TWI617122B - Ripple compensation circuit of power supply and compensating method thereof - Google Patents

Ripple compensation circuit of power supply and compensating method thereof Download PDF

Info

Publication number
TWI617122B
TWI617122B TW105118725A TW105118725A TWI617122B TW I617122 B TWI617122 B TW I617122B TW 105118725 A TW105118725 A TW 105118725A TW 105118725 A TW105118725 A TW 105118725A TW I617122 B TWI617122 B TW I617122B
Authority
TW
Taiwan
Prior art keywords
error signal
voltage
llc resonant
circuit
output
Prior art date
Application number
TW105118725A
Other languages
Chinese (zh)
Other versions
TW201743545A (en
Inventor
多米尼克萊因哈特 班黎克
Original Assignee
泰達國際控股有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰達國際控股有限公司 filed Critical 泰達國際控股有限公司
Priority to TW105118725A priority Critical patent/TWI617122B/en
Publication of TW201743545A publication Critical patent/TW201743545A/en
Application granted granted Critical
Publication of TWI617122B publication Critical patent/TWI617122B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)

Abstract

本案為一種補償方法,適用於電源供應器之紋波補償電路,電源供應器包含LLC諧振轉換電路,LLC諧振轉換電路係接收輸入電壓並輸出輸出電壓,補償方法包含步驟:(a)將參考電壓與輸出電壓作減法運算,以產生第一誤差信號;(b)利用數位濾波器提升第一誤差信號之低頻增益,以產生第二誤差信號;(c)將第一誤差信號與第二誤差信號作加法運算,以產生調變誤差信號;(d)依據調變誤差信號對應產生補償信號以控制LLC諧振轉換電路,以提高LLC輸入電壓之低頻增益以及提高電壓環路補償電路的響應,使LLC諧振轉換電路對應輸出抑制過低頻紋波之輸出電壓。The present invention is a compensation method suitable for a ripple compensation circuit of a power supply. The power supply includes an LLC resonant conversion circuit, and the LLC resonant conversion circuit receives an input voltage and outputs an output voltage. The compensation method includes the steps of: (a) a reference voltage Subtracting with the output voltage to generate a first error signal; (b) boosting the low frequency gain of the first error signal with a digital filter to generate a second error signal; (c) first and second error signals Adding operation to generate a modulation error signal; (d) generating a compensation signal corresponding to the modulation error signal to control the LLC resonant conversion circuit to improve the low frequency gain of the LLC input voltage and improve the response of the voltage loop compensation circuit, so that the LLC The resonant converter circuit corresponds to an output that suppresses the output voltage of the low frequency ripple.

Description

適用於電源供應器之紋波補償電路及其補償方法Ripple compensation circuit suitable for power supply and compensation method thereof

本案係關於一種紋波補償電路,尤指一種適用於電源供應器之紋波補償電路及補償方法。The present invention relates to a ripple compensation circuit, and more particularly to a ripple compensation circuit and a compensation method suitable for a power supply.

電源供應器在日常生活中是一種十分普遍應用的電子產品,幾乎所有的電器裝置都具備電源供應器,以供應電源給電器裝置之內部組件或電子元件使用。以交流/直流電源供應器為例,其通常包含一功率因數校正(PFC)電路及一LLC諧振轉換電路。其中,功率因數校正電路係接收交流電壓,例如市電,並對交流電壓進行功率因數校正,以輸出過渡直流電壓。LLC諧振轉換電路則接收過渡直流電壓,並以諧振方式將接收到的過渡直流電壓轉換為不同電壓等級之輸出直流電壓。The power supply is a very common electronic product in daily life, and almost all electrical devices have a power supply for supplying power to internal components or electronic components of the electrical device. Taking an AC/DC power supply as an example, it typically includes a power factor correction (PFC) circuit and an LLC resonant conversion circuit. Wherein, the power factor correction circuit receives an AC voltage, such as a commercial power, and performs power factor correction on the AC voltage to output a transient DC voltage. The LLC resonant converter circuit receives the transient DC voltage and converts the received transient DC voltage into an output DC voltage of a different voltage level in a resonant manner.

然而,於使用交流/直流電源供應器時,由於所接收之交流電壓存在一低頻(一般係指頻率90Hz至120Hz之紋波),因此導致功率因數校正電路所輸出之過渡直流電壓及LLC諧振轉換電路所輸出之輸出直流電壓亦對應存在低頻紋波,該些低頻紋波不但產生不必要的電能損耗,更可能使交流/直流電源供應器運作不正常,亦產生雜訊與噪音。However, when using an AC/DC power supply, there is a low frequency (generally a ripple of frequency 90 Hz to 120 Hz) due to the received AC voltage, resulting in a transition DC voltage and LLC resonant conversion output by the power factor correction circuit. The output DC voltage output by the circuit also corresponds to the presence of low frequency ripple. These low frequency ripples not only cause unnecessary power loss, but also make the AC/DC power supply operate abnormally, and also generate noise and noise.

現有技術中,用於具LLC諧振轉換電路之交流/直流電源供應器的抑制低頻紋波的方法主要為採取類比濾波方式,亦即在LLC諧振轉換電路的輸出端加入一類比濾波電路,例如RC濾波電路或LC濾波電路,以濾除LLC諧振轉換電路所輸出之輸出直流電壓中的低頻紋波。雖然利用類比濾波電路並於設計時通過計算交流/直流電源供應器中相關元件的阻值、容值、感量,便可在一定程度上有效地抑制低頻紋波。然這種增加類比濾波電路的方式既增加了交流/直流電源供應器之生產成本,也增加了交流/直流電源供應器內之應用空間的要求。In the prior art, the method for suppressing low frequency ripple of an AC/DC power supply with an LLC resonant converter circuit mainly adopts an analog filtering method, that is, an analog filter circuit is added at an output end of the LLC resonant conversion circuit, such as RC. A filter circuit or an LC filter circuit filters out low frequency ripple in the output DC voltage output by the LLC resonant converter circuit. Although the analog filter circuit is used and the resistance, capacitance and inductance of the relevant components in the AC/DC power supply are calculated at the time of design, the low frequency ripple can be effectively suppressed to some extent. However, this method of adding an analog filter circuit increases the production cost of the AC/DC power supply and increases the application space requirement in the AC/DC power supply.

為了解決上述增加類比濾波電路所產生之問題,在許多其它的先前文獻中則改為透過提高LLC諧振轉換電路之輸入端所接收到的電壓的低頻增益之方法,以抑制交流/直流電源供應器中之輸出電壓之低頻紋波,此種方法係將LLC諧振轉換電路所輸出之輸出電壓與濾波器之增益直接作乘法運算,以透過提升LLC諧振轉換電路之輸出電壓之低頻增益而產生一增益信號,並直接透過該增益信號補償LLC諧振轉換電路所接收之輸入電壓,進而提高輸入電壓的低頻增益。請參閱第1A圖及第1B圖,其中第1A圖係為先前技術中經增益信號補償後之LLC諧振轉換電路之輸入端所接收之電壓之增益-頻率波形圖,第1B圖係為對應第1A圖而為經增益信號補償後之LLC諧振轉換電路之輸入端所接收之電壓之相位-頻率波形圖。然而,由於上述提高LLC諧振轉換電路之輸入電壓的低頻增益之方法係利用LLC諧振轉換電路的輸出電壓與濾波器之增益作乘法運算而產生,其零點和極點實產生改變,因此若採用零點和極點發生改變之增益信號來直接補償LLC諧振轉換電路之輸入電壓,實產生明顯的相位衝擊,例如,第1A圖所標示A之區域,代表經提高增益而補償後之LLC諧振轉換電路之輸入電壓在頻率約100Hz時所提高的增益,然而由第1B圖所標示A’之區域可知,當如第1A圖提高了電壓增益的同時,確存在約90deg至約-90deg的相位衝擊,而此巨大的相位衝擊將導致交流/直流電源供應器的不穩定。In order to solve the above problem of increasing the analog filter circuit, in many other prior documents, the method of increasing the low frequency gain of the voltage received at the input of the LLC resonant converter circuit is used to suppress the AC/DC power supply. In the low frequency ripple of the output voltage, the method directly multiplies the output voltage outputted by the LLC resonant converter circuit and the gain of the filter to generate a gain by increasing the low frequency gain of the output voltage of the LLC resonant converter circuit. The signal directly compensates the input voltage received by the LLC resonant converter circuit through the gain signal, thereby increasing the low frequency gain of the input voltage. Please refer to FIG. 1A and FIG. 1B , wherein FIG. 1A is a gain-frequency waveform diagram of a voltage received at an input end of an LLC resonant conversion circuit compensated by a gain signal in the prior art, and FIG. 1B is a corresponding figure. Figure 1A is a phase-frequency waveform diagram of the voltage received at the input of the LLC resonant converter circuit compensated by the gain signal. However, since the above method of increasing the low frequency gain of the input voltage of the LLC resonant converter circuit is generated by multiplying the output voltage of the LLC resonant converter circuit by the gain of the filter, the zero point and the pole point are changed, so if the zero point is used, The gain signal of the pole change directly compensates the input voltage of the LLC resonant converter circuit, which produces a significant phase impact. For example, the area indicated by A in Figure 1A represents the input voltage of the LLC resonant converter circuit compensated by the increased gain. The gain is increased at a frequency of about 100 Hz. However, it can be seen from the region indicated by A' in Fig. 1B that when the voltage gain is increased as in Fig. 1A, there is a phase impact of about 90 deg to about -90 deg, which is huge. The phase impact will cause instability of the AC/DC power supply.

因此,如何發展一種克服上述缺點的適用於電源供應器之紋波補償電路及其適用之補償方法,實為目前迫切之需求。Therefore, how to develop a ripple compensation circuit suitable for a power supply and a suitable compensation method for overcoming the above disadvantages is an urgent need.

本案之目的在於提供一種適用於電源供應器之紋波補償電路及其適用之補償方法,其中紋波補償電路不但可提升LLC諧振轉換電路之輸入端之電壓的低頻增益,進而抑制低頻紋波,更可降低相位衝擊,以維持電源供應器之穩定度。更甚者,本案之紋波補償電路可以減少電源供應器之內部之使用空間,並減低生產成本。The purpose of the present invention is to provide a ripple compensation circuit suitable for a power supply and a compensation method thereof, wherein the ripple compensation circuit can not only improve the low frequency gain of the voltage at the input end of the LLC resonant conversion circuit, but also suppress low frequency ripple. The phase impact can be reduced to maintain the stability of the power supply. What's more, the ripple compensation circuit in this case can reduce the use space inside the power supply and reduce the production cost.

為達上述目的,本發明之一較佳實施態樣為提供一種適用於電源供應器之紋波補償電路,其中電源供應器包含LLC諧振轉換電路,LLC諧振轉換電路之輸入端係接收輸入電壓,LLC諧振轉換電路之輸出端係輸出輸出電壓。紋波補償電路係包含減法器、數位濾波器、加法器及電壓環路補償電路。減法器之輸入端係與LLC諧振轉換電路之輸出端相連接,減法器係接收輸出電壓以及參考電壓,且將參考電壓與輸出電壓作減法運算,以產生第一誤差信號。數位濾波器之輸入端係與減法器之輸出端相連接,用以接收第一誤差信號,並提升第一誤差信號之低頻增益,進而產生第二誤差信號。加法器之輸入端係與減法器之輸出端以及數位濾波器之輸出端相連接,加法器係接收第一誤差信號與第二誤差信號,且將第一誤差信號與第二誤差信號作加法運算,以產生調變誤差信號。電壓環路補償電路之輸入端係與加法器之輸出端相連接,電壓環路補償電路之輸出端係與LLC諧振轉換電路相連接,電壓環路補償電路係接收調變誤差信號,並依據調變誤差信號對應產生補償信號以控制LLC諧振轉換電路,以提高輸入電壓之低頻增益以及提高電壓環路補償電路的響應,使LLC諧振轉換電路對應輸出抑制過低頻紋波之輸出電壓。In order to achieve the above object, a preferred embodiment of the present invention provides a ripple compensation circuit suitable for a power supply, wherein the power supply includes an LLC resonant conversion circuit, and an input terminal of the LLC resonant conversion circuit receives an input voltage. The output of the LLC resonant converter circuit is the output output voltage. The ripple compensation circuit includes a subtractor, a digital filter, an adder, and a voltage loop compensation circuit. The input end of the subtractor is connected to the output end of the LLC resonant conversion circuit, the subtractor receives the output voltage and the reference voltage, and subtracts the reference voltage from the output voltage to generate a first error signal. The input end of the digital filter is coupled to the output of the subtractor for receiving the first error signal and boosting the low frequency gain of the first error signal to produce a second error signal. The input end of the adder is connected to the output end of the subtractor and the output end of the digital filter, and the adder receives the first error signal and the second error signal, and adds the first error signal and the second error signal To generate a modulation error signal. The input end of the voltage loop compensation circuit is connected to the output end of the adder, the output end of the voltage loop compensation circuit is connected with the LLC resonant conversion circuit, and the voltage loop compensation circuit receives the modulation error signal, and according to the adjustment The variable error signal correspondingly generates a compensation signal to control the LLC resonant conversion circuit to increase the low frequency gain of the input voltage and improve the response of the voltage loop compensation circuit, so that the LLC resonant conversion circuit corresponding output suppresses the output voltage of the low frequency ripple.

本發明之另一實施態樣為提供一種補償方法,適用於電源供應器之紋波補償電路,其中電源供應器包含LLC諧振轉換電路,LLC諧振轉換電路之輸入端係接收輸入電壓,LLC諧振轉換電路之輸出端係輸出輸出電壓。本案之補償方法包含步驟:(a) 將一參考電壓與輸出電壓作減法運算,以產生第一誤差信號;(b) 利用數位濾波器來提升第一誤差信號之低頻增益,進而產生第二誤差信號;(c) 將第一誤差信號與第二誤差信號作加法運算,以產生調變誤差信號;(d) 依據調變誤差信號對應產生補償信號以控制LLC諧振轉換電路,以提高LLC輸入電壓之低頻增益,且使LLC諧振轉換電路對應輸出抑制過低頻紋波之輸出電壓。Another embodiment of the present invention provides a compensation method suitable for a ripple compensation circuit of a power supply, wherein the power supply includes an LLC resonant conversion circuit, and an input end of the LLC resonant conversion circuit receives an input voltage, LLC resonant conversion The output of the circuit is the output output voltage. The compensation method of the present invention comprises the steps of: (a) subtracting a reference voltage from an output voltage to generate a first error signal; and (b) using a digital filter to boost a low frequency gain of the first error signal to generate a second error. a signal; (c) adding a first error signal and a second error signal to generate a modulated error signal; (d) generating a compensation signal corresponding to the modulated error signal to control the LLC resonant conversion circuit to increase the LLC input voltage The low frequency gain, and the output of the LLC resonant converter circuit suppresses the output voltage of the low frequency ripple.

本發明之另一實施態樣為提供一種電源供應器,其中電源供應器係包含LLC諧振轉換電路以及紋波補償電路。LLC諧振轉換電路之輸入端係接收輸入電壓,LLC諧振轉換電路之輸出端係輸出輸出電壓。紋波補償電路係包含減法器、數位濾波器、加法器及電壓環路補償電路。減法器之輸入端係與LLC諧振轉換電路之輸出端相連接,減法器係接收輸出電壓以及參考電壓,且將參考電壓與輸出電壓作減法運算,以產生第一誤差信號。數位濾波器之輸入端係與減法器之輸出端相連接,用以接收第一誤差信號,並提升第一誤差信號之低頻增益,進而產生第二誤差信號。加法器之輸入端係與減法器之輸出端以及數位濾波器之輸出端相連接,加法器係接收第一誤差信號與第二誤差信號,且將第一誤差信號與第二誤差信號作加法運算,以產生調變誤差信號。電壓環路補償電路之輸入端係與加法器之輸出端相連接,電壓環路補償電路之輸出端係與LLC諧振轉換電路相連接,電壓環路補償電路係接收調變誤差信號,並依據調變誤差信號對應產生補償信號以控制LLC諧振轉換電路,以提高輸入電壓之低頻增益以及提高電壓環路補償電路的響應,使LLC諧振轉換電路對應輸出抑制過低頻紋波之輸出電壓。Another aspect of the present invention provides a power supply, wherein the power supply includes an LLC resonant conversion circuit and a ripple compensation circuit. The input end of the LLC resonant converter circuit receives the input voltage, and the output of the LLC resonant converter circuit outputs the output voltage. The ripple compensation circuit includes a subtractor, a digital filter, an adder, and a voltage loop compensation circuit. The input end of the subtractor is connected to the output end of the LLC resonant conversion circuit, the subtractor receives the output voltage and the reference voltage, and subtracts the reference voltage from the output voltage to generate a first error signal. The input end of the digital filter is coupled to the output of the subtractor for receiving the first error signal and boosting the low frequency gain of the first error signal to produce a second error signal. The input end of the adder is connected to the output end of the subtractor and the output end of the digital filter, and the adder receives the first error signal and the second error signal, and adds the first error signal and the second error signal To generate a modulation error signal. The input end of the voltage loop compensation circuit is connected to the output end of the adder, the output end of the voltage loop compensation circuit is connected with the LLC resonant conversion circuit, and the voltage loop compensation circuit receives the modulation error signal, and according to the adjustment The variable error signal correspondingly generates a compensation signal to control the LLC resonant conversion circuit to increase the low frequency gain of the input voltage and improve the response of the voltage loop compensation circuit, so that the LLC resonant conversion circuit corresponding output suppresses the output voltage of the low frequency ripple.

體現本案特徵與優點的一些典型實施例將在後段的說明中詳細敘述。應理解的是本案能夠在不同的態樣上具有各種的變化,其皆不脫離本案的範圍,且其中的說明及圖式在本質上係當作說明之用,而非用於限制本案。Some exemplary embodiments embodying the features and advantages of the present invention are described in detail in the following description. It is to be understood that the present invention is capable of various modifications in the various aspects of the present invention, and the description and drawings are intended to be illustrative and not limiting.

第2圖係為本案較佳實施例之適用於電源供應器之紋波補償電路的電路示意圖。如第2圖所示,本案之紋波補償電路2係應用於一電源供應器1中,其中該電源供應器1可為但不限於一交流/直流電源供應器,且該電源供應器1係包含一LLC諧振轉換電路3,該LLC諧振轉換電路3係將所接收之輸入電壓Vin以諧振方式轉換為一輸出電壓Vout,以提供給與電源供應器1電連接之負載,例如電器裝置使用。Figure 2 is a circuit diagram of a ripple compensation circuit suitable for a power supply of the preferred embodiment of the present invention. As shown in FIG. 2, the ripple compensation circuit 2 of the present invention is applied to a power supply 1, wherein the power supply 1 can be, but not limited to, an AC/DC power supply, and the power supply 1 is An LLC resonant converter circuit 3 is included. The LLC resonant converter circuit 3 converts the received input voltage Vin into an output voltage Vout in a resonant manner to provide a load to the power supply 1 for electrical connection, such as an electrical device.

紋波補償電路2係包含一減法器21、一數位濾波器22、一加法器23以及一電壓環路補償電路24。減法器21之輸入端係與LLC諧振轉換電路3之輸出端相連接,減法器21係接收LLC諧振轉換電路3之輸出電壓Vout以及一參考電壓Vref,且將參考電壓Vref與輸出電壓Vout作減法運算,以依據參考電壓Vref與輸出電壓Vout之間的差值產生第一誤差信號Ve。The ripple compensation circuit 2 includes a subtractor 21, a digital filter 22, an adder 23, and a voltage loop compensation circuit 24. The input end of the subtracter 21 is connected to the output end of the LLC resonant converter circuit 3, and the subtracter 21 receives the output voltage Vout of the LLC resonant converter circuit 3 and a reference voltage Vref, and subtracts the reference voltage Vref from the output voltage Vout. The operation is to generate the first error signal Ve according to the difference between the reference voltage Vref and the output voltage Vout.

數位濾波器22之輸入端係與減法器21之輸出端相連接,且預設有一z領域轉移函數,數位濾波器22用以接收第一誤差信號Ve,並利用z領域轉移函數來提升第一誤差信號Ve之低頻增益,進而產生一第二誤差信號Ve’。於一些實施例中,上述之低頻增益係介於頻率90Hz-120Hz間之電壓增益。The input end of the digital filter 22 is connected to the output end of the subtractor 21, and has a z-domain transfer function preset, and the digital filter 22 is configured to receive the first error signal Ve and use the z-domain transfer function to boost the first The low frequency gain of the error signal Ve, which in turn produces a second error signal Ve'. In some embodiments, the low frequency gain described above is a voltage gain between 90 Hz and 120 Hz.

請參閱第3圖,並配合第2圖,其中第3圖係為第2圖所示之數位濾波器的z領域轉移函數的架構圖。如圖所示,本案之數位濾波器22可為但不限於由一無限脈衝響應濾波器(infinite impulse response filter,IIR filter)所構成,該無限脈衝響應濾波器係預設有z領域轉移函數,即下列式(1): (1) 於式(1)中,H(z)係指z領域轉移函數,Ve係指第一誤差信號,Ve’ 係指第二誤差信號,a1、a2、b1、b2係為無限脈衝響應濾波器之濾波器係數, 為一階延遲單元、 為兩個一階延遲單元 作乘法運算所得到之二階延遲單元。而為了達成式(1),一般係以第3圖所示之架構圖來實現,其中標號31為一加法器,而無限脈衝響應濾波器將第一誤差信號Ve與第二誤差信號Ve’經過第3圖中之濾波器係數a1、a2、b1、b2、一階延遲單元 以及加法器31做運算,進而得到本案之z領域轉移函數H(z)。更甚者,調整a1、a2之係數可以調整濾波器之極點設置的位置,調整b1、b2之係數可以調整濾波器之零點設置的位置,透過調整上述濾波器係數之數值,可以設計於不同頻率具備不同增益效果之濾波器,例如本案透過調整z領域轉移函數H(z)之濾波器係數,即可使數位濾波器22達到提升介於頻率90Hz-120Hz間之電壓增益,然由於透過調整不同的上述多個濾波器係數皆可設計出提升90Hz-120Hz之電壓增益效果之濾波器,又調整濾波器係數實為本領域技術人員常用之手法,故不再贅述調整濾波器係數的方式。 Please refer to FIG. 3 and cooperate with FIG. 2, wherein FIG. 3 is an architectural diagram of the z-domain transfer function of the digital filter shown in FIG. As shown in the figure, the digital filter 22 of the present invention may be, but not limited to, an infinite impulse response filter (IIR filter), and the infinite impulse response filter is pre-configured with a z-domain transfer function. That is, the following formula (1): (1) In equation (1), H(z) is the z-domain transfer function, Ve is the first error signal, and Ve' is the second error signal, and a1, a2, b1, b2 are infinite impulse responses. Filter coefficient of the filter, a first-order delay unit, Two first-order delay units A second-order delay unit obtained by multiplication. To achieve the formula (1), it is generally implemented by the architecture diagram shown in FIG. 3, wherein the reference numeral 31 is an adder, and the infinite impulse response filter passes the first error signal Ve and the second error signal Ve'. Filter coefficients a1, a2, b1, b2, first order delay unit in Fig. 3 And the adder 31 performs an operation to obtain the z-domain transfer function H(z) of the present case. Moreover, adjusting the coefficients of a1 and a2 can adjust the position of the pole setting of the filter, and adjusting the coefficients of b1 and b2 can adjust the position of the zero point setting of the filter. By adjusting the value of the filter coefficient, it can be designed at different frequencies. Filters with different gain effects. For example, by adjusting the filter coefficients of the z-domain transfer function H(z), the digital filter 22 can achieve a voltage gain between 90Hz and 120Hz, but the transmission is different. The above plurality of filter coefficients can all be designed to improve the voltage gain effect of 90Hz-120Hz, and the adjustment of the filter coefficients is a common method used by those skilled in the art, so the manner of adjusting the filter coefficients is not repeated.

請再參閱第2圖,加法器23之輸入端係與減法器21之輸出端以及數位濾波器22之輸出端相連接,加法器23係接收減法器21所輸出之第一誤差信號Ve與數位濾波器22所輸出之第二誤差信號Ve’,且將第一誤差信號Ve與第二誤差信號Ve’作加法運算,以產生一調變誤差信號Vg。Referring again to FIG. 2, the input terminal of the adder 23 is connected to the output of the subtractor 21 and the output of the digital filter 22, and the adder 23 receives the first error signal Ve and the digital output from the subtractor 21. The second error signal Ve' output by the filter 22 adds the first error signal Ve and the second error signal Ve' to generate a modulation error signal Vg.

電壓環路補償電路24之輸入端係與加法器23之輸出端相連接,電壓環路補償電路24之輸出端係與LLC諧振轉換電路3相連接,電壓環路補償電路24係接收加法器23所輸出之調變誤差信號Vg,並依據調變誤差信號Vg對應產生一補償信號Sc以控制LLC諧振轉換電路3,以提高LLC諧振轉換電路3所接收之輸入電壓Vin之低頻增益以及提高電壓環路補償電路的響應,藉此使LLC諧振轉換電路3因輸入電壓Vin之低頻增益已提升而對應輸出已抑制過低頻紋波之輸出電壓Vout。The input end of the voltage loop compensation circuit 24 is connected to the output end of the adder 23, the output end of the voltage loop compensation circuit 24 is connected to the LLC resonant conversion circuit 3, and the voltage loop compensation circuit 24 receives the adder 23. The modulated modulation error signal Vg is outputted according to the modulation error signal Vg to generate a compensation signal Sc to control the LLC resonant conversion circuit 3 to improve the low frequency gain of the input voltage Vin received by the LLC resonant conversion circuit 3 and to increase the voltage loop. The response of the circuit compensation circuit, thereby causing the LLC resonant converter circuit 3 to output the output voltage Vout that has suppressed the low frequency ripple due to the low frequency gain of the input voltage Vin has been increased.

請同時參閱第2圖與第4圖,其中第4圖係為第2圖所示之紋波補償電路之補償方法的流程圖。如第4圖所示,本案之紋波補償電路2之補償方法包含下列步驟。首先,執行步驟S1,接收LLC諧振轉換電路3之輸出電壓Vout以及參考電壓Vref,且將參考電壓Vref與輸出電壓Vout作減法運算,以產生第一誤差信號Ve。接著,執行步驟S2,數位濾波器22接收第一誤差信號Ve,並利用預設於數位濾波器22之z領域轉移函數來提升第一誤差信號Ve之低頻增益,進而產生第二誤差信號Ve’。然後,執行步驟S3,加法器23接收第一誤差信號Ve與第二誤差信號Ve’,且將第一誤差信號Ve與第二誤差信號Ve’作加法運算,以產生調變誤差信號Vg。最後執行步驟S4,電壓環路補償電路24接收調變誤差信號Vg,並依據調變誤差信號Vg對應產生補償信號Sc以控制LLC諧振轉換電路3,以提高LLC諧振轉換電路3之輸入電壓Vin之低頻增益,使LLC諧振轉換電路3對應輸出抑制過低頻紋波之輸出電壓Vout。Please refer to FIG. 2 and FIG. 4 at the same time, wherein FIG. 4 is a flowchart of the compensation method of the ripple compensation circuit shown in FIG. 2. As shown in Fig. 4, the compensation method of the ripple compensation circuit 2 of the present invention includes the following steps. First, step S1 is executed to receive the output voltage Vout of the LLC resonant converter circuit 3 and the reference voltage Vref, and the reference voltage Vref and the output voltage Vout are subtracted to generate a first error signal Ve. Next, in step S2, the digital filter 22 receives the first error signal Ve, and uses the z-domain transfer function preset to the digital filter 22 to boost the low-frequency gain of the first error signal Ve, thereby generating the second error signal Ve'. . Then, in step S3, the adder 23 receives the first error signal Ve and the second error signal Ve', and adds the first error signal Ve and the second error signal Ve' to generate the modulated error signal Vg. Finally, in step S4, the voltage loop compensation circuit 24 receives the modulation error signal Vg, and generates a compensation signal Sc according to the modulation error signal Vg to control the LLC resonant conversion circuit 3 to improve the input voltage Vin of the LLC resonant conversion circuit 3. The low frequency gain causes the LLC resonant converter circuit 3 to output an output voltage Vout that suppresses the low frequency ripple.

請同時參閱第2圖及第5A-5C圖,其中第5A圖係為本案第2圖所示之第一誤差信號之電壓-時序模擬結果圖,第5B圖係為本案第2圖所示之第二誤差信號之電壓-時序模擬結果圖,第5C圖係為本案第2圖所示之調變誤差信號之電壓-時序模擬結果圖。由第5A-5C圖中可得知,由於數位濾波器22提升了第一誤差信號Ve之低頻增益(由第5A圖與第5B圖比較可得),故透過第一誤差信號Ve與第二誤差信號Ve’作加法運算後所產生之調變誤差信號Vg可抑制誤差信號Ve所伴隨的低頻紋波。Please also refer to Figure 2 and Figure 5A-5C. Figure 5A is the voltage-time series simulation result of the first error signal shown in Figure 2 of the case. Figure 5B is the figure shown in Figure 2 of this case. The voltage-time series simulation result diagram of the second error signal, and the 5C figure is the voltage-time series simulation result diagram of the modulation error signal shown in Fig. 2 of the present invention. As can be seen from the 5A-5C figure, since the digital filter 22 boosts the low frequency gain of the first error signal Ve (compared by the 5A and 5B pictures), the first error signal Ve and the second are transmitted. The modulation error signal Vg generated after the addition of the error signal Ve' suppresses the low frequency ripple accompanying the error signal Ve.

請參閱第6A圖及第6B圖,其中第6A圖係為未使用本案之紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的電壓-時序模擬結果圖,第6B圖係為使用本案紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的電壓-時序模擬結果圖。由第6A及6B圖中可以清楚得知,當未使用本案紋波補償電路2時,LLC諧振轉換電路所輸出之輸出電壓的低頻紋波的峰對峰電壓值為469mV,而若使用本案紋波補償電路2,則LLC諧振轉換電路3之低頻紋波的峰對峰電壓值可降低至259mV,由此可以明顯得知,本案之紋波補償電路2確實具有抑制紋波之功效。Please refer to FIG. 6A and FIG. 6B. FIG. 6A is a voltage-time series simulation result diagram of the low-frequency ripple of the output voltage of the LLC resonant conversion circuit without using the ripple compensation circuit of the present invention, and FIG. 6B is a diagram A voltage-time series simulation result diagram of the low-frequency ripple of the output voltage outputted by the LLC resonant converter circuit of the ripple compensation circuit of the present invention. It can be clearly seen from the pictures of FIGS. 6A and 6B that when the ripple compensation circuit 2 of the present invention is not used, the peak-to-peak voltage value of the low-frequency ripple of the output voltage outputted by the LLC resonant conversion circuit is 469 mV, and if the pattern is used, In the wave compensation circuit 2, the peak-to-peak voltage value of the low-frequency ripple of the LLC resonant converter circuit 3 can be reduced to 259 mV, and it is apparent that the ripple compensation circuit 2 of the present invention does have the effect of suppressing ripple.

請參閱第7A圖及第7B圖,其中第7A圖係為未使用本案之紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的振幅-頻率擬結果圖,第7B圖係為使用本案紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的振幅-頻率模擬結果圖。由第7A及7B圖中可以清楚得知,當未使用本案紋波補償電路2時,LLC諧振轉換電路所輸出之輸出電壓的低頻紋波位於110Hz之振幅約為-19dB(如標示B之區域),而若使用本案紋波補償電路2,則LLC諧振轉換電路3所輸出之輸出電壓的低頻紋波位於110Hz之振幅降低至-40.6dB(如標示B’之區域),由此可以明顯得知,本案之紋波補償電路2確實具有抑制紋波之功效。Please refer to FIG. 7A and FIG. 7B. FIG. 7A is an amplitude-frequency pseudo-result diagram of the low-frequency ripple of the output voltage of the LLC resonant converter circuit without the ripple compensation circuit of the present invention, and FIG. 7B is a diagram. The amplitude-frequency simulation result graph of the low-frequency ripple of the output voltage outputted by the LLC resonant converter circuit of the ripple compensation circuit of the present invention. It can be clearly seen from the figures 7A and 7B that when the ripple compensation circuit 2 of the present invention is not used, the low frequency ripple of the output voltage outputted by the LLC resonant conversion circuit is located at an amplitude of about -19 dB at 110 Hz (as indicated by the area of B). However, if the ripple compensation circuit 2 of the present invention is used, the amplitude of the low-frequency ripple of the output voltage outputted by the LLC resonant conversion circuit 3 is reduced to -40.6 dB at the 110 Hz (as indicated by the area of B'), thereby being apparent It is known that the ripple compensation circuit 2 of the present invention does have the effect of suppressing ripple.

請參閱第8A圖及第8B圖,其中第8A圖係為經本案之紋波補償電路補償後之LLC諧振轉換電路之輸入電壓的增益-頻率波形圖,第8B圖係為對應第8A圖而為經本案之紋波補償電路補償後之LLC諧振轉換電路之輸入電壓的相位-頻率波形圖。如圖所示,相較於先前技術中,由於調變誤差信號係透過將LLC諧振轉換電路所輸出之輸出電壓與濾波器之增益直接作乘法運算後,並將調變誤差信號直接用來補償LLC諧振轉換電路之輸入電壓,導致產生相位衝擊,由於本案乃是先透過數位濾波器22將第一誤差信號Ve之低頻增益作提升,以產生第二誤差信號Ve’,再利用第二誤差信號Ve’與第一誤差信號Ve作加法運算而產生調變誤差信號Vg,最後才利用調變誤差信號Vg補償LLC諧振轉換電路3之輸入電壓Vin,如此一來,調變誤差信號Vg之極點與零點衝擊可減小,對應使得透過調變誤差信號Vg補償後之LLC諧振轉換電路3之輸入電壓Vin的相位衝擊亦減小。亦即如第8A、8B圖所示,其中在第8A圖所標示C之區域,係代表經調變誤差信號Vg補償後之LLC諧振轉換電路3之輸入電壓Vin提高了在頻率約100Hz時的增益,而第8B圖所標示C’之區域,則代表經調變誤差信號Vg補償後之LLC諧振轉換電路3之輸入電壓Vin在提高了在頻率約100Hz時的增益的同時,係存在約15deg至約-15deg的相位衝擊,故可證明,相較於傳統增加增益同時將導致約90deg至約-90deg的相位衝擊,本案之紋波補償電路2確實可在提升低頻增益的同時,減少相位衝擊,故本案之紋波補償電路2可以在抑制低頻紋波的同時,亦維持電源供應器1之穩定度。Please refer to FIG. 8A and FIG. 8B. FIG. 8A is a gain-frequency waveform diagram of the input voltage of the LLC resonant converter circuit compensated by the ripple compensation circuit of the present invention, and FIG. 8B is corresponding to FIG. 8A. The phase-frequency waveform diagram of the input voltage of the LLC resonant converter circuit compensated by the ripple compensation circuit of the present invention. As shown in the figure, compared with the prior art, since the modulation error signal is directly multiplied by the output voltage outputted by the LLC resonant conversion circuit and the gain of the filter, the modulated error signal is directly used for compensation. The input voltage of the LLC resonant conversion circuit causes a phase impact, since the low frequency gain of the first error signal Ve is first boosted by the digital filter 22 to generate the second error signal Ve', and the second error signal is utilized. Ve' is added to the first error signal Ve to generate the modulated error signal Vg, and finally the modulated voltage Vg is used to compensate the input voltage Vin of the LLC resonant converter circuit 3, so that the pole of the modulated error signal Vg is The zero point impact can be reduced, so that the phase impact of the input voltage Vin of the LLC resonant converter circuit 3 compensated by the modulation error signal Vg is also reduced. That is, as shown in Figs. 8A and 8B, wherein the region indicated by C in Fig. 8A represents the input voltage Vin of the LLC resonant converter circuit 3 compensated by the modulated error signal Vg, which is increased at a frequency of about 100 Hz. The gain, while the area indicated by C' in Fig. 8B represents the input voltage Vin of the LLC resonant converter circuit 3 compensated by the modulated error signal Vg, while increasing the gain at a frequency of about 100 Hz, there is about 15 deg. With a phase impact of about -15 deg, it can be proved that the ripple compensation circuit 2 of the present invention can reduce the phase impact while improving the low frequency gain, compared with the conventional increase of gain and the phase impact of about 90 deg to about -90 deg. Therefore, the ripple compensation circuit 2 of the present invention can maintain the stability of the power supply 1 while suppressing the low frequency ripple.

於一些實施例中,紋波補償電路2可整合於電源供應器1之一微控制器(未圖示),其中微控制器係與LLC諧振轉換電路3電連接,主要用以控制LLC諧振轉換電路3之運作,而當本案之紋波補償電路2整合於微控制器中時,可透過微控制器以數位方式來執行上述之補償方法,藉此補償LLC諧振轉換電路3輸入電壓Vin之低頻增益,如此一來,本案之電源供應器1便可直接透過微控制器對LLC諧振轉換電路3進行低頻紋波的抑制,因而無需如傳統電源供應器需額外增加硬體元件,例如,RC濾波電路或LC濾波電路等,故本案之電源供應器1可減少內部空間的使用,並減低生產成本。更甚者,由於微控制器的儲存空間與運算資源係有限的,然而本案之數位濾波器22係由使用簡單、效率佳且低階數之數位濾波器22為主,例如無限脈衝響應濾波器,故可以用較低的階數達到較高的頻率選擇性,因此所用的存儲單元少,並不會增加微控制器的儲存空間與運算資源的負擔。In some embodiments, the ripple compensation circuit 2 can be integrated into a microcontroller (not shown) of the power supply 1 , wherein the microcontroller is electrically connected to the LLC resonant conversion circuit 3 , mainly for controlling the LLC resonant conversion. The operation of the circuit 3, and when the ripple compensation circuit 2 of the present invention is integrated in the microcontroller, the above compensation method can be performed in a digital manner by the microcontroller, thereby compensating the low frequency of the input voltage Vin of the LLC resonant conversion circuit 3 Gain, in this way, the power supply 1 of the present case can directly suppress the low frequency ripple of the LLC resonant conversion circuit 3 through the microcontroller, so that it is not necessary to add additional hardware components as the conventional power supply, for example, RC filtering The circuit or the LC filter circuit, etc., the power supply 1 of the present invention can reduce the use of internal space and reduce the production cost. Moreover, since the storage space and computing resources of the microcontroller are limited, the digital filter 22 of the present invention is mainly composed of a digital filter 22 which is simple, efficient and low-order, such as an infinite impulse response filter. Therefore, a lower order can be used to achieve higher frequency selectivity, so that fewer memory cells are used, which does not increase the burden on the storage space and computing resources of the microcontroller.

綜上所述,本案提供一種適用於電源供應器之紋波補償電路及其適用之補償方法,其中本案之紋波補償電路係先透過數位濾波器而提升第一誤差信號之低頻增益,以產生第二誤差信號,再利用第二誤差信號與第一誤差信號作加法運算而產生調變誤差信號,而後才透過該調變誤差信號補償LLC諧振轉換電路之輸入電壓,因此調變誤差信號之極點與零點衝擊可減小,對應使得透過調變誤差信號補償後之LLC諧振轉換電路之輸入電壓的相位衝擊亦減小,因此,本案可以在抑制低頻紋波的同時,亦維持電源供應器之穩定度。In summary, the present invention provides a ripple compensation circuit suitable for a power supply and a compensation method thereof, wherein the ripple compensation circuit of the present invention first transmits a low frequency gain of the first error signal through a digital filter to generate The second error signal is further added by using the second error signal and the first error signal to generate a modulated error signal, and then the input voltage of the LLC resonant converter circuit is compensated by the modulated error signal, thereby adjusting the pole of the error signal The zero point impact can be reduced, so that the phase impact of the input voltage of the LLC resonant converter circuit compensated by the modulation error signal is also reduced. Therefore, the present invention can suppress the low frequency ripple while maintaining the stability of the power supply. degree.

本案得由熟習此技術之人士任施匠思而為諸般修飾,然皆不脫如附申請專利範圍所欲保護者。This case has been modified by people who are familiar with the technology, but it is not intended to be protected by the scope of the patent application.

A、A’、B、B’、C、C’:標示區域 1:電源供應器 2:紋波補償電路 3:LLC諧振轉換電路 21:減法器 22:數位濾波器 23、31:加法器 24:電壓環路補償電路 Ve:第一誤差信號 Ve’:第二誤差信號 Vin:輸入電壓 Vout:輸出電壓 Vref:參考電壓 Vg:調變誤差信號 Sc:補償信號 a1、a2、b1、b2:濾波器係數 :一階延遲單元 A, A', B, B', C, C': labeling area 1: power supply 2: ripple compensation circuit 3: LLC resonance conversion circuit 21: subtractor 22: digital filter 23, 31: adder 24 : voltage loop compensation circuit Ve: first error signal Ve': second error signal Vin: input voltage Vout: output voltage Vref: reference voltage Vg: modulation error signal Sc: compensation signals a1, a2, b1, b2: filtering Coefficient : first order delay unit

第1A圖係為先前技術中經增益信號補償後之LLC諧振轉換電路之輸入端所接收之電壓之增益-頻率波形圖。 第1B圖係為對應第1A圖而為經增益信號補償後之LLC諧振轉換電路之輸入端所接收之電壓之相位-頻率波形圖。 第2圖係為本案較佳實施例之適用於電源供應器之紋波補償電路的電路示意圖。 第3圖係為第2圖所示之數位濾波器的z領域轉移函數的架構圖。 第4圖係為第2圖所示之紋波補償電路之補償方法的流程圖。 第5A圖係為本案第2圖所示之第一誤差信號之電壓-時序模擬結果圖。 第5B圖係為本案第2圖所示之第二誤差信號之電壓-時序模擬結果圖。 第5C圖係為本案第2圖所示之調變誤差信號之電壓-時序模擬結果圖。 第6A圖係為未使用本案之紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的電壓-時序模擬結果圖。 第6B圖係為使用本案紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的電壓-時序模擬結果圖。 第7A圖係為未使用本案之紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的振幅-頻率擬結果圖。 第7B圖係為使用本案紋波補償電路之LLC諧振轉換電路所輸出之輸出電壓之低頻紋波的振幅-頻率模擬結果圖。 第8A圖係為經本案之紋波補償電路補償後之LLC諧振轉換電路之輸入電壓的增益-頻率波形圖。 第8B圖係為對應第8A圖而為經本案之紋波補償電路補償後之LLC諧振轉換電路之輸入電壓的相位-頻率波形圖。Figure 1A is a gain-frequency waveform diagram of the voltage received at the input of the LLC resonant converter circuit compensated by the gain signal in the prior art. Fig. 1B is a phase-frequency waveform diagram of the voltage received at the input end of the LLC resonant converter circuit compensated by the gain signal corresponding to Fig. 1A. Figure 2 is a circuit diagram of a ripple compensation circuit suitable for a power supply of the preferred embodiment of the present invention. Figure 3 is an architectural diagram of the z-domain transfer function of the digital filter shown in Figure 2. Fig. 4 is a flow chart showing a method of compensating the ripple compensation circuit shown in Fig. 2. Figure 5A is a voltage-time series simulation result diagram of the first error signal shown in Fig. 2 of the present invention. Figure 5B is a voltage-time series simulation result diagram of the second error signal shown in Fig. 2 of the present invention. Figure 5C is a voltage-time series simulation result diagram of the modulation error signal shown in Fig. 2 of the present invention. Fig. 6A is a graph showing the voltage-time series simulation results of the low-frequency ripple of the output voltage output from the LLC resonant converter circuit of the ripple compensation circuit of the present invention. Fig. 6B is a voltage-time series simulation result diagram of the low frequency ripple of the output voltage outputted by the LLC resonant converter circuit of the ripple compensation circuit of the present invention. Fig. 7A is an amplitude-frequency pseudo-result diagram of the low-frequency ripple of the output voltage outputted by the LLC resonant converter circuit without using the ripple compensation circuit of the present invention. Fig. 7B is a graph showing the amplitude-frequency simulation result of the low-frequency ripple of the output voltage outputted by the LLC resonant converter circuit of the ripple compensation circuit of the present invention. Fig. 8A is a gain-frequency waveform diagram of the input voltage of the LLC resonant converter circuit compensated by the ripple compensation circuit of the present invention. Fig. 8B is a phase-frequency waveform diagram of the input voltage of the LLC resonant converter circuit compensated by the ripple compensation circuit of the present invention corresponding to Fig. 8A.

Claims (15)

一種適用於一電源供應器之紋波補償電路,其中該電源供應器包含一LLC諧振轉換電路,該LLC諧振轉換電路之一輸入端係接收一輸入電壓,該LLC諧振轉換電路之一輸出端係輸出一輸出電壓,該紋波補償電路係包含: 一減法器,該減法器之一輸入端係與該LLC諧振轉換電路之該輸出端相連接,該減法器係接收該輸出電壓以及一參考電壓,且將該參考電壓與該輸出電壓作減法運算,以產生一第一誤差信號; 一數位濾波器,該數位濾波器之一輸入端係與該減法器之一輸出端相連接,用以接收該第一誤差信號,並提升該第一誤差信號之低頻增益,進而產生一第二誤差信號; 一加法器,該加法器之一輸入端係與該減法器之該輸出端以及該數位濾波器之一輸出端相連接,該加法器係接收該第一誤差信號與該第二誤差信號,且將該第一誤差信號與該第二誤差信號作加法運算,以產生一調變誤差信號;以及 一電壓環路補償電路,該電壓環路補償電路之一輸入端係與該加法器之一輸出端相連接,該電壓環路補償電路之輸出端係與該LLC諧振轉換電路相連接,該電壓環路補償電路係接收該調變誤差信號,並依據該調變誤差信號對應產生一補償信號以控制該LLC諧振轉換電路,以提高該輸入電壓之低頻增益以及提高電壓環路補償電路的響應,使該LLC諧振轉換電路對應輸出抑制過低頻紋波之該輸出電壓。A ripple compensation circuit suitable for a power supply, wherein the power supply comprises an LLC resonant conversion circuit, an input of the LLC resonant conversion circuit receives an input voltage, and an output of the LLC resonant conversion circuit Outputting an output voltage, the ripple compensation circuit includes: a subtractor, an input end of the subtractor being connected to the output end of the LLC resonant conversion circuit, the subtractor receiving the output voltage and a reference voltage And subtracting the reference voltage from the output voltage to generate a first error signal; a digital filter, wherein one input end of the digital filter is connected to one of the output terminals of the subtractor for receiving The first error signal increases the low frequency gain of the first error signal to generate a second error signal; an adder, the input end of the adder and the output of the subtractor and the digital filter One of the output terminals is connected, the adder receives the first error signal and the second error signal, and the first error signal and the second error The signal is added to generate a modulation error signal; and a voltage loop compensation circuit, wherein an input end of the voltage loop compensation circuit is connected to an output end of the adder, and the voltage loop compensation circuit The output end is connected to the LLC resonant conversion circuit, and the voltage loop compensation circuit receives the modulated error signal, and correspondingly generates a compensation signal according to the modulated error signal to control the LLC resonant conversion circuit to improve the input. The low frequency gain of the voltage and the response of the voltage loop compensation circuit are increased such that the LLC resonant converter circuit outputs an output voltage that suppresses excessive low frequency ripple. 如申請專利範圍第1項所述之紋波補償電路,其中該電源供應器更具有一微控制器,該微控制器係與該LLC諧振轉換電路相連接,用以控制該LLC諧振轉換電路之運作。The ripple compensation circuit of claim 1, wherein the power supply further has a microcontroller connected to the LLC resonant conversion circuit for controlling the LLC resonant conversion circuit. Operation. 如申請專利範圍第2項所述之紋波補償電路,其中該紋波補償電路係整合於該微控制器中。The ripple compensation circuit of claim 2, wherein the ripple compensation circuit is integrated in the microcontroller. 如申請專利範圍第1項所述之紋波補償電路,其中該數位濾波器為一無限脈衝響應濾波器。The ripple compensation circuit of claim 1, wherein the digital filter is an infinite impulse response filter. 如申請專利範圍第4項所述之紋波補償電路,其中該無限脈衝響應濾波器預設有一z領域轉移函數,該z領域轉移函數係用以提升該第一誤差信號之低頻增益,該z領域轉移函數為: ,其中, a1、a2、b1及b2係為該無限脈衝響應濾波器之濾波器係數, 係為一一階延遲單元、 係為一二階延遲單元。 The ripple compensation circuit of claim 4, wherein the infinite impulse response filter is preset with a z-domain transfer function for boosting a low-frequency gain of the first error signal, the z The domain transfer function is: , wherein a1, a2, b1, and b2 are filter coefficients of the infinite impulse response filter, Is a first-order delay unit, It is a second-order delay unit. 如申請專利範圍第1項所述之紋波補償電路,其中該數位濾波器所提升之該第一誤差信號之低頻增益係為介於頻率90Hz至120Hz間之電壓增益。The ripple compensation circuit of claim 1, wherein the low frequency gain of the first error signal boosted by the digital filter is a voltage gain between 90 Hz and 120 Hz. 一種補償方法,適用於一電源供應器之一紋波補償電路,其中該電源供應器包含一LLC諧振轉換電路,該LLC諧振轉換電路之一輸入端係接收一輸入電壓,該LLC諧振轉換電路之一輸出端係輸出一輸出電壓,該補償方法包含步驟: (a) 將一參考電壓與該輸出電壓作減法運算,以產生一第一誤差信號; (b) 利用一數位濾波器來提升該第一誤差信號之低頻增益,進而產生一第二誤差信號; (c) 將該第一誤差信號與該第二誤差信號作加法運算,以產生一調變誤差信號; (d) 依據該調變誤差信號對應產生一補償信號以控制該LLC諧振轉換電路,以提高該LLC輸入電壓之低頻增益,使該LLC諧振轉換電路對應輸出抑制過低頻紋波之該輸出電壓。A compensation method is applicable to a ripple compensation circuit of a power supply, wherein the power supply comprises an LLC resonant conversion circuit, and an input end of the LLC resonant conversion circuit receives an input voltage, and the LLC resonant conversion circuit An output terminal outputs an output voltage, and the compensation method comprises the steps of: (a) subtracting a reference voltage from the output voltage to generate a first error signal; (b) using a digital filter to boost the first a low frequency gain of the error signal, thereby generating a second error signal; (c) adding the first error signal and the second error signal to generate a modulated error signal; (d) according to the modulation error The signal correspondingly generates a compensation signal to control the LLC resonant conversion circuit to increase the low frequency gain of the LLC input voltage, so that the LLC resonant conversion circuit correspondingly outputs the output voltage that suppresses the low frequency ripple. 如申請專利範圍第7項所述之補償方法,其中該數位濾波器為一無限脈衝響應濾波器。The compensation method of claim 7, wherein the digital filter is an infinite impulse response filter. 如申請專利範圍第8項所述之補償方法,其中該無限脈衝響應濾波器預設有一z領域轉移函數,該z領域轉移函數係用以提升該第一誤差信號之低頻增益,該z領域轉移函數為: ,其中, a1、a2、b1及b2係為該無限脈衝響應濾波器之濾波器係數, 係為一一階延遲單元, 係為一二階延遲單元。 The compensation method of claim 8, wherein the infinite impulse response filter is preset with a z-domain transfer function for boosting a low-frequency gain of the first error signal, the z-domain transfer The function is: , wherein a1, a2, b1, and b2 are filter coefficients of the infinite impulse response filter, Is a first-order delay unit, It is a second-order delay unit. 如申請專利範圍第7項所述之補償方法,其中該數位濾波器所提升之該第一誤差信號之低頻增益係為介於頻率90Hz至120Hz間之電壓增益。The compensation method of claim 7, wherein the low frequency gain of the first error signal boosted by the digital filter is a voltage gain between 90 Hz and 120 Hz. 一種電源供應器,包含: 一LLC諧振轉換電路,該LLC諧振轉換電路之一輸入端係接收一輸入電壓,該LLC諧振轉換電路之一輸出端係輸出一輸出電壓;以及 一紋波補償電路,包含: 一減法器,該減法器之一輸入端係與該LLC諧振轉換電路之該輸出端相連接,該減法器係接收該輸出電壓以及一參考電壓,且將該參考電壓與該輸出電壓作減法運算,以產生一第一誤差信號; 一數位濾波器,該數位濾波器之一輸入端係與該減法器之一輸出端相連接,用以接收該第一誤差信號,並提升該第一誤差信號之低頻增益,進而產生一第二誤差信號; 一加法器,該加法器之一輸入端係與該減法器之該輸出端以及該數位濾波器之一輸出端相連接,該加法器係接收該第一誤差信號與該第二誤差信號,且將該第一誤差信號與該第二誤差信號作加法運算,以產生一調變誤差信號;以及 一電壓環路補償電路,該電壓環路補償電路之一輸入端係與該加法器之一輸出端相連接,該電壓環路補償電路之輸出端係與該LLC諧振轉換電路相連接,該電壓環路補償電路係接收該調變誤差信號,並依據該調變誤差信號對應產生一補償信號以控制該LLC諧振轉換電路,以提高該輸入電壓之低頻增益以及提高電壓環路補償電路的響應,使該LLC諧振轉換電路對應輸出抑制過低頻紋波之該輸出電壓。A power supply comprising: an LLC resonant conversion circuit, an input of the LLC resonant conversion circuit receives an input voltage, an output of the LLC resonant conversion circuit outputs an output voltage; and a ripple compensation circuit, The method includes: a subtractor, an input end of the subtractor is connected to the output end of the LLC resonant conversion circuit, the subtractor receives the output voltage and a reference voltage, and the reference voltage and the output voltage are Subtracting to generate a first error signal; a digital filter having an input terminal coupled to an output of the subtractor for receiving the first error signal and boosting the first a low frequency gain of the error signal, thereby generating a second error signal; an adder having an input terminal coupled to the output of the subtractor and an output of the digital filter, the adder system Receiving the first error signal and the second error signal, and adding the first error signal and the second error signal to generate a tone An error signal; and a voltage loop compensation circuit, wherein an input end of the voltage loop compensation circuit is connected to an output end of the adder, and an output end of the voltage loop compensation circuit is coupled to the LLC resonant conversion circuit Connecting, the voltage loop compensation circuit receives the modulation error signal, and correspondingly generates a compensation signal according to the modulation error signal to control the LLC resonant conversion circuit to improve the low frequency gain of the input voltage and improve voltage loop compensation. The response of the circuit causes the LLC resonant converter circuit to reject the output voltage of the low frequency ripple corresponding to the output. 如申請專利範圍第11項所述之電源供應器,其更包括一微控制器,該微控制器係與該LLC諧振轉換電路相連接,用以控制該LLC諧振轉換電路之運作,其中該紋波補償電路係整合於該微控制器中。The power supply device of claim 11, further comprising a microcontroller coupled to the LLC resonant conversion circuit for controlling operation of the LLC resonant conversion circuit, wherein the pattern The wave compensation circuit is integrated in the microcontroller. 如申請專利範圍第11項所述之電源供應器,其中該數位濾波器為一無限脈衝響應濾波器。The power supply of claim 11, wherein the digital filter is an infinite impulse response filter. 如申請專利範圍第13項所述之電源供應器,其中該無限脈衝響應濾波器預設有一z領域轉移函數,該z領域轉移函數係用以提升該第一誤差信號之低頻增益,該z領域轉移函數為: ,其中, a1、a2、b1及b2係為該無限脈衝響應濾波器之濾波器係數, 係為一一階延遲單元, 係為一二階延遲單元。 The power supply device of claim 13, wherein the infinite impulse response filter is preset with a z-domain transfer function for boosting a low-frequency gain of the first error signal, the z-domain The transfer function is: , wherein a1, a2, b1, and b2 are filter coefficients of the infinite impulse response filter, Is a first-order delay unit, It is a second-order delay unit. 如申請專利範圍第11項所述之電源供應器,其中該數位濾波器所提升之該第一誤差信號之低頻增益係為介於頻率90Hz至120Hz間之電壓增益。The power supply of claim 11, wherein the low frequency gain of the first error signal boosted by the digital filter is a voltage gain between 90 Hz and 120 Hz.
TW105118725A 2016-06-15 2016-06-15 Ripple compensation circuit of power supply and compensating method thereof TWI617122B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105118725A TWI617122B (en) 2016-06-15 2016-06-15 Ripple compensation circuit of power supply and compensating method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105118725A TWI617122B (en) 2016-06-15 2016-06-15 Ripple compensation circuit of power supply and compensating method thereof

Publications (2)

Publication Number Publication Date
TW201743545A TW201743545A (en) 2017-12-16
TWI617122B true TWI617122B (en) 2018-03-01

Family

ID=61230471

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105118725A TWI617122B (en) 2016-06-15 2016-06-15 Ripple compensation circuit of power supply and compensating method thereof

Country Status (1)

Country Link
TW (1) TWI617122B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113067555B (en) * 2021-06-03 2021-09-03 上海芯龙半导体技术股份有限公司 Gain compensation circuit of error amplifier and switching power supply

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046456A1 (en) * 2002-09-06 2004-03-11 Tracy John G. PWM power supplies using controlled feedback timing and methods of operating same
TW201503556A (en) * 2008-07-14 2015-01-16 Intersil Inc Multiphase voltage regulator with advanced phase number control, control circuit and method thereof
TW201517482A (en) * 2013-06-27 2015-05-01 Alcatel Lucent Digital serializer based pulsewidth modulator controller
TW201543793A (en) * 2014-05-02 2015-11-16 Intersil Americas LLC System and method for maintaining a constant output voltage ripple in a buck converter in discontinuous conduction mode
TWI521841B (en) * 2015-01-21 2016-02-11 杰力科技股份有限公司 Power supply without electrolytic capacitor at input side

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040046456A1 (en) * 2002-09-06 2004-03-11 Tracy John G. PWM power supplies using controlled feedback timing and methods of operating same
TW201503556A (en) * 2008-07-14 2015-01-16 Intersil Inc Multiphase voltage regulator with advanced phase number control, control circuit and method thereof
TW201517482A (en) * 2013-06-27 2015-05-01 Alcatel Lucent Digital serializer based pulsewidth modulator controller
TW201543793A (en) * 2014-05-02 2015-11-16 Intersil Americas LLC System and method for maintaining a constant output voltage ripple in a buck converter in discontinuous conduction mode
TWI521841B (en) * 2015-01-21 2016-02-11 杰力科技股份有限公司 Power supply without electrolytic capacitor at input side

Also Published As

Publication number Publication date
TW201743545A (en) 2017-12-16

Similar Documents

Publication Publication Date Title
EP2775599B1 (en) Boost converter
CN106329895B (en) LLC resonant converter and method for suppressing ripple in output voltage thereof
US9455630B2 (en) Control circuit and control method of digital control power supply circuit, and digital control power supply circuit, electronic device and base station using the same
TWI661669B (en) Multi-stage amplifier
TWI481175B (en) High output accuracy constant on time regulator with error correction
JP2013165537A (en) Switching regulator, control method thereof, and power supply device
WO2018142640A1 (en) Power source device and electronic apparatus
CN112152440A (en) Discontinuous conduction mode and continuous conduction mode power factor corrector circuit
US20050237042A1 (en) Switching power supply circuit and semiconductor device integrating the same
TW201114151A (en) A power converter control circuit with adaptive voltage position control function and method thereof
WO2020053884A1 (en) Ripple cancellation circuit in switching dc-dc converters and methods thereof
TWI617122B (en) Ripple compensation circuit of power supply and compensating method thereof
JP4378530B2 (en) DC power supply controller
US9843253B2 (en) Voltage converter and voltage converting method
US10170976B2 (en) Phase compensation method for power factor correction circuit
US9899905B2 (en) Ripple compensation circuit of power supply and compensation method thereof
TWI463768B (en) Dc-to-dc converter
EP3258582A1 (en) Ripple compensation circuit of power supply and compensating method thereof
JP6461510B2 (en) Power supply circuit for audio amplifier, electronic device, and method for supplying power supply voltage to audio amplifier
US20110187334A1 (en) Power supply circuit and electronic device
US20150349690A1 (en) Driving Signal Generator and Method of Generating Driving Signal
CN109617401B (en) Current source type converter device, step-down control device and method
TWI635380B (en) Phase compensation method for power factor correction circuit
KR102112544B1 (en) Current-fed Inductor-Inductor-Capacitor Resonant Converter
CN107516995A (en) Suitable for the ripple compensation circuit of power supply unit and its compensation method