based on FB INPUT 237 signal.
因此,LED驅動器219可在PWM訊號205為開啟時調節對LED負載215的輸出電流201,使得電流201相等於控制輸入203處控制訊號CTRL所指定的量,並可在PWM訊號為關閉時維持跨於輸出電容元件217上的輸出電壓。 Therefore, the LED driver 219 can adjust the output current 201 to the LED load 215 when the PWM signal 205 is on, so that the current 201 is equal to the amount specified by the control signal CTRL at the control input 203, and can be maintained across the PWM signal when the PWM signal is off. The output voltage on the output capacitive element 217.
藉由具有記憶回饋電壓FB先前狀態的儲存電路的第一回饋路徑,輸出電容元件217未受到長時間期間(例如多於一秒)電壓衰減的影響,且因此在每次PWM訊號205轉變回開啟時皆位於所需輸出電壓VOUT。因此,在PWM訊號為開啟時適當的電流iLED 201與電壓VLED+與VLED-被提供跨於LED負載215上,而不具有回復延遲。因此,即使是在長的PWM關閉期間之後,每次PWM訊號被轉變回開啟,LED驅動系統經配置以快速返回至(或維持)所需的跨於LED負載215上的電流與電壓。 By the first feedback path of the storage circuit having the previous state of the memory feedback voltage FB, the output capacitive element 217 is not affected by the voltage decay for a long period of time (eg, more than one second), and thus each time the PWM signal 205 transitions back to on. Both are at the desired output voltage V OUT . Therefore, the appropriate current i LED 201 and voltage V LED+ and V LED- are provided across the LED load 215 when the PWM signal is on, without a recovery delay. Thus, even after a long PWM off period, each time the PWM signal is turned back on, the LED drive system is configured to quickly return (or maintain) the desired current and voltage across the LED load 215.
在各種具體實施例中,跨於LED負載215上的輸出電壓(例如VLED+與VLED-之間的電位差)可大於或小於供應電壓VIN。例如,在跨於LED負載115上 的輸出電壓不大於供應電壓VIN時,可使用線性調節器代替LED驅動器219與誤差放大器243,以在PWM訊號的關閉期間內保持跨於輸出電容217上的電壓。 In various embodiments, the output voltage across the LED load 215 (eg, the potential difference between V LED + and V LED - ) may be greater or less than the supply voltage V IN . For example, when the output voltage across the LED load 115 is not greater than the supply voltage V IN , a linear regulator can be used in place of the LED driver 219 and the error amplifier 243 to remain across the output capacitor 217 during the off period of the PWM signal. Voltage.
對此,第3圖圖示說明LED驅動系統300的範例,在PWM訊號為關閉時,LED驅動系統300藉由使用個別的線性調節器303維持跨於輸出電容元件217上的電壓。在各種具體實施例中,線性調節器可為高態有效(active high)或低態有效(active low)。對於高態有效調節器,可存在耦接於PWM節點205與線性調節器303致能節點EN之間的額外反相器305。換言之,在PWM訊號為開啟時線性調節器303關閉,且在PWM訊號為關閉時線性調節器303開啟。第3圖LED驅動系統300的部件與功能的許多者,類似於第2圖LED驅動系統200的部件與功能的對應者,且因此為了簡潔而不再討論。因此,下面的討論重點提示一些獨特的特徵。 In this regard, FIG. 3 illustrates an example of an LED drive system 300 that maintains a voltage across the output capacitive element 217 by using an individual linear regulator 303 when the PWM signal is off. In various embodiments, the linear regulator can be active high or active low. For a high active regulator, there may be an additional inverter 305 coupled between the PWM node 205 and the linear regulator 303 enable node EN. In other words, the linear regulator 303 is turned off when the PWM signal is on, and the linear regulator 303 is turned on when the PWM signal is off. 3 is a number of components and functions of the LED drive system 300, similar to the counterparts of the components and functions of the LED drive system 200 of FIG. 2, and thus will not be discussed again for brevity. Therefore, the following discussion highlights some unique features.
LED驅動系統300包含具有輸入FBINPUT 237的LED驅動器219,輸入FBINPUT 237經配置以接收來自回饋節點FB、代表經縮放的輸出電壓VOUT的回饋訊號。在一個具體實施例中,LED驅動器219不需將跨於輸出電容元件217的電壓調節至恰於PWM訊號轉變為關閉之前的位準。這是因為線性調節器303執行了此功能。 The LED drive system 300 comprises an input 237 FB INPUT LED driver 219, the input FB INPUT 237 is configured to receive feedback from the FB node, the scaled feedback signal representative of the output voltage V OUT. In one embodiment, the LED driver 219 does not need to adjust the voltage across the output capacitive element 217 to a level just prior to the transition of the PWM signal to off. This is because the linear regulator 303 performs this function.
第3圖的線性調節器303包含第一輸入、第二輸入與輸出,第一輸入經配置以接收來自儲存電路241輸出的FBREF訊號,第二輸入耦接至回饋節點FB,而輸出耦接至LED驅動器219的第一輸出端點(VOUT+)。 The linear regulator 303 of FIG. 3 includes a first input, a second input and an output, the first input is configured to receive the FB REF signal from the output of the storage circuit 241, the second input is coupled to the feedback node FB, and the output is coupled To the first output terminal (V OUT+ ) of the LED driver 219.
例如,在PWM為關閉時,線性調節器303接收誤差訊號,誤差訊號相等於恰於PWM訊號轉變為關閉之後(例如在PWM訊號下降邊緣)儲存於儲存電路241中的所需回饋參考電壓(FBREF)以及當前感測到跨於輸出電容元件217的電壓的經縮放版本(FB)之間的差異。接著,線性調節器303可調整跨於輸出電容元件217的電壓,直到節點FB的電壓的經縮放版本相等於儲存電路241中儲存的參考值(FBREF)為止。因此在此具體實施例中,LED驅動器219不需在PWM訊號的關閉時間期間內調節跨於輸出電容元件217的電壓。相反的,此功能由線性調節器303管理。輸出電容元件217、回饋電阻器R1(223)與R2(225)、儲存電路241以及線性調節器303一起操作以形成第一回饋路徑,第一回饋路徑經配置以在PWM為關閉時調節跨於輸出電容元件217上的電壓。 For example, when the PWM is off, the linear regulator 303 receives the error signal, and the error signal is equal to the required feedback reference voltage (FB) stored in the storage circuit 241 just after the PWM signal is turned off (for example, at the falling edge of the PWM signal). REF ) and the difference between the scaled versions (FB) of the voltage across the output capacitive element 217 is currently sensed. Next, the linear regulator 303 can adjust the voltage across the output capacitive element 217 until the scaled version of the voltage of the node FB is equal to the reference value (FB REF ) stored in the storage circuit 241. Therefore, in this embodiment, the LED driver 219 does not need to regulate the voltage across the output capacitive element 217 during the off time of the PWM signal. Instead, this function is managed by linear regulator 303. Output capacitive element 217, feedback resistor R1 (223) operates with R2 (225), storage circuit 241, and linear regulator 303 to form a first feedback path that is configured to adjust across PWM when PWM is off The voltage on the capacitive element 217 is output.
藉由具有記憶先前狀態的儲存電路以及線性調節器303的第一回饋路徑,輸出電容元件217不會受到長時間期間內(例如多於一秒)電壓衰減的影響,且因次在每次PWM訊號205轉變回開啟時皆位於所需輸出電壓VOUT。因此,在PWM訊號為開啟時,提供跨於 LED負載215適當的電流iLED 201與電壓VLED+與VLED-,而不具有回復延遲。因此,即使是在長的PWM關閉期間之後,每次PWM訊號被轉變回開啟,LED驅動系統300經配置以快速返回至(或維持)所需的跨於LED負載215上的電流與電壓。 By having the storage circuit that memorizes the previous state and the first feedback path of the linear regulator 303, the output capacitive element 217 is not affected by the voltage decay over a long period of time (eg, more than one second), and the second time is in each PWM The signal 205 is turned back on when it is at the desired output voltage V OUT . Thus, the PWM signal is ON, the LED load 215 to provide cross appropriate current i LED 201 and the voltage V LED + V LED-, without having answer delay. Thus, even after a long PWM off period, each time the PWM signal is turned back on, the LED drive system 300 is configured to quickly return (or maintain) the desired current and voltage across the LED load 215.
範例儲存電路Example storage circuit
在各種具體實施例中,儲存電路241可為數位電路、類比電路、或以上之結合者。第4A圖圖示說明由數位碼維持回饋節點FB的電壓資訊的範例電路,此可用於實施第2圖與第3圖的儲存電路241。如第4A圖圖示說明,數位儲存電路400可包含類比數位轉換器(analog to digital converter,ADC)403、數位類比轉換器(digital to analog converter,DAC)405、第一電子開關409、第二電子開關411、以及儲存電容元件407。在各種具體實施例中,ADC 403可為低態有效或高態有效。例如對於高態有效ADC 403,可存在耦接於PWM節點205與ADC 403之間的額外反相器401。 In various embodiments, the storage circuit 241 can be a digital circuit, an analog circuit, or a combination thereof. FIG. 4A illustrates an example circuit for maintaining voltage information of the feedback node FB by a digital code, which can be used to implement the storage circuit 241 of FIGS. 2 and 3. As illustrated in FIG. 4A, the digital storage circuit 400 can include an analog to digital converter (ADC) 403, a digital to analog converter (DAC) 405, a first electronic switch 409, and a second The electronic switch 411 and the storage capacitive element 407. In various embodiments, ADC 403 can be active low or active high. For example, for the high active ADC 403, there may be an additional inverter 401 coupled between the PWM node 205 and the ADC 403.
在第4A圖的範例中,ADC 403具有第一輸入、第二輸入、以及第一輸出415,第一輸入經由第一電子開關409耦接至回饋節點FB,第二輸入耦接至PWM訊號節點205(此可經由反相器401),且第一輸出415耦接至DAC 405的輸入。在一個具體實施例中, ADC 403具有個別的輸出節點417,輸出節點417可操作以指示回饋訊號的類比數位轉換已經完成。 In the example of FIG. 4A, the ADC 403 has a first input, a second input, and a first output 415. The first input is coupled to the feedback node FB via the first electronic switch 409, and the second input is coupled to the PWM signal node. 205 (this may be via inverter 401), and the first output 415 is coupled to the input of the DAC 405. In a specific embodiment, The ADC 403 has an individual output node 417 that is operable to indicate that the analog digital conversion of the feedback signal has been completed.
DAC 405具有輸入以及輸出節點419,輸入耦接至ADC 403的輸出節點415,且輸出節點419經配置以提供在DAC 405輸入節點處的數位訊號的類比表示。在一個具體實施例中,可存在耦接於DAC 405輸出與ADC 403輸入之間的第二電子開關411,以提供所儲存的回饋參考訊號FBREF。第二開關411具有耦接至ADC 403第二輸出的控制節點(例如「完成(COMPLETE)」訊號)。在一個具體實施例中,第二開關411是非必要的,因為第二開關411的功能性是由DAC 405執行,由於第二開關411具有內建開關,內建開關經配置以經由第二輸入(第4A圖未圖示)接收ADC 403輸出作為控制訊號。 The DAC 405 has an input and output node 419 that is coupled to an output node 415 of the ADC 403, and the output node 419 is configured to provide an analog representation of the digital signal at the input node of the DAC 405. In one embodiment, there may be a second electronic switch 411 coupled between the output of the DAC 405 and the input of the ADC 403 to provide the stored feedback reference signal FB REF . The second switch 411 has a control node (eg, a "COMPLETE" signal) coupled to the second output of the ADC 403. In a specific embodiment, the second switch 411 is optional because the functionality of the second switch 411 is performed by the DAC 405, and since the second switch 411 has a built-in switch, the built-in switch is configured to pass the second input ( The 4A is not shown) receives the ADC 403 output as a control signal.
在各種具體實施例中,DAC 405可持續操作以提供更佳速度,或可在第二開關411轉變為開啟時(或稍於開啟前)隨即轉變為開啟以節省電力,同時提供足夠的時間讓DAC 405將數位訊號轉換成類比訊號。例如,DAC 405可在存在耦接至DAC 405輸出的第二開關411時持續操作,或可在第二開關的功能性嵌入DAC 405內時適當地操作。 In various embodiments, the DAC 405 can continue to operate to provide better speed, or can be turned to on when the second switch 411 transitions to on (or slightly before) to save power while providing sufficient time for The DAC 405 converts the digital signal into an analog signal. For example, DAC 405 may continue to operate when there is a second switch 411 coupled to the output of DAC 405, or may operate properly when the functionality of the second switch is embedded within DAC 405.
在第4A圖的範例中,第一電子開關409經配置為在節點205處PWM訊號為開啟時開啟,且在節點205處PWM訊號為關閉時關閉。至於第二電子開關 411,第二電子開關411經配置為在節點205處PWM訊號關閉且ADC 403的類比數位轉換完成時開啟。在其他時候第二開關411可為關閉。 In the example of FIG. 4A, the first electronic switch 409 is configured to turn on when the PWM signal is on at node 205 and off when the PWM signal is off at node 205. As for the second electronic switch 411. The second electronic switch 411 is configured to be turned on when the PWM signal is turned off at the node 205 and the analog digital conversion of the ADC 403 is completed. At other times the second switch 411 can be off.
因此,第4A圖範例中的數位儲存電路400儲存在PWM訊號205為開啟時從回饋節點FB接收來的儲存電容元件407上的電壓位準。在節點205處PWM訊號轉變為關閉時,第一電子開關409使儲存電容元件407斷接自回饋節點FB,並透過控制輸入413啟用ADC 403。 Therefore, the digital storage circuit 400 in the example of FIG. 4A stores the voltage level on the storage capacitive element 407 received from the feedback node FB when the PWM signal 205 is on. When the PWM signal transitions to off at node 205, the first electronic switch 409 disconnects the storage capacitive element 407 from the feedback node FB and enables the ADC 403 via the control input 413.
在此時間期間內,ADC 403受到PWM關閉訊號的指示,以將所感測到跨於儲存電容元件407上的電壓轉換成ADC 403輸出415處的數位數值。此數位數值可被儲存在儲存記憶體中,儲存記憶體可為ADC 403的部分或可與ADC 403分離。在一個具體實施例中,保持回饋節點FB處電壓的記憶體的數位輸出,可連接至DAC 405的輸入。為了幫助此討論,將假定保持回饋節點FB處電壓的記憶體位於ADC 403中。DAC 405經配置以在DAC 405輸入節點415處接收數位訊號,並在DAC 405輸出節點處提供數位訊號的類比版本。 During this time period, ADC 403 is signaled by the PWM off signal to convert the sensed voltage across storage capacitor element 407 to the digital value at ADC 403 output 415. This digit value can be stored in a memory that can be part of the ADC 403 or can be separated from the ADC 403. In one embodiment, the digital output of the memory holding the voltage at the feedback node FB can be connected to the input of the DAC 405. To aid in this discussion, it will be assumed that the memory holding the voltage at the feedback node FB is located in the ADC 403. The DAC 405 is configured to receive a digital signal at the DAC 405 input node 415 and to provide an analog version of the digital signal at the DAC 405 output node.
在ADC 403完成將類比回饋訊號在ADC 403的輸出415處轉換成數位表示之前,節點FBREF處的電壓位準代表所儲存的跨於儲存電容元件407上的電壓。在ADC 405已轉換並數位地儲存跨於儲存電容元件407上的電壓時,DAC 405可使用此數位值以驅動 FBREF電壓。因為數位儲存的值不隨著時間飄移,DAC 405驅動的FBREF值(且因此,跨於輸出電容元件217上的電壓)可被維持,即使是在長的PWM關閉期間之後。 The voltage level at node FB REF represents the stored voltage across storage capacitor element 407 before ADC 403 completes converting the analog feedback signal to a digital representation at output 415 of ADC 403. The DAC 405 can use this digital value to drive the FB REF voltage when the ADC 405 has converted and digitally stored the voltage across the storage capacitive element 407. Because the digital stored value does not drift over time, the FB REF value driven by DAC 405 (and therefore across the voltage on output capacitive element 217) can be maintained, even after a long PWM off period.
因此,由DAC 405傳遞的所儲存的回饋參考訊號FBREF的值,實質上類似於恰於PWM訊號轉變為關閉之後跨於儲存電容元件CSTORE 407上的回饋電壓FB。 Therefore, the value of the stored feedback reference signal FB REF delivered by the DAC 405 is substantially similar to the feedback voltage FB across the storage capacitive element C STORE 407 just after the PWM signal transitions to off.
參考第4B圖可更加瞭解第4A圖的特徵,第4B圖圖示說明第4A圖電路400的範例波形。如第4B圖圖示說明,在PWM訊號為關閉之後,回饋節點FB處的電壓被儲存為數位碼。在一個具體實施例中,在PWM為開啟時,LED負載為開啟,同時數位儲存電路400被重置。在此時間期間內,回饋節點FB處的電壓由第二回饋路徑判定。在PWM為關閉時,LED負載被轉變為關閉,且數位儲存電路400進入初始「儲存」狀態。儲存程序的持續期間取決於特定實施例。在「儲存」狀態期間內,FBREF被CSTORE 407保持。在儲存程序完成時,FBREF被由DAC 405保持。使用此FBREF訊號,在全體PWM關閉時間內由第一回饋路徑控制回饋節點FB處的電壓位準。 The features of Figure 4A can be more fully understood with reference to Figure 4B, which illustrates an example waveform of Circuit 400 of Figure 4A. As illustrated in FIG. 4B, after the PWM signal is turned off, the voltage at the feedback node FB is stored as a digital code. In one embodiment, when PWM is on, the LED load is on and the digital storage circuit 400 is reset. During this time period, the voltage at the feedback node FB is determined by the second feedback path. When the PWM is off, the LED load is turned off and the digital storage circuit 400 enters the initial "storage" state. The duration of the stored procedure depends on the particular embodiment. During the "storage" state, FB REF is held by C STORE 407. The FB REF is held by the DAC 405 when the store is completed. Using this FB REF signal, the voltage level at the feedback node FB is controlled by the first feedback path during the entire PWM off time.
可使用不同類型的ADC以實施數位儲存電路400的ADC 403,此係取決於LED驅動電路的特定需求。本文討論的ADC操作在將連續訊號轉換成某些位元數N的常見原理下。使用越多位元,ADC的精度就越 佳。常見的ADC類型,包含管線式(pipelined)、快閃式(flash)、循序漸進式(successive approximations register,SAR)、三角積分式(sigma delta,Σ△)、以及積分式或雙斜率式。 Different types of ADCs can be used to implement the ADC 403 of the digital storage circuit 400, depending on the particular needs of the LED drive circuit. The ADC operation discussed in this article is based on the common principle of converting continuous signals into certain bit numbers N. The more bits you use, the more accurate the ADC is. good. Common ADC types include pipelined, flash, successive approximations register (SAR), sigma delta (Σ △), and integral or double slope.
如第4A圖圖示說明,數位儲存電路及(或)ADC可包含一或更多個經適當配置的DAC,以將數位訊號轉換至類比域。對此,在各種具體實施例中,可使用不同的DAC,包含但不限於脈衝寬度調變器、積分三角式(Σ△)、二元權重式、電阻梯式(R-2R)、循序漸進式、溫度計碼式、以及混合式(此可使用前述DAC的結合者)。這些DAC可操作以將有限數值轉換成為電流或電壓形式的實體量值。 As illustrated in FIG. 4A, the digital storage circuit and/or ADC may include one or more suitably configured DACs to convert the digital signals to analog domains. In this regard, in various embodiments, different DACs can be used, including but not limited to pulse width modulators, integral delta (Σ △), binary weights, resistance ladder (R-2R), step-by-step , thermometer code, and hybrid (this can be used in conjunction with the aforementioned DAC). These DACs are operable to convert finite values into physical magnitudes in the form of current or voltage.
如先前提及的,在一些具體實施例中,本文討論的儲存電路亦可將回饋電壓資訊維持為類比電壓。類比實施例可需要較少的晶片面積、消耗較少的功率、並可較容易實施。例如,可消除數個功能方塊(諸如ADC與DAC)。儲存電路的類比實施例可被使用在各種應用中,包含(不做為限制)不需要延長的PWM關閉時間的應用中。 As previously mentioned, in some embodiments, the storage circuit discussed herein can also maintain feedback voltage information as an analog voltage. Analogous embodiments may require less wafer area, consume less power, and may be easier to implement. For example, several functional blocks (such as ADCs and DACs) can be eliminated. Analogous embodiments of the storage circuit can be used in a variety of applications, including (without limitation) in applications that do not require extended PWM off time.
對此,第5A圖與第5B圖圖示說明將回饋節點FB處的電壓維持為類比訊號的範例電路,此可用於實施第2圖與第3圖圖示說明的儲存電路241。如第5A圖圖示說明,類比儲存電路500A包含第一開關501、洩漏抵銷電路503、放大器(例如緩衝器)507、以及儲存電 容元件CSTORE 509。本地儲存電容元件509可被整合在相同的晶片上,雖然也展望使用外部電容元件。在一個具體實施例中,本地儲存電容元件509非常小於(例如小於十倍或更多)輸出電容元件217。 In this regard, FIGS. 5A and 5B illustrate an example circuit for maintaining the voltage at the feedback node FB as an analog signal, which can be used to implement the storage circuit 241 illustrated in FIGS. 2 and 3. As illustrated in FIG. 5A, the analog storage circuit 500A includes a first switch 501, a leakage cancel circuit 503, an amplifier (eg, a buffer) 507, and a storage capacitive element C STORE 509. The local storage capacitive element 509 can be integrated on the same wafer, although it is also contemplated to use external capacitive elements. In one particular embodiment, the local storage capacitive element 509 is very smaller (eg, less than ten times or more) the output capacitive element 217.
在各種具體實施例中,放大器507自身可被轉變為開啟或關閉以節省電力,及(或)緩衝器可被保持開啟(例如為了速度),但在放大器507輸出處耦接至第二開關511。在第二開關511被使用時,可存在耦接於PWM輸入節點205與第二開關511控制節點之間的反相器505。第5B圖的類比儲存電路500B具有實質上類似的特徵,除了類比儲存電路500B不具有第二開關511與反相器505之外。相反的,放大器507B直接受到節點205處PWM訊號的控制,因為開關511的功能性包含在放大器507B內。 In various embodiments, amplifier 507 itself may be turned "on" or "off" to conserve power, and/or the buffer may be held on (eg, for speed), but coupled to second switch 511 at the output of amplifier 507. . When the second switch 511 is used, there may be an inverter 505 coupled between the PWM input node 205 and the second switch 511 control node. The analog storage circuit 500B of FIG. 5B has substantially similar features except that the analog storage circuit 500B does not have the second switch 511 and the inverter 505. Conversely, amplifier 507B is directly controlled by the PWM signal at node 205 because the functionality of switch 511 is included in amplifier 507B.
洩漏抵銷電路503耦接至放大器507的第一(例如正)輸入517。放大器507可經配置為單一增益緩衝器,由於第二輸入(例如負輸入)在節點519耦接至放大器507的輸出。因此,儲存節點517處的電壓實質上類似於節點519處的電壓,因為放大器507的增益足夠高。放大器507的輸出耦接至回饋參考節點FBREF(例如經由開關511)。第一開關501具有第一節點與第二輸入,第一節點耦接至放大器507的第一輸入,第二輸入耦接至回饋節點FB。儲存電容器CSTORE 509亦耦接至放大器507的第一輸入。 The leakage cancellation circuit 503 is coupled to a first (eg, positive) input 517 of the amplifier 507. Amplifier 507 can be configured as a single gain buffer, with a second input (eg, a negative input) coupled to the output of amplifier 507 at node 519. Thus, the voltage at storage node 517 is substantially similar to the voltage at node 519 because the gain of amplifier 507 is sufficiently high. The output of amplifier 507 is coupled to feedback reference node FB REF (eg, via switch 511). The first switch 501 has a first node coupled to the first input of the amplifier 507 and a second input coupled to the feedback node FB. The storage capacitor C STORE 509 is also coupled to the first input of the amplifier 507.
第一與第二開關之每一者具有控制節點,控制節點耦接至PWM節點205。第一開關501經配置為在PWM訊號205為開啟(亦即高)時位於閉路(亦即開啟)狀態,且在PWM訊號205為關閉(亦即低)時位於開路(亦即關閉)狀態。相反的,第二開關511經配置為在PWM訊號205為開啟時位於關閉狀態,且在PWM訊號205為關閉時位於開啟狀態。因此,放大器507與507B在PWM訊號205為開啟時可被停用,且在PWM訊號為關閉時可被啟用。 Each of the first and second switches has a control node coupled to the PWM node 205. The first switch 501 is configured to be in a closed (ie, open) state when the PWM signal 205 is on (ie, high) and in an open (ie, off) state when the PWM signal 205 is off (ie, low). Conversely, the second switch 511 is configured to be in an off state when the PWM signal 205 is on, and in an on state when the PWM signal 205 is off. Thus, amplifiers 507 and 507B can be deactivated when PWM signal 205 is on and can be enabled when the PWM signal is off.
在電路500A與500B中,在節點205處PWM訊號為開啟時,第一開關501閉路,允許從回饋節點FB至本地儲存電容元件509的路徑。換言之,回饋節點FB處的電壓位準被跨於本地儲存電容元件509上儲存。 In circuits 500A and 500B, when the PWM signal is on at node 205, the first switch 501 is closed, allowing the path from the feedback node FB to the local storage capacitive element 509. In other words, the voltage level at the feedback node FB is stored across the local storage capacitive element 509.
在節點205處PWM訊號為關閉時,第一開關501開路(例如關閉),從而切斷回饋節點FB與本地儲存電容元件509在節點517處之間的路徑。然而,因為第一開關501與第二開關511之間存在相反關係,第二開關511現在閉路(例如開啟),從而允許放大器507輸出與回饋參考節點FBREF之間的路徑。因此,放大器507輸出處的電壓位準被提供至誤差放大器243(或線性調節器303)的第一輸入。藉由使用具有已知電容值的本地儲存電容元件509,可將更固定的回饋參考電壓 位準FBREF提供至誤差放大器243(或線性調節器303)的第一輸入。 When the PWM signal is off at node 205, the first switch 501 is open (e.g., closed), thereby cutting off the path between the feedback node FB and the local storage capacitive element 509 at node 517. However, because of the inverse relationship between the first switch 501 and the second switch 511, the second switch 511 is now closed (eg, turned on), allowing the path between the amplifier 507 output and the feedback reference node FB REF . Therefore, the voltage level at the output of amplifier 507 is provided to the first input of error amplifier 243 (or linear regulator 303). A more fixed feedback reference voltage level FB REF can be provided to the first input of error amplifier 243 (or linear regulator 303) by using local storage capacitive element 509 having a known capacitance value.
在一個具體實施例中,儲存電路500A(與500B)具有洩漏抵銷電路503,洩漏抵銷電路503經配置以進一步維持在節點205處PWM訊號為關閉時,節點517處跨於本地儲存電容元件509上的電壓。換言之,在節點205處PWM訊號為關閉時,跨於本地儲存電容元件509上的電壓不隨著時間下降,因為洩漏抵銷電路503經配置以補償洩漏的電荷。 In one embodiment, the storage circuit 500A (and 500B) has a leakage cancellation circuit 503 that is configured to further maintain the node 517 across the local storage capacitive element when the PWM signal is off at node 205. The voltage on 509. In other words, when the PWM signal is off at node 205, the voltage across the local storage capacitive element 509 does not decrease over time because the leakage cancellation circuit 503 is configured to compensate for the leaked charge.
參考第5C圖可更加瞭解第5A圖與第5B圖的特徵,第5C圖圖示說明操作在第2圖或第3圖LED驅動系統中的第5A圖與第5B圖的電路500A與500B的範例波形。如第5C圖圖示說明,在PWM訊號為關閉之後回饋節點FB處的電壓可被保持為類比電壓。在PWM訊號為開啟時可執行「儲存」步驟。在此時間期間內,LED負載為開啟(例如發光),且回饋節點FB處的電壓由第二(例如iLED)回饋路徑決定。在PWM為關閉時,LED負載轉變為關閉且儲存電路進入保持狀態,其中包含儲存電路241的第一回饋路徑驅動回饋節點FB處的電壓。 The features of FIGS. 5A and 5B can be more understood with reference to FIG. 5C, which illustrates the circuits 500A and 500B of FIGS. 5A and 5B operating in the LED driving system of FIG. 2 or FIG. Example waveform. As illustrated in FIG. 5C, the voltage at the feedback node FB after the PWM signal is off can be maintained as an analog voltage. The "Save" step can be performed when the PWM signal is on. In this time period, LED load is turned on (e.g., light emitting), and the voltage at the FB is determined by a second feedback node (e.g. i LED) feedback path. When the PWM is off, the LED load transitions to off and the storage circuit enters a hold state in which the first feedback path containing the storage circuit 241 drives the voltage at the feedback node FB.
結論in conclusion
所討論的部件、步驟、特徵、物件、益處以及優點僅為說明性的。以上這些(或是所相關的討論)皆不意為由任何方式限制保護範圍。亦思量了數種其他的具體實施例。這些其他的具體實施例包含具有較少 的、額外的、及(或)不同的部件、步驟、特徵、物件、益處及(或)優點的具體實施例。這些其他的具體實施例也包含其中由不同方式設置及(或)排序部件及(或)步驟的具體實施例。 The components, steps, features, objects, benefits, and advantages discussed are merely illustrative. None of the above (or related discussions) is intended to limit the scope of protection in any way. Several other specific embodiments have also been considered. These other specific embodiments include less Specific embodiments of the components, steps, features, objects, benefits and/or advantages. These other specific embodiments also include specific embodiments in which the components and/or steps are arranged and/or ordered in different ways.
例如,本文所討論的任何訊號可被縮放、緩衝、縮放且緩衝、轉換成另一模式(例如電壓、電流、電荷、時間等等)、或轉換成另一狀態(例如從高至低以及從低至高)、而不顯著地改變下層的控制方法。 For example, any of the signals discussed herein can be scaled, buffered, scaled, and buffered, converted to another mode (eg, voltage, current, charge, time, etc.), or converted to another state (eg, from high to low and from Low to high) without significantly changing the underlying control method.
在一個具體實施例中,可使用電荷幫浦(charge pump)代替本文討論的LED驅動器219或線性調節器303,以在PWM關閉期間內維持跨於輸出電容COUT 217上的電壓。 In one embodiment, a charge pump can be used in place of the LED driver 219 or linear regulator 303 discussed herein to maintain a voltage across the output capacitor COUT 217 during the PWM off period.
根據本文的討論,所提出的在系統未活動期間內維持跨於輸出電容元件217上的電壓以快速執行回復的技術,可被應用至可由電流脈衝驅動的其他應用,諸如馬達驅動器。 In accordance with the discussion herein, the proposed technique of maintaining a voltage across the output capacitive element 217 during a system inactivity to quickly perform a recovery can be applied to other applications that can be driven by current pulses, such as a motor driver.
所提出的技術的另一變異,可在PWM關閉時間期間內將操作點電壓調節為不同於在PWM開啟時間期間內的位準。取決於負載阻抗,操作點電壓在PWM關閉時間期間內可被維持在較高的或較低的位準,以在PWM返回開啟狀態時產生所需的回復響應。 Another variation of the proposed technique can adjust the operating point voltage to a different level than during the PWM turn-on time during the PWM off time. Depending on the load impedance, the operating point voltage can be maintained at a higher or lower level during the PWM off time to produce the desired return response when the PWM returns to the on state.
除非另外說明,否則本說明書所述的所有測量結果、值、額定值、位置、量值、尺寸以及其他規格,皆為近略而非精確無誤的。他們意為具有合理的範圍, 此範圍與他們所相關的功能一致,並與他們所屬技術領域中的習知技藝一致。 All measurements, values, ratings, positions, magnitudes, dimensions, and other specifications described in this specification are short and not precise, unless otherwise stated. They mean a reasonable range, This range is consistent with their associated functions and is consistent with the prior art in their art.
除了即於上文說明以外,所說明或圖示說明的內容均非意為(也不應被解譯為)將任何部件、步驟、特徵、物件、益處、優點或均等者貢獻給公眾,不論這些內容是否記載於申請專利範圍中。 Except as set forth above, nothing described or illustrated is intended to be (and should not be construed as) to contribute any component, step, feature, article, benefit, advantage, or equivalent to the public, regardless of Whether these contents are recorded in the scope of patent application.
在此併入本揭示內容中所引用的所有文章、專利、專利申請案以及其他刊物以作為參考。 All articles, patents, patent applications, and other publications cited in this disclosure are hereby incorporated by reference.
將瞭解到,本文所使用的用詞與表達方式具有通常意義,與針對他們所對應的各調查和研究區域所給予這樣的用詞和表達方式的意義一致,除非本文另已說明特定的含義。諸如「第一」、「第二」與類似者的相對性用詞,可單獨用於分辨個體或動作,而不必須要求或隱含任何他們之間的任何實際關係或次序。用詞「包含」、「包括」以及任何其他變異者,在連同說明書或申請專利範圍中的一列元件使用時,意為指示列表並非為窮舉性的,而是可包含其他元件。類似的,由「一」前綴的元件,在沒有其他條件限制之下,並未排除其他相同類型的額外元件的存在。 It will be appreciated that the terms and expressions used herein have the ordinary meaning and are consistent with the meaning of such terms and expressions given to the respective survey and study areas to which they correspond, unless the specific meaning is otherwise indicated herein. Relativistic terms such as "first", "second" and the like may be used alone to distinguish an individual or an action, without necessarily requiring or implying any actual relationship or order between them. The use of the terms "comprising", "comprising" and "comprising", and the meaning of the singular, and the singular of Similarly, elements prefixed by "one" do not exclude the existence of other additional elements of the same type, unless otherwise limited.
提供對於揭示內容的摘要以允許讀者快速確認技術內容的本質。在瞭解摘要將不會用於解譯或限制申請專利範圍的範圍或意義的前提之下提供此摘要。此外,在上文實施方式中,可看到為了流暢說明揭示內容的目的,在各種具體實施例中各種特徵被分組在一起。 此種揭示方法不應被解譯為反映對於所請具體實施例需要比每一請求項明確記載者還要多的特徵的意圖。相反的,如下列申請專利範圍所反映的,具有進步性的技術主題在於少於單一個所揭示的具體實施例的所有特徵。因此,在此將下列申請專利範圍併入實施方式中,且每一請求項自身獨立作為單獨請求的技術主題。 A summary of the disclosed content is provided to allow the reader to quickly confirm the nature of the technical content. This summary is provided on the premise that the abstract will not be used to interpret or limit the scope or meaning of the scope of the patent application. Moreover, in the above-described embodiments, it can be seen that various features are grouped together in various specific embodiments for the purpose of succinctly illustrating the disclosure. Such a method of disclosure should not be interpreted as reflecting an intention to require more features than are specifically recited in the particular embodiment. In contrast, as reflected in the scope of the following claims, the technical subject matter of the invention is less than all features of a particular embodiment disclosed. Accordingly, the scope of the following claims is hereby incorporated by reference in its entirety, and each of the claims are individually
Claims (20)
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201562168156P | 2015-05-29 | 2015-05-29 | |
US201562168234P | 2015-05-29 | 2015-05-29 | |
US62/168,234 | 2015-05-29 | ||
US62/168,156 | 2015-05-29 | ||
US15/147,842 | 2016-05-05 | ||
US15/147,842 US9596728B2 (en) | 2015-05-29 | 2016-05-05 | Maintaining output capacitance voltage in LED driver systems during PWM off times |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201707515A TW201707515A (en) | 2017-02-16 |
TWI617219B true TWI617219B (en) | 2018-03-01 |
Family
ID=58609300
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105115365A TWI617219B (en) | 2015-05-29 | 2016-05-18 | Maintaining output capacitance voltage in led driver systems during pulse width modulation off times |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI617219B (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2533606A1 (en) * | 2011-06-08 | 2012-12-12 | Macroblock, Inc. | AC-DC dual-use LED driving circuit |
TW201320814A (en) * | 2011-11-15 | 2013-05-16 | 昂寶電子(上海)有限公司 | Led lighting systems and methods for constant current control in various operation modes |
TW201325095A (en) * | 2011-07-06 | 2013-06-16 | Allegro Microsystems Inc | Electronic circuits and techniques for maintaining a consistent power delivered to a load |
CN103857145A (en) * | 2012-12-06 | 2014-06-11 | 意法半导体公司 | High power factor primary regulated offline LED driver |
US8988053B2 (en) * | 2012-06-28 | 2015-03-24 | Niko Semiconductor Co., Ltd. | Multiphase DC-to-DC converter |
-
2016
- 2016-05-18 TW TW105115365A patent/TWI617219B/en active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP2533606A1 (en) * | 2011-06-08 | 2012-12-12 | Macroblock, Inc. | AC-DC dual-use LED driving circuit |
TW201325095A (en) * | 2011-07-06 | 2013-06-16 | Allegro Microsystems Inc | Electronic circuits and techniques for maintaining a consistent power delivered to a load |
TW201320814A (en) * | 2011-11-15 | 2013-05-16 | 昂寶電子(上海)有限公司 | Led lighting systems and methods for constant current control in various operation modes |
US8988053B2 (en) * | 2012-06-28 | 2015-03-24 | Niko Semiconductor Co., Ltd. | Multiphase DC-to-DC converter |
CN103857145A (en) * | 2012-12-06 | 2014-06-11 | 意法半导体公司 | High power factor primary regulated offline LED driver |
Also Published As
Publication number | Publication date |
---|---|
TW201707515A (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9596728B2 (en) | Maintaining output capacitance voltage in LED driver systems during PWM off times | |
US9246403B2 (en) | Lighting systems with uniform LED brightness | |
RU2427109C2 (en) | Control method and device of current supplied to electronic devices | |
US20110248649A1 (en) | Systems and methods for a digital-to-charge converter (dqc) | |
EP3061317B1 (en) | Driving a multi-color luminaire | |
US9554430B2 (en) | Lighting system with an interface having a power supply unit and at least one light source module | |
US9198242B2 (en) | Apparatus for driving LEDs using high voltage | |
US8154214B2 (en) | Switching power supply for an illumination device with precision current control | |
US8816589B2 (en) | Light emitting diode driving apparatus | |
US7741825B2 (en) | Power supply circuit with temperature-dependent drive signal | |
JP2016503643A5 (en) | ||
JP2009502029A (en) | Simplified light emitting diode (LED) hysteresis current controller | |
JP2005300376A (en) | Voltage detection circuit, power supply device and semiconductor device | |
TWI617220B (en) | Maintaining led driver operating point during pulse width modulation off times | |
TWI475922B (en) | Apparatus, method and system for providing ac line power to lighting devices | |
US9504118B2 (en) | Resistance measurement of a resistor in a bipolar junction transistor (BJT)-based power stage | |
TWI617219B (en) | Maintaining output capacitance voltage in led driver systems during pulse width modulation off times | |
US11116058B2 (en) | LED dimming control circuit, dimming control method and LED power system thereof | |
JP7345360B2 (en) | Lighting control method of semiconductor light emitting element, lighting control device, and light emitting device | |
US11095263B2 (en) | Signal amplifier with calibrated reference | |
KR102003472B1 (en) | Led driving circuit and luminescence apparatus comprising the same | |
JP5585628B2 (en) | Power supply device and light emitting element driving device | |
JP2015012252A (en) | Current detection circuit | |
US20140225531A1 (en) | Average current control for a switched power converter | |
FI125185B (en) | Procedure and converter for power supply to series connected LEDs |