TWI488418B - Constant on-time controller - Google Patents
Constant on-time controller Download PDFInfo
- Publication number
- TWI488418B TWI488418B TW103101375A TW103101375A TWI488418B TW I488418 B TWI488418 B TW I488418B TW 103101375 A TW103101375 A TW 103101375A TW 103101375 A TW103101375 A TW 103101375A TW I488418 B TWI488418 B TW I488418B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- ripple
- circuit
- voltage
- adjustment
- Prior art date
Links
Landscapes
- Dc-Dc Converters (AREA)
Description
本發明係關於一種固定導通時間控制器,尤指一種具有紋波補償之固定導通時間控制器。The present invention relates to a fixed on-time controller, and more particularly to a fixed on-time controller with ripple compensation.
當前固定導通時間(COT,Constant On Time)架構的同步降壓轉換器,配合積體電路操作電壓下降的趨勢,輸出電壓的紋波大小之要求越來越嚴謹。為達到輸出電壓紋波小之要求,同步降壓轉換器通常使用低等效串聯電阻(ESR,Equivalent Series Resistance)的積層陶瓷電容(MLCC,Multi-layer Ceramic Capacitor)作為輸出電容。然而,積層陶瓷電容的使用雖降低了輸出電壓的紋波大小,但同時也帶來穩定性的問題。因此,需要額外引入紋波,以改善積層陶瓷電容的應用的穩定性問題。引入紋波的方法可區分為控制器外部引入和控制器內部引入兩種,其中以控制器內部引入具有較佳的成本優勢。The synchronous buck converter of the current fixed on-time (COT) architecture, in line with the trend of the operating voltage drop of the integrated circuit, the demand for the ripple of the output voltage is more and more rigorous. In order to achieve low output ripple ripple, synchronous buck converters typically use a low-equivalent series resistance (ESR) multilayer ceramic capacitor (MLCC) as the output capacitor. However, the use of a multilayer ceramic capacitor reduces the ripple of the output voltage, but it also brings stability problems. Therefore, additional ripple is required to improve the stability of the application of the laminated ceramic capacitor. The method of introducing ripple can be divided into two types: the external introduction of the controller and the internal introduction of the controller, wherein the introduction of the controller has a better cost advantage.
請參見第一圖,為傳統的具有紋波補償之固定導通時間控制器之應用電路圖。固定導通時間控制器控制一直 流轉直流降壓轉換電路,使一輸入電壓Vin轉換成一輸出電壓Vout。直流轉直流降壓轉換電路包含一上臂電晶體Q1、一下臂電晶體Q2、一電感L以及一輸出電容Cout。輸出電容Cout具有一等效電阻Rc。上臂電晶體Q1與下臂電晶體Q2經一相節點P相互連接,而上臂電晶體Q1的另一端連接輸入電壓Vin,下臂電晶體Q2的另一端接地。電感L一端連接相節點P,另一端連接輸出電容Cout,以產生輸出電壓Vout。Please refer to the first figure for the application circuit diagram of the traditional fixed on-time controller with ripple compensation. Fixed on-time controller control The circulating DC step-down conversion circuit converts an input voltage Vin into an output voltage Vout. The DC-to-DC buck conversion circuit includes an upper arm transistor Q1, a lower arm transistor Q2, an inductor L, and an output capacitor Cout. The output capacitor Cout has an equivalent resistance Rc. The upper arm transistor Q1 and the lower arm transistor Q2 are connected to each other via a phase node P, and the other end of the upper arm transistor Q1 is connected to the input voltage Vin, and the other end of the lower arm transistor Q2 is grounded. One end of the inductor L is connected to the phase node P, and the other end is connected to the output capacitor Cout to generate an output voltage Vout.
固定導通時間控制器耦接上臂電晶體Q1及下臂電晶體Q2之相節點P。固定導通時間控制器包含一脈寬調變控制器11及一驅動器17。脈寬調變控制器11包含一同步訊號產生電路13及一脈寬調變比較電路15。同步訊號產生電路13包含了一低通濾波器3以及一誤差放大器5。低通濾波器3包含一電阻R4及一電容C4,並連接相節點P,以濾除相節點P的電壓訊號Vp的高頻成分,而於一節點X產生近似三角波的一訊號Slp。誤差放大器5之一非反相端接收一參考電壓訊號Vref1,一反相端接收訊號Slp,以據此產生一誤差放大訊號S12。脈寬調變比較電路15包含一加法器7及一比較器9。加法器7把誤差放大訊號S12與一參考電壓訊號Vref2相加產生一相加訊號S13。直流轉直流降壓轉換電路所輸出的輸出電壓Vout經一電壓偵測電路1分壓產生一電壓偵測訊號Vfb。比較器9的一非反相端接收相加訊號S13,一反相端接收電壓偵測訊號Vfb,以據此產生一脈寬調變訊號S9至驅動器17。驅動器17根據脈寬調變訊號 S9控制上臂電晶體Q1及下臂電晶體Q2,以穩定輸出電壓Vout。The fixed on-time controller is coupled to the phase node P of the upper arm transistor Q1 and the lower arm transistor Q2. The fixed on-time controller includes a pulse width modulation controller 11 and a driver 17. The pulse width modulation controller 11 includes a synchronous signal generating circuit 13 and a pulse width modulation comparing circuit 15. The sync signal generating circuit 13 includes a low pass filter 3 and an error amplifier 5. The low-pass filter 3 includes a resistor R4 and a capacitor C4, and is connected to the phase node P to filter out the high-frequency component of the voltage signal Vp of the phase node P, and generates a signal Slp of a similar triangular wave at a node X. One non-inverting terminal of the error amplifier 5 receives a reference voltage signal Vref1, and an inverting terminal receives the signal Slp to generate an error amplification signal S12. The pulse width modulation comparison circuit 15 includes an adder 7 and a comparator 9. The adder 7 adds the error amplification signal S12 to a reference voltage signal Vref2 to generate an addition signal S13. The output voltage Vout outputted by the DC-to-DC buck converter circuit is divided by a voltage detecting circuit 1 to generate a voltage detecting signal Vfb. A non-inverting terminal of the comparator 9 receives the summing signal S13, and an inverting terminal receives the voltage detecting signal Vfb to generate a pulse width modulation signal S9 to the driver 17. Driver 17 according to pulse width modulation signal S9 controls the upper arm transistor Q1 and the lower arm transistor Q2 to stabilize the output voltage Vout.
傳統的固定導通時間控制器的缺點是在不同的應用環境,例如:輸入電壓Vin、輸出電壓Vout或操作頻率不同,相節點P的電壓訊號Vp的震幅和工作週期會有較大的變化,導致產生的相加訊號S13上的紋波量也隨應用環境而改變。這會造成實際輸出電壓與理想輸出電壓的偏差值在不同應用環境下會有不同。The disadvantage of the conventional fixed on-time controller is that in different application environments, such as input voltage Vin, output voltage Vout or operating frequency, the amplitude and duty cycle of the voltage signal Vp of the phase node P may vary greatly. The amount of ripple on the resulting addition signal S13 also varies with the application environment. This causes the deviation of the actual output voltage from the ideal output voltage to be different in different application environments.
鑑於先前技術中的實際輸出電壓與理想輸出電壓的偏差值會隨著應用環境不同,本發明的固定導通時間控制器能提供不隨應用環境而改變、實質上固定的紋波量,而避免實際輸出電壓與理想輸出電壓的偏差值隨應用環境改變之問題。Since the deviation between the actual output voltage and the ideal output voltage in the prior art may vary depending on the application environment, the fixed on-time controller of the present invention can provide a substantially constant amount of ripple that does not change with the application environment, and avoids the actual The deviation of the output voltage from the ideal output voltage varies with the application environment.
為達上述目的,本發明提供了一種固定導通時間控制器,用以控制一轉換電路之切換以產生一輸出電壓。固定導通時間控制器包含一紋波產生器、一比較電路以及一邏輯控制電路。紋波產生器根據含有轉換電路之一電感所流經之一電流成分之一第一訊號以及含有輸出電壓成分之一第二訊號或電感之電流成分,以產生一紋波訊號,其中,第二訊號含有電感之電流成分時,第二訊號之一震幅小於第一訊號之一震幅。紋波產生器包含一準位調節電路,根據紋波訊號之一震幅調節第一訊號及第二訊號之準位。比較電路接收紋波訊 號、一參考電壓訊號以及代表輸出電壓之一電壓偵測訊號,並根據紋波訊號調整參考電壓訊號及電壓偵測訊號其中之一,以產生具有紋波訊號之一紋波資訊之一紋波調整訊號,比較電路比較紋波調整訊號與參考電壓訊號及電壓偵測訊號之另一,以產生一比較結果訊號。邏輯控制電路根據比較結果訊號產生具有一固定脈寬之一控制訊號以控制轉換電路之切換。To achieve the above object, the present invention provides a fixed on-time controller for controlling switching of a switching circuit to generate an output voltage. The fixed on-time controller includes a ripple generator, a comparison circuit, and a logic control circuit. The ripple generator generates a ripple signal according to a first signal of one of the current components flowing through one of the inductances of the conversion circuit and a current component containing a second signal or an inductor of the output voltage component, wherein the second signal When the signal contains the current component of the inductor, the amplitude of one of the second signals is less than the amplitude of the first signal. The ripple generator includes a level adjustment circuit for adjusting the levels of the first signal and the second signal according to one of the ripple signals. Comparison circuit receiving ripple signal a reference voltage signal and a voltage detection signal representing one of the output voltages, and adjusting one of the reference voltage signal and the voltage detection signal according to the ripple signal to generate a ripple with ripple information of one of the ripple signals The signal is adjusted, and the comparison circuit compares the ripple adjustment signal with the reference voltage signal and the voltage detection signal to generate a comparison result signal. The logic control circuit generates a control signal having a fixed pulse width to control switching of the conversion circuit according to the comparison result signal.
本發明也提供了一種固定導通時間控制器,用以控制一轉換電路之切換以產生一輸出電壓。固定導通時間控制器包含一紋波產生器、一比較電路以及一邏輯控制電路。紋波產生器根據含有轉換電路之一電感所流經之一電流成分之一第一訊號以及含有輸出電壓成分或電感之電流大成分之一第二訊號,以產生一紋波訊號,其中,第二訊號含有電感之電流成分時,第二訊號之一震幅小於第一訊號之一震幅。紋波產生器包含一準位調節電路,根據輸出電壓及一控制訊號或根據紋波訊號之一震幅調節紋波訊號之震幅。比較電路接收紋波訊號、一參考電壓訊號以及代表輸出電壓之一電壓偵測訊號,並根據紋波訊號調整參考電壓訊號及電壓偵測訊號之其中之一,以產生具有紋波訊號之一紋波資訊之一紋波調整訊號,比較電路比較紋波調整訊號與參考電壓訊號及電壓偵測訊號之另一,以產生一比較結果訊號。邏輯控制電路根據比較結果訊號產生具有一固定脈寬之控制訊號以控制轉換電路 之切換。The present invention also provides a fixed on-time controller for controlling switching of a conversion circuit to generate an output voltage. The fixed on-time controller includes a ripple generator, a comparison circuit, and a logic control circuit. The ripple generator generates a ripple signal according to a first signal of one of the current components flowing through one of the inductances of the conversion circuit and a second signal containing a large component of the output voltage component or the current of the inductor, wherein When the second signal contains the current component of the inductor, the amplitude of one of the second signals is less than the amplitude of the first signal. The ripple generator includes a level adjustment circuit for adjusting the amplitude of the ripple signal according to the output voltage and a control signal or according to one of the ripple signals. The comparison circuit receives the ripple signal, a reference voltage signal, and a voltage detection signal representing the output voltage, and adjusts one of the reference voltage signal and the voltage detection signal according to the ripple signal to generate one of the ripple signals. A ripple adjustment signal of the wave information, the comparison circuit compares the ripple adjustment signal with another of the reference voltage signal and the voltage detection signal to generate a comparison result signal. The logic control circuit generates a control signal having a fixed pulse width to control the conversion circuit according to the comparison result signal Switching.
本發明又提供了一種固定導通時間控制器,用以控制一轉換電路之切換以產生一輸出電壓。固定導通時間控制器包含一紋波產生器、一比較電路以及一邏輯控制電路。紋波產生器根據含有轉換電路之一電感所流經之一電流成分之一第一訊號以及含有輸出電壓成分或電感之電流成分之一第二訊號,以產生一紋波訊號,其中,第二訊號含有電感之電流成分時,第二訊號之一震幅小於第一訊號之一震幅。紋波產生器包含一準位調節電路,根據輸出電壓及一控制訊號或根據紋波訊號之一震幅產生一調節訊號。比較電路接收紋波訊號、一參考電壓訊號以及代表輸出電壓之一電壓偵測訊號,並根據紋波訊號調整參考電壓訊號及電壓偵測訊號之其中之一,以產生具有紋波訊號之一紋波資訊之一紋波調整訊號,比較電路比較紋波調整訊號與參考電壓訊號及電壓偵測訊號之另一,以產生一比較結果訊號。比較電路包含一訊號引入電路,根據調節訊號調節紋波調整訊號之一震幅。邏輯控制電路根據比較結果訊號產生具有一固定脈寬之控制訊號以控制轉換電路之切換。The present invention further provides a fixed on-time controller for controlling switching of a conversion circuit to generate an output voltage. The fixed on-time controller includes a ripple generator, a comparison circuit, and a logic control circuit. The ripple generator generates a ripple signal according to a first signal of one of the current components flowing through one of the inductances of the conversion circuit and a second signal containing a current component of the output voltage component or the inductor, wherein the second signal When the signal contains the current component of the inductor, the amplitude of one of the second signals is less than the amplitude of the first signal. The ripple generator includes a level adjustment circuit that generates an adjustment signal based on the output voltage and a control signal or according to one of the ripple signals. The comparison circuit receives the ripple signal, a reference voltage signal, and a voltage detection signal representing the output voltage, and adjusts one of the reference voltage signal and the voltage detection signal according to the ripple signal to generate one of the ripple signals. A ripple adjustment signal of the wave information, the comparison circuit compares the ripple adjustment signal with another of the reference voltage signal and the voltage detection signal to generate a comparison result signal. The comparison circuit includes a signal introduction circuit for adjusting the amplitude of the ripple adjustment signal according to the adjustment signal. The logic control circuit generates a control signal having a fixed pulse width according to the comparison result signal to control switching of the conversion circuit.
以上的概述與接下來的詳細說明皆為示範性質,是為了進一步說明本發明的申請專利範圍。而有關本發明的其他目的與優點,將在後續的說明與圖示加以闡述。The above summary and the following detailed description are exemplary in order to further illustrate the scope of the claims. Other objects and advantages of the present invention will be described in the following description and drawings.
先前技術:Prior art:
1‧‧‧電壓偵測電路1‧‧‧Voltage detection circuit
3‧‧‧低通濾波器3‧‧‧Low-pass filter
5‧‧‧誤差放大器5‧‧‧Error amplifier
7‧‧‧加法器7‧‧‧Adder
9‧‧‧比較器9‧‧‧ comparator
11‧‧‧脈寬調變控制器11‧‧‧ Pulse width modulation controller
13‧‧‧同步訊號產生電路13‧‧‧Synchronous signal generation circuit
15‧‧‧脈寬調變比較電路15‧‧‧ Pulse width modulation comparison circuit
17‧‧‧驅動器17‧‧‧ drive
C4‧‧‧電容C4‧‧‧ capacitor
Cout‧‧‧輸出電容Cout‧‧‧ output capacitor
L‧‧‧電感L‧‧‧Inductance
P‧‧‧相節點P‧‧‧ phase node
Q1‧‧‧上臂電晶體Q1‧‧‧Upper arm transistor
Q2‧‧‧下臂電晶體Q2‧‧‧ Lower arm transistor
R4‧‧‧電阻R4‧‧‧ resistance
Rc‧‧‧等效電阻Rc‧‧‧ equivalent resistance
S3‧‧‧紋波訊號S3‧‧‧ ripple signal
S9‧‧‧脈寬調變訊號S9‧‧‧ pulse width modulation signal
S12‧‧‧誤差放大訊號S12‧‧‧Error amplification signal
S13‧‧‧相加訊號S13‧‧‧ Adding signals
Slp‧‧‧訊號Slp‧‧‧ signal
Vfb‧‧‧電壓偵測訊號Vfb‧‧‧ voltage detection signal
Vin‧‧‧輸入電壓Vin‧‧‧Input voltage
Vout‧‧‧輸出電壓Vout‧‧‧ output voltage
Vp‧‧‧電壓訊號Vp‧‧‧ voltage signal
Vref1‧‧‧參考電壓訊號Vref1‧‧‧ reference voltage signal
Vref2‧‧‧參考電壓訊號Vref2‧‧‧ reference voltage signal
X‧‧‧節點X‧‧‧ node
本發明:this invention:
1‧‧‧電壓偵測電路1‧‧‧Voltage detection circuit
100、200、300‧‧‧準位調節電路100, 200, 300‧‧ ‧ level adjustment circuit
101、102‧‧‧低通濾波器101, 102‧‧‧ low pass filter
103‧‧‧放大器103‧‧‧Amplifier
104、204、304‧‧‧訊號引入電路104, 204, 304‧‧‧ signal introduction circuit
105‧‧‧絕對值電路105‧‧‧Absolute value circuit
106‧‧‧濾波器106‧‧‧ Filter
107、207、307‧‧‧電壓檢測電路107, 207, 307‧‧‧ voltage detection circuit
108、208、308、408、508、608‧‧‧取樣檢測電路108, 208, 308, 408, 508, 608‧‧‧ sampling detection circuit
109、209‧‧‧壓降產生電路109, 209‧‧‧voltage drop generation circuit
110‧‧‧紋波產生器110‧‧‧Ripple generator
111‧‧‧比較器111‧‧‧ comparator
115、215、315‧‧‧比較電路115, 215, 315‧‧‧ comparison circuit
120‧‧‧邏輯控制電路120‧‧‧Logic Control Circuit
203‧‧‧轉導放大器203‧‧‧Transduction amplifier
205‧‧‧紋波幅度採樣電路205‧‧‧ ripple amplitude sampling circuit
206‧‧‧誤差放大器206‧‧‧Error amplifier
303‧‧‧可控放大器303‧‧‧Controllable amplifier
305‧‧‧電流絕對值電路305‧‧‧current absolute value circuit
BS‧‧‧自舉電路BS‧‧‧ bootstrap circuit
C11‧‧‧電容C11‧‧‧ capacitor
C12‧‧‧電容C12‧‧‧ capacitor
C13‧‧‧電容C13‧‧‧ capacitor
CL1、CL2‧‧‧計數器CL1, CL2‧‧‧ counter
COM1、COM2‧‧‧比較器COM1, COM2‧‧‧ comparator
Cout‧‧‧輸出電容Cout‧‧‧ output capacitor
CP1‧‧‧第一計數訊號CP1‧‧‧ first count signal
CP2‧‧‧第二計數訊號CP2‧‧‧ second count signal
Cr‧‧‧電容Cr‧‧‧ capacitor
DL1~DL2‧‧‧D型正反器DL1~DL2‧‧‧D type flip-flop
I1、I2‧‧‧受控電流源I1, I2‧‧‧ controlled current source
IDC1、IDC2‧‧‧定電流源IDC1, IDC2‧‧‧ constant current source
IL‧‧‧電感電流IL‧‧‧Inductor Current
IN1‧‧‧反相器IN1‧‧‧Inverter
Ir‧‧‧電流Ir‧‧‧ Current
L‧‧‧電感L‧‧‧Inductance
LG、UG‧‧‧控制訊號LG, UG‧‧‧ control signals
M1~M4‧‧‧電晶體M1~M4‧‧‧O crystal
NG_C‧‧‧錯誤訊號NG_C‧‧‧Error signal
NOR1~NOR3‧‧‧反或閘NOR1~NOR3‧‧‧Anti-gate
OR1~OR3‧‧‧或閘OR1~OR3‧‧‧ or gate
OS‧‧‧脈衝產生器OS‧‧‧pulse generator
P‧‧‧相節點P‧‧‧ phase node
Q1‧‧‧上臂電晶體Q1‧‧‧Upper arm transistor
Q2‧‧‧下臂電晶體Q2‧‧‧ Lower arm transistor
R1、R2‧‧‧電阻R1, R2‧‧‧ resistance
R11‧‧‧電阻R11‧‧‧ resistance
R12‧‧‧電阻R12‧‧‧ resistance
R13‧‧‧電阻R13‧‧‧resistance
R14‧‧‧電阻R14‧‧‧ resistance
R205‧‧‧電阻R205‧‧‧resistance
S0‧‧‧准方波訊號S0‧‧‧ quasi-square wave signal
S1‧‧‧第一訊號S1‧‧‧ first signal
S2‧‧‧第二訊號S2‧‧‧ second signal
S3‧‧‧紋波訊號S3‧‧‧ ripple signal
S4‧‧‧紋波調整訊號S4‧‧‧ ripple adjustment signal
S5‧‧‧電壓訊號S5‧‧‧ voltage signal
S6‧‧‧直流訊號S6‧‧‧DC signal
S11‧‧‧比較結果訊號S11‧‧‧ comparison result signal
SC4‧‧‧調節啟動訊號SC4‧‧‧Adjustment start signal
SH1‧‧‧第一比較訊號SH1‧‧‧ first comparison signal
SH2‧‧‧第二比較訊號SH2‧‧‧ second comparison signal
Si3‧‧‧電流紋波訊號Si3‧‧‧ current ripple signal
Si5‧‧‧電流訊號Si5‧‧‧current signal
SSE‧‧‧調節終止訊號SSE‧‧‧Adjustment termination signal
SW、SWA、SWB‧‧‧控制訊號SW, SWA, SWB‧‧‧ control signals
t0、t1、t2‧‧‧時間點T0, t1, t2‧‧‧ time points
Vbs‧‧‧自舉電壓Vbs‧‧‧ bootstrap voltage
Vfb‧‧‧電壓偵測訊號Vfb‧‧‧ voltage detection signal
Vin‧‧‧輸入電壓Vin‧‧‧Input voltage
Vout‧‧‧輸出電壓Vout‧‧‧ output voltage
Vp‧‧‧電壓Vp‧‧‧ voltage
Vref‧‧‧參考電壓訊號Vref‧‧‧reference voltage signal
VrefL‧‧‧最小參考電壓VrefL‧‧‧ minimum reference voltage
VrefH‧‧‧最大參考電壓VrefH‧‧‧Maximum reference voltage
第一圖為傳統的具有紋波補償之固定導通時間控制器之應用電路圖。The first figure shows the application circuit diagram of a conventional fixed on-time controller with ripple compensation.
第二圖為根據本發明之一第一較佳實施例之固定導通時間控制器之應用電路圖。The second figure is an application circuit diagram of a fixed on-time controller according to a first preferred embodiment of the present invention.
第三圖為根據本發明之一第一較佳實施例之準位調節電路之電路示意圖。The third figure is a circuit diagram of a level adjustment circuit according to a first preferred embodiment of the present invention.
第四圖為第三圖所示準位調節電路之訊號波形圖。The fourth figure is the signal waveform diagram of the level adjustment circuit shown in the third figure.
第五圖為根據本發明之一第二較佳實施例之固定導通時間控制器之局部電路示意圖。Figure 5 is a partial circuit diagram of a fixed on-time controller in accordance with a second preferred embodiment of the present invention.
第六圖為根據本發明之一第二較佳實施例之準位調節電路之電路示意圖。Figure 6 is a circuit diagram of a level adjustment circuit in accordance with a second preferred embodiment of the present invention.
第七圖為根據本發明之一較佳實施例之電壓檢測電路之電路示意圖。Figure 7 is a circuit diagram of a voltage detecting circuit in accordance with a preferred embodiment of the present invention.
第八圖為第六圖及第七圖所示實施例之訊號波形圖。The eighth figure is a signal waveform diagram of the embodiment shown in the sixth and seventh figures.
第九圖為根據本發明之一第三較佳實施例之固定導通時間控制器之局部電路示意圖。Figure 9 is a partial circuit diagram of a fixed on-time controller in accordance with a third preferred embodiment of the present invention.
第十圖為根據本發明之一第三較佳實施例之準位調節電路之電路示意圖。Figure 11 is a circuit diagram of a level adjustment circuit in accordance with a third preferred embodiment of the present invention.
第十一圖為根據本發明之一第四較佳實施例之固定導通時間控制器之局部電路示意圖。Figure 11 is a partial circuit diagram of a fixed on-time controller in accordance with a fourth preferred embodiment of the present invention.
第十二圖為根據本發明之一第五較佳實施例之之固 定導通時間控制之局部電路示意圖。Figure 12 is a solid view of a fifth preferred embodiment of the present invention A schematic diagram of a partial circuit for the on-time control.
第十三圖為根據本發明之一第六較佳實施例之固定導通時間控制之局部電路示意圖。Figure 13 is a partial circuit diagram showing the fixed on-time control according to a sixth preferred embodiment of the present invention.
第十四圖為根據本發明之一第七較佳實施例之固定導通時間控制之局部電路示意圖。Figure 14 is a partial circuit diagram showing the fixed on-time control according to a seventh preferred embodiment of the present invention.
第十五圖為根據本發明之一第八較佳實施例之固定導通時間控制之局部之電路示意圖。Figure 15 is a circuit diagram showing a portion of a fixed on-time control in accordance with an eighth preferred embodiment of the present invention.
請參見第二圖,為根據本發明之一第一較佳實施例之固定導通時間控制器之應用電路圖。固定導通時間控制器控制一轉換電路之切換以產生一輸出電壓。在本實施例,轉換電路為一直流轉直流降壓轉換電路,將一輸入電壓Vin轉換成一輸出電壓Vout。直流轉直流降壓轉換電路包含一上臂電晶體Q1、一下臂電晶體Q2、一電感L以及一輸出電容Cout。上臂電晶體Q1與下臂電晶體Q2經一相節點P相互耦接,而上臂電晶體Q1的另一端耦接輸入電壓Vin,下臂電晶體Q2的另一端耦接地。電感L的一端耦接相節點P,另一端耦接輸出電容Cout,以產生輸出電壓Vout。直流轉直流降壓轉換電路可以額外增加一自舉電路BS,用以提供高於輸入電壓Vin的一自舉電壓Vbs至固定導通時間控制器,使固定導通時間控制器能正確地控制上臂電晶體Q1的切換。自舉電路BS一端耦接相節點P。當上臂電晶體Q1截止而下臂電晶體Q2導通時,相節點P的一電 壓Vp約等於一接地電壓準位,此時自舉電路BS內部的一電容(未繪出)被充電。當上臂電晶體Q1導通而下臂電晶體Q2截止時,相節點P的電壓Vp約等於輸入電壓Vin的一電壓準位,此時自舉電路BS內部的電容提供的自舉電壓Vbs約等於兩倍的輸入電壓。一電壓偵測電路1,偵測輸出電壓Vout以產生一電壓偵測訊號Vfb。在本實施例,電壓偵測電路1具有串聯的電阻R1及R2,以對輸出電壓Vout分壓而產生電壓偵測訊號Vfb。Referring to the second figure, there is shown an application circuit diagram of a fixed on-time controller according to a first preferred embodiment of the present invention. The fixed on-time controller controls switching of a switching circuit to generate an output voltage. In this embodiment, the conversion circuit is a DC-DC converter circuit that converts an input voltage Vin into an output voltage Vout. The DC-to-DC buck conversion circuit includes an upper arm transistor Q1, a lower arm transistor Q2, an inductor L, and an output capacitor Cout. The upper arm transistor Q1 and the lower arm transistor Q2 are coupled to each other via a phase node P, and the other end of the upper arm transistor Q1 is coupled to the input voltage Vin, and the other end of the lower arm transistor Q2 is coupled to the ground. One end of the inductor L is coupled to the phase node P, and the other end is coupled to the output capacitor Cout to generate an output voltage Vout. The DC-to-DC buck converter circuit can additionally add a bootstrap circuit BS for providing a bootstrap voltage Vbs higher than the input voltage Vin to a fixed on-time controller, so that the fixed on-time controller can correctly control the upper arm transistor Switching of Q1. One end of the bootstrap circuit BS is coupled to the phase node P. When the upper arm transistor Q1 is turned off and the lower arm transistor Q2 is turned on, the phase node P is turned on. The voltage Vp is approximately equal to a ground voltage level, at which time a capacitor (not shown) inside the bootstrap circuit BS is charged. When the upper arm transistor Q1 is turned on and the lower arm transistor Q2 is turned off, the voltage Vp of the phase node P is approximately equal to a voltage level of the input voltage Vin, and the bootstrap voltage Vbs provided by the capacitor inside the bootstrap circuit BS is approximately equal to two. Double the input voltage. A voltage detecting circuit 1 detects the output voltage Vout to generate a voltage detecting signal Vfb. In this embodiment, the voltage detecting circuit 1 has resistors R1 and R2 connected in series to divide the output voltage Vout to generate a voltage detecting signal Vfb.
固定導通時間控制器包含一紋波產生器110、一比較電路115以及一邏輯控制電路120。紋波產生器110包含一準位調節電路100、低通濾波器101及102以及一放大器103,用以產生一紋波訊號S3。準位調節電路100耦接相節點P或自舉電路BS,根據相節點P的電壓Vp或自舉電壓Vbs產生一准方波訊號S0。低通濾波器101包含串聯的一電阻R11及一電容C11,於其連接點產生一近似三角波之一第一訊號S1。電阻R11的另一端耦接準位調節電路100,而電容C11的另一端接地。第一訊號S1與電感L所流經的一電感電流IL同步,因此可以代表電感電流IL。實際應用時,第一訊號S1可以電感電流IL的一偵測訊號或其他可用以含有電感電流IL成分的訊號取代。低通濾波器102包含串聯的一電阻R12及一電容C12,於其連接點產生一近似直流訊號或者具有一紋波成分之一第二訊號S2。在本實施例中,電阻R12的另一端耦接低通濾波器101以接收第一 訊號S1,而電容C12的另一端接地。第二訊號S2為近似直流訊號或者具有紋波成分之訊號(但震幅小於第一訊號S1之震幅)則視電容C12的電容值(濾波能力)而定。實際應用時,低通濾波器102可以直接耦接準位調節電路100,接收准方波訊號S0以產生第二訊號S2,且第二訊號S2的震幅小於第一訊號S1之震幅。上述電路應用之調整,例如:第一訊號S1及第二訊號S2均為含有電感電流IL之成分時,或第一訊號S1及第二訊號S2分別為含有電感電流IL之成分及含有輸出電壓Vout成分,其以外的成分大小相同下,於後可以相互消除,並不影響而本發明之功能。在本實施中,第二訊號S2為含有輸出電壓Vout成分的近似直流訊號。實際應用時,第二訊號S2可以是輸出電壓Vout或輸出電壓Vout的一偵測訊號等可代表輸出電壓Vout或含有輸出電壓Vout成分的訊號;或者以代表電感電流大小之一偵測訊號,但其震幅大小與第一訊號S1的震幅大小不同。放大器103接收第一訊號S1及第二訊號S2,以根據第一訊號S1及第二訊號S2的準位差產生紋波訊號S3。在本實施例中,放大器103為一電壓放大器,一反相端接收第一訊號S1,一非反相端接收第二訊號S2,而據此放大(或縮小)第一訊號S1及第二訊號S2的準位差成為紋波訊號S3輸出。此時,紋波訊號S3與電感電流IL為反相同步。準位調節電路100耦接放大器103的一輸出端以取樣紋波訊號S3的震幅,並根據取樣結果調整准方波訊號S0的一準位,以藉此達到調節第一 訊號S1及第二訊號S2之準位之作用。對於不同的應用環境而影響紋波訊號S3的震幅大小時,紋波產生器110可藉由這樣的電路設計修正紋波訊號S3的震幅大小,以降低不同的應用環境下震幅大小的差異,甚至達到固定震幅大小而不受應用環境的影響。The fixed on-time controller includes a ripple generator 110, a comparison circuit 115, and a logic control circuit 120. The ripple generator 110 includes a level adjustment circuit 100, low pass filters 101 and 102, and an amplifier 103 for generating a ripple signal S3. The level adjustment circuit 100 is coupled to the phase node P or the bootstrap circuit BS, and generates a quasi-square wave signal S0 according to the voltage Vp of the phase node P or the bootstrap voltage Vbs. The low pass filter 101 includes a resistor R11 and a capacitor C11 connected in series, and generates a first signal S1 of an approximate triangular wave at a connection point thereof. The other end of the resistor R11 is coupled to the level adjusting circuit 100, and the other end of the capacitor C11 is grounded. The first signal S1 is synchronized with an inductor current IL flowing through the inductor L, and thus can represent the inductor current IL. In practical applications, the first signal S1 can be replaced by a detection signal of the inductor current IL or other signal that can be used to contain the inductor current IL component. The low pass filter 102 includes a resistor R12 and a capacitor C12 connected in series to generate an approximate DC signal or a second signal S2 having a ripple component at a connection point thereof. In this embodiment, the other end of the resistor R12 is coupled to the low pass filter 101 to receive the first Signal S1, and the other end of capacitor C12 is grounded. The second signal S2 is an approximate DC signal or a signal having a ripple component (but the amplitude is smaller than the amplitude of the first signal S1) depending on the capacitance value (filtering capability) of the capacitor C12. In practical applications, the low-pass filter 102 can be directly coupled to the level adjustment circuit 100 to receive the quasi-square wave signal S0 to generate the second signal S2, and the amplitude of the second signal S2 is smaller than the amplitude of the first signal S1. For the adjustment of the above circuit application, for example, when the first signal S1 and the second signal S2 are all composed of the inductor current IL, or the first signal S1 and the second signal S2 are respectively composed of the inductor current IL and contain the output voltage Vout The components other than the components have the same size, and can be mutually eliminated afterwards, without affecting the function of the present invention. In this implementation, the second signal S2 is an approximate DC signal containing the output voltage Vout component. In practical application, the second signal S2 may be a detection signal such as the output voltage Vout or the output voltage Vout, which may represent the output voltage Vout or the signal containing the output voltage Vout component; or the signal representing the magnitude of the inductor current, but The amplitude of the amplitude is different from the magnitude of the amplitude of the first signal S1. The amplifier 103 receives the first signal S1 and the second signal S2 to generate the ripple signal S3 according to the level difference between the first signal S1 and the second signal S2. In this embodiment, the amplifier 103 is a voltage amplifier, an inverting terminal receives the first signal S1, and a non-inverting terminal receives the second signal S2, thereby amplifying (or reducing) the first signal S1 and the second signal. The level difference of S2 becomes the output of the ripple signal S3. At this time, the ripple signal S3 is synchronized with the inductor current IL in an inverted phase. The level adjustment circuit 100 is coupled to an output end of the amplifier 103 to sample the amplitude of the ripple signal S3, and adjusts a level of the quasi-square wave signal S0 according to the sampling result, thereby achieving the adjustment first. The role of the signal S1 and the second signal S2. When the magnitude of the amplitude of the ripple signal S3 is affected by different application environments, the ripple generator 110 can correct the amplitude of the ripple signal S3 by using such a circuit design to reduce the amplitude of the amplitude in different application environments. The difference is even a fixed magnitude and is not affected by the application environment.
比較電路115包含一訊號引入電路104及一比較器111。在本實施例中,訊號引入電路104為一加法器,將紋波訊號S3及一參考電壓訊號Vref相加而產生一紋波調整訊號S4。比較器111的一反相端接收電壓偵測訊號Vfb,一非反相端接收紋波調整訊號S4,以產生一比較結果訊號S11。當紋波調整訊號S4之一準位高於電壓偵測訊號Vfb時,比較結果訊號S11為一高準位;當紋波調整訊號S4之準位低於電壓偵測訊號Vfb時,比較結果訊號S11為一低準位。The comparison circuit 115 includes a signal introduction circuit 104 and a comparator 111. In this embodiment, the signal introduction circuit 104 is an adder that adds the ripple signal S3 and a reference voltage signal Vref to generate a ripple adjustment signal S4. An inverting terminal of the comparator 111 receives the voltage detecting signal Vfb, and a non-inverting terminal receives the ripple adjusting signal S4 to generate a comparison result signal S11. When the level of the ripple adjustment signal S4 is higher than the voltage detection signal Vfb, the comparison result signal S11 is a high level; when the level of the ripple adjustment signal S4 is lower than the voltage detection signal Vfb, the comparison result signal S11 is a low level.
實際應用時,訊號引入電路104可以接收紋波訊號S3及電壓偵測訊號Vfb,以將紋波訊號S3的紋波資訊引入電壓偵測訊號Vfb中而產生紋波調整訊號S4。此時,比較器111的非反相端改為接收電壓偵測訊號Vfb,非反相端改為接收紋波調整訊號S4。另外,紋波產生器110中的放大器103對應地調整,其非反相端改為接收第一訊號S1,反相端改為接收第二訊號S2。如此,即可達到與第二圖所示實施例完全相同效果。In actual application, the signal introduction circuit 104 can receive the ripple signal S3 and the voltage detection signal Vfb to introduce the ripple information of the ripple signal S3 into the voltage detection signal Vfb to generate the ripple adjustment signal S4. At this time, the non-inverting terminal of the comparator 111 is changed to receive the voltage detecting signal Vfb, and the non-inverting terminal is changed to receive the ripple adjusting signal S4. In addition, the amplifier 103 in the ripple generator 110 is correspondingly adjusted, and the non-inverting terminal is instead received the first signal S1, and the inverting terminal is changed to receive the second signal S2. In this way, the same effect as the embodiment shown in the second figure can be achieved.
如上所述,紋波產生器110中的放大器103與比較電路115的比較器111的一輸入端與接受訊號間的對應關係可 以對應調整而達到相同作用。於後部分實施例將不特別在說明輸入端與接受訊號間的對應關係。As described above, the correspondence between the input of the amplifier 103 in the ripple generator 110 and the comparator 111 of the comparison circuit 115 and the received signal can be The same effect is achieved with the corresponding adjustment. In the following embodiments, the correspondence between the input terminal and the acceptance signal will not be specifically described.
邏輯控制電路120接收比較結果訊號S11,以根據比較結果訊號S11產生具有固定脈寬之一控制訊號UG以控制上臂電晶體Q1的切換,使轉換電路將輸入電壓Vin轉換成輸出電壓Vout。在同步降壓的應用時,邏輯控制電路120產生另一控制訊號LG,以控制下臂電晶體Q2的切換。當上臂電晶體Q1及下臂電晶體Q2同為N型金氧半場效電晶體時,控制訊號UG的一高邏輯準位必須高於輸入電壓Vin才能使上臂電晶體Q1導通。此時,邏輯控制電路120可接收自舉電壓Vbs,使控制訊號UG的高邏輯準位高於輸入電壓Vin。藉由對上臂電晶體Q1及下臂電晶體Q2的切換控制,調節其導通時間與截止時間的比例,而達到穩定輸出電壓Vout。The logic control circuit 120 receives the comparison result signal S11 to generate a control signal UG having a fixed pulse width to control the switching of the upper arm transistor Q1 according to the comparison result signal S11, so that the conversion circuit converts the input voltage Vin into the output voltage Vout. In the synchronous buck application, the logic control circuit 120 generates another control signal LG to control the switching of the lower arm transistor Q2. When the upper arm transistor Q1 and the lower arm transistor Q2 are both N-type MOS field-effect transistors, a high logic level of the control signal UG must be higher than the input voltage Vin to turn on the upper arm transistor Q1. At this time, the logic control circuit 120 can receive the bootstrap voltage Vbs such that the high logic level of the control signal UG is higher than the input voltage Vin. By switching the upper arm transistor Q1 and the lower arm transistor Q2, the ratio of the on-time to the off-time is adjusted to achieve a stable output voltage Vout.
接著,請參見第三圖,為根據本發明之一第一較佳實施例之準位調節電路之電路示意圖。準位調節電路100包含一取樣檢測電路108及一壓降產生電路109,根據紋波訊號S3之震幅來確認第一訊號S1及第二訊號S2的準位的調節量,然後將相節點P的電壓Vp或自舉電壓Vbs的準位進行偏移,使准方波訊號S0的準位被調節而達到調節第一訊號S1及第二訊號S2的準位之功能。Next, please refer to the third figure, which is a circuit diagram of a level adjustment circuit according to a first preferred embodiment of the present invention. The level adjustment circuit 100 includes a sample detection circuit 108 and a voltage drop generation circuit 109. The amplitude of the first signal S1 and the second signal S2 is confirmed according to the amplitude of the ripple signal S3, and then the phase node P is The voltage Vp or the level of the bootstrap voltage Vbs is shifted, so that the level of the quasi-square wave signal S0 is adjusted to achieve the function of adjusting the levels of the first signal S1 and the second signal S2.
取樣檢測電路108包含一絕對值電路105、一濾波器106以及一電壓檢測電路107。由於紋波訊號S3是一個直流成 分為零的三角波電壓訊號,因此紋波訊號S3通過取樣檢測電路108中的絕對值電路105,會產生一個兩倍頻率且直流成分大於零的一電壓訊號S5。濾波器106包含一電阻R13及一電容C13,用以對高頻訊號進行濾波。電壓訊號S5經過濾波器106,產生一直流訊號S6。然後,電壓檢測電路107檢測直流訊號S6的大小,以判斷直流訊號S6的大小是否等於一預定目標值或位於一預定目標範圍,並據此生成一控制訊號SW。在本實施例中,電壓檢測電路107可以為一放大器,用以比例縮放直流訊號S6與預定目標值之差而成為控制訊號SW。在本發明,預定目標值可以為零而不影響本發明之實質上固定的紋波量之功能。控制訊號SW的一準位高低代表直流訊號S6與預定目標值或預定目標範圍之差。The sampling detection circuit 108 includes an absolute value circuit 105, a filter 106, and a voltage detecting circuit 107. Since the ripple signal S3 is a DC The triangular wave voltage signal is divided into zero, so the ripple signal S3 passes through the absolute value circuit 105 in the sampling detection circuit 108, and a voltage signal S5 having twice the frequency and a DC component greater than zero is generated. The filter 106 includes a resistor R13 and a capacitor C13 for filtering the high frequency signal. The voltage signal S5 passes through the filter 106 to generate a constant current signal S6. Then, the voltage detecting circuit 107 detects the magnitude of the direct current signal S6 to determine whether the magnitude of the direct current signal S6 is equal to a predetermined target value or is within a predetermined target range, and generates a control signal SW accordingly. In this embodiment, the voltage detecting circuit 107 can be an amplifier for scaling the difference between the DC signal S6 and the predetermined target value to become the control signal SW. In the present invention, the predetermined target value may be zero without affecting the function of the substantially fixed ripple amount of the present invention. A level of the control signal SW represents the difference between the DC signal S6 and a predetermined target value or a predetermined target range.
壓降產生電路109一端接收相節點P的電壓Vp或自舉電壓Vbs,於另一端產生准方波訊號S0,而其上之跨壓受控制訊號SW控制而調整。壓降產生電路109同時也受控制訊號UG控制。控制訊號UG產生時代表固定導通時間控制器位於導通(On Time)期間,因此壓降產生電路109僅於導通期間操作。若固定導通時間控制器的應用環境屬於典型情況(即符合預設應用環境)時,壓降產生電路109並無跨壓,兩端的訊號:相節點P的電壓Vp或自舉電壓Vbs、准方波訊號S0的準位同步且一致。若固定導通時間控制器的應用環境非屬於典型情況,紋波訊號S3的震幅將偏移出預定目標值或預定目標範 圍。此時,電壓檢測電路107透過控制訊號SW調整壓降產生電路109的跨壓。藉此,調整准方波訊號S0的準位而使紋波訊號S3的震幅調節至一預定值或一預定範圍。The voltage drop generating circuit 109 receives the voltage Vp of the phase node P or the bootstrap voltage Vbs at one end, and generates a quasi-square wave signal S0 at the other end, and the voltage across the voltage is controlled by the control signal SW. The voltage drop generating circuit 109 is also controlled by the control signal UG. The control signal UG is generated to represent that the fixed on-time controller is in the On Time period, so the voltage drop generating circuit 109 operates only during the on period. If the application environment of the fixed on-time controller is typical (ie, it conforms to the preset application environment), the voltage drop generating circuit 109 does not have a voltage across the two ends, and the signals at both ends: the voltage Vp of the phase node P or the bootstrap voltage Vbs, the quasi-square The level of the wave signal S0 is synchronous and consistent. If the application environment of the fixed on-time controller is not typical, the amplitude of the ripple signal S3 will be shifted by a predetermined target value or a predetermined target range. Wai. At this time, the voltage detecting circuit 107 adjusts the voltage across the voltage drop generating circuit 109 through the control signal SW. Thereby, the level of the quasi-square wave signal S0 is adjusted to adjust the amplitude of the ripple signal S3 to a predetermined value or a predetermined range.
請參見第四圖,為第三圖所示準位調節電路之訊號波形圖。在時間點t0至t1,固定導通時間控制器的應用環境屬於典型情況。此時,紋波訊號S3的震幅等於預定值,電壓檢測電路107並未產生控制訊號SW。因此,壓降產生電路109未產生跨壓,准方波訊號S0的準位與相節點P的電壓Vp或自舉電壓Vbs同步且一致。請同時參見第二圖,時間點t1時,固定導通時間控制器的新應用環境的頻率較低,非屬於典型情況。這造成紋波訊號S3的震幅也變大而偏移預定值。此時,電壓訊號S5及直流訊號S6的大小也隨之變大。時間點t2,電壓檢測電路107檢測直流訊號S6的大小高於預定值,並產生控制訊號SW使壓降產生電路109形成跨壓,使准方波訊號S0的準位低於相節點P的電壓Vp或自舉電壓Vbs的準位。准方波訊號S0的準位將回到與典型情況相同的大小,因此,紋波訊號S3的震幅也修正至與典型情況相同。因此,在時間點t1到t2的期間,訊號引入電路104所產生的紋波調整訊號S4的紋波雖較大,然在時間點t2經調節後,紋波調整訊號S4的紋波回復至與典型情況相同。因此,在典型情況與非典型情況,紋波調整訊號S4的紋波大小實質上相同,而避免了傳統的固定導通時間控制器,其實際輸出電壓與理想輸出電壓的偏差值隨應用 環境改變之問題。Please refer to the fourth figure, which is the signal waveform diagram of the level adjustment circuit shown in the third figure. At the time point t0 to t1, the application environment of the fixed on-time controller is a typical case. At this time, the amplitude of the ripple signal S3 is equal to a predetermined value, and the voltage detecting circuit 107 does not generate the control signal SW. Therefore, the voltage drop generating circuit 109 does not generate a voltage across, and the level of the quasi-square wave signal S0 is synchronized with and coincides with the voltage Vp of the phase node P or the bootstrap voltage Vbs. Please also refer to the second figure. At time t1, the frequency of the new application environment of the fixed on-time controller is lower, which is not typical. This causes the amplitude of the ripple signal S3 to also become larger and shift by a predetermined value. At this time, the magnitudes of the voltage signal S5 and the direct current signal S6 also become larger. At time t2, the voltage detecting circuit 107 detects that the magnitude of the direct current signal S6 is higher than a predetermined value, and generates the control signal SW to cause the voltage drop generating circuit 109 to form a voltage across the voltage, so that the level of the quasi-square wave signal S0 is lower than the voltage of the phase node P. Vp or the level of the bootstrap voltage Vbs. The level of the quasi-square wave signal S0 will return to the same size as the typical case. Therefore, the amplitude of the ripple signal S3 is also corrected to be the same as the typical case. Therefore, during the period from time t1 to time t2, the ripple of the ripple adjustment signal S4 generated by the signal introduction circuit 104 is large, but after the adjustment at the time point t2, the ripple of the ripple adjustment signal S4 is restored to The typical situation is the same. Therefore, in the typical case and the atypical case, the ripple adjustment signal S4 has substantially the same ripple size, and avoids the conventional fixed on-time controller, and the deviation between the actual output voltage and the ideal output voltage varies with the application. The problem of environmental change.
從系統的穩定性來看,傳統的非固定紋波之電路架構,在系統頻率較小或輸出電壓Vout較高時,由於其紋波幅度很大,系統有較優秀的穩定性,但在頻率較大或輸出電壓Vout較低時,由於紋波幅度偏小,系統的穩定性會變得很差。相較於此,本發明利用固定紋波的電路架構,不論外部環境如何,系統都會保持很好的穩定性。From the perspective of system stability, the traditional non-fixed ripple circuit architecture, when the system frequency is small or the output voltage Vout is high, the system has better stability due to its large ripple amplitude, but at the frequency. When the output voltage Vout is large or the output voltage Vout is low, the stability of the system becomes poor due to the small ripple amplitude. In contrast, the present invention utilizes a fixed-ripple circuit architecture that maintains good stability regardless of the external environment.
從瞬態響應的能力來看,傳統的非固定紋波之電路架構,在系統頻率較小或輸出電壓Vout較高時,由於其紋波幅度很大,當拉載或抽載時,系統不能操作在最大工作週期,導致系統的反應速度變慢,瞬態回應變差。相較下,本發明的固定紋波的電路架構,無論外部環境如何,在拉載或抽載時,系統都能提供較好的瞬態回應。From the perspective of the ability of transient response, the traditional non-fixed ripple circuit architecture, when the system frequency is small or the output voltage Vout is high, because the ripple amplitude is large, when the load is pulled or pumped, the system cannot Operation at the maximum duty cycle results in a slower reaction rate of the system and a worse transient back strain. In contrast, the circuit structure of the fixed ripple of the present invention provides a better transient response during loading or unloading regardless of the external environment.
另外,傳統的非固定紋波之電路架構,代表輸出電壓Vout的電壓偵測訊號Vfb與相加訊號S13(參見第一圖)的比較點會隨應用的變化而變化,直接導致輸出電壓Vout也會隨應用的變化而變化,使輸出電壓Vout的精確度大大降低。上述的比較點係指比較器9產生脈寬調變訊號S9時,電壓偵測訊號Vfb與相加訊號S13的準位。然而,本發明的固定紋波的電路架構,無論外部環境如何,電壓偵測訊號Vfb與紋波調整訊號S4的比較點都固定,則輸出電壓Vout具有一個固定的偏差,而固定的偏差可以很簡單的消除,因此大大提高了輸出 電壓Vout的精確度。In addition, in the conventional non-fixed ripple circuit architecture, the comparison point between the voltage detection signal Vfb representing the output voltage Vout and the addition signal S13 (see the first figure) varies with the application, directly resulting in the output voltage Vout. It will vary with the application, making the accuracy of the output voltage Vout greatly reduced. The above comparison point refers to the level of the voltage detection signal Vfb and the addition signal S13 when the comparator 9 generates the pulse width modulation signal S9. However, in the circuit structure of the fixed ripple of the present invention, regardless of the external environment, the comparison point between the voltage detection signal Vfb and the ripple adjustment signal S4 is fixed, and the output voltage Vout has a fixed deviation, and the fixed deviation can be very Simple elimination, thus greatly improving the output The accuracy of the voltage Vout.
請參見第五圖,為根據本發明之一第二較佳實施例之固定導通時間控制器之局部電路示意圖。相較於第二圖所示之實施例,一準位調節電路200改接收輸出電壓Vout及控制訊號UG以決定紋波訊號S3的震幅的調節量,以取代準位調節電路100以相節點P的電壓Vp或自舉電壓Vbs決定紋波訊號S3的震幅的調節量之作法。由於控制訊號UG係用以控制上臂電晶體Q1之導通與截止,因此,控制訊號UG經濾波後,可以作為代表電感L之電流大小。準位調節電路200根據輸出電壓Vout及控制訊號UG而產生准方波訊號S0。低通濾波器101及102、放大器103以及比較電路115的電路操作與第二圖所示實施例相同,在此不再贅述。Referring to FIG. 5, it is a partial circuit diagram of a fixed on-time controller according to a second preferred embodiment of the present invention. Compared with the embodiment shown in FIG. 2, a level adjustment circuit 200 receives the output voltage Vout and the control signal UG to determine the adjustment amount of the amplitude of the ripple signal S3, instead of the phase adjustment circuit 100. The voltage Vp of P or the bootstrap voltage Vbs determines the adjustment amount of the amplitude of the ripple signal S3. Since the control signal UG is used to control the on and off of the upper arm transistor Q1, the control signal UG can be filtered to represent the current of the inductor L. The level adjustment circuit 200 generates a quasi-square wave signal S0 according to the output voltage Vout and the control signal UG. The circuit operations of the low-pass filters 101 and 102, the amplifier 103, and the comparison circuit 115 are the same as those of the embodiment shown in the second figure, and are not described herein again.
請參見第六圖,為根據本發明之一第二較佳實施例之準位調節電路之電路示意圖。準位調節電路包含一取樣檢測電路208及一壓降產生電路209,根據輸出電壓Vout或自舉電壓Vbs及控制訊號UG以產生准方波訊號S0。取樣檢測電路208包含一紋波幅度採樣電路205、濾波器106及一電壓檢測電路207,根據輸出電壓Vout及控制訊號UG產生控制訊號SWA或SWB。紋波幅度採樣電路205包含電晶體M1~M4、一誤差放大器206、一電阻R205及一電容Cr。電晶體M3、誤差放大器206及電阻R205構成一電壓轉電流轉換器。電晶體M3與電阻R205串聯,電阻R205的另一端接地。誤差放大器206之一非反相輸 入端接收輸出電壓Vout,一反相輸入端連接電晶體M3與電阻R205的一連接點。誤差放大器206將調整電晶體M3的一等效導通電阻,使電阻R205上的跨壓與輸出電壓Vout一致。因此,電晶體M3流經的電流大小將與輸出電壓Vout成正比,此電流經電晶體M1及M2構成的電流鏡,產生一電流Ir對電容Cr充電。電晶體M4與電容Cr並聯。當固定導通時間控制器的上臂電晶體Q1導通而進入導通(On Time)期間時,控制訊號UG為高準位使電晶體M4導通。此時,電容Cr被放電,使所產生的電壓訊號S5的一準位為零。當固定導通時間控制器的上臂電晶體Q1截止而進入截止(Off Time)期間時,控制訊號UG為低準位使電晶體M4關閉。此時,電容Cr被電流Ir充電而產生隨時間準位上升的電壓訊號S5,其斜率正比於輸出電壓Vout。濾波器106接收電壓訊號S5,並濾波後產生直流訊號S6。電壓檢測電路207根據直流訊號S6產生控制訊號SWA、SWB,使壓降產生電路209據此調整其跨壓。6 is a circuit diagram of a level adjustment circuit according to a second preferred embodiment of the present invention. The level adjustment circuit includes a sample detection circuit 208 and a voltage drop generation circuit 209 for generating a quasi-square wave signal S0 according to the output voltage Vout or the bootstrap voltage Vbs and the control signal UG. The sampling detection circuit 208 includes a ripple amplitude sampling circuit 205, a filter 106 and a voltage detecting circuit 207, and generates a control signal SWA or SWB according to the output voltage Vout and the control signal UG. The ripple amplitude sampling circuit 205 includes transistors M1 to M4, an error amplifier 206, a resistor R205, and a capacitor Cr. The transistor M3, the error amplifier 206 and the resistor R205 constitute a voltage to current converter. The transistor M3 is connected in series with the resistor R205, and the other end of the resistor R205 is grounded. One of the error amplifiers 206 is non-inverting The input terminal receives the output voltage Vout, and an inverting input terminal is connected to a connection point of the transistor M3 and the resistor R205. The error amplifier 206 will adjust an equivalent on-resistance of the transistor M3 such that the voltage across the resistor R205 coincides with the output voltage Vout. Therefore, the magnitude of the current flowing through the transistor M3 will be proportional to the output voltage Vout, which is generated by the current mirror formed by the transistors M1 and M2, and generates a current Ir to charge the capacitor Cr. The transistor M4 is connected in parallel with the capacitor Cr. When the upper arm transistor Q1 of the fixed on-time controller is turned on and enters the On Time period, the control signal UG is at a high level to turn on the transistor M4. At this time, the capacitor Cr is discharged, so that a level of the generated voltage signal S5 is zero. When the upper arm transistor Q1 of the fixed on-time controller is turned off and enters the off time period, the control signal UG is at a low level to turn off the transistor M4. At this time, the capacitor Cr is charged by the current Ir to generate a voltage signal S5 that rises with time, and its slope is proportional to the output voltage Vout. The filter 106 receives the voltage signal S5 and filters it to generate a DC signal S6. The voltage detecting circuit 207 generates the control signals SWA, SWB based on the direct current signal S6, so that the voltage drop generating circuit 209 adjusts its crossover voltage accordingly.
壓降產生電路209包含一電流電路及一電阻R14,而電流電路有定電流源IDC1和IDC2及受控電流源I1和I2。定電流源IDC1和IDC2以及受控電流源I1及I2受控制訊號UG控制,使定電流源IDC1和IDC2以及受控電流源I1及I2僅於導通期間操作。若固定導通時間控制器的應用環境屬於典型情況時,定電流源IDC1和IDC2以及受控電流源I1及I2的電流大小均相等,因此電阻R14上並無跨壓,電阻R14兩端的訊號: 相節點P的電壓Vp或自舉電壓Vbs、准方波訊號S0的準位同步且一致。若固定導通時間控制器的應用環境非屬於典型情況,紋波訊號S3的震幅將偏移出預定目標值或預定目標範圍。此時,電壓檢測電路207透過控制訊號SWA、SWB調整壓降產生電路209的一跨壓。藉此,調整准方波訊號S0的準位而使紋波訊號S3的震幅調節至預定值或預定範圍。The voltage drop generating circuit 209 includes a current circuit and a resistor R14, and the current circuit has constant current sources IDC1 and IDC2 and controlled current sources I1 and I2. The constant current sources IDC1 and IDC2 and the controlled current sources I1 and I2 are controlled by the control signal UG, so that the constant current sources IDC1 and IDC2 and the controlled current sources I1 and I2 operate only during the on period. If the application environment of the fixed on-time controller is typical, the currents of the constant current source IDC1 and IDC2 and the controlled current sources I1 and I2 are equal, so there is no voltage across the resistor R14, and the signal across the resistor R14: The voltage Vp of the phase node P or the level of the bootstrap voltage Vbs and the quasi-square wave signal S0 are synchronized and coincident. If the application environment of the fixed on-time controller is not typical, the amplitude of the ripple signal S3 will be shifted by a predetermined target value or a predetermined target range. At this time, the voltage detecting circuit 207 adjusts a voltage across the voltage drop generating circuit 209 through the control signals SWA, SWB. Thereby, the level of the quasi-square wave signal S0 is adjusted to adjust the amplitude of the ripple signal S3 to a predetermined value or a predetermined range.
請參見第七圖,為根據本發明之一較佳實施例之電壓檢測電路之電路示意圖。電壓檢測電路包含比較器COM1及COM2、D型正反器DL1~DL2、一反相器IN1、反或閘NOR1~NOR3、或閘OR1~OR3、一脈衝產生器OS以及計數器CL1及CL2。比較器COM1的一非反相端接收一最小參考電壓VrefL,而一反相端接收直流訊號S6,當直流訊號S6低於最小參考電壓VrefL時,產生一第一比較訊號SH1。比較器COM2的一反相端接收一最大參考電壓VrefH,而一非反相端接收直流訊號S6,當直流訊號S6高於最大參考電壓VrefH時,產生一第二比較訊號SH2。其中,最大參考電壓VrefH和最小參考電壓VrefL是允許偏離典型應用時,直流訊號S6的最大和最小值,而最大參考電壓VrefH高於最小參考電壓VrefL。藉由最大參考電壓VrefH和最小參考電壓VrefL的設置,可確保紋波訊號S3被調節至最大參考電壓VrefH和最小參考電壓VrefL所對應的預定範圍內。反或閘NOR1接收一調節啟動訊號SC4、一調節終止訊號SSE以及一錯誤訊號NG_C。錯誤訊號NG_C為代表固 定導通時間控制器的週期訊號,在本實施例中以控制訊號LG來說明。調節啟動訊號SC4初始值為一低準位,當固定導通時間控制器的軟啟動開始後一預定時間時轉為一高準位。調節終止訊號SSE初始值為一低準位,當軟啟動結束時轉為一高準位。調節啟動訊號SC4及調節終止訊號SSE主要的作用在於確認系統是否接近或進入一穩定操作狀態,除了以上述的軟啟動來判斷外,也可以輸出電壓Vout是否到達一預設電壓值來判斷。例如:調節啟動訊號SC4代表輸出電壓Vout達一第一目標值,而調節終止訊號SSE代表輸出電壓Vout達一第二目標值,其中第一目標值小於輸出電壓Vout的一預設穩定輸出電壓,而第二目標值大於第一目標值且小於或等於預設穩定輸出電壓。當固定導通時間控制器正常運作時,在調節啟動訊號SC4為高準位到調節終止訊號SSE轉為高準位的期間,每當錯誤訊號NG_C為低準位,即下臂電晶體Q2截止時,反或閘NOR1輸出一高準位訊號。電壓檢測電路在此調節期間會配合下臂電晶體Q2之狀態進行電壓檢測及判斷。Referring to the seventh figure, there is shown a circuit diagram of a voltage detecting circuit in accordance with a preferred embodiment of the present invention. The voltage detection circuit includes comparators COM1 and COM2, D-type flip-flops DL1 to DL2, an inverter IN1, an inverse gate NOR1 to NOR3, or gates OR1 to OR3, a pulse generator OS, and counters CL1 and CL2. A non-inverting terminal of the comparator COM1 receives a minimum reference voltage VrefL, and an inverting terminal receives the DC signal S6. When the DC signal S6 is lower than the minimum reference voltage VrefL, a first comparison signal SH1 is generated. An inverting terminal of the comparator COM2 receives a maximum reference voltage VrefH, and a non-inverting terminal receives the DC signal S6. When the DC signal S6 is higher than the maximum reference voltage VrefH, a second comparison signal SH2 is generated. Wherein, the maximum reference voltage VrefH and the minimum reference voltage VrefL are maximum and minimum values of the direct current signal S6 that are allowed to deviate from the typical application, and the maximum reference voltage VrefH is higher than the minimum reference voltage VrefL. By the setting of the maximum reference voltage VrefH and the minimum reference voltage VrefL, it is ensured that the ripple signal S3 is adjusted to within a predetermined range corresponding to the maximum reference voltage VrefH and the minimum reference voltage VrefL. The inverse OR gate NOR1 receives an adjustment start signal SC4, an adjustment termination signal SSE, and an error signal NG_C. The error signal NG_C is representative The periodic signal of the on-time controller is described by the control signal LG in this embodiment. The initial value of the adjustment start signal SC4 is a low level, and is turned to a high level when a predetermined time is started after the soft start of the fixed on time controller starts. The initial value of the adjustment termination signal SSE is a low level, and when the soft start ends, it changes to a high level. The main function of the adjustment start signal SC4 and the adjustment termination signal SSE is to confirm whether the system is approaching or entering a stable operation state. In addition to the above-mentioned soft start determination, it is also possible to judge whether the output voltage Vout reaches a predetermined voltage value. For example, the adjustment start signal SC4 represents the output voltage Vout to a first target value, and the adjustment termination signal SSE represents the output voltage Vout to a second target value, wherein the first target value is less than a predetermined stable output voltage of the output voltage Vout, And the second target value is greater than the first target value and less than or equal to the preset stable output voltage. When the fixed on-time controller is in normal operation, when the adjustment start signal SC4 is at the high level until the adjustment termination signal SSE is turned to the high level, whenever the error signal NG_C is at the low level, that is, the lower arm transistor Q2 is turned off. , reverse or gate NOR1 outputs a high level signal. During this adjustment, the voltage detection circuit performs voltage detection and judgment in accordance with the state of the lower arm transistor Q2.
D型正反器DL1~DL2、脈衝產生器OS以及或閘OR1構成一檢測及清零電路。檢測及清零電路負責於調節期間判斷每週期內第一比較訊號SH1和第二比較訊號SH2是否出現高準位。當調節啟動訊號SC4轉為高準位時,反相器IN1輸出一低準位訊號,以啟動計數器CL1~CL2。當錯誤訊號NG_C為低準位時,反或閘NOR1產生一高準位訊號,觸使脈衝產生器 OS產生具有一預定脈寬的脈寬訊號至或閘OR1,使D型正反器DL1~DL2的輸出訊號為低準位(歸零)。當控制訊號LG為高準位時,於調節期間的每一週期,出現直流訊號S6低於最小參考電壓VrefL,比較器COM1產生第一比較訊號SH1,使D型正反器DL1即輸出一第一計數訊號CP1。同樣地,於調節期間的每一週期,出現直流訊號S6高於最大參考電壓VrefH,比較器COM2產生第二比較訊號SH2,使D型正反器DL2即輸出一第二計數訊號CP2。計數器CL1負責檢測第一計數訊號CP1連續出現高準位的次數是否達到一預設數值。計數器CL2負責檢測第二計數訊號CP2連續出現高準位的次數是否達到預設數值。於調節期間的任一週期,直流訊號S6在最大參考電壓VrefH和最小參考電壓VrefL之範圍內,則使第一計數訊號CP1及第二計數訊號CP2重新計數。這樣的電路設計,可以有效地避免因雜訊干擾所造成的誤判。計數器CL1根據計數之結果是否到達預定數值,來決定是否調降受控電流源I1及I2的電流。如此,電阻R14將有一偏壓電流由右側流向左側,使得准方波訊號S0高於相節點P的電壓Vp或自舉電壓Vbs。藉此,紋波訊號S3的震幅可向上調升而讓直流訊號S6回到最小參考電壓VrefL之上。同樣地,計數器CL2根據計數之結果是否到達預定數值,來決定是否調升受控電流源I1及I2的電流。如此,電阻R14將有偏壓電流由左側流向右側,使得准方波訊號S0低於相節點P的電壓Vp或自舉電壓Vbs。藉此,紋波訊號S3的震幅可向下調降而 讓直流訊號S6回到最大參考電壓VrefH之下。The D-type flip-flops DL1~DL2, the pulse generator OS, and the OR gate OR1 form a detection and clear circuit. The detection and clearing circuit is responsible for determining whether the first comparison signal SH1 and the second comparison signal SH2 have a high level during the adjustment period. When the adjustment start signal SC4 is turned to the high level, the inverter IN1 outputs a low level signal to activate the counters CL1~CL2. When the error signal NG_C is at a low level, the inverse OR gate NOR1 generates a high level signal, and the pulse generator is touched. The OS generates a pulse width signal having a predetermined pulse width to OR gate OR1, so that the output signals of the D-type flip-flops DL1 DL DL2 are low-level (return to zero). When the control signal LG is at a high level, during each period of the adjustment period, the DC signal S6 is lower than the minimum reference voltage VrefL, and the comparator COM1 generates the first comparison signal SH1, so that the D-type flip-flop DL1 outputs a first A counting signal CP1. Similarly, during each period of the adjustment period, the DC signal S6 is higher than the maximum reference voltage VrefH, and the comparator COM2 generates the second comparison signal SH2, so that the D-type flip-flop DL2 outputs a second count signal CP2. The counter CL1 is responsible for detecting whether the number of consecutive high-level occurrences of the first count signal CP1 reaches a predetermined value. The counter CL2 is responsible for detecting whether the number of consecutive high-level occurrences of the second count signal CP2 reaches a preset value. During any period of the adjustment period, the direct current signal S6 is within the range of the maximum reference voltage VrefH and the minimum reference voltage VrefL, so that the first count signal CP1 and the second count signal CP2 are re-counted. Such a circuit design can effectively avoid misjudgment caused by noise interference. The counter CL1 determines whether or not to reduce the current of the controlled current sources I1 and I2 based on whether the result of the counting reaches a predetermined value. Thus, the resistor R14 will have a bias current flowing from the right side to the left side, so that the quasi-square wave signal S0 is higher than the voltage Vp of the phase node P or the bootstrap voltage Vbs. Thereby, the amplitude of the ripple signal S3 can be raised upwards and the DC signal S6 is returned to the minimum reference voltage VrefL. Similarly, the counter CL2 determines whether or not to increase the current of the controlled current sources I1 and I2 based on whether the result of the counting reaches a predetermined value. Thus, the resistor R14 will have a bias current flowing from the left side to the right side, so that the quasi-square wave signal S0 is lower than the voltage Vp of the phase node P or the bootstrap voltage Vbs. Thereby, the amplitude of the ripple signal S3 can be adjusted downwards. Let the DC signal S6 return to the maximum reference voltage VrefH.
當然,本發明除第七圖所示以最大參考電壓VrefH及最小參考電壓VrefL兩個比較準位外,可以依需求再增加其他的比較準位,以達到更多階的調整能力。Of course, in addition to the two comparison levels of the maximum reference voltage VrefH and the minimum reference voltage VrefL, the present invention can add other comparison levels according to requirements to achieve more order adjustment capability.
請參見第八圖,為第六圖及第七圖所示實施例之訊號波形圖。在時間點t0至t1,固定導通時間控制器的應用環境屬於典型情況。此時,紋波訊號S3的震幅等於預定值,電壓檢測電路207並未產生控制訊號SWA及SWB。因此,壓降產生電路209未產生跨壓,准方波訊號S0的準位與相節點P的電壓Vp或自舉電壓Vbs同步且一致。於時間點t1,固定導通時間控制器的新應用環境的頻率較低非屬於典型情況。此時,電壓訊號S5及直流訊號S6的大小也隨之變大。這造成直流訊號S6高於最大參考電壓VrefH。電壓檢測電路207產生控制訊號SWA或SWB調整受控電流源I1及I2,使得紋波訊號S3、電壓訊號S5、直流訊號S6及紋波調整訊號S4往預定區間進行調節。直至經過調節期間後之時間點t2,直流訊號S6被調整至最大參考電壓VrefH及最小參考電壓VrefL之範圍內。Please refer to the eighth figure, which is a signal waveform diagram of the embodiment shown in the sixth figure and the seventh figure. At the time point t0 to t1, the application environment of the fixed on-time controller is a typical case. At this time, the amplitude of the ripple signal S3 is equal to a predetermined value, and the voltage detecting circuit 207 does not generate the control signals SWA and SWB. Therefore, the voltage drop generating circuit 209 does not generate a voltage across, and the level of the quasi-square wave signal S0 is synchronized with and coincides with the voltage Vp of the phase node P or the bootstrap voltage Vbs. At time t1, the lower frequency of the new application environment of the fixed on-time controller is not typical. At this time, the magnitudes of the voltage signal S5 and the direct current signal S6 also become larger. This causes the direct current signal S6 to be higher than the maximum reference voltage VrefH. The voltage detecting circuit 207 generates the control signal SWA or SWB to adjust the controlled current sources I1 and I2, so that the ripple signal S3, the voltage signal S5, the direct current signal S6, and the ripple adjustment signal S4 are adjusted to a predetermined interval. The DC signal S6 is adjusted to be within the range of the maximum reference voltage VrefH and the minimum reference voltage VrefL until the time point t2 after the adjustment period has elapsed.
請參見第九圖,為根據本發明之一第三較佳實施例之固定導通時間控制器之局部電路示意圖。相較於第二圖所示之實施例,放大器103的電壓放大器改為一轉導放大器203。轉導放大器203接收第一訊號S1及第二訊號S2,以根據第一訊號S1及第二訊號S2的準位差產生一電流紋波訊號Si3。一 準位調節電路300耦接轉導放大器203的一輸出端以取樣電流紋波訊號Si3的震幅,並根據取樣結果調整准方波訊號S0的準位,以藉此達到調節第一訊號S1及第二訊號S2之準位。對於不同的應用環境而影響紋波訊號S3的震幅大小時,固定導通時間控制器可藉由這樣的電路設計修正紋波訊號S3的震幅大小,以降低不同的應用環境下震幅大小的差異,甚至達到固定震幅大小而不受應用環境的影響。一比較電路215包含一訊號引入電路204及比較器111。在本實施例中,訊號引入電路204為一電阻,電流紋波訊號Si3流經訊號引入電路204而產生一偏壓,使參考電壓訊號Vref經偏壓後而產生紋波調整訊號S4輸入比較器111之非反相端,而比較器111的反相端接收電壓偵測訊號Vfb。比較器111比較電壓偵測訊號Vfb及紋波調整訊號S4,以產生比較結果訊號S11。當紋波調整訊號S4之準位高於電壓偵測訊號Vfb時,比較結果訊號S11為高準位;當紋波調整訊號S4之準位低於電壓偵測訊號Vfb時,比較結果訊號S11為低準位。當然,訊號引入電路204也可更改為將電流紋波訊號Si3引入電壓偵測訊號Vfb而成為紋波調整訊號S4,此時比較器111對應由非反相端接收參考電壓訊號Vref,而反相端接收紋波調整訊號S4即可達到上述相同之作用。Referring to FIG. 9, a partial circuit diagram of a fixed on-time controller according to a third preferred embodiment of the present invention. In contrast to the embodiment shown in the second figure, the voltage amplifier of amplifier 103 is changed to a transconductance amplifier 203. The transconductance amplifier 203 receives the first signal S1 and the second signal S2 to generate a current ripple signal Si3 according to the level difference between the first signal S1 and the second signal S2. One The level adjustment circuit 300 is coupled to an output end of the transconductance amplifier 203 to sample the amplitude of the current ripple signal Si3, and adjust the level of the quasi-square wave signal S0 according to the sampling result, thereby adjusting the first signal S1 and The second signal S2. When the amplitude of the ripple signal S3 is affected by different application environments, the fixed on-time controller can correct the amplitude of the ripple signal S3 by such a circuit design to reduce the amplitude of the amplitude in different application environments. The difference is even a fixed magnitude and is not affected by the application environment. A comparison circuit 215 includes a signal introduction circuit 204 and a comparator 111. In this embodiment, the signal introduction circuit 204 is a resistor, and the current ripple signal Si3 flows through the signal introduction circuit 204 to generate a bias voltage, so that the reference voltage signal Vref is biased to generate a ripple adjustment signal S4 input comparator. The non-inverting terminal of the 111, and the inverting terminal of the comparator 111 receives the voltage detecting signal Vfb. The comparator 111 compares the voltage detection signal Vfb and the ripple adjustment signal S4 to generate a comparison result signal S11. When the level of the ripple adjustment signal S4 is higher than the voltage detection signal Vfb, the comparison result signal S11 is a high level; when the level of the ripple adjustment signal S4 is lower than the voltage detection signal Vfb, the comparison result signal S11 is Low level. Of course, the signal introduction circuit 204 can also be changed to introduce the current ripple signal Si3 into the voltage detection signal Vfb to become the ripple adjustment signal S4. At this time, the comparator 111 receives the reference voltage signal Vref from the non-inverting terminal, and inverts. The end receiving the ripple adjustment signal S4 can achieve the same effect as described above.
請參見第十圖,為根據本發明之一第三較佳實施例之準位調節電路之電路示意圖。準位調節電路包含一取樣檢測電路308及壓降產生電路209,根據電流紋波訊號Si3之震 幅來確認第一訊號S1及第二訊號S2的準位的調節量,然後將相節點P的電壓Vp或自舉電壓Vbs的準位進行偏移,使准方波訊號S0的準位被調節而達到調節第一訊號S1及第二訊號S2準位之功能。Referring to the tenth figure, there is shown a circuit diagram of a level adjusting circuit according to a third preferred embodiment of the present invention. The level adjustment circuit includes a sampling detection circuit 308 and a voltage drop generation circuit 209, according to the current ripple signal Si3 The amplitude of the adjustment of the level of the first signal S1 and the second signal S2 is confirmed, and then the voltage of the phase node P or the level of the bootstrap voltage Vbs is offset, so that the level of the quasi-square wave signal S0 is adjusted. The function of adjusting the first signal S1 and the second signal S2 is achieved.
取樣檢測電路308包含一電流絕對值電路305、濾波器106以及電壓檢測電路207。由於電流紋波訊號Si3是一個直流成分為零的三角波電流訊號,因此電流紋波訊號Si3通過取樣檢測電路308中的電流絕對值電路305,會產生一個兩倍頻率且直流成分大於零的一電流訊號Si5。電流訊號Si5經一電阻轉換成電壓訊號S5。濾波器106包含電阻R13及電容C13,用以對高頻訊號進行濾波。電壓訊號S5經過濾波器106,產生直流訊號S6。然後,電壓檢測電路207檢測直流訊號S6的大小,以判斷直流訊號S6的大小是否等於預定目標值或位於預定目標範圍,並據此生成控制訊號SWA、SWB。電壓檢測電路207及壓降產生電路209請參見對應實施例之說明,在此不再贅述。The sample detection circuit 308 includes a current absolute value circuit 305, a filter 106, and a voltage detection circuit 207. Since the current ripple signal Si3 is a triangular wave current signal with a zero DC component, the current ripple signal Si3 passes through the current absolute value circuit 305 in the sampling detection circuit 308, and generates a current having twice the frequency and a DC component greater than zero. Signal Si5. The current signal Si5 is converted into a voltage signal S5 via a resistor. The filter 106 includes a resistor R13 and a capacitor C13 for filtering the high frequency signal. The voltage signal S5 passes through the filter 106 to generate a DC signal S6. Then, the voltage detecting circuit 207 detects the magnitude of the direct current signal S6 to determine whether the magnitude of the direct current signal S6 is equal to a predetermined target value or is located in a predetermined target range, and generates control signals SWA, SWB accordingly. For the voltage detection circuit 207 and the voltage drop generation circuit 209, refer to the description of the corresponding embodiment, and details are not described herein again.
請參見第十一圖,為根據本發明之一第四較佳實施例之固定導通時間控制器之局部電路示意圖。相較於第九圖所示之實施例,準位調節電路300改為準位調節電路200,用以接收輸出電壓Vout及控制訊號UG以決定紋波訊號S3的震幅的調節量,以取代準位調節電路300以相節點P的電壓Vp或自舉電壓Vbs決定紋波訊號S3的震幅的調節量之作法。準位調節電路200根據輸出電壓Vout及控制訊號UG而產生准方波訊號 S0。低通濾波器101及102、轉導放大器203以及比較電路215的電路操作與第九圖所示實施例相同,在此不再贅述。Referring to FIG. 11 , it is a partial circuit diagram of a fixed on-time controller according to a fourth preferred embodiment of the present invention. Compared with the embodiment shown in FIG. 9 , the level adjustment circuit 300 is changed to the level adjustment circuit 200 for receiving the output voltage Vout and the control signal UG to determine the adjustment amount of the amplitude of the ripple signal S3. The level adjustment circuit 300 determines the adjustment amount of the amplitude of the ripple signal S3 by the voltage Vp of the phase node P or the bootstrap voltage Vbs. The level adjustment circuit 200 generates a quasi-square wave signal according to the output voltage Vout and the control signal UG. S0. The circuit operations of the low-pass filters 101 and 102, the transconductance amplifier 203, and the comparison circuit 215 are the same as those of the embodiment shown in FIG. 9, and are not described herein again.
請參見第十二圖,為根據本發明之一第五較佳實施例之固定導通時間控制器之局部電路示意圖。相較於第二圖所示之實施例,放大器103改為一可控放大器303,並省略準位調節電路中的壓降產生電路109。可控放大器303接收取樣檢測電路108所產生的控制訊號SW,並根據控制訊號SW調升或調降可控放大器303的增益值。可控放大器303接收第一訊號S1及第二訊號S2,以根據第一訊號S1及第二訊號S2的準位差和其增益值產生紋波訊號S3,而達到調整紋波訊號S3震幅之作用。Referring to FIG. 12, a partial circuit diagram of a fixed on-time controller according to a fifth preferred embodiment of the present invention. Compared to the embodiment shown in the second figure, the amplifier 103 is changed to a controllable amplifier 303, and the voltage drop generating circuit 109 in the level adjusting circuit is omitted. The controllable amplifier 303 receives the control signal SW generated by the sampling detection circuit 108, and raises or lowers the gain value of the controllable amplifier 303 according to the control signal SW. The controllable amplifier 303 receives the first signal S1 and the second signal S2 to generate a ripple signal S3 according to the level difference of the first signal S1 and the second signal S2 and the gain value thereof, thereby adjusting the amplitude of the ripple signal S3. effect.
請參見第十三圖,為根據本發明之一第六較佳實施例之固定導通時間控制之局部電路示意圖。相較於第十二圖所示之實施例,取樣檢測電路108改為一取樣檢測電路408,用以根據輸出電壓Vout及控制訊號UG產生控制訊號SW。取樣檢測電路408包含紋波幅度採樣電路205、濾波器106及電壓檢測電路307。電壓檢測電路307可以是一反函數電路,即其運作符合K=Y*X,其中K為常數,X為輸入訊號,Y為輸出訊號。因此,當直流訊號S6的準位越高,則控制訊號SW的準位越小;反則反之。其餘電路操作請參見其他實施例對應電路之說明,在此不再贅述。Referring to a thirteenth aspect, a partial circuit diagram of a fixed on-time control according to a sixth preferred embodiment of the present invention. Compared with the embodiment shown in FIG. 12, the sampling detecting circuit 108 is changed to a sampling detecting circuit 408 for generating the control signal SW according to the output voltage Vout and the control signal UG. The sampling detection circuit 408 includes a ripple amplitude sampling circuit 205, a filter 106, and a voltage detecting circuit 307. The voltage detecting circuit 307 can be an inverse function circuit, that is, its operation conforms to K=Y*X, where K is a constant, X is an input signal, and Y is an output signal. Therefore, when the level of the direct current signal S6 is higher, the level of the control signal SW is smaller; For the rest of the circuit operation, refer to the description of the corresponding circuit in other embodiments, and details are not described herein again.
請參見第十四圖,為根據本發明之一第七較佳實 施例之固定導通時間控制之局部電路示意圖。相較於第十二圖所示之實施例,可控放大器303改為轉導放大器403、取樣檢測電路108改為一取樣檢測電路508。另外,一比較電路315包含一訊號引入電路304及比較器111。取樣檢測電路508包含電流絕對值電路305、濾波器106以及電壓檢測電路307,其電路操作請參見其他實施例對應電路之說明,在此不再贅述。取樣檢測電路508根據電流紋波訊號Si3之震幅來產生的控制訊號SW。訊號引入電路304包含一可調節電阻電路,根據控制訊號SW,調高或調低其阻抗值。電流紋波訊號Si3流經訊號引入電路304,並根據阻抗值而產生一偏壓,使參考電壓訊號Vref經偏壓後而產生紋波調整訊號S4輸入比較器111之非反相端。而比較器111的反相端接收電壓偵測訊號Vfb。比較器111比較電壓偵測訊號Vfb及紋波調整訊號S4,以產生比較結果訊號S11。當然,訊號引入電路304也可更改為將電流紋波訊號Si3引入電壓偵測訊號Vfb而成為紋波調整訊號S4,此時比較器111對應由非反相端接收參考電壓訊號Vref,而反相端接收紋波調整訊號S4即可達到上述相同之作用。Please refer to the fourteenth figure, which is a seventh preferred embodiment according to the present invention. A schematic diagram of a partial circuit of the fixed on-time control of the embodiment. Compared with the embodiment shown in Fig. 12, the controllable amplifier 303 is changed to the transconductance amplifier 403, and the sampling detection circuit 108 is changed to a sampling detection circuit 508. In addition, a comparison circuit 315 includes a signal introduction circuit 304 and a comparator 111. The sampling detection circuit 508 includes a current absolute value circuit 305, a filter 106, and a voltage detection circuit 307. For the circuit operation, refer to the description of the corresponding circuit in other embodiments, and details are not described herein again. The sampling detection circuit 508 generates a control signal SW according to the amplitude of the current ripple signal Si3. The signal introduction circuit 304 includes an adjustable resistance circuit for adjusting or lowering the impedance value according to the control signal SW. The current ripple signal Si3 flows through the signal introduction circuit 304, and generates a bias voltage according to the impedance value, so that the reference voltage signal Vref is biased to generate the ripple adjustment signal S4 to be input to the non-inverting terminal of the comparator 111. The inverting terminal of the comparator 111 receives the voltage detecting signal Vfb. The comparator 111 compares the voltage detection signal Vfb and the ripple adjustment signal S4 to generate a comparison result signal S11. Of course, the signal introduction circuit 304 can also be changed to introduce the current ripple signal Si3 into the voltage detection signal Vfb to become the ripple adjustment signal S4. At this time, the comparator 111 receives the reference voltage signal Vref by the non-inverting terminal, and inverts. The end receiving the ripple adjustment signal S4 can achieve the same effect as described above.
請參見第十五圖,為根據本發明之一第八較佳實施例之固定導通時間控制之局部電路示意圖。相較於第十四圖所示之實施例,取樣檢測電路508改為一取樣檢測電路608。取樣檢測電路608包含紋波幅度採樣電路205、濾波器106以及電壓檢測電路307,根據輸出電壓Vout及控制訊號UG產生控制 訊號SW。比較電路315根據控制訊號SW及電流紋波訊號Si3,產生一偏壓,使參考電壓訊號Vref或電壓偵測訊號Vfb經偏壓調整其準位,而達到本發明之避免實際輸出電壓與理想輸出電壓的偏差值隨應用環境改變之問題。Referring to a fifteenth diagram, there is shown a partial circuit diagram of a fixed on-time control according to an eighth preferred embodiment of the present invention. The sample detection circuit 508 is changed to a sample detection circuit 608 as compared to the embodiment shown in FIG. The sampling detection circuit 608 includes a ripple amplitude sampling circuit 205, a filter 106, and a voltage detecting circuit 307, and generates control according to the output voltage Vout and the control signal UG. Signal SW. The comparison circuit 315 generates a bias voltage according to the control signal SW and the current ripple signal Si3, so that the reference voltage signal Vref or the voltage detection signal Vfb is biased to adjust its level, thereby achieving the actual output voltage and the ideal output of the present invention. The value of the voltage deviation varies with the application environment.
綜上所述,本發明根據紋波訊號的震幅或輸出電壓及控制訊號來判斷紋波的震幅,並據此調整紋波的震幅。如此,本發明的固定導通時間控制器在不同的應用環境,其紋波震幅均可控制在預定值或預定範圍內,而達到避免實際輸出電壓與理想輸出電壓的偏差值隨應用環境改變之問題。In summary, the present invention determines the amplitude of the ripple based on the amplitude or output voltage of the ripple signal and the control signal, and adjusts the amplitude of the ripple accordingly. In this way, the fixed on-time controller of the present invention can control the ripple amplitude in a predetermined value or a predetermined range in different application environments, so as to avoid the deviation between the actual output voltage and the ideal output voltage as the application environment changes. problem.
如上所述,本發明完全符合專利三要件:新穎性、進步性和產業上的利用性。本發明在上文中已以實施例揭露,然熟習本項技術者應理解的是,該實施例僅用於描繪本發明,而不應解讀為限制本發明之範圍。應注意的是,舉凡與該實施例等效之變化與置換,均應設為涵蓋於本發明之範疇內。因此,本發明之保護範圍當以下文之申請專利範圍所界定者為準。As described above, the present invention fully complies with the three requirements of the patent: novelty, advancement, and industrial applicability. The present invention has been disclosed in the foregoing, and it should be understood by those skilled in the art that the present invention is not intended to limit the scope of the present invention. It should be noted that variations and permutations equivalent to those of the embodiments are intended to be included within the scope of the present invention. Therefore, the scope of the invention is defined by the scope of the following claims.
1‧‧‧電壓偵測電路1‧‧‧Voltage detection circuit
100‧‧‧準位調節電路100‧‧‧ level adjustment circuit
101、102‧‧‧低通濾波器101, 102‧‧‧ low pass filter
103‧‧‧放大器103‧‧‧Amplifier
104‧‧‧訊號引入電路104‧‧‧Signal introduction circuit
110‧‧‧紋波產生器110‧‧‧Ripple generator
111‧‧‧比較器111‧‧‧ comparator
115‧‧‧比較電路115‧‧‧Comparative circuit
120‧‧‧邏輯控制電路120‧‧‧Logic Control Circuit
BS‧‧‧自舉電路BS‧‧‧ bootstrap circuit
C11‧‧‧電容C11‧‧‧ capacitor
C12‧‧‧電容C12‧‧‧ capacitor
Cout‧‧‧輸出電容Cout‧‧‧ output capacitor
IL‧‧‧電感電流IL‧‧‧Inductor Current
L‧‧‧電感L‧‧‧Inductance
LG、UG‧‧‧控制訊號LG, UG‧‧‧ control signals
P‧‧‧相節點P‧‧‧ phase node
Q1‧‧‧上臂電晶體Q1‧‧‧Upper arm transistor
Q2‧‧‧下臂電晶體Q2‧‧‧ Lower arm transistor
R1、R2‧‧‧電阻R1, R2‧‧‧ resistance
R11‧‧‧電阻R11‧‧‧ resistance
R12‧‧‧電阻R12‧‧‧ resistance
S0‧‧‧准方波訊號S0‧‧‧ quasi-square wave signal
S1‧‧‧第一訊號S1‧‧‧ first signal
S2‧‧‧第二訊號S2‧‧‧ second signal
S3‧‧‧紋波訊號S3‧‧‧ ripple signal
S4‧‧‧紋波調整訊號S4‧‧‧ ripple adjustment signal
S11‧‧‧比較結果訊號S11‧‧‧ comparison result signal
Vbs‧‧‧自舉電壓Vbs‧‧‧ bootstrap voltage
Vfb‧‧‧電壓偵測訊號Vfb‧‧‧ voltage detection signal
Vin‧‧‧輸入電壓Vin‧‧‧Input voltage
Vout‧‧‧輸出電壓Vout‧‧‧ output voltage
Vp‧‧‧電壓Vp‧‧‧ voltage
Vref‧‧‧參考電壓訊號Vref‧‧‧reference voltage signal
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103101375A TWI488418B (en) | 2014-01-14 | 2014-01-14 | Constant on-time controller |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW103101375A TWI488418B (en) | 2014-01-14 | 2014-01-14 | Constant on-time controller |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI488418B true TWI488418B (en) | 2015-06-11 |
TW201528674A TW201528674A (en) | 2015-07-16 |
Family
ID=53937878
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW103101375A TWI488418B (en) | 2014-01-14 | 2014-01-14 | Constant on-time controller |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI488418B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20220393594A1 (en) * | 2021-05-26 | 2022-12-08 | Monolithic Power Systems, Inc. | Multi-level buck converter and associate control circuit thereof |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1148864C (en) * | 2002-05-09 | 2004-05-05 | 艾默生网络能源有限公司 | Method and device for compensating ripple amplitude modulation |
TWI337795B (en) * | 2007-10-31 | 2011-02-21 | Inventec Corp | Power converter with ripple compensation |
CN101405671B (en) * | 2006-03-17 | 2011-04-20 | Nxp股份有限公司 | Supply circuit with ripple compensation |
CN202818082U (en) * | 2012-09-24 | 2013-03-20 | 唐山轨道客车有限责任公司 | Ripple compensation circuit and super capacitor charge and discharge device |
-
2014
- 2014-01-14 TW TW103101375A patent/TWI488418B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1148864C (en) * | 2002-05-09 | 2004-05-05 | 艾默生网络能源有限公司 | Method and device for compensating ripple amplitude modulation |
CN101405671B (en) * | 2006-03-17 | 2011-04-20 | Nxp股份有限公司 | Supply circuit with ripple compensation |
TWI337795B (en) * | 2007-10-31 | 2011-02-21 | Inventec Corp | Power converter with ripple compensation |
CN202818082U (en) * | 2012-09-24 | 2013-03-20 | 唐山轨道客车有限责任公司 | Ripple compensation circuit and super capacitor charge and discharge device |
Also Published As
Publication number | Publication date |
---|---|
TW201528674A (en) | 2015-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9013164B1 (en) | Constant on-time controller | |
JP4107209B2 (en) | Ripple converter | |
TWI622260B (en) | Buck-boost converter with ramp compensation and controller and control method thereof | |
US9735680B2 (en) | Constant on-time pulse width control-based scheme including capabilities of fast transient response and adaptively adjusting on-time pulse width | |
US9104216B2 (en) | Mixed mode compensation circuit and method for a power converter | |
US7193871B2 (en) | DC-DC converter circuit | |
US20200021189A1 (en) | Current balance method used in multi-phase switching converters | |
US8963523B2 (en) | Switching regulator with error correction and control method thereof | |
US9774253B2 (en) | Control circuit and associated method for switching converter | |
CN110545039A (en) | switch converter and control circuit and control method thereof | |
US10284086B2 (en) | Boost converter and the method thereof | |
JP2006006004A (en) | Buck-boost dc-dc converter | |
JP2013165537A (en) | Switching regulator, control method thereof, and power supply device | |
CN210724566U (en) | Switch converter and control circuit thereof | |
TWI496399B (en) | Control module of constant on-time mode and voltage converting device thereof | |
TW201824718A (en) | Current mode voltage converter having fast transient response | |
JP2014018030A (en) | Control circuit for power supply, power supply device, and method for controlling power supply | |
JP2012130138A (en) | Switching control circuit | |
TWI715372B (en) | Synchronous power converter system | |
JP2012130137A (en) | Switching control circuit | |
JP4378530B2 (en) | DC power supply controller | |
TWI463768B (en) | Dc-to-dc converter | |
TWI488418B (en) | Constant on-time controller | |
US10985660B2 (en) | DC-DC converter having higher stability and output accuracy | |
TWI521838B (en) | Constant on time control circuit and dc-dc converting circuit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |