TWI463768B - Dc-to-dc converter - Google Patents

Dc-to-dc converter Download PDF

Info

Publication number
TWI463768B
TWI463768B TW101138737A TW101138737A TWI463768B TW I463768 B TWI463768 B TW I463768B TW 101138737 A TW101138737 A TW 101138737A TW 101138737 A TW101138737 A TW 101138737A TW I463768 B TWI463768 B TW I463768B
Authority
TW
Taiwan
Prior art keywords
voltage
output
differential signal
terminal
buck converter
Prior art date
Application number
TW101138737A
Other languages
Chinese (zh)
Other versions
TW201417464A (en
Inventor
Ke Horng Chen
Wei Chung Chen
Chia Ching Lin
Original Assignee
Ite Tech Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ite Tech Inc filed Critical Ite Tech Inc
Priority to TW101138737A priority Critical patent/TWI463768B/en
Publication of TW201417464A publication Critical patent/TW201417464A/en
Application granted granted Critical
Publication of TWI463768B publication Critical patent/TWI463768B/en

Links

Description

直流對直流降壓轉換器 DC to DC Buck Converter

本發明是有關於一種電能轉換技術,特別是有關於一種直流對直流降壓轉換器(buck converter)。 The present invention relates to an electrical energy conversion technique, and more particularly to a DC-to-DC buck converter.

現今的直流對直流降壓轉換器(buck converter)有許多種實現方式,例如,電壓模式控制(voltage mode control)、電流模式控制(current mode control)、固定導通時間模式控制(constant on time mode control)...等,藉以期望提升輸出電壓之穩定度、降低電壓切換時的抖動、提高轉換效率等功效。圖1是採用固定導通時間控制模式之直流對直流降壓轉換器100的示意圖。 Today's DC-to-DC buck converters are implemented in a variety of ways, such as voltage mode control, current mode control, and constant on time mode control. ), etc., in order to improve the stability of the output voltage, reduce the jitter during voltage switching, and improve the conversion efficiency. 1 is a schematic diagram of a DC-to-DC buck converter 100 employing a fixed on-time control mode.

直流對直流降壓轉換器100(或稱為,降壓轉換器100)具備驅動電路110、上橋元件(例如,電晶體Qp)、下橋元件(例如,電晶體Qn)、輸出電感L、例如由電阻R1及R2所組成的分壓電路120、比較器130、固定導通時間控制器140以及輸出電容150。輸出電感L上會有電感電流IL流經。於理想情形中,降壓轉換器100可透過電感電流IL的變化來得知向外提供的輸出電壓Vout是否穩定,從而自動調整對外輸出的能量,但目前少有作法能夠直接測得電感電流IL的變化。因此,降壓轉換器100透過輸出電壓Vout來感測電感電流IL之變化,進而決定是否繼續提供輸出能量。換句話說,降壓轉換器100利用分壓電路120對輸出電壓Vout進行分壓,以形成與電感電流IL之變化有關的回授電壓VFB。比較器130接收參考電壓VREF以及回授電 壓VFB以偵測輸出電壓Vout是否低於參考電壓VREF,並在輸出電壓Vout低於參考電壓VREF時觸發固定導通時間控制器140。 The DC-to-DC buck converter 100 (or the buck converter 100) is provided with a driving circuit 110, an upper bridge element (for example, a transistor Qp), a lower bridge element (for example, a transistor Qn), an output inductor L, For example, a voltage dividing circuit 120 composed of resistors R1 and R2, a comparator 130, a fixed on-time controller 140, and an output capacitor 150. There is an inductor current I L flowing through the output inductor L. In an ideal case, the buck converter 100 can know whether the externally supplied output voltage Vout is stable through the change of the inductor current I L , thereby automatically adjusting the external output energy, but currently there is little way to directly measure the inductor current I. The change of L. Therefore, the buck converter 100 senses the change of the inductor current I L through the output voltage Vout, thereby determining whether to continue to provide the output energy. In other words, the buck converter 100 divides the output voltage Vout by the voltage dividing circuit 120 to form a feedback voltage V FB related to the change in the inductor current I L . The comparator 130 receives the reference voltage V REF and the feedback voltage V FB to detect whether the output voltage Vout is lower than the reference voltage V REF and triggers the fixed on-time controller 140 when the output voltage Vout is lower than the reference voltage V REF .

固定導通時間控制器140被觸發後便會輸出具備固定導通時間的脈波至驅動電路110的重置端,以使驅動電路110導通上橋元件(電晶體Qp)並截止下橋元件(電晶體Qn),透過輸入電壓Vin以及輸出電感L提供能量到降壓轉換器100的輸出端。當固定導通時間控制器140所提供之固定導通時間的脈波結束後,驅動電路110截止上橋元件(電晶體Qp)並導通下橋元件(電晶體Qn)以停止提供能量到其輸出端。 After the fixed on-time controller 140 is triggered, a pulse wave having a fixed on-time is output to the reset terminal of the driving circuit 110, so that the driving circuit 110 turns on the upper bridge element (the transistor Qp) and turns off the lower bridge element (the transistor) Qn), energy is supplied to the output of the buck converter 100 through the input voltage Vin and the output inductor L. When the pulse of the fixed on-time provided by the fixed on-time controller 140 ends, the drive circuit 110 turns off the upper bridge element (transistor Qp) and turns on the lower bridge element (transistor Qn) to stop supplying energy to its output.

因此,採用固定導通時間控制模式的降壓轉換器100為了透過輸出電壓Vout來擷取電感電流IL的變化情形,其輸出端便希望輸出電容150可以具有較大的等效串聯電阻(equivalent series resistance;ESR)RESR以及較小的等效串聯電感(equivalent series inductance;ESL)LESL,使得輸出電容150中輸出電容值COUT與其等效串聯電阻RESR的乘積所得的時間常數能夠達到足夠數值,避免系統遭遇到次諧波震盪的穩定性問題,並且增加雜訊容忍度。 Therefore, the buck converter 100 adopting the fixed on-time control mode captures the change of the inductor current I L through the output voltage Vout, and the output terminal expects that the output capacitor 150 can have a large equivalent series resistance (equivalent series) The ESR)R ESR and the smaller equivalent series inductance (ESL) L ESL enable the time constant of the product of the output capacitor value C OUT and its equivalent series resistance R ESR in the output capacitor 150 to be sufficient The value avoids the stability of the system to the subharmonic oscillation and increases the noise tolerance.

圖2繪示等效串聯電阻RESR在相同輸出電容值的情況下對於輸出電壓Vout在時域中的影響關係圖。簡易而言,圖2中上方的電感電流IL為理想中的三角波形,而左方依序繪示的信號VESL、VESR以及VCO分別表示等效串聯電感LESL、等效串聯電阻RESR的以及輸出電容值COUT的示意性電壓分量。信號VESL、VESR以及VCO會分別依照等效串 聯電感LESL、等效串聯電阻RESR的以及輸出電容值COUT的數值大小而相應的改變比例大小,並且會相互組合為輸出電壓Vout。由圖2左方可看出,電感電流IL與信號VESR的波形互為線性關係,但電感電流IL則與信號VESL以及信號VCO分別互為積分與微分關係。 FIG. 2 is a diagram showing the influence of the equivalent series resistance R ESR on the output voltage Vout in the time domain with the same output capacitance value. In simple terms, the upper inductor current I L in Figure 2 is the ideal triangular waveform, while the left sequential signals V ESL , V ESR and V CO represent the equivalent series inductance L ESL , equivalent series resistance, respectively. R ESR and the schematic voltage component of the output capacitance value C OUT . The signals V ESL , V ESR and V CO will be proportionally changed according to the magnitudes of the equivalent series inductance L ESL , the equivalent series resistance R ESR and the output capacitance value C OUT , respectively, and will be combined with each other as the output voltage Vout. . As can be seen from the left side of Fig. 2, the inductor current I L and the waveform of the signal V ESR are linear with each other, but the inductor current I L is integral and differential with the signal V ESL and the signal V CO , respectively.

藉此,當輸出電容值COUT設為相同時,圖2右方繪示的輸出電壓Vout1至Vout3將因等效串聯電阻RESR具備由大至小的電阻值而形成不同的輸出漣波,導致系統穩定性不佳。在考慮輸出電壓的延遲問題時可忽略VESL造成的影響,而等效串聯電阻RESR的電阻值過小時,輸出電壓(例如,Vout1~Vout3)主要由VCO決定,因此透過回授機制所取得的輸出電壓Vout1~Vout3和電流IL便會有時間延遲的相位差產生,導致系統不穩定。若考慮雜訊干擾的問題,信號VESL的成分過多的話將會使得輸出電壓Vout1~Vout3產生非連續的波形,如圖2右方的垂直虛線C處與D處,此非連續性的波形變化會使得回授系統受到干擾因而不穩定。其中,輸出電壓Vout1~Vout3對應的回授電壓VFB低於參考電壓VREF時(輸出電壓Vout1~Vout3波形中出現的水平虛線)將可在虛線C處正確觸發圖1的固定導通時間控制器140。 Therefore, when the output capacitance values C OUT are set to be the same, the output voltages Vout1 to Vout3 shown on the right side of FIG. 2 will have different output ripples due to the large and small resistance values of the equivalent series resistance R ESR . This leads to poor system stability. When considering the delay of the output voltage, the influence of V ESL can be ignored. When the resistance value of the equivalent series resistance R ESR is too small, the output voltage (for example, Vout1~Vout3) is mainly determined by V CO , so the feedback mechanism is adopted. The obtained output voltages Vout1 VVout3 and current I L have a phase difference of time delay, resulting in system instability. If the problem of noise interference is considered, the excessive component of the signal V ESL will cause the output voltages Vout1 VVout3 to generate discontinuous waveforms, as shown by the vertical dotted lines C and D on the right side of FIG. 2, and the discontinuous waveform changes. It will make the feedback system interfere and thus unstable. Wherein, when the feedback voltage V FB corresponding to the output voltages Vout1 VVout3 is lower than the reference voltage V REF (the horizontal dotted line appearing in the waveforms of the output voltages Vout1 VVout3), the fixed on-time controller of FIG. 1 can be correctly triggered at the broken line C 140.

因此,具備較小電阻值的等效串聯電阻RESR將容易使圖1的比較器130發生判斷錯誤,降低降壓轉換器100的系統穩定性。在以往,廠商會挑選具備足夠數值的等效串聯電阻RESR,讓輸出電壓Vout具備明顯的漣波,以保證降壓轉換器100的穩定性。然而,由於近年來廠商逐漸採 用低成本但也同時具備較低等效串聯電阻的電容作為輸出電容,例如積層陶瓷電容(multi-layer ceramic capacitor;MLCC),因而降低了降壓轉換器100的穩定度以及雜訊忍受度,導致上述問題益發嚴重。目前許多廠商通常會忽略輸出電容及其等效串聯電阻對降壓轉換器所產生的影響,或是採用其他的電路實作方法以期望可以得到較佳的效果。 Therefore, the equivalent series resistance R ESR having a small resistance value will easily cause a judgment error in the comparator 130 of FIG. 1 and reduce the system stability of the buck converter 100. In the past, manufacturers will select an equivalent series resistance R ESR with sufficient value to make the output voltage Vout have significant chopping to ensure the stability of the buck converter 100. However, in recent years, manufacturers have gradually adopted low-cost capacitors with low equivalent series resistance as output capacitors, such as multi-layer ceramic capacitors (MLCC), thereby reducing the stability of the buck converter 100. Degrees and tolerance of noise, leading to the above problems. At present, many manufacturers usually ignore the influence of the output capacitor and its equivalent series resistance on the buck converter, or use other circuit implementation methods to expect better results.

本發明提供一種直流對直流降壓轉換器,其可增加降壓轉換器的系統穩定性,降低對於輸出電容及其等效串聯電阻的數值限制,並提高降壓轉換器對於雜訊的容忍度,同時降低輸出到輸出電容路徑上的等校串連電感產生的影響。 The invention provides a DC-to-DC buck converter, which can increase the system stability of the buck converter, reduce the numerical limit on the output capacitor and its equivalent series resistance, and improve the tolerance of the buck converter to noise. At the same time, reduce the effects of the series-connected inductance on the output to the output capacitor path.

本發明提出一種直流對直流降壓轉換器,其包括驅動電路、至少一對上橋元件與下橋元件、輸出電容、相位領先單元以及固定導通時間(constant on-time;COT)控制單元。上橋元件以及下橋元件相互相連並受控於驅動電路所產生的脈寬調變信號,其交互切換並依據輸入電壓以透過輸出電感以及輸出電容而提供輸出電壓。相位領先單元接收依據所述輸出電壓以及參考電壓所產生的第一差動信號,並將所述第一差動信號進行相位領先,以提供所述第二差動信號。固定導通時間控制單元耦接所述相位領先單元,其接收並依據所述第二差動信號來判斷其輸出電壓的能量是否足夠,從而輸出具固定導通時間的脈波信號至驅動電路,以使驅動電路產生所述脈寬調變信號。 The invention provides a DC-to-DC buck converter comprising a drive circuit, at least one pair of upper and lower bridge components, an output capacitor, a phase lead-in unit, and a constant on-time (COT) control unit. The upper bridge component and the lower bridge component are connected to each other and controlled by a pulse width modulation signal generated by the driving circuit, which alternately switches and provides an output voltage according to the input voltage to transmit the output inductor and the output capacitor. The phase lead-in unit receives the first differential signal generated according to the output voltage and the reference voltage, and performs phase advancement of the first differential signal to provide the second differential signal. The fixed on-time control unit is coupled to the phase lead-in unit, and receives and determines whether the energy of the output voltage is sufficient according to the second differential signal, thereby outputting a pulse wave signal with a fixed on-time to the driving circuit, so that A drive circuit generates the pulse width modulation signal.

於本發明之一實施例中,直流對直流降壓轉換器更包括邊界強化(margin enhancement)單元,耦接所述驅動電路以及所述相位領先單元。邊界強化單元接收依據所述輸出電壓所產生的回授電壓,並依據所述脈寬調變信號的特定期間而調整所述回授電壓,並依據調整之回授電壓及參考電壓而產生第一差動信號。 In an embodiment of the invention, the DC-DC buck converter further includes a margin enhancement unit coupled to the drive circuit and the phase lead unit. The boundary enhancement unit receives the feedback voltage generated according to the output voltage, and adjusts the feedback voltage according to the specific period of the pulse width modulation signal, and generates the first according to the adjusted feedback voltage and the reference voltage. Differential signal.

於本發明之一實施例中,上述之邊界強化單元包括步階升壓器。步階升壓器依據所述脈寬調變信號以在下橋元件的導通期間將回授電壓抬升一偏移電壓,以提供調整之回授電壓。其中,正相端之第一差動信號是調整之回授電壓,且反相端之第一差動信號是參考電壓。 In an embodiment of the invention, the boundary enhancement unit includes a step booster. The step booster boosts the feedback voltage by an offset voltage during the turn-on of the lower bridge element to provide an adjusted feedback voltage in accordance with the pulse width modulation signal. The first differential signal of the positive phase terminal is an adjusted feedback voltage, and the first differential signal of the inverting terminal is a reference voltage.

於本發明之一實施例中,上述之步階升壓器包括偏壓產生電路以及控制開關。偏壓產生電路的負極端接收所述回授電壓,且在偏壓產生電路的正極端產生調整之回授電壓。控制開關的控制端接收所述脈寬調變信號,控制開關的第一端接收該回授電壓,控制開關的第二端耦接所述偏壓產生電路的正極端。控制開關在下橋元件導通期間將其第二端與其輸出端導通,以傳送調整之回授電壓。並且,控制開關在上橋元件非導通期間將其第一端與其輸出端導通以傳送所述回授電壓。 In an embodiment of the invention, the step booster includes a bias generating circuit and a control switch. The negative terminal of the bias generating circuit receives the feedback voltage and produces an adjusted feedback voltage at the positive terminal of the bias generating circuit. The control terminal of the control switch receives the pulse width modulation signal, the first end of the control switch receives the feedback voltage, and the second end of the control switch is coupled to the positive terminal of the bias generation circuit. The control switch conducts its second end and its output during conduction of the lower bridge component to deliver the adjusted feedback voltage. Also, the control switch conducts its first end and its output during the non-conduction of the upper bridge element to deliver the feedback voltage.

於本發明之一實施例中,上述之邊界強化單元更包括雜訊消除器,其接收第一差動信號以濾除所述第一差動信號的雜訊部份。 In an embodiment of the invention, the boundary enhancement unit further includes a noise canceller that receives the first differential signal to filter out the noise portion of the first differential signal.

於本發明之一實施例中,上述之邊界強化單元更包括雜訊同步器,其第一端接收調整之回授電壓。所述雜訊同 步器的第二端接收該參考電壓,以將調整之回授電壓中的雜訊部份加入到所述參考電壓。其中,相位領先單元接收調整之回授電壓以及所述參考電壓,並透過差動輸入以消除調整之回授電壓以及參考電壓中的雜訊部份。 In an embodiment of the invention, the boundary enhancement unit further includes a noise synchronizer, and the first end receives the adjusted feedback voltage. The noise is the same The second end of the stepper receives the reference voltage to add a noise portion of the adjusted feedback voltage to the reference voltage. The phase lead-in unit receives the adjusted feedback voltage and the reference voltage, and transmits the adjusted feedback voltage and the noise portion of the reference voltage through the differential input.

於本發明之一實施例中,上述之相位領先單元包括零點補償(zero compensation)電路,其提供零點補償並使所述第一差動信號進行相位領先,從而產生第二差動信號。 In an embodiment of the invention, the phase lead-in unit includes a zero compensation circuit that provides zero offset and phase advances the first differential signal to generate a second differential signal.

於本發明之一實施例中,上述之零點補償電路包括帶通濾波器。帶通濾波器的反相輸入端接收正相端之第一差動信號,帶通濾波器的正相輸入端接收反相端之第一差動信號,且帶通濾波器的兩個輸出端分別提供所述第二差動信號。於本發明之另一實施例中,上述之零點補償電路以高通濾波器實現。 In an embodiment of the invention, the zero point compensation circuit comprises a band pass filter. The inverting input of the band pass filter receives the first differential signal of the positive phase terminal, the positive phase input terminal of the band pass filter receives the first differential signal of the inverting terminal, and the two output ends of the band pass filter The second differential signal is separately provided. In another embodiment of the invention, the zero point compensation circuit described above is implemented as a high pass filter.

於本發明之一實施例中,上述之固定導通時間控制單元包括比較器以及固定導通時間控制器。比較器耦接所述相位領先單元。比較器的正相輸入端以及反相輸入端分別接收正相端與反相端之第二差動信號,以依據比較結果產生比較信號。固定導通時間控制器,受所述比較信號的觸發以輸出具固定導通時間的脈波信號至所述驅動電路,使驅動電路產生脈寬調變信號。 In an embodiment of the invention, the fixed on-time control unit includes a comparator and a fixed on-time controller. A comparator is coupled to the phase lead unit. The non-inverting input terminal and the inverting input terminal of the comparator respectively receive the second differential signal of the positive phase terminal and the inverting terminal to generate a comparison signal according to the comparison result. The fixed on-time controller is triggered by the comparison signal to output a pulse wave signal with a fixed on-time to the driving circuit, so that the driving circuit generates a pulse width modulation signal.

基於上述,本發明實施例揭示的直流對直流降壓轉換器在比較器的前一級增加相位領先單元,從而調整輸出電壓,以使其之波形以相位領先的方式還原為類似於電感電流相同相位的波形。此外,邊界強化單元會在下橋元件導通期間抬升回授電壓,並將回授電壓以及參考電壓以差動 及高頻濾波等方式降低共模雜訊,藉以避免誤觸發固定導通時間控制單元。如此,直流對直流降壓轉換器可增加降壓轉換器的系統穩定性,提高降壓轉換器對於雜訊的容忍度,並降低對於輸出電容及其等效串聯電阻的數值限制。 Based on the above, the DC-to-DC buck converter disclosed in the embodiment of the present invention increases the phase leading unit in the front stage of the comparator, thereby adjusting the output voltage so that the waveform is restored in phase lead manner to the same phase similar to the inductor current. Waveform. In addition, the boundary strengthening unit raises the feedback voltage during the conduction of the lower bridge component, and differentially applies the feedback voltage and the reference voltage. And high-frequency filtering to reduce common-mode noise, in order to avoid false triggering of the fixed on-time control unit. As such, the DC-to-DC buck converter increases the system stability of the buck converter, increases the buck converter's tolerance for noise, and reduces the numerical limits on the output capacitor and its equivalent series resistance.

為讓本發明之上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the present invention will be more apparent from the following description.

請參照圖3A,圖3A是根據本發明一實施例說明直流對直流降壓轉換器300的功能方塊圖。如圖3A所示,本案所提出的直流對直流降壓轉換器300可應用於多種電源供應器以進行直流對直流轉換,例如應用於消費型電子裝置、手機、相機、...等。降壓轉換器300包括驅動電路310、至少一對上橋元件與下橋元件、輸出電感L、輸出電容360、相位領先單元330以及固定導通時間(constant on-time;COT)控制單元340。於本實施例中,降壓轉換器300更包括分壓電路350。 Please refer to FIG. 3A. FIG. 3A is a functional block diagram showing a DC-to-DC buck converter 300 according to an embodiment of the invention. As shown in FIG. 3A, the DC-DC buck converter 300 proposed in the present application can be applied to various power supplies for DC-to-DC conversion, for example, in consumer electronic devices, mobile phones, cameras, and the like. The buck converter 300 includes a drive circuit 310, at least one pair of upper and lower bridge elements, an output inductor L, an output capacitor 360, a phase lead-in unit 330, and a constant on-time (COT) control unit 340. In the embodiment, the buck converter 300 further includes a voltage dividing circuit 350.

本案實施例的上橋元件與下橋元件分別以電晶體Qp以及電晶體Qn作為舉例。電晶體Qp的第一端(如,源極端)接收輸入電壓Vin,電晶體Qp的第二端(如,汲極端)以及電晶體Qn的第一端(如,汲極端)相互透過接點E相連,且電晶體Qn的第二端(如,源極端)接地。電晶體Qp及電晶體Qn的接收端則分別接收驅動電路310所提供的脈寬調變信號Gh及Gl,使得電晶體Qp及電晶體Qn受控於驅動電路310的脈寬調變信號Gh及Gl。輸出電感L的第一端透過接點E耦接上橋元件(電晶體Qp的第二端)以及 下橋元件(電晶體Qn的第一端)。輸出電感L的第二端則作為直流對直流降壓轉換器300的輸出端並產生輸出電壓Vout。此外,輸出電容360的第一端耦接降壓轉換器300的輸出端,輸出電容360的另一端接地以維持輸出電壓Vout的壓降。 The upper bridge element and the lower bridge element of the embodiment of the present invention are exemplified by a transistor Qp and a transistor Qn, respectively. The first end of the transistor Qp (eg, the source terminal) receives the input voltage Vin, the second end of the transistor Qp (eg, the 汲 terminal) and the first end of the transistor Qn (eg, the 汲 terminal) pass through the junction E Connected, and the second end of the transistor Qn (eg, the source terminal) is grounded. The receiving ends of the transistor Qp and the transistor Qn respectively receive the pulse width modulation signals Gh and G1 provided by the driving circuit 310, so that the transistor Qp and the transistor Qn are controlled by the pulse width modulation signal Gh of the driving circuit 310 and Gl. The first end of the output inductor L is coupled to the upper bridge component (the second end of the transistor Qp) through the contact point E and Lower bridge element (first end of transistor Qn). The second end of the output inductor L acts as the output of the DC-to-DC buck converter 300 and produces an output voltage Vout. In addition, the first end of the output capacitor 360 is coupled to the output of the buck converter 300, and the other end of the output capacitor 360 is grounded to maintain a voltage drop of the output voltage Vout.

因此,驅動電路310將會依照固定導通時間(COT)控制單元340所提供之具備固定導通時間的脈波信號Sp來產生脈寬調變信號Gh及Gl,藉以交互切換電晶體Qp及Qn,透過輸出電感L的充放電效應而提供輸出電壓Vout至需要電能供應的其他晶片或裝置。 Therefore, the driving circuit 310 generates the pulse width modulation signals Gh and G1 according to the pulse signal Sp having the fixed on-time provided by the fixed on-time (COT) control unit 340, thereby alternately switching the transistors Qp and Qn. The charge and discharge effects of the output inductor L provide an output voltage Vout to other wafers or devices that require electrical energy supply.

一般來說,若選用之輸出電容360的輸出電容值COUT跟其等效串聯電阻RESR兩者的乘積所得的時間常數能夠達到足夠數值,便可降低降壓轉換器300遭遇到次諧波震盪的穩定性問題,並可增加雜訊容忍度。例如,若選用固態電容(SP-CAP)作為輸出電容360,由於其等效串聯電阻RESR較大,可使輸出電壓Vout的波形產生較為明顯的漣波,便可使COT控制單元340直接接收輸出電壓Vout藉以判斷輸出電容L中電感電流IL的能量是否足夠時,得以提升其判斷精確度。 In general, if the time constant obtained by multiplying the output capacitance value C OUT of the output capacitor 360 by its equivalent series resistance R ESR can reach a sufficient value, the buck converter 300 can be reduced to encounter the subharmonic. Concussive stability issues and increased noise tolerance. For example, if a solid capacitor (SP-CAP) is selected as the output capacitor 360, since the equivalent series resistance R ESR is large, the waveform of the output voltage Vout can be more chopped, so that the COT control unit 340 can directly receive the output. When the output voltage Vout determines whether the energy of the inductor current I L in the output capacitor L is sufficient, the accuracy of the judgment can be improved.

然而,基於成本等因素考量,目前廠商逐漸希望選用具備低等效串聯電阻RESR的積層陶瓷電容(MLCC)作為輸出電容360,導致整個降壓轉換器300將會發生上述系統不穩定、受到雜訊干擾等現象。於此,本發明實施例在圖3A之COT時間控制單元340的前一級增加了相位領先單元330,調整輸出電壓Vout藉以使其與電容電流IL的波形 特性相似,藉此增加降壓轉換器300本身的系統穩定性,降低對於輸出電容及其等效串聯電阻的數值限制,並提高降壓轉換器300對於輸出電壓Vout中雜訊的容忍度,同時降低輸出到輸出電容路徑上的等校串連電感產生的影響。 However, based on factors such as cost, manufacturers are hoping to use a multilayer ceramic capacitor (MLCC) with a low equivalent series resistance R ESR as the output capacitor 360, resulting in the above-mentioned system instability and mismatch in the entire buck converter 300. Signal interference and other phenomena. Herein, the embodiment of the present invention adds a phase lead-in unit 330 to the previous stage of the COT time control unit 340 of FIG. 3A, and adjusts the output voltage Vout so as to be similar to the waveform characteristic of the capacitor current I L , thereby increasing the buck converter. The system stability of the 300 itself reduces the numerical limit on the output capacitor and its equivalent series resistance, and improves the tolerance of the buck converter 300 to the noise in the output voltage Vout, while reducing the output to the output capacitor path. The effect of series inductance.

請繼續參照圖3A,以下分別詳述分壓電路350、相位領先單元330以及COT控制單元340。分壓電路350包括電阻R1與R2,電阻R1的一端耦接降壓轉換器300的輸出端。電阻R1的另一端耦接電阻R2的一端以形成回授端F,電阻R2的另一端接地。藉此,分壓電路350對輸出電壓Vout分壓,以從回授端F提供回授電壓VFB至相位領先單元330的第一差動輸入端。也就是,本實施例之正相端的第一差動信號VDIFF_1便是回授電壓VFBReferring to FIG. 3A in detail, the voltage dividing circuit 350, the phase leading unit 330, and the COT control unit 340 will be described in detail below. The voltage dividing circuit 350 includes resistors R1 and R2, and one end of the resistor R1 is coupled to the output of the buck converter 300. The other end of the resistor R1 is coupled to one end of the resistor R2 to form a feedback terminal F, and the other end of the resistor R2 is grounded. Thereby, the voltage dividing circuit 350 divides the output voltage Vout to supply the feedback voltage V FB from the feedback terminal F to the first differential input terminal of the phase leading unit 330. That is, the first differential signal V DIFF_1 of the positive phase terminal of the present embodiment is the feedback voltage V FB .

相位領先單元330耦接分壓電路350。相位領先單元330利用差動處理的方式從其第一差動輸入端接收回授電壓VFB以作為正相端的第一差動信號VDIFF_1,從其第二差動輸入端接收參考電壓VREF以作為反相端的第二差動信號VDIFF_2,藉以降低第一差動信號VDIFF_1的共模雜訊。並且,相位領先單元330將第一差動信號VDIFF_1進行相位領先(phase-leading),以提供與電感電流IL同步的信號第二差動信號VDIFF_2,使得處理後的第二差動信號VDIFF_2可在下橋元件導通期間中還原回與電感電流IL同相位的波形。固定導通時間控制單元340耦接相位領先單元330,其接收第二差動信號VDIFF_2並依據第二差動信號VDIFF_2來判斷輸出電壓Vout的能量是否足夠,從而輸出具固定導通時間 的脈波信號Sp至驅動電路310,以使驅動電路310產生脈寬調變信號Gh及Gl。 The phase lead unit 330 is coupled to the voltage dividing circuit 350. The phase lead unit 330 receives the feedback voltage V FB from its first differential input terminal as the first differential signal V DIFF_1 of the positive phase terminal and the reference voltage V REF from its second differential input terminal by means of differential processing. The second differential signal V DIFF_2 as the inverting terminal is used to reduce the common mode noise of the first differential signal V DIFF_1 . And, the phase leading unit 330 performs phase-leading of the first differential signal V DIFF_1 to provide a signal second differential signal V DIFF_2 synchronized with the inductor current I L , so that the processed second differential signal V DIFF_2 can be restored back to the waveform in phase with the inductor current I L during the turn-on of the lower bridge element. The fixed on-time control unit 340 is coupled to the phase lead-in unit 330, which receives the second differential signal V DIFF_2 and determines whether the energy of the output voltage Vout is sufficient according to the second differential signal V DIFF_2 , thereby outputting a pulse wave with a fixed on-time. The signal Sp is applied to the driving circuit 310 to cause the driving circuit 310 to generate the pulse width modulation signals Gh and G1.

若在理想情況時,圖3A即可實現本案降壓轉換器300。然而,在實際實現上述實施例的過程中,由於部份元件會對第一差動信號VDIFF_1進行無法預期的雜訊干擾。若此雜訊干擾可以接受,則採用圖3A的電路即可實現,然而若是雜訊干擾會導致系統仍然會有不穩定的現象時,本案實施例在可在相位領先單元330的前一級中增加邊界強化單元320,藉以減少雜訊干擾,如圖3B所示。圖3B是根據本發明一實施例說明另一種直流對直流降壓轉換器300的功能方塊圖。 In the ideal case, the buck converter 300 of the present invention can be implemented in FIG. 3A. However, in the process of actually implementing the above embodiment, some components may cause undesired noise interference to the first differential signal V DIFF_1 . If the noise interference is acceptable, the circuit of FIG. 3A can be used. However, if the noise interference causes the system to still be unstable, the embodiment of the present invention can be added in the previous stage of the phase leading unit 330. The boundary strengthening unit 320 is used to reduce noise interference, as shown in FIG. 3B. FIG. 3B is a functional block diagram illustrating another DC-to-DC buck converter 300 in accordance with an embodiment of the present invention.

請參照圖3B,圖3A與圖3B的差異在於圖3B增加了邊界強化單元320。邊界強化單元320耦接驅動電路310、相位領先單元330以及分壓電路350。邊界強化單元320接收依據輸出電壓Vout所產生的回授電壓VFB,並依據脈寬調變信號Gh或是Gl的導通/非導通期間(也就是所謂的特定期間)來調整回授電壓VFB的準位大小,且依據調整後之回授電壓VFB及參考電壓VREF而產生第一差動信號VDIFF_1,以使降壓轉換器300更為穩定。 Referring to FIG. 3B, the difference between FIG. 3A and FIG. 3B is that the boundary enhancement unit 320 is added to FIG. 3B. The boundary strengthening unit 320 is coupled to the driving circuit 310, the phase leading unit 330, and the voltage dividing circuit 350. Feedback voltage V FB, and based on the PWM signal Gh or Gl conduction / non-conduction period (so-called specific period) through the boundary strengthening unit 320 receives according to the output voltage Vout is generated to adjust the feedback voltage V FB The magnitude of the level is determined, and the first differential signal V DIFF_1 is generated according to the adjusted feedback voltage V FB and the reference voltage V REF to make the buck converter 300 more stable.

圖4A為圖3B之直流對直流降壓轉換器300的詳細電路圖,其部份元件已揭示於上述實施例,以下不予贅述。邊界強化單元320主要包括步階升壓器410。於本實施例中,邊界強化單元320更包括雜訊消除器440以及緩衝器450。步階升壓器410依據脈寬調變信號Gl,從而在下橋元件導通期間將回授電壓抬升偏移電壓Vos,以提供調整 之回授電壓VFB_1。然而,應用此實施例者亦可輕易知曉,步階升壓器410也可以改為步階降壓器,並將脈寬調變信號Gh或是Gl的導通/非導通期間對調或是進行彈性調整,也可達到本發明實施例所期望之效果。 4A is a detailed circuit diagram of the DC-DC buck converter 300 of FIG. 3B, some of which have been disclosed in the above embodiments, and are not described below. The boundary enhancement unit 320 mainly includes a step booster 410. In this embodiment, the boundary enhancement unit 320 further includes a noise canceller 440 and a buffer 450. The step booster 410 boosts the offset voltage Vos according to the pulse width modulation signal G1 to provide the adjusted feedback voltage V FB_1 during the turn-on of the lower bridge element. However, it can be easily seen by the embodiment that the step booster 410 can also be changed to a step-down buck, and the pulse width modulation signal Gh or the conduction/non-conduction period of the G1 can be reversed or elasticized. Adjustments can also achieve the desired effects of the embodiments of the present invention.

此外,本案實施例雖然是將步階升壓器410設置於回授電壓VFB到已濾除高頻雜訊之回授電壓VFB_N之間的路徑上,但是其他實施例也可以將步階升壓器410/步階降壓器設置於在參考電壓VREF到VREF_N之間的路徑上來實現。由於相位領先單元330為差動輸入型態,因此如果利用步階降壓器在脈寬調變信號Gl的導通期間降低參考電壓VREF的話,也可以形成如同是抬升回授電壓VFB的效果。因此,本案實施例並不僅受限於上述電路態樣,應用本實施例者可參照上述作法以彈性地實現邊界強化單元320。例如,步階升壓器或步階降壓器可根據脈寬調變信號Gl的導通期間或是非導通期間彈性更換,步階升壓器或步階降壓器的安裝位置也可在回授電壓VFB或是參考電壓VREF以擇一的方式彈性更換。邊界強化單元320將調整之回授電壓VFB_1以及參考電壓VREF分別作為正相端及反相端的第三差動信號VDIFF_3In addition, in the embodiment of the present invention, the step booster 410 is disposed on the path between the feedback voltage V FB and the feedback voltage V FB — N of the filtered high frequency noise, but other embodiments may also adopt the step. The booster 410/step buck is implemented on a path between the reference voltages V REF to V REF — N . Since the phase lead-in unit 330 is a differential input type, if the step-down voltage regulator is used to lower the reference voltage V REF during the on-time of the pulse width modulation signal G1, the effect of raising the feedback voltage V FB can also be formed. . Therefore, the embodiment of the present invention is not limited to the above circuit aspect, and the boundary strengthening unit 320 can be flexibly implemented by referring to the above method by applying the embodiment. For example, the step booster or the step buck can be flexibly replaced according to whether the pulse width modulation signal G1 is turned on or off during the non-conduction period, and the installation position of the step booster or the step buck can also be fed back. The voltage V FB or the reference voltage V REF is elastically replaced in an alternative manner. The boundary enhancement unit 320 uses the adjusted feedback voltage V FB_1 and the reference voltage V REF as the third differential signal V DIFF — 3 of the positive phase terminal and the inverting terminal, respectively .

在此詳細描述圖4A之邊界強化單元320中的步階升壓器410、雜訊消除器440以及緩衝器450。步階升壓器410包括偏壓產生電路420以及控制開關430。偏壓產生電路420的負極端接收回授電壓VFB,且在偏壓產生電路在其正極端產生調整之回授電壓VFB_1,本實施例將調整之回授電壓VFB_1也稱作正相端的第三差動信號VDIFF_3。控制 開關430的控制端接收脈寬調變信號Gl,控制開關430的第一端N1接收回授電壓VFB,控制開關的第二端N2耦接偏壓產生電路420的正極端以接收調整之回授電壓VFB_1,控制開關430的輸出端耦接雜訊消除器440的第一輸入端。 The step booster 410, the noise canceller 440, and the buffer 450 in the boundary enhancement unit 320 of FIG. 4A are described in detail herein. The step booster 410 includes a bias generating circuit 420 and a control switch 430. The negative terminal of the bias generating circuit 420 receives the feedback voltage V FB , and the bias generating circuit generates the adjusted feedback voltage V FB_1 at the positive terminal thereof . In this embodiment, the adjusted feedback voltage V FB_1 is also referred to as a positive phase. The third differential signal V DIFF_3 at the end . The control terminal of the control switch 430 receives the pulse width modulation signal G1, and the first terminal N1 of the control switch 430 receives the feedback voltage V FB , and the second terminal N2 of the control switch is coupled to the positive terminal of the bias generation circuit 420 to receive the adjustment. feedback voltage V FB_1, the control output of the switch 430 is coupled to a first input of the noise elimination 440.

藉此,控制開關430在下橋元件導通期間將其第二端N2與其輸出端N3導通,以傳送調整之回授電壓VFB_1作為正相端的第三差動信號VDIFF_3。相對地,當控制開關430在下橋元件非導通期間時,則會將其第一端N1與其輸出端N3導通,以傳送回授電壓VFB作為正相端的第三差動信號VDIFF_3,從而在上橋元件導通期間時抬升回授電壓VFB,以成為調整之回授電壓VFB_1Thereby, the control switch 430 turns on the second terminal N2 and its output terminal N3 during the conduction of the lower bridge element to transmit the adjusted feedback voltage V FB_1 as the third differential signal V DIFF_3 of the positive phase terminal. In contrast, when the control switch 430 is in the non-conduction period of the lower bridge element, its first terminal N1 and its output terminal N3 are turned on to transmit the feedback voltage V FB as the third differential signal V DIFF_3 of the positive phase terminal, thereby When the upper bridge element is turned on, the feedback voltage V FB is raised to become the adjusted feedback voltage V FB_1 .

雜訊消除器440的第一輸入端透過步階升壓器410接收調整之回授電壓VFB_1,且雜訊消除器440的第二輸入端則接收參考電壓VREF。因此,雜訊消除器440便可接收第三差動信號VDIFF_3以濾除調整之回授電壓VFB_1的共模與高頻雜訊,並將已濾除高頻雜訊的回授電壓VFB_N以及參考電壓VREF_N分別作為正相端及反相端的第一差動信號VDIFF_1The first input of the noise canceller 440 receives the adjusted feedback voltage V FB_1 through the step booster 410 , and the second input of the noise canceller 440 receives the reference voltage V REF . Therefore, the noise canceller 440 can receive the third differential signal V DIFF_3 to filter the common mode and high frequency noise of the adjusted feedback voltage V FB_1 , and filter the feedback voltage V of the high frequency noise. FB_N and the reference voltage V REF_N serve as the first differential signal V DIFF_1 of the positive phase terminal and the inverting terminal, respectively .

於其他實施例中,雜訊消除器440也可以利用其他電路結構來實現。圖4B為圖3B之直流對直流降壓轉換器300於其他實施例的詳細電路圖。請參照圖4B,本案實施例利用雜訊同步器445來消除回授電壓VFB_1中的雜訊部份,而其他元件則與圖4A相同。詳言之,雜訊同步器445的第一端接收調整之回授電壓VFB_1,雜訊同步器445的第 二端則接收參考電壓VREF。藉此,雜訊同步器445可將調整之回授電壓VFB_1中的雜訊部份加入到參考電壓VREF當中,使得參考電壓VREF也具備回授電壓VFB_1中的雜訊部份。採用差動輸入的相位領先單元330則接收調整之回授電壓VREF以及具備雜訊部份的參考電壓VREF,並透過差動輸入以消除回授電壓VFB_1以及該參考電壓中VREF相同的雜訊部份,從而間接地消除雜訊。 In other embodiments, the noise canceller 440 can also be implemented using other circuit structures. 4B is a detailed circuit diagram of the DC-to-DC buck converter 300 of FIG. 3B in other embodiments. Referring to FIG. 4B, the embodiment of the present invention uses the noise synchronizer 445 to eliminate the noise portion of the feedback voltage V FB_1 , and the other components are the same as FIG. 4A . In detail, the first end of the noise synchronizer 445 receives the adjusted feedback voltage V FB_1 , and the second end of the noise synchronizer 445 receives the reference voltage V REF . Thereby, the noise synchronizer 445 can add the noise portion of the adjusted feedback voltage V FB_1 to the reference voltage V REF such that the reference voltage V REF also has the noise portion of the feedback voltage V FB_1 . The phase lead-in unit 330 using the differential input receives the adjusted feedback voltage V REF and the reference voltage V REF having the noise portion, and transmits the differential input to eliminate the feedback voltage V FB_1 and the same V REF of the reference voltage. The noise part, which indirectly eliminates noise.

雖然本案實施例中圖4A、圖4B的邊界強化單元320分別具備雜訊消除器440以及雜訊同步器445以使回授電壓VFB_N以及參考電壓VREF_N能夠使降壓轉換器300更為穩定,但應用本實施例者也可以在邊界強化單元320中省略雜訊消除器440以及雜訊同步器445,並將第三差動信號VDIFF_3直接視為第一差動信號VDIFF_1而輸出至相位領先單元330,也可實現本實施例。 In the embodiment of the present invention, the boundary enhancement unit 320 of FIG. 4A and FIG. 4B respectively includes a noise canceller 440 and a noise synchronizer 445 to enable the feedback voltage V FB — N and the reference voltage V REF — N to stabilize the buck converter 300 . However, in the embodiment, the noise canceller 440 and the noise synchronizer 445 may be omitted in the boundary enhancement unit 320, and the third differential signal V DIFF_3 is directly regarded as the first differential signal V DIFF_1 and output to The phase lead unit 330 can also implement the embodiment.

請繼續參照圖4A,緩衝器450的一端(輸入端)接收參考電壓VREF,緩衝器450的輸出端則耦接雜訊消除器440的第二輸入端。此外,緩衝器450在部分實施例的邊界強化單元320中也可以省略。 Referring to FIG. 4A, one end (input) of the buffer 450 receives the reference voltage V REF , and the output of the buffer 450 is coupled to the second input of the noise canceller 440 . Further, the buffer 450 may be omitted in the boundary enhancement unit 320 of some embodiments.

相位領先單元330則主要利用帶通濾波器(BPF)460作為其實現方式。帶通濾波器460的反相輸入端接收正相端的第一差動信號VDIFF_1(已濾除高頻雜訊的回授電壓VFB_N),帶通濾波器460的正相輸入端接收反相端之第一差動信號VDIFF_1(已濾除高頻雜訊的參考電壓VREF_N),且帶通濾波器460的兩個輸出端則分別提供正相端與反相端的第二差動信號VDIFF_2。於其他實施例中,相位領先單元 330也可以使用高通濾波器作為其實現方式,但由於高通濾波器無法濾除高頻雜訊,因此可能會減損本案降壓轉換器300對於高頻雜訊的容忍度。 Phase lead unit 330 primarily utilizes a bandpass filter (BPF) 460 as its implementation. The inverting input terminal of the band pass filter 460 receives the first differential signal V DIFF_1 of the positive phase terminal (the feedback voltage V FB_N of the high frequency noise is filtered out), and the positive phase input terminal of the band pass filter 460 receives the inverted phase The first differential signal V DIFF_1 of the terminal (the reference voltage V REF — N of the high frequency noise is filtered out), and the two outputs of the band pass filter 460 respectively provide the second differential signal of the positive phase end and the opposite phase end V DIFF_2 . In other embodiments, the phase lead-in unit 330 can also use a high-pass filter as its implementation. However, since the high-pass filter cannot filter high-frequency noise, the buck converter 300 of the present invention may be degraded for high-frequency noise. Tolerance.

請繼續參照圖4A,COT控制單元340包括比較器470以及固定導通時間控制器480。比較器470耦接相位領先單元460。比較器470的正相輸入端以及反相輸入端分別接收正相端與反相端之第二差動信號VDIFF_2,以依據比較結果產生比較信號Vs。固定導通時間控制器480則受所述比較信號Vs的觸發,以輸出具固定導通時間的脈波信號Sp至驅動電路310,使驅動電路310產生脈寬調變信號Gh以及Gl。COT控制單元340為採用固定導通時間控制模式的降壓轉換器300皆會具備的元件,因此不予贅述。 With continued reference to FIG. 4A, the COT control unit 340 includes a comparator 470 and a fixed on-time controller 480. The comparator 470 is coupled to the phase lead unit 460. The non-inverting input terminal and the inverting input terminal of the comparator 470 receive the second differential signal V DIFF_2 of the positive phase terminal and the inverting terminal, respectively , to generate a comparison signal Vs according to the comparison result. The fixed on-time controller 480 is triggered by the comparison signal Vs to output the pulse signal Sp with a fixed on-time to the driving circuit 310, so that the driving circuit 310 generates the pulse width modulation signals Gh and G1. The COT control unit 340 is an element that is provided in the buck converter 300 using the fixed on-time control mode, and therefore will not be described again.

有鑑於此,基於圖4A之降壓轉換器300的硬體構件,本實施例便可透過圖5至圖8的相關波型圖來詳細說明降壓轉換器300如何可以維持系統的穩定度。圖5是圖4A之電感電流IL、輸出電壓Vout以及差動信號VDIFF_1~VDIFF_3的波形示意圖。請同時參照圖4A及圖5,圖5中電感電流IL為理想的三角波形,輸出電壓Vout是當輸出電容360的等效串聯電阻RESR較小時所產生的波形。回授電壓VFB是基於輸出電壓Vout的分壓所產生,因此兩者的波形相似。期間TGh為上橋元件導通期間,此時下橋元件截止,輸出電感L於此時因透過上橋元件連接至輸入電壓Vin,以逐漸提升電感電流IL的電流值。相對地,期間TGl為下橋元件導通期間,此時上橋元件截止,電感電流IL於此時因透過下橋元件連接至地而逐漸降低電感電流IL的電流 值。此外,由於上述波形均會相對於電感電流IL而發生相位延遲的問題,但相位延遲難以進行說明,因此圖5中並未明顯繪示相位延遲。 In view of this, based on the hardware components of the buck converter 300 of FIG. 4A, the present embodiment can explain in detail how the buck converter 300 can maintain the stability of the system through the correlation waveforms of FIGS. 5-8. FIG. 5 is a waveform diagram of the inductor current I L , the output voltage Vout , and the differential signals V DIFF_1 VV DIFF_3 of FIG. 4A . Referring to FIG. 4A and FIG. 5 simultaneously, the inductor current I L in FIG. 5 is an ideal triangular waveform, and the output voltage Vout is a waveform generated when the equivalent series resistance R ESR of the output capacitor 360 is small. The feedback voltage V FB is generated based on the divided voltage of the output voltage Vout, so the waveforms of the two are similar. During the period T Gh is the period during which the upper bridge element is turned on, at this time, the lower bridge element is turned off, and the output inductor L is connected to the input voltage Vin through the upper bridge element at this time to gradually increase the current value of the inductor current I L . In contrast, the period T G1 is the period during which the lower bridge element is turned on. At this time, the upper bridge element is turned off, and the inductor current I L gradually decreases the current value of the inductor current I L due to the connection of the lower bridge element to the ground. In addition, since the above waveforms all have a problem of phase delay with respect to the inductor current I L , the phase delay is difficult to explain, and thus the phase delay is not clearly shown in FIG. 5 .

因此,當從期間TGh轉換到期間TGl時(虛線H),邊界強化單元320依據脈寬調變信號Gl以與下橋元件導通時間進行同步,並利用步階升壓器410將依據輸出電壓Vout所產生的回授電壓VFB進行抬升,也就是,在下橋元件導通時間時,回授電壓VFB便會被抬升偏移電壓Vos。由於步階升壓器410是利用控制開關430來控制回授電壓VFB的抬升,因此第三差動信號VDIFF_3會產生如標號510、520的突波產生。本實施例便利用雜訊消除器440將第三差動信號VDIFF_3中如標號510、520的突波濾除,提供較為平滑的第一差動信號VDIFF_1,以增加雜訊抑制能力。 Therefore, when transitioning from the period T Gh to the period T G1 (dashed line H), the boundary enhancement unit 320 synchronizes with the lower bridge element on-time according to the pulse width modulation signal G1, and uses the step booster 410 to output the basis. The feedback voltage V FB generated by the voltage Vout is raised, that is, when the lower bridge element is turned on, the feedback voltage V FB is raised by the offset voltage Vos. Since the step booster 410 uses the control switch 430 to control the rise of the feedback voltage V FB , the third differential signal V DIFF — 3 produces a surge generation as indicated by reference numerals 510, 520. This embodiment facilitates the use of the noise canceller 440 to filter out the glitch of the third differential signal V DIFF_3 as indicated by reference numerals 510 and 520 to provide a relatively smooth first differential signal V DIFF_1 to increase the noise suppression capability.

相位領先單元330接收第一差動信號VDIFF_1,並利用附有零點補償功能的帶通濾波器(GPF)460,透過差動處理以及相位領先的方式而產生與電感電流IL同步的第二差動信號VDIFF_2。藉此,比較器470在透過正相位與反相位的第二差動信號VDIFF_2之間進行比較時,便不易發生判斷錯誤的情形。 The phase lead unit 330 receives the first differential signal V DIFF_1 and generates a second synchronization with the inductor current I L by means of a differential processing and a phase lead by means of a band pass filter (GPF) 460 with a zero point compensation function. Differential signal V DIFF_2 . Thereby, when the comparator 470 compares between the positive differential phase and the inverted phase second differential signal V DIFF_2 , it is less likely to cause an error.

例如,若圖5第二差動信號VDIFF_2的波形接觸到虛線LL時(位於虛線I、LL的交會處),表示第二差動信號VDIFF_2的數值低於0,因而觸發比較器470使其比較信號Vs發生轉態,導致固定導通時間控制器480透過脈波信號Sp讓上下橋元件相互切換,以從期間TGl轉換到期間TGH,進而對電感開始充電,反之亦然。 For example, if the waveform of the second differential signal V DIFF_2 of FIG. 5 is in contact with the broken line LL (at the intersection of the dotted lines I and LL), it means that the value of the second differential signal V DIFF_2 is lower than 0, thus triggering the comparator 470 to make The comparison signal Vs is in a transition state, causing the fixed on-time controller 480 to switch the upper and lower bridge elements to each other through the pulse signal Sp to switch from the period T G1 to the period T GH to start charging the inductor, and vice versa.

圖6是圖4A之直流對直流降壓轉換器300在採用相位領先單元330前後的增益對頻率示意圖。圖6上方的增益GAIN1是不採用相位領先單元之降壓轉換器的增益曲線圖,圖6下方的增益GAIN2則是採用相位領先單元330之降壓轉換器300的增益曲線圖。由圖6中可看出,採用相位領先單元330可使降壓轉換器300在較為低頻的情況(例如,頻率fz)時便可達到較佳的增益效益。 6 is a schematic diagram of gain vs. frequency before and after the phase lead-in unit 330 of the DC-to-DC buck converter 300 of FIG. 4A. The gain GAIN1 at the top of FIG. 6 is a gain curve of the buck converter without the phase lead unit, and the gain GAIN2 at the bottom of FIG. 6 is the gain curve of the buck converter 300 with the phase lead unit 330. As can be seen in Figure 6, the use of phase lead-in unit 330 allows buck converter 300 to achieve better gain benefits at relatively low frequency conditions (e.g., frequency fz).

圖7是圖4A之直流對直流降壓轉換器300在採用相位領先單元330前後的相位對頻率示意圖。並未使用相位領先單元前之降壓轉換器是以實線段L1表示,因此降壓轉換器需在(-14)度相位之後,也就是需要較為高頻的脈寬調變信號,才能到達穩定期間Tstable1。使用相位領先單元330的降壓轉換器300則以虛線段L2表示,降壓轉換器300僅需在(-90)度相位左右便可到達穩定期間Tstable2,因此採用相位領先單元330的降壓轉換器300可以在產生較為低頻的脈寬調變信號時,便可達到穩定的電源能量輸出。 7 is a schematic diagram of phase versus frequency before and after the phase lead-in unit 330 of the DC-to-DC buck converter 300 of FIG. 4A. The buck converter before the phase leader unit is used is represented by the solid line segment L1, so the buck converter needs to be at a (-14) degree phase, that is, a relatively high frequency pulse width modulation signal is required to reach stability. During the period of Tstable1. The buck converter 300 using the phase lead unit 330 is represented by a broken line segment L2, and the buck converter 300 only needs to reach the stable period Tstable2 at about (-90) degrees, so the buck conversion using the phase lead unit 330 is employed. The device 300 can achieve a stable power supply output when a relatively low frequency pulse width modulation signal is generated.

圖8是圖4A之直流對直流降壓轉換器300在採用步階升壓器410前後的波形示意圖。圖8的情形1是並未採用步階升壓器的直流對直流降壓轉換器在受到較小的雜訊邊界(noise margin)影響時相關信號的波形,從箭頭810可知,輸出電壓Vout以及第二差動信號VDIFF_2在期間TGh轉換到期間TGl時就只差些許就觸碰到虛線LL,也就是第二差動信號VDIFF_2的數值僅差些微便會低於0。情形2則是並未採用步階升壓器的直流對直流降壓轉換器在受到較 大的雜訊邊界影響時相關信號的波形,由情形2中的箭頭820可知第二差動信號VDIFF_2的數值在原本應該是期間TGl(也就是電感L應該仍在放電)的情況下低於0,導致脈波信號Sp再次被觸發而使得電感L再次充電而進入期間TGh,從而發生判斷錯誤的情況。 FIG. 8 is a waveform diagram of the DC-DC buck converter 300 of FIG. 4A before and after the step booster 410 is employed. Case 1 of Fig. 8 is a waveform of a correlation signal when a DC-to-DC buck converter that does not employ a step booster is affected by a smaller noise margin. From arrow 810, the output voltage Vout and The second differential signal V DIFF_2 touches the dotted line LL only when the period T Gh transitions to the period T G1 , that is, the value of the second differential signal V DIFF_2 is only slightly lower than 0. Case 2 is the waveform of the related signal when the DC-to-DC buck converter that does not use the step booster is affected by a large noise boundary. The second differential signal V DIFF_2 is known by the arrow 820 in Case 2. The value should be lower than 0 in the case that the period T Gl (that is, the inductor L should still be discharged), causing the pulse signal Sp to be triggered again to cause the inductor L to be recharged and enter the period T Gh , thereby causing a judgment error. Case.

圖8的情況3則是圖3B之直流降壓轉換器300在採用步階升壓器410之後,若是在具有較大雜訊邊界的情況下,步階升壓器410會將依據輸出電壓Vout所產生的回授電壓VFB進行抬升,使得第二差動信號VDIFF_2不會發生如同情況2箭頭820的情形而使其數值低於0,也就不會造成比較器470判斷錯誤的情況。 Case 3 of FIG. 8 is the DC buck converter 300 of FIG. 3B. After using the step booster 410, if there is a large noise boundary, the step booster 410 will be based on the output voltage Vout. The generated feedback voltage V FB is raised so that the second differential signal V DIFF_2 does not occur as in the case of the arrow 2 of the case 2 and its value is lower than 0, so that the comparator 470 does not cause an error.

綜上所述,本發明實施例揭示的直流對直流降壓轉換器在比較器的前一級增加相位領先單元,從而調整輸出電壓,以使其之波形以相位領先的方式還原為類似於電感電流相同相位的波形。此外,邊界強化單元會在下橋元件導通期間抬升回授電壓,並將回授電壓以及參考電壓以差動及高頻濾波等方式降低共模雜訊,藉以避免誤觸發固定導通時間控制單元。如此,直流對直流降壓轉換器可增加降壓轉換器的系統穩定性,提高降壓轉換器對於雜訊的容忍度,並降低對於輸出電容及其等效串聯電阻的數值限制。 In summary, the DC-to-DC buck converter disclosed in the embodiment of the present invention adds a phase lead-in unit to the front stage of the comparator, thereby adjusting the output voltage so that the waveform is restored in a phase-leading manner to be similar to the inductor current. Waveforms of the same phase. In addition, the boundary strengthening unit raises the feedback voltage during the conduction of the lower bridge component, and reduces the common mode noise by means of differential and high frequency filtering, etc., to avoid false triggering of the fixed on-time control unit. As such, the DC-to-DC buck converter increases the system stability of the buck converter, increases the buck converter's tolerance for noise, and reduces the numerical limits on the output capacitor and its equivalent series resistance.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作些許之更動與潤飾,故本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the invention, and any one of ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. The scope of the invention is defined by the scope of the appended claims.

100、300‧‧‧直流對直流降壓轉換器 100, 300‧‧‧DC to DC Buck Converter

110、310‧‧‧驅動電路 110, 310‧‧‧ drive circuit

120、350‧‧‧分壓電路 120, 350‧‧ ‧ voltage divider circuit

130、470‧‧‧比較器 130, 470‧‧‧ comparator

140、340‧‧‧固定導通時間(COT)控制單元 140, 340‧‧‧ Fixed On-Time (COT) Control Unit

150、360‧‧‧輸出電容 150, 360‧‧‧ output capacitor

320‧‧‧邊界強化單元 320‧‧‧Boundary Enhancement Unit

330‧‧‧相位領先單元 330‧‧‧ Phase Leading Unit

410‧‧‧步階升壓器 410‧‧‧step booster

420‧‧‧偏壓產生電路 420‧‧‧Pressure generating circuit

430‧‧‧控制開關 430‧‧‧Control switch

440‧‧‧雜訊消除器 440‧‧‧ Noise canceller

445‧‧‧雜訊同步器 445‧‧‧ Noise Synchronizer

450‧‧‧緩衝器 450‧‧‧buffer

460‧‧‧帶通濾波器(BPF) 460‧‧‧Bandpass Filter (BPF)

480‧‧‧固定導通時間控制器 480‧‧‧Fixed on-time controller

510、520‧‧‧標號 510, 520‧ ‧ label

810~820‧‧‧箭頭 810~820‧‧‧ arrow

N1、N2、N3‧‧‧控制開關的端點 End points of N1, N2, N3‧‧‧ control switches

A、B、C、D、I、H、LL‧‧‧虛線 A, B, C, D, I, H, LL‧‧‧ dotted lines

E‧‧‧接點 E‧‧‧Contact

F‧‧‧回授端 F‧‧‧reporting end

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Vout、Vout1~Vout3‧‧‧輸出電壓 Vout, Vout1~Vout3‧‧‧ output voltage

RESR‧‧‧等效串聯電阻 R ESR ‧‧‧Equivalent series resistance

LESL‧‧‧等效串聯電感 L ESL ‧‧‧Equivalent series inductance

COUT‧‧‧輸出電容值 C OUT ‧‧‧output capacitance value

L‧‧‧輸出電感 L‧‧‧Output inductor

IL‧‧‧電感電流 I L ‧‧‧Inductor current

Qp、Qn‧‧‧電晶體 Qp, Qn‧‧‧ transistor

Gh、Gl‧‧‧脈寬調變信號 Gh, Gl‧‧‧ pulse width modulation signal

VFB‧‧‧回授電壓 V FB ‧‧‧Responsive voltage

VFB_1‧‧‧調整之回授電壓 V FB_1 ‧‧‧Adjusted feedback voltage

VFB_N‧‧‧已濾除高頻雜訊的回授電壓 V FB_N ‧‧‧ has filtered out the feedback voltage of high frequency noise

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VREF_N‧‧‧已濾除高頻雜訊的參考電壓 V REF_N ‧‧‧ has filtered out the reference voltage of high frequency noise

VDIFF_1、VDIFF_2、VDIFF_3‧‧‧差動信號 V DIFF_1 , V DIFF_2 , V DIFF_3 ‧‧‧Differential signal

Vs‧‧‧比較信號 Vs‧‧‧ comparison signal

Vos‧‧‧偏移電壓 Vos‧‧‧ offset voltage

Sp‧‧‧脈波信號 Sp‧‧‧ pulse signal

R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance

TGh、TGl‧‧‧期間 T Gh , T Gl ‧‧‧

GAIN1、GAIN2‧‧‧增益 GAIN1, GAIN2‧‧‧ Gain

L1‧‧‧實線段 L1‧‧‧solid line

L2‧‧‧虛線段 L2‧‧‧dotted section

Tstable1、Tstable2‧‧‧穩定期間 Tstable1, Tstable2‧‧‧ stable period

Fz‧‧‧頻率 Fz‧‧‧ frequency

圖1是採用固定導通時間控制模式之直流對直流降壓轉換器的示意圖。 Figure 1 is a schematic diagram of a DC-to-DC buck converter employing a fixed on-time control mode.

圖2繪示等效串聯電阻在相同輸出電容值的情況下對於輸出電壓在時域中的影響關係圖。 Figure 2 is a graph showing the effect of the equivalent series resistance on the output voltage in the time domain with the same output capacitance value.

圖3A是根據本發明一實施例說明直流對直流降壓轉換器的功能方塊圖。 3A is a functional block diagram illustrating a DC-to-DC buck converter in accordance with an embodiment of the present invention.

圖3B是根據本發明一實施例說明另一種直流對直流降壓轉換器的功能方塊圖。 FIG. 3B is a functional block diagram showing another DC-to-DC buck converter according to an embodiment of the invention.

圖4A為圖3B之直流對直流降壓轉換器的詳細電路圖。 4A is a detailed circuit diagram of the DC-to-DC buck converter of FIG. 3B.

圖4B為圖3B之直流對直流降壓轉換器於其他實施例的詳細電路圖。 4B is a detailed circuit diagram of the DC-to-DC buck converter of FIG. 3B in other embodiments.

圖5是圖4A之電感電流IL、輸出電壓Vout、差動信號VDIFF_1~VDIFF_3的波形示意圖。 FIG. 5 is a waveform diagram of the inductor current I L , the output voltage Vout, and the differential signals V DIFF_1 VV DIFF_3 of FIG. 4A .

圖6是圖4A之直流對直流降壓轉換器在採用相位領先單元前後的增益對頻率示意圖。 6 is a schematic diagram of the gain versus frequency of the DC-to-DC buck converter of FIG. 4A before and after the phase lead-in unit is employed.

圖7是圖4A之直流對直流降壓轉換器在採用相位領先單元前後的相位對頻率示意圖。 7 is a schematic diagram of phase versus frequency of the DC-to-DC buck converter of FIG. 4A before and after employing a phase lead-in unit.

圖8是圖4A之直流對直流降壓轉換器在採用步階升壓器前後的波形示意圖。 Figure 8 is a waveform diagram of the DC-to-DC buck converter of Figure 4A before and after the step booster is employed.

300‧‧‧直流對直流降壓轉換器 300‧‧‧DC to DC Buck Converter

310‧‧‧驅動電路 310‧‧‧Drive circuit

320‧‧‧邊界強化單元 320‧‧‧Boundary Enhancement Unit

330‧‧‧相位領先單元 330‧‧‧ Phase Leading Unit

340‧‧‧固定導通時間(COT)控制單元 340‧‧‧Fixed On-Time (COT) Control Unit

350‧‧‧分壓電路 350‧‧‧voltage circuit

360‧‧‧輸出電容 360‧‧‧ output capacitor

E‧‧‧接點 E‧‧‧Contact

F‧‧‧回授端 F‧‧‧reporting end

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Vout‧‧‧輸出電壓 Vout‧‧‧ output voltage

RESR‧‧‧等效串聯電阻 R ESR ‧‧‧Equivalent series resistance

LESL‧‧‧等效串聯電感 L ESL ‧‧‧Equivalent series inductance

COUT‧‧‧輸出電容值 C OUT ‧‧‧output capacitance value

L‧‧‧輸出電感 L‧‧‧Output inductor

IL‧‧‧電感電流 I L ‧‧‧Inductor current

Qp、Qn‧‧‧電晶體 Qp, Qn‧‧‧ transistor

Gh、Gl‧‧‧脈寬調變信號 Gh, Gl‧‧‧ pulse width modulation signal

VFB‧‧‧回授電壓 V FB ‧‧‧Responsive voltage

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VDIFF_1、VDIFF_2‧‧‧差動信號 V DIFF_1 , V DIFF_2 ‧‧‧Differential signal

Sp‧‧‧脈波信號 Sp‧‧‧ pulse signal

R1、R2‧‧‧電阻 R1, R2‧‧‧ resistance

Claims (9)

一種直流對直流降壓轉換器,包括:驅動電路、至少一對上橋元件與下橋元件以及輸出電容,該上橋元件以及該下橋元件相互相連並受控於該驅動電路所產生的脈寬調變信號,其交互切換並依據輸入電壓以透過輸出電感以及輸出電容而提供輸出電壓;相位領先單元,其接收依據該輸出電壓以及參考電壓所產生的第一差動信號,並將該第一差動信號進行相位領先,以提供一第二差動信號;固定導通時間控制單元,耦接該相位領先單元,接收並依據該第二差動信號來判斷該輸出電壓的能量是否足夠,從而輸出具固定導通時間的脈波信號至該驅動電路,以使該驅動電路產生該脈寬調變信號;以及邊界強化單元,耦接該驅動電路以及該相位領先單元,接收依據該輸出電壓所產生的回授電壓,並依據該脈寬調變信號的特定期間而調整該回授電壓,且依據調整之該回授電壓及參考電壓而產生該第一差動信號。 A DC-to-DC buck converter includes: a driving circuit, at least one pair of upper and lower bridge elements, and an output capacitor, the upper bridge element and the lower bridge element being connected to each other and controlled by a pulse generated by the driving circuit a wide-modulation signal that alternately switches and provides an output voltage according to an input voltage through an output inductor and an output capacitor; a phase lead-in unit that receives a first differential signal generated according to the output voltage and a reference voltage, and the first a differential signal is phase-lead to provide a second differential signal; a fixed on-time control unit is coupled to the phase lead-in unit, and receives and determines whether the energy of the output voltage is sufficient according to the second differential signal, thereby Outputting a pulse wave signal with a fixed on-time to the driving circuit, so that the driving circuit generates the pulse width modulation signal; and a boundary strengthening unit coupled to the driving circuit and the phase leading unit, and receiving is generated according to the output voltage Retrieving the voltage and adjusting the feedback voltage according to the specific period of the pulse width modulation signal, and adjusting according to The feedback voltage and a reference voltage to generate the first differential signal. 如申請專利範圍第1項所述之直流對直流降壓轉換器,其中該邊界強化單元包括:步階升壓器,依據該脈寬調變信號以在該下橋元件的導通期間將該回授電壓抬升一偏移電壓,以提供調整之該回授電壓,其中正相端之該第一差動信號是調整之該回授電壓,且反相端之該第一差動信號是該參考電壓。 The DC-to-DC buck converter of claim 1, wherein the boundary enhancement unit comprises: a step booster, according to the pulse width modulation signal, to be used during the conduction of the lower bridge component The voltage is raised by an offset voltage to provide the adjusted feedback voltage, wherein the first differential signal of the positive phase terminal is the adjusted feedback voltage, and the first differential signal of the inverting terminal is the reference Voltage. 如申請專利範圍第2項所述之直流對直流降壓轉換器,其中該步階升壓器包括: 偏壓產生電路,其負極端接收該回授電壓,且該偏壓產生電路的正極端產生調整之該回授電壓;以及控制開關,其控制端接收該脈寬調變信號,該控制開關的第一端接收該回授電壓,該控制開關的第二端耦接該偏壓產生電路的正極端,該控制開關在該下橋元件導通期間將其第二端與其輸出端導通以傳送調整之該回授電壓,且該控制開關在該上橋元件非導通期間將其第一端與其輸出端導通以傳送該回授電壓。 The DC-to-DC buck converter of claim 2, wherein the step booster comprises: a bias generating circuit, the negative terminal receiving the feedback voltage, and the positive terminal of the bias generating circuit generates the adjusted feedback voltage; and a control switch, the control terminal receiving the pulse width modulation signal, the control switch The first end receives the feedback voltage, and the second end of the control switch is coupled to the positive terminal of the bias generating circuit, and the control switch conducts the second end of the control terminal with the output end thereof during the conduction of the lower bridge component to transmit the adjustment The feedback voltage is applied, and the control switch conducts its first end and its output during the non-conduction of the upper bridge element to transmit the feedback voltage. 如申請專利範圍第2項所述之直流對直流降壓轉換器,其中該邊界強化單元更包括:雜訊消除器,其濾除該第一差動信號的雜訊部份。 The DC-DC buck converter of claim 2, wherein the boundary enhancement unit further comprises: a noise canceller that filters out the noise portion of the first differential signal. 如申請專利範圍第2項所述之直流對直流降壓轉換器,其中該邊界強化單元更包括:雜訊同步器,其第一端接收調整之該回授電壓,該雜訊同步器的第二端接收該參考電壓,以將調整之該回授電壓中的雜訊部份加入到該參考電壓,其中該相位領先單元接收調整之該回授電壓以及該參考電壓,並透過差動輸入以消除調整之該回授電壓以及該參考電壓中的該雜訊部份。 The DC-DC buck converter according to claim 2, wherein the boundary enhancement unit further comprises: a noise synchronizer, wherein the first end receives the adjusted feedback voltage, and the noise synchronizer The second terminal receives the reference voltage to add the noise portion of the adjusted feedback voltage to the reference voltage, wherein the phase leading unit receives the adjusted feedback voltage and the reference voltage, and transmits the differential voltage through the differential input The feedback voltage of the adjustment and the noise portion of the reference voltage are eliminated. 如申請專利範圍第1項所述之直流對直流降壓轉換器,其中該相位領先單元包括:零點補償電路,其提供零點補償並使該第一差動信號進行相位領先,從而產生該第二差動信號。 The DC-to-DC buck converter of claim 1, wherein the phase lead-in unit comprises: a zero-point compensation circuit that provides zero-point compensation and phase-leads the first differential signal to generate the second Differential signal. 如申請專利範圍第6項所述之直流對直流降壓轉換器,其中該零點補償電路包括: 帶通濾波器,其反相輸入端接收正相端之該第一差動信號,該帶通濾波器的正相輸入端接收反相端之該第一差動信號,該帶通濾波器的兩個輸出端分別提供正相端及反相端之該第二差動信號。 The DC-to-DC buck converter of claim 6, wherein the zero-point compensation circuit comprises: a band pass filter having an inverting input receiving the first differential signal of the positive phase terminal, the positive phase input terminal of the band pass filter receiving the first differential signal of the inverting terminal, the band pass filter The two outputs provide the second differential signal of the positive phase terminal and the inverting terminal, respectively. 如申請專利範圍第6項所述之直流對直流降壓轉換器,其中該零點補償電路以高通濾波器來實現。 The DC-to-DC buck converter of claim 6, wherein the zero-point compensation circuit is implemented by a high-pass filter. 如申請專利範圍第1項所述之直流對直流降壓轉換器,其中該固定導通時間控制單元包括:比較器,耦接該相位領先單元,該比較器的正相輸入端以及反相輸入端分別接收正相端與反相端之該第二差動信號,以依據比較結果產生比較信號;以及固定導通時間控制器,受該比較信號的觸發以輸出具固定導通時間的脈波信號至該驅動電路,使該驅動電路產生該脈寬調變信號。 The DC-DC buck converter according to claim 1, wherein the fixed on-time control unit comprises: a comparator coupled to the phase lead-in unit, a positive-phase input terminal and an inverting input terminal of the comparator Receiving the second differential signal of the positive phase end and the inverting end respectively to generate a comparison signal according to the comparison result; and fixing the on-time controller, being triggered by the comparison signal to output a pulse wave signal having a fixed on-time The driving circuit causes the driving circuit to generate the pulse width modulation signal.
TW101138737A 2012-10-19 2012-10-19 Dc-to-dc converter TWI463768B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW101138737A TWI463768B (en) 2012-10-19 2012-10-19 Dc-to-dc converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW101138737A TWI463768B (en) 2012-10-19 2012-10-19 Dc-to-dc converter

Publications (2)

Publication Number Publication Date
TW201417464A TW201417464A (en) 2014-05-01
TWI463768B true TWI463768B (en) 2014-12-01

Family

ID=51293980

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101138737A TWI463768B (en) 2012-10-19 2012-10-19 Dc-to-dc converter

Country Status (1)

Country Link
TW (1) TWI463768B (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10985660B2 (en) * 2018-12-10 2021-04-20 Mediatek Singapore Pte. Ltd. DC-DC converter having higher stability and output accuracy
TW202144804A (en) 2020-05-22 2021-12-01 茂達電子股份有限公司 Inductor current detecting circuit
CN113489317B (en) * 2021-05-26 2023-06-09 中国电子科技集团公司第四十一研究所 Program-controlled output power control circuit
CN117650701A (en) * 2024-01-30 2024-03-05 芯昇科技有限公司 Step-down circuit

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489119B2 (en) * 2005-08-17 2009-02-10 Nexem, Inc. DC to DC converter with reference voltage loop disturbance compensation
TW201223091A (en) * 2010-11-24 2012-06-01 Anpec Electronics Corp Control circuit and bulk DC/DC converter in constant on-time mode

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7489119B2 (en) * 2005-08-17 2009-02-10 Nexem, Inc. DC to DC converter with reference voltage loop disturbance compensation
TW201223091A (en) * 2010-11-24 2012-06-01 Anpec Electronics Corp Control circuit and bulk DC/DC converter in constant on-time mode

Also Published As

Publication number Publication date
TW201417464A (en) 2014-05-01

Similar Documents

Publication Publication Date Title
TWI385907B (en) Dc-dc converter
US8587265B2 (en) Control circuit for DC-DC converter, DC-DC converter, and method for controlling DC-DC converter
US9685858B2 (en) DC/DC converter, control circuit and control method thereof, and electronic apparatus
TWI496387B (en) Switching regulator and control circuit and control method thereof
US8198880B2 (en) Constant on-time converter and the method of operation
TWI481175B (en) High output accuracy constant on time regulator with error correction
JP4311564B2 (en) Control circuit and control method of current mode control type DC-DC converter
TWI410033B (en) Current mode buck converter with fixed pwm/pfm boundary
CN105450024B (en) Multi-stage amplifier
US7193871B2 (en) DC-DC converter circuit
US9013164B1 (en) Constant on-time controller
US20150028830A1 (en) Current-mode buck converter and electronic system using the same
JP5902401B2 (en) Power supply device, control circuit, electronic device, and power supply control method
US8664982B2 (en) Buck-boost power converter with feed-forward technique for achieving fast line response
JP6767867B2 (en) Resonant power converter and control method
JP2009148155A (en) Constant on-time regulator with internal ripple generation and improved output voltage accuracy
JP2007116823A (en) Circuit and method for controlling dc-dc converter
TWI496399B (en) Control module of constant on-time mode and voltage converting device thereof
US9966849B1 (en) Current mode voltage converter having fast transient response
TWI463768B (en) Dc-to-dc converter
US11329618B2 (en) Fully differential PWM/PFM power converter control
JP4378530B2 (en) DC power supply controller
US20110127985A1 (en) Voltage converting apparatus
JP2013162539A (en) Led drive circuit and electronic apparatus using the same
TWI488418B (en) Constant on-time controller