TWI615957B - Image sensor and fabrication method thereof - Google Patents

Image sensor and fabrication method thereof Download PDF

Info

Publication number
TWI615957B
TWI615957B TW105127650A TW105127650A TWI615957B TW I615957 B TWI615957 B TW I615957B TW 105127650 A TW105127650 A TW 105127650A TW 105127650 A TW105127650 A TW 105127650A TW I615957 B TWI615957 B TW I615957B
Authority
TW
Taiwan
Prior art keywords
dielectric layer
layer
image sensor
optical barrier
barrier layer
Prior art date
Application number
TW105127650A
Other languages
Chinese (zh)
Other versions
TW201807813A (en
Inventor
Chih-Ping Chung
鍾志平
Chien-Lung Wu
吳建龍
Hsin-Yi Yang
楊心怡
Original Assignee
Powerchip Technology Corporation
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Powerchip Technology Corporation, 力晶科技股份有限公司 filed Critical Powerchip Technology Corporation
Priority to TW105127650A priority Critical patent/TWI615957B/en
Priority to CN201610819519.1A priority patent/CN107785383B/en
Application granted granted Critical
Publication of TWI615957B publication Critical patent/TWI615957B/en
Publication of TW201807813A publication Critical patent/TW201807813A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/1462Coatings
    • H01L27/14623Optical shielding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14601Structural or functional details thereof
    • H01L27/14625Optical elements or arrangements associated with the device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14643Photodiode arrays; MOS imagers
    • H01L27/14645Colour imagers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14685Process for coatings or optical elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • H01L27/14683Processes or apparatus peculiar to the manufacture or treatment of these devices or parts thereof
    • H01L27/14689MOS based technologies

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Solid State Image Pick-Up Elements (AREA)

Abstract

本發明提供了一種影像感測器,其包括一感光元件、至少一圖案化導電層、至少一下介電層、至少一光學屏障層以及至少一上介電層。感光元件設置於一基底表面,圖案化導電層設置於基底上,且圖案化導電層包括至少一內連線,設置於感光元件的一側。下介電層設置於基底上並覆蓋內連線,光學屏障層覆蓋下介電層,上介電層覆蓋光學屏障層,其中光學屏障層之折射係數大於上介電層與下介電層之折射係數。The invention provides an image sensor, which includes a photosensitive element, at least one patterned conductive layer, at least a lower dielectric layer, at least one optical barrier layer, and at least one upper dielectric layer. The photosensitive element is disposed on a substrate surface, the patterned conductive layer is disposed on the substrate, and the patterned conductive layer includes at least one interconnect line and is disposed on one side of the photosensitive element. The lower dielectric layer is disposed on the substrate and covers the interconnects. The optical barrier layer covers the lower dielectric layer. The upper dielectric layer covers the optical barrier layer. The refractive index of the optical barrier layer is greater than that of the upper dielectric layer and the lower dielectric layer. Refractive index.

Description

影像感測器及其製作方法Image sensor and manufacturing method thereof

本發明係有關於一種影像感測器及其製作方法,尤指一種能改善跨越干擾(cross talk)的影像感測器及其製作方法。The invention relates to an image sensor and a manufacturing method thereof, and more particularly to an image sensor capable of improving cross talk and a manufacturing method thereof.

隨著數位相機、電子掃瞄機等產品不斷地開發與成長,市場上對影像感測元件的需求持續增加。目前常用的影像感測元件包含有電荷耦合感測元件(charge coupled device,CCD)以及互補式金氧半導體(complementary metal-oxide-semiconductor,CMOS)影像感測元件(又稱CMOS image sensor,CIS)兩大類,其中CMOS影像感測元件因具有低操作電壓、低功率消耗與高操作效率、可根據需要而進行隨機存取等優點,同時具有可整合於目前的半導體技術以大量製造之優勢,因此應用範圍非常廣泛。With the continuous development and growth of digital cameras, electronic scanners and other products, the demand for image sensing components in the market continues to increase. Currently commonly used image sensing elements include charge coupled device (CCD) and complementary metal-oxide-semiconductor (CMOS) image sensing elements (also known as CMOS image sensor, CIS) Two categories, CMOS image sensing devices have the advantages of low operating voltage, low power consumption, high operating efficiency, random access as needed, and the advantages of being integrated into current semiconductor technology and being manufactured in large quantities. The application range is very wide.

CMOS影像感測器的感光原理係將入射光線區分為數種不同波長光線的組合,例如紅、藍、綠三色,再分別由半導體基底上的複數個光學感測元件,如感光二極體(photodiode)予以接收,並將之轉換為不同強弱的數位訊號。然而,隨著像素尺寸的微縮,感光二極體的尺寸也跟著微小化,使得像素之間的跨越干擾增加以及感光靈敏度降低。因此,如何提供具有低跨越干擾的影像感測器,仍為業界需要持續解決的問題。The CMOS image sensor's photosensitivity principle is to divide the incident light into a combination of several different wavelengths of light, such as red, blue, and green, and then each of a plurality of optical sensing elements on the semiconductor substrate, such as a photodiode ( photodiode) to receive and convert it into digital signals of different strengths. However, with the shrinking of the pixel size, the size of the photodiode has also been miniaturized, resulting in an increase in cross-talk between pixels and a decrease in photosensitivity. Therefore, how to provide an image sensor with low span interference is still a problem that the industry needs to continuously solve.

本發明提供了一種影像感測器及其製作方法,其利用在影像感測器中設置光學屏障層,以改善影像感測器的跨越干擾。The invention provides an image sensor and a manufacturing method thereof, which utilize an optical barrier layer provided in the image sensor to improve the cross-talk of the image sensor.

根據本發明之一實施例,本發明提供了一種影像感測器,其包括一感光元件、至少一圖案化導電層、至少一下介電層、至少一光學屏障層以及至少一上介電層。感光元件設置於一基底表面。圖案化導電層設置於基底上,且圖案化導電層包括至少一內連線,設置於感光元件的一側。下介電層設置於基底上並覆蓋內連線,光學屏障層覆蓋下介電層,而上介電層覆蓋光學屏障層,其中光學屏障層之折射係數大於上介電層與下介電層之折射係數。According to an embodiment of the present invention, the present invention provides an image sensor including a photosensitive element, at least one patterned conductive layer, at least a lower dielectric layer, at least one optical barrier layer, and at least one upper dielectric layer. The photosensitive element is disposed on a substrate surface. The patterned conductive layer is disposed on the substrate, and the patterned conductive layer includes at least one interconnect line and is disposed on one side of the photosensitive element. The lower dielectric layer is disposed on the substrate and covers the interconnects. The optical barrier layer covers the lower dielectric layer and the upper dielectric layer covers the optical barrier layer. The refractive index of the optical barrier layer is greater than that of the upper dielectric layer and the lower dielectric layer. Refractive index.

根據本發明之一實施例,本發明提供了一種影像感測器的製作方法,其包括下列步驟。首先提供一基底,並於基底表面形成一感光元件,然後於基底上形成一圖案化導電層,且圖案化導電層包括至少一內連線,設置於感光元件的一側。接著,於圖案化導電層上形成一下介電層,其階梯覆蓋圖案化導電層。之後,於基底上形成一光學屏障層並階梯覆蓋下介電層,然後於基底上形成一上介電層,並覆蓋光學屏障層,其中光學屏障層之折射係數大於上介電層與下介電層之折射係數。According to an embodiment of the present invention, the present invention provides a method for manufacturing an image sensor, which includes the following steps. First, a substrate is provided, and a photosensitive element is formed on the surface of the substrate. Then, a patterned conductive layer is formed on the substrate. The patterned conductive layer includes at least one interconnect and is disposed on one side of the photosensitive element. Next, a dielectric layer is formed on the patterned conductive layer, and the stepped layer covers the patterned conductive layer. Then, an optical barrier layer is formed on the substrate and the lower dielectric layer is covered stepwise, and then an upper dielectric layer is formed on the substrate and the optical barrier layer is formed. The refractive index of the optical barrier layer is greater than that of the upper dielectric layer and the lower dielectric layer. Refractive index of the electrical layer.

為使熟習本發明所屬技術領域之一般技藝者能更進一步瞭解本發明,下文特列舉本發明之較佳實施例,並配合所附圖示,詳細說明本發明的影像感測器及其製作方法及所欲達成的功效。In order to make a person skilled in the art who is familiar with the technical field of the present invention better understand the present invention, the preferred embodiments of the present invention are enumerated below, and the accompanying drawings are used to describe the image sensor of the present invention and the manufacturing method thereof And the desired effect.

請參考第1圖至第8圖,第1圖至第7圖繪示了本發明影像感測器製作方法之第一實施例的製程示意圖,而第8圖為本發明影像感測器製作方法之第一實施例的製程步驟流程圖。根據本實施例,如第1圖所示,首先提供一基底100,其中基底100可為半導體基底,例如為矽基底、磊晶矽基底、矽鍺基底、碳化矽基底或絕緣層覆矽(silicon-on-insulator,SOI)基底,但並不以此為限。然後,於基底100表面形成多個感光元件102。感光元件102包括各種能將光能轉換成電能的元件。例如感光元件102可包括PN型感光二極體、PNP型感光二極體、NPN型感光二極體等。舉例而言,本實施例的感光元件102可為PNP型感光二極體,其形成方式例如由一離子佈植製程(ion implantation process)將P型摻質與N型摻質分別植入基底100中的特定區域,使得一P型摻雜區形成於一N型摻雜區上,其中N型摻雜區形成於一P型基底上,但不以此為限。Please refer to FIG. 1 to FIG. 8. FIG. 1 to FIG. 7 are schematic diagrams showing a manufacturing process of the first embodiment of the image sensor manufacturing method of the present invention, and FIG. 8 is a method of manufacturing the image sensor of the present invention. The flowchart of the process steps of the first embodiment. According to this embodiment, as shown in FIG. 1, a substrate 100 is first provided. The substrate 100 may be a semiconductor substrate, such as a silicon substrate, an epitaxial silicon substrate, a silicon germanium substrate, a silicon carbide substrate, or a silicon-on-insulator layer. -on-insulator (SOI) substrate, but not limited to this. Then, a plurality of photosensitive elements 102 are formed on the surface of the substrate 100. The photosensitive element 102 includes various elements capable of converting light energy into electric energy. For example, the photosensitive element 102 may include a PN type photodiode, a PNP type photodiode, an NPN type photodiode, and the like. For example, the photosensitive element 102 of this embodiment may be a PNP type photodiode. The formation method is, for example, implanting a P-type dopant and an N-type dopant into the substrate 100 by an ion implantation process. A specific region in the P-type doped region is formed on an N-type doped region, and the N-type doped region is formed on a P-type substrate, but not limited thereto.

接著,於基底100上選擇性地形成多個閘極(未繪示)。閘極可例如分別對應一感光元件102而形成,設置在對應之感光元件102一側。閘極的材料可包括多晶矽(polysilicon)或金屬材料,但不以此為限。舉例而言,本實施例之閘極可例如為影像感測器1A之轉移閘極(transfer gate,Tx)。此外,可於閘極與基底100之間形成一閘極絕緣層(未繪示),也可選擇性地在形成閘極與閘極絕緣層之前先於基底100形成多個隔離結構144,其中隔離結構144可為淺溝隔離(shallow trench isolation,STI)或局部矽氧化絕緣層(local oxidation of silicon isolation layer,LOCOS),用以避免感光元件102與其他元件相接觸而發生短路。需注意的是,本發明不特別限定感光元件102、閘極及閘極絕緣層與隔離結構144的製作順序與相對設置位置。Next, a plurality of gates (not shown) are selectively formed on the substrate 100. The gate electrodes may be formed respectively corresponding to one photosensitive element 102 and disposed on one side of the corresponding photosensitive element 102. The material of the gate electrode may include polysilicon or metal materials, but is not limited thereto. For example, the gate of this embodiment may be, for example, a transfer gate (Tx) of the image sensor 1A. In addition, a gate insulating layer (not shown) may be formed between the gate and the substrate 100, or a plurality of isolation structures 144 may be selectively formed before the substrate 100 before the gate and the gate insulating layer are formed. The isolation structure 144 may be a shallow trench isolation (STI) or a local oxidation of silicon isolation layer (LOCOS) to prevent the photosensitive element 102 from contacting other elements and causing a short circuit. It should be noted that the present invention does not specifically limit the manufacturing order and relative positions of the photosensitive element 102, the gate and the gate insulating layer, and the isolation structure 144.

接著,於基底100上形成絕緣層106以覆蓋閘極。本實施例之絕緣層106的材料為二氧化矽,但不以此為限。絕緣層106的材料可為具低介電常數之介電材料(low-K dielectric material),例如氧化矽、硼磷矽酸鹽玻璃(borophosphosilicate glass,BPSG)、磷矽酸鹽玻璃(phosphosilicate glass,PSG)、氟化矽酸鹽玻璃(fluorinated silicate glass,FSG)、摻雜碳之氧化矽(carbon-doped silicon oxide)或類似物。絕緣層106的形成方法例如為化學氣相沉積(chemical vapor deposition,CVD)技術,但不以此為限。之後,可利用一化學機械研磨(CMP)製程使絕緣層106具有平坦的表面。然後,於絕緣層106上形成一圖案化導電層,該圖案化導電層包括多個內連線112。舉例而言,內連線112的材料可為鋁(aluminum)、銅(copper)、摻雜的多晶矽(doped polysilicon)或類似物。此外,本實施例的內連線112的剖面圖案為梯形,但不以此為限。Next, an insulating layer 106 is formed on the substrate 100 to cover the gate electrode. The material of the insulating layer 106 in this embodiment is silicon dioxide, but it is not limited thereto. The material of the insulating layer 106 may be a low-K dielectric material, such as silicon oxide, borophosphosilicate glass (BPSG), phosphosilicate glass, PSG), fluorinated silicate glass (FSG), carbon-doped silicon oxide, or the like. The method for forming the insulating layer 106 is, for example, chemical vapor deposition (CVD) technology, but is not limited thereto. Thereafter, a chemical mechanical polishing (CMP) process can be used to make the insulating layer 106 have a flat surface. Then, a patterned conductive layer is formed on the insulating layer 106. The patterned conductive layer includes a plurality of interconnecting lines 112. For example, the material of the interconnect 112 may be aluminum, copper, doped polysilicon, or the like. In addition, the cross-sectional pattern of the interconnect line 112 in this embodiment is trapezoidal, but it is not limited thereto.

如第2圖所示,接著於該圖案化導電層上形成層間介電層114,其覆蓋位於其下之內連線112與感光元件102。本實施例的層間介電層114可為金屬層間介電層(inter-metal dielectric layer),其材料舉例為二氧化矽,但不以此為限,層間介電層114的材料也可為其他具低介電常數之介電材料(low-K dielectric material),例如前段提及之絕緣層106的材料。層間介電層114的形成方法例如以CVD製程搭配CMP製程,但不以此為限。在本實施例中,可重複上述步驟以接續形成多層之層間介電層114與圖案化導電層,且各層圖案化導電層之內連線112可透過各層層間介電層114中的接觸洞116串接形成多層內連線(multilayer interconnect,MLI)結構。As shown in FIG. 2, an interlayer dielectric layer 114 is formed on the patterned conductive layer, and the interlayer dielectric layer 114 covers the interconnector 112 and the photosensitive element 102 located below it. The interlayer dielectric layer 114 in this embodiment may be an inter-metal dielectric layer. The material is exemplified by silicon dioxide, but it is not limited thereto. The material of the interlayer dielectric layer 114 may also be other materials. A low-K dielectric material, such as the material of the insulating layer 106 mentioned in the previous paragraph. The method for forming the interlayer dielectric layer 114 is, for example, a CVD process and a CMP process, but it is not limited thereto. In this embodiment, the above steps can be repeated to successively form multiple interlayer dielectric layers 114 and patterned conductive layers, and the interconnects 112 of each of the patterned conductive layers can pass through the contact holes 116 in each of the interlayer dielectric layers 114. The series connection forms a multilayer interconnect (MLI) structure.

接著請參考第3圖,於最上層之圖案化導電層上形成一下介電層118,其中下介電層118階梯覆蓋該圖案化導電層,亦即下介電層118會隨著其所覆蓋的內連線112而高低起伏。然後,於下介電層118上形成一光學屏障層120,且光學屏障層120階梯覆蓋下介電層118,隨著所覆蓋的下介電層118而高低起伏。光學屏障層120與下介電層118可依其所包括的材料而選擇與其對應的製程方法,例如化學氣相沉積或物理氣相沉積等。光學屏障層120與下介電層118之間具有一介面,隨著下介電層118和光學屏障層120所覆蓋之圖案化導電層而高低起伏,因此介面包括複數個側面部分124與複數個平坦部分126。此外,由於本實施例之內連線112的剖面圖案為梯形,因此介面之側面部分124為傾斜面,其延伸線與基底100的表面或最上層層間介電層114的頂表面具有小於90度之夾角α。此外,光學屏障層120之折射係數大於下介電層118之折射係數。舉例而言,本實施例之下介電層118的材料為二氧化矽,其折射係數為1.45,而光學屏障層120之材料為氮化矽(SiN),其折射係數為1.99,但不以此為限。下介電層118的材料也可選自於上述絕緣層106所包括的材料。在下介電層118的材料為二氧化矽的情況下,光學屏障層120之材料也可為碳化矽(折射係數為2.6)、鋁(折射係數為2.7)、矽(折射係數為3.44)、鎢(折射係數為3.53)或其他折射係數大於二氧化矽的材料。當選擇氮化矽或碳化矽作為光學屏障層120的材料時,其優點是這些材料可以與CMOS元件的其他半導體製程相整合,可以節省製程成本。Referring to FIG. 3, a dielectric layer 118 is formed on the uppermost patterned conductive layer. The lower dielectric layer 118 covers the patterned conductive layer in a stepwise manner, that is, the lower dielectric layer 118 will be covered by it. The interconnector 112 rises and falls. Then, an optical barrier layer 120 is formed on the lower dielectric layer 118, and the optical barrier layer 120 covers the lower dielectric layer 118 in steps, and fluctuates with the covered lower dielectric layer 118. The optical barrier layer 120 and the lower dielectric layer 118 can be selected according to the materials included in them, such as chemical vapor deposition or physical vapor deposition. There is an interface between the optical barrier layer 120 and the lower dielectric layer 118, which fluctuates with the patterned conductive layer covered by the lower dielectric layer 118 and the optical barrier layer 120. Therefore, the interface includes a plurality of side portions 124 and a plurality of平面 部 126。 The flat portion 126. In addition, since the cross-sectional pattern of the interconnect line 112 in this embodiment is trapezoidal, the side surface portion 124 of the interface is an inclined surface, and the extension line thereof is less than 90 degrees from the surface of the substrate 100 or the top surface of the uppermost interlayer dielectric layer 114. Angle α. In addition, the refractive index of the optical barrier layer 120 is greater than the refractive index of the lower dielectric layer 118. For example, the material of the dielectric layer 118 is silicon dioxide with a refractive index of 1.45, and the material of the optical barrier layer 120 is silicon nitride (SiN) with a refractive index of 1.99. This is limited. The material of the lower dielectric layer 118 may also be selected from the materials included in the above-mentioned insulating layer 106. When the material of the lower dielectric layer 118 is silicon dioxide, the material of the optical barrier layer 120 may also be silicon carbide (refractive index 2.6), aluminum (refractive index 2.7), silicon (refractive index 3.44), tungsten (Refractive index is 3.53) or other materials with a refractive index greater than silicon dioxide. When silicon nitride or silicon carbide is selected as the material of the optical barrier layer 120, the advantage is that these materials can be integrated with other semiconductor processes of the CMOS device, which can save process costs.

接著如第4圖所示,於光學屏障層120上形成一上介電層128,其中上介電層128的折射係數小於光學屏障層120的折射係數。根據本實施例,上介電層128較佳填平甚至超過光學屏障層120的凹陷部分,例如先以CVD製程形成一層較厚的上介電層128完整覆蓋光學屏障層120,再藉由化學機械研磨製程以平坦化上介電層128表面。本實施例的上介電層128的材料為二氧化矽,但不以此為限。上介電層128的材料也可選自於上述絕緣層106所包括的材料。Then, as shown in FIG. 4, an upper dielectric layer 128 is formed on the optical barrier layer 120, and the refractive index of the upper dielectric layer 128 is smaller than the refractive index of the optical barrier layer 120. According to this embodiment, the upper dielectric layer 128 preferably fills or even exceeds the recessed portion of the optical barrier layer 120. For example, a thicker upper dielectric layer 128 is first formed by the CVD process to completely cover the optical barrier layer 120, and then chemically The mechanical polishing process planarizes the surface of the upper dielectric layer 128. The material of the upper dielectric layer 128 in this embodiment is silicon dioxide, but it is not limited thereto. The material of the upper dielectric layer 128 may also be selected from the materials included in the above-mentioned insulating layer 106.

如第5圖所示,接著於上介電層128的表面上形成一圖案化遮罩層130。本實施例之圖案化遮罩層130具有多個開口以定義出多個光導管開口的位置,其中圖案化遮罩層130的開口較佳對應感光元件102設置。本實施例之圖案化遮罩層130舉例為光阻材料,但不以此為限。接著,利用圖案化遮罩層130當作蝕刻遮罩而進行一蝕刻製程132,以移除部分的上介電層128、光學屏障層120、下介電層118及其下之層間介電層114,以於各感光元件102上形成一光導管開口134。然後,於形成光導管開口134之後移除圖案化遮罩層130。As shown in FIG. 5, a patterned masking layer 130 is formed on the surface of the upper dielectric layer 128. The patterned masking layer 130 in this embodiment has a plurality of openings to define positions of the plurality of light pipe openings, and the openings of the patterned masking layer 130 are preferably disposed corresponding to the photosensitive element 102. The patterned mask layer 130 in this embodiment is exemplified by a photoresist material, but is not limited thereto. Then, an etching process 132 is performed using the patterned mask layer 130 as an etching mask to remove portions of the upper dielectric layer 128, the optical barrier layer 120, the lower dielectric layer 118, and the interlayer dielectric layer thereunder. 114. A light pipe opening 134 is formed on each photosensitive element 102. Then, the patterned masking layer 130 is removed after the light pipe opening 134 is formed.

如第6圖所示,接著可選擇性地於光導管開口134的底面及側壁表面形成一阻障層136。本實施例之阻障層136的材料為氮化矽,但不以此為限。在其他實施例中,阻障層136的材料可包括氮氧化矽或其他適合的介電材料。然後,於光導管開口134中填入高折射率材料,以於各感光元件102上分別形成一光導管138。本實施例之光導管138的剖面圖案為上寬下窄,但不以此為限。光導管138之材料的折射係數較佳低於阻障層136之材料的折射係數,本實施例之光導管138的材料為光阻材料或類光阻材料,但不以此為限。於形成光導管138時,可先將高折射率材料填平並超過光導管開口134,再藉由化學機械研磨製程移除光導管開口134外的高折射率材料,但不以此為限。As shown in FIG. 6, a barrier layer 136 may be selectively formed on the bottom surface and the sidewall surface of the light pipe opening 134. The material of the barrier layer 136 in this embodiment is silicon nitride, but it is not limited thereto. In other embodiments, the material of the barrier layer 136 may include silicon oxynitride or other suitable dielectric materials. Then, a high-refractive-index material is filled in the light pipe opening 134 to form a light pipe 138 on each photosensitive element 102. The cross-sectional pattern of the light pipe 138 in this embodiment is upper width and lower narrow, but it is not limited thereto. The refractive index of the material of the light pipe 138 is preferably lower than that of the material of the barrier layer 136. The material of the light pipe 138 of this embodiment is a photoresist material or a photoresist-like material, but it is not limited thereto. When forming the light pipe 138, the high-refractive index material may be first filled and exceeded the light pipe opening 134, and then the high-refractive index material outside the light pipe opening 134 may be removed by a chemical mechanical polishing process, but it is not limited thereto.

如第7圖所示,接著於上介電層128上形成多個不同顏色的彩色濾光層140,分別覆蓋對應的感光元件102與光導管138。彩色濾光層140可例如包括有顏色的光阻圖案,並可利用微影製程製作,但不以此為限。彩色濾光層140的顏色可包括紅色、藍色或綠色,以使感光元件102可感測特定顏色的光線。然後,於各彩色濾光層140上形成一微聚光鏡142,並覆蓋其下之感光元件102與光導管138。As shown in FIG. 7, a plurality of different color filter layers 140 are formed on the upper dielectric layer 128 to cover the corresponding photosensitive elements 102 and light pipes 138 respectively. The color filter layer 140 may include, for example, a colored photoresist pattern, and may be manufactured by a lithography process, but is not limited thereto. The color of the color filter layer 140 may include red, blue, or green, so that the photosensitive element 102 can sense light of a specific color. Then, a micro-condensing mirror 142 is formed on each color filter layer 140, and covers the photosensitive element 102 and the light pipe 138 under it.

綜上所述,本發明之製作影像感測器1A的方法主要包括第8圖所示之步驟:In summary, the method for manufacturing the image sensor 1A of the present invention mainly includes the steps shown in FIG. 8:

步驟S10:提供一基底,並於基底上形成感光元件;Step S10: providing a substrate and forming a photosensitive element on the substrate;

步驟S12:於基底上形成一圖案化導電層,其中圖案化導電層包括至少一內連線,電性連接於感光元件;Step S12: forming a patterned conductive layer on the substrate, wherein the patterned conductive layer includes at least one interconnect and is electrically connected to the photosensitive element;

步驟S14:於圖案化導電層上形成一下介電層,階梯覆蓋圖案化導電層;Step S14: forming a dielectric layer on the patterned conductive layer to cover the patterned conductive layer in steps;

步驟S16:於基底上形成一光學屏障層,階梯覆蓋下介電層;以及Step S16: forming an optical barrier layer on the substrate, and stepwise covering the lower dielectric layer; and

步驟S18:於基底上形成一上介電層,覆蓋光學屏障層,其中光學屏障層之折射係數大於上介電層與下介電層之折射係數。Step S18: forming an upper dielectric layer on the substrate to cover the optical barrier layer, wherein the refractive index of the optical barrier layer is greater than that of the upper dielectric layer and the lower dielectric layer.

請繼續參考第7圖,本實施例之影像感測器1A包括基底100、多個感光元件102、至少一圖案化導電層、至少一下介電層118、一光學屏障層120以及至少一上介電層128。其中,感光元件102設置於基底100表面,圖案化導電層設置於基底100上,且圖案化導電層包括至少一內連線112,設置於感光元件102的一側。本實施例之內連線112具有梯形之剖面圖案。需注意的是,本實施例的影像感測器1A包括多層圖案化導電層與多層層間介電層114,其中每一層圖案化導電層上覆蓋有一層層間介電層114。各層圖案化導電層之內連線112可透過各層層間介電層114中的接觸洞116串接形成多層內連線結構。在本實施例的影像感測器1A中,最上層的層間介電層114包括上介電層128與下介電層118,且光學屏障層120與下介電層118階梯覆蓋內連線112,亦即光學屏障層120與下介電層118隨著所覆蓋之內連線112而高低起伏,亦即光學屏障層120與下介電層118之間的介面會隨著所覆蓋之內連線112而高低起伏並包括複數個側面部分124與複數個平坦部分126。另由於本實施例之內連線112具有梯形之剖面圖案,因此側面部分124分別為傾斜面,且側面部分124與基底100表面具有小於90度之夾角α。此外,光學屏障層120之折射係數大於上介電層128與下介電層118之折射係數。此外,影像感測器1A可另包括重置電晶體(reset transistor)、源隨電晶體(source follower transistor)、或讀取選擇電晶體(read select transistor),且可包括三電晶體(3T)與四電晶體(4T)的像素電路。為了突顯本實施例影像感測器1A的特徵,上述元件未於圖式中繪出。本發明影像感測器1A之第一實施例的其他元件與材料可參考前述製程之說明,不再贅述。Please continue to refer to FIG. 7. The image sensor 1A of this embodiment includes a substrate 100, a plurality of photosensitive elements 102, at least one patterned conductive layer, at least a lower dielectric layer 118, an optical barrier layer 120, and at least one upper dielectric. Electrical layer 128. The photosensitive element 102 is disposed on the surface of the substrate 100, the patterned conductive layer is disposed on the substrate 100, and the patterned conductive layer includes at least one interconnect 112 and is disposed on one side of the photosensitive element 102. The interconnecting line 112 in this embodiment has a trapezoidal cross-sectional pattern. It should be noted that the image sensor 1A of this embodiment includes a plurality of patterned conductive layers and a plurality of interlayer dielectric layers 114, and each of the patterned conductive layers is covered with a layer of the interlayer dielectric layer 114. The interconnects 112 of each patterned conductive layer can be connected in series through the contact holes 116 in the interlayer dielectric layer 114 to form a multilayer interconnect structure. In the image sensor 1A of this embodiment, the uppermost interlayer dielectric layer 114 includes an upper dielectric layer 128 and a lower dielectric layer 118, and the optical barrier layer 120 and the lower dielectric layer 118 cover the interconnects 112 in steps. That is, the optical barrier layer 120 and the lower dielectric layer 118 fluctuate with the covered interconnects 112, that is, the interface between the optical barrier layer 120 and the lower dielectric layer 118 will follow the covered interconnects. The line 112 is undulating and includes a plurality of side portions 124 and a plurality of flat portions 126. In addition, since the interconnect line 112 in this embodiment has a trapezoidal cross-sectional pattern, the side portions 124 are inclined surfaces, respectively, and the angle α between the side portions 124 and the surface of the substrate 100 is less than 90 degrees. In addition, the refractive index of the optical barrier layer 120 is larger than that of the upper dielectric layer 128 and the lower dielectric layer 118. In addition, the image sensor 1A may further include a reset transistor, a source follower transistor, or a read select transistor, and may include a triode (3T) Pixel circuit with four transistors (4T). In order to highlight the features of the image sensor 1A of this embodiment, the above components are not shown in the drawings. For other components and materials of the first embodiment of the image sensor 1A of the present invention, reference may be made to the description of the foregoing process, and details are not described again.

請參考第9圖與第10圖,其中第9圖為本發明影像感測器之第一實施例的光線路徑示意圖,而10圖為第9圖中區域X的局部放大示意圖。以下將以光線L1、L2、L3來說明本實施例之光學屏障層120如何達到減少跨越干擾的功效。光線L1的詳細行徑路徑請參考第10圖,首先,光線L1經由右側的彩色濾光層140從上介電層128入射至光學屏障層120,並於光學屏障層120與上介電層128之間的介面144發生折射。由於上介電層128之折射係數小於光學屏障層120之折射係數,因此,根據斯涅耳定律(Snell's law),光線L1會以較大的折射角度繼續在光學屏障層120中行進至與下介電層118之間的介面側面部分124而具有一入射角θ。由於本實施例之下介電層118的材料為二氧化矽(折射係數為1.45),而光學屏障層120的材料為氮化矽(折射係數為1.99),因此當光線L1在光學屏障層120中並於側面部分124之入射角θ大於46度時會發生全反射(total reflection),藉此使得光線L1往右側反射而朝著下方與其對應的感光元件102前進,以避免光線L1沿著原入射方向朝著左側相鄰之感光元件102前進。Please refer to FIG. 9 and FIG. 10, where FIG. 9 is a schematic view of a light path of the first embodiment of the image sensor of the present invention, and FIG. 10 is a partially enlarged schematic view of an area X in FIG. 9. In the following, light rays L1, L2, and L3 will be used to explain how the optical barrier layer 120 of this embodiment achieves the effect of reducing cross-talk. For the detailed travel path of the light ray L1, please refer to FIG. 10. First, the light ray L1 is incident from the upper dielectric layer 128 to the optical barrier layer 120 through the right color filter layer 140, and enters the optical barrier layer 120 and the upper dielectric layer 128. The interface 144 is refracted. Since the refractive index of the upper dielectric layer 128 is smaller than that of the optical barrier layer 120, according to Snell's law, the light L1 will continue to travel in the optical barrier layer 120 to a lower angle with a larger refraction angle. The interface side portion 124 between the dielectric layers 118 has an incident angle θ. Since the material of the dielectric layer 118 in this embodiment is silicon dioxide (refractive index is 1.45), and the material of the optical barrier layer 120 is silicon nitride (refractive index is 1.99), when the light L1 is on the optical barrier layer 120 Total reflection occurs when the incident angle θ of the side portion 124 is greater than 46 degrees, thereby causing the light L1 to reflect to the right and advance toward the corresponding photosensitive element 102 below to prevent the light L1 from following the original The incident direction advances toward the photosensitive element 102 adjacent to the left.

請繼續參考第9圖,第9圖中之光線L2的入射角較大,在經過彩色濾光層140後朝著左側相鄰之感光元件102入射至光學屏障層120與下介電層118介面之平坦部分126,然而只要光線L2的入射角大於全反射的臨界角,光線L2即可經全反射往相反於感光元件102的方向前進,藉此以避免光線L2朝著左側相鄰之感光元件102前進。另一方面,光線L3在經過彩色濾光層140後射入光導管138中,雖然朝著左側相鄰的感光元件102前進,但在入射至阻障層136與層間介電層114之間的介面時,由於阻障層136的材料為氮化矽,而層間介電層114的材料為二氧化矽,因此光線L3的入射角很容易大於全反射的臨界角,並經全反射往對應之感光元件102的方向前進,藉此以避免光線L3朝著左側相鄰之感光元件102前進。Please continue to refer to FIG. 9. The incident angle of the light L2 in FIG. 9 is relatively large. After passing through the color filter layer 140, it is incident on the optical barrier layer 120 and the lower dielectric layer 118 interface toward the adjacent photosensitive element 102 on the left. The flat portion 126, however, as long as the incident angle of the light L2 is greater than the critical angle of total reflection, the light L2 can go through the total reflection in a direction opposite to the photosensitive element 102, thereby avoiding the light L2 toward the adjacent photosensitive element on the left 102 forward. On the other hand, the light L3 enters the light pipe 138 after passing through the color filter layer 140, and although it advances toward the photosensitive element 102 adjacent to the left side, it enters between the barrier layer 136 and the interlayer dielectric layer 114. At the interface, since the material of the barrier layer 136 is silicon nitride and the material of the interlayer dielectric layer 114 is silicon dioxide, the incident angle of the light L3 is easily larger than the critical angle of total reflection, and is reflected to the corresponding angle through total reflection. The direction of the photosensitive element 102 is advanced, thereby avoiding the light L3 from advancing toward the photosensitive element 102 adjacent to the left side.

由上述可知,由於本發明影像感測器1A最頂層的內連線112上依序設置了下介電層118、光學屏障層120及上介電層128,並且經過材料的選擇使得光學屏障層120的折射係數大於下介電層118及上介電層128的折射係數,因此光線在行進至光學屏障層120與下介電層118之間的介面時很容易產生全反射。另外,光學屏障層120及下介電層118階梯覆蓋內連線112,使得光學屏障層120及下介電層118之間的介面具有側面部分124及平坦部分126,進一步使得更多不同入射方向的光線能夠發生全反射。因此,在本發明設計下,能有效避免原本未朝著對應的感光元件102前進的光線跨越內連線112區域而入射至相鄰的感光元件102而被吸收,進而能有效改善影像感測器1A的跨越干擾問題。It can be known from the foregoing that the lower dielectric layer 118, the optical barrier layer 120, and the upper dielectric layer 128 are sequentially arranged on the interconnect 112 of the topmost layer of the image sensor 1A of the present invention, and the optical barrier layer is selected through the selection of materials. The refractive index of 120 is greater than the refractive index of the lower dielectric layer 118 and the upper dielectric layer 128, so light may easily cause total reflection when traveling to the interface between the optical barrier layer 120 and the lower dielectric layer 118. In addition, the optical barrier layer 120 and the lower dielectric layer 118 cover the interconnects 112 in a stepped manner, so that the interface between the optical barrier layer 120 and the lower dielectric layer 118 has a side portion 124 and a flat portion 126, further making more different incidence directions. The light can be totally reflected. Therefore, under the design of the present invention, it is possible to effectively prevent light that originally did not go toward the corresponding photosensitive element 102 from passing through the area of the interconnect 112 to be incident on the adjacent photosensitive element 102 and absorbed, thereby effectively improving the image sensor. 1A cross interference problem.

本發明之影像感測器及其製作方法並不以上述實施例為限。下文將繼續揭示本發明之其它實施例及變化實施例,然為了簡化說明並突顯各實施例之間的差異,下文中使用相同標號標注相同元件,並不再對重覆部分作贅述。The image sensor and the manufacturing method of the present invention are not limited to the above embodiments. The following will continue to disclose other embodiments and variations of the present invention, but in order to simplify the description and highlight the differences between the embodiments, the same elements are labeled with the same reference numerals in the following, and the repeated parts will not be repeated.

請參考第11圖,其為本發明影像感測器之第一實施例的變化實施例之剖面示意圖。如第11圖所示,本變化實施例與第一實施例的不同處在於內連線112的剖面圖案為矩形,其中內連線112的側壁大體上垂直於基底100的表面。由於光學屏障層120與下介電層118之間的介面係隨著下方之內連線112而高低起伏,因此影像感測器1B之介面的側面部分124大體上垂直於基底100的表面。Please refer to FIG. 11, which is a schematic cross-sectional view of a modified embodiment of the first embodiment of the image sensor of the present invention. As shown in FIG. 11, this modified embodiment is different from the first embodiment in that the cross-sectional pattern of the interconnecting line 112 is rectangular, and the sidewall of the interconnecting line 112 is substantially perpendicular to the surface of the substrate 100. Since the interface between the optical barrier layer 120 and the lower dielectric layer 118 fluctuates with the lower interconnect line 112, the side portion 124 of the interface of the image sensor 1B is substantially perpendicular to the surface of the substrate 100.

請參考第12圖與第13圖,其為本發明影像感測器之第二實施例的製作方法之製程示意圖,且第13圖繪示本發明第二實施例之影像感測器的剖面示意圖,其中在第二實施例中,第12圖係接續第1圖的製程。如第12圖所示,本實施例與第一實施例不同的地方在於,在絕緣層106上製作完第一層內連線112後,即先於內連線112上形成下介電層118,階梯覆蓋內連線112。接著於下介電層118上形成光學屏障層120,同樣階梯覆蓋下介電層118,然後再於光學屏障層120上形成具有平坦表面的上介電層128,覆蓋光學屏障層120與下介電層118,其中光學屏障層120之折射係數大於上介電層128與下介電層118之折射係數。Please refer to FIG. 12 and FIG. 13, which are process schematic diagrams of a manufacturing method of the second embodiment of the image sensor of the present invention, and FIG. 13 shows a schematic sectional view of the image sensor of the second embodiment of the present invention Among them, in the second embodiment, FIG. 12 is a process following FIG. 1. As shown in FIG. 12, this embodiment is different from the first embodiment in that, after the first interconnect 112 is formed on the insulating layer 106, the lower dielectric layer 118 is formed on the interconnect 112 first. The ladder covers the interconnector 112. Next, an optical barrier layer 120 is formed on the lower dielectric layer 118, and the lower dielectric layer 118 is also covered stepwise, and then an upper dielectric layer 128 having a flat surface is formed on the optical barrier layer 120 to cover the optical barrier layer 120 and the lower dielectric layer. The electrical layer 118, wherein the refractive index of the optical barrier layer 120 is greater than the refractive indices of the upper dielectric layer 128 and the lower dielectric layer 118.

如第13圖所示,接著於上介電層128、下介電層118與光學屏障層120中形成多個接觸洞116,然後於上介電層128上形成另一層內連線112,並藉由各接觸洞116以電性連接於下層之內連線112。接著可重複進行上述形成上介電層128、光學屏障層120及下介電層118的製程以及形成接觸洞116與內連線112的製程。此外,各層圖案化導電層之內連線112可透過各上介電層128、下介電層118與光學屏障層120中的接觸洞116串接形成多層內連線結構。再者,上、下層內連線112之間的上介電層128與下介電層118可共同視為第一實施例中的層間介電層114,換言之,本實施例的影像感測器2A包括多個層間介電層114,其中各層間介電層114中具有一光學屏障層120。在製作完最上層之上介電層128後,可再製作光導管134、彩色濾光層140與微聚光鏡142,影像感測器2A中其餘元件的位置、材料及製作方式可參考第一實施例,因此不再贅述。As shown in FIG. 13, a plurality of contact holes 116 are formed in the upper dielectric layer 128, the lower dielectric layer 118, and the optical barrier layer 120, and then another layer of interconnects 112 is formed on the upper dielectric layer 128, and Each contact hole 116 is electrically connected to the lower interconnect line 112. Then, the above-mentioned process of forming the upper dielectric layer 128, the optical barrier layer 120, and the lower dielectric layer 118 and the process of forming the contact hole 116 and the interconnect 112 can be repeated. In addition, the interconnects 112 of each of the patterned conductive layers can be connected in series through the upper dielectric layer 128, the lower dielectric layer 118, and the contact holes 116 in the optical barrier layer 120 to form a multilayer interconnect structure. Furthermore, the upper dielectric layer 128 and the lower dielectric layer 118 between the upper and lower interconnects 112 can be collectively regarded as the interlayer dielectric layer 114 in the first embodiment. In other words, the image sensor of this embodiment 2A includes a plurality of interlayer dielectric layers 114, wherein each of the interlayer dielectric layers 114 has an optical barrier layer 120 therein. After the upper dielectric layer 128 is fabricated, the light guide 134, the color filter layer 140, and the micro-condenser 142 can be fabricated. The positions, materials, and manufacturing methods of the remaining components in the image sensor 2A can refer to the first implementation. Example, so I wo n’t repeat them.

請參考第14圖,其為本發明影像感測器之第二實施例之變化實施例的剖面示意圖。如第14圖所示,本變化實施例與第二實施例不同的地方在於內連線112的剖面圖案為矩形,其中內連線112的側壁大體上垂直於基底100的表面。由於光學屏障層120與下介電層118之間的介面係隨著下方之內連線112而高低起伏,因此影像感測器2B之介面的側面部分124大體上垂直於基底100的表面。Please refer to FIG. 14, which is a schematic cross-sectional view of a modified embodiment of the second embodiment of the image sensor of the present invention. As shown in FIG. 14, this modified embodiment differs from the second embodiment in that the cross-sectional pattern of the interconnector 112 is rectangular, and the sidewalls of the interconnector 112 are substantially perpendicular to the surface of the substrate 100. Since the interface between the optical barrier layer 120 and the lower dielectric layer 118 fluctuates with the lower interconnect line 112, the side portion 124 of the interface of the image sensor 2B is substantially perpendicular to the surface of the substrate 100.

綜上所述,本發明於影像感測器之感光元件上設置至少一光學屏障層,其中光學屏障層設置於層間介電層的上介電層與下介電層之間,並且經過材料的選擇使得光學屏障層的折射係數大於下介電層及上介電層的折射係數,以提供入射光線較易產生全反射的條件。另外,光學屏障層及下介電層階梯覆蓋內連線,使得光學屏障層及下介電層之間的介面具有側面部分及平坦部分,進一步使得更多不同入射方向的光線能夠發生全反射,藉此避免原本未朝著對應的感光元件前進的光線被相鄰的感光元件所吸收,甚至將偏折的光線反射回所對應的感光元件中,進而改善影像感測器的跨越干擾問題,並同時提高感光效率。 以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所做之均等變化與修飾,皆應屬本發明之涵蓋範圍。In summary, the present invention provides at least one optical barrier layer on the photosensitive element of the image sensor, wherein the optical barrier layer is disposed between the upper dielectric layer and the lower dielectric layer of the interlayer dielectric layer, and passes through the material. The refractive index of the optical barrier layer is selected to be greater than the refractive index of the lower dielectric layer and the upper dielectric layer, so as to provide a condition that incident light is more likely to have total reflection. In addition, the optical barrier layer and the lower dielectric layer cover the interconnects in a stepped manner, so that the interface between the optical barrier layer and the lower dielectric layer has a side portion and a flat portion, further allowing more light in different incident directions to be totally reflected. In this way, the light that does not originally go toward the corresponding photosensitive element is absorbed by the adjacent photosensitive element, and even the deflected light is reflected back to the corresponding photosensitive element, thereby improving the problem of cross-interference of the image sensor, and At the same time, it improves the sensitivity. The above description is only a preferred embodiment of the present invention, and all equivalent changes and modifications made in accordance with the scope of patent application of the present invention shall fall within the scope of the present invention.

1A、1B、2A、2B‧‧‧影像感測器1A, 1B, 2A, 2B‧‧‧Image Sensor

100‧‧‧基底100‧‧‧ substrate

102‧‧‧感光元件102‧‧‧photosensitive element

106‧‧‧絕緣層106‧‧‧ Insulation

112‧‧‧內連線112‧‧‧Internal connection

114‧‧‧層間介電層114‧‧‧ Interlayer dielectric layer

116‧‧‧接觸洞116‧‧‧Contact hole

118‧‧‧下介電層118‧‧‧ lower dielectric layer

120‧‧‧光學屏障層120‧‧‧ Optical barrier layer

144‧‧‧介面144‧‧‧Interface

124‧‧‧側面部分124‧‧‧Side section

126‧‧‧平坦部分126‧‧‧ flat

128‧‧‧上介電層128‧‧‧ upper dielectric layer

130‧‧‧圖案化遮罩層130‧‧‧ patterned mask layer

132‧‧‧蝕刻製程132‧‧‧etching process

134‧‧‧光導管開口134‧‧‧light pipe opening

136‧‧‧阻障層136‧‧‧Barrier layer

138‧‧‧光導管138‧‧‧light pipe

140‧‧‧彩色濾光層140‧‧‧color filter

142‧‧‧微聚光鏡142‧‧‧Micro Condenser

144‧‧‧隔離結構144‧‧‧Isolated structure

1、L2、L3‧‧‧光線1, L2, L3‧‧‧‧light

α‧‧‧夾角α‧‧‧ Angle

θ‧‧‧入射角θ‧‧‧ incident angle

第1圖至第7圖繪示了本發明影像感測器製作方法之第一實施例的製程示意圖。 第8圖為本發明影像感測器製作方法之第一實施例的製程步驟流程圖。 第9圖為本發明影像感測器之第一實施例的光線路徑示意圖。 第10圖為第9圖中區域X的局部放大示意圖。 第11圖為本發明影像感測器之第一實施例的第一變化實施例之剖面示意圖。 第12圖至第13圖繪示了本發明影像感測器之第二實施例的製作方法之製程示意圖。 第14圖為本發明影像感測器之第二實施例之變化實施例的剖面示意圖。FIG. 1 to FIG. 7 are schematic diagrams illustrating a manufacturing process of a first embodiment of a method for manufacturing an image sensor according to the present invention. FIG. 8 is a flowchart of the manufacturing process steps of the first embodiment of the image sensor manufacturing method of the present invention. FIG. 9 is a schematic diagram of a light path of a first embodiment of an image sensor of the present invention. FIG. 10 is a partially enlarged schematic diagram of the region X in FIG. 9. FIG. 11 is a schematic cross-sectional view of a first modified embodiment of the first embodiment of the image sensor of the present invention. FIG. 12 to FIG. 13 are schematic diagrams illustrating a manufacturing process of a manufacturing method of a second embodiment of the image sensor of the present invention. FIG. 14 is a schematic cross-sectional view of a modified embodiment of the second embodiment of the image sensor of the present invention.

1A‧‧‧影像感測器 1A‧‧‧Image Sensor

100‧‧‧基底 100‧‧‧ substrate

102‧‧‧感光元件 102‧‧‧photosensitive element

106‧‧‧絕緣層 106‧‧‧ Insulation

112‧‧‧內連線 112‧‧‧Internal connection

114‧‧‧層間介電層 114‧‧‧ Interlayer dielectric layer

116‧‧‧接觸洞 116‧‧‧Contact hole

118‧‧‧下介電層 118‧‧‧ lower dielectric layer

120‧‧‧光學屏障層 120‧‧‧ Optical barrier layer

124‧‧‧側面部分 124‧‧‧Side section

126‧‧‧平坦部分 126‧‧‧ flat

128‧‧‧上介電層 128‧‧‧ upper dielectric layer

134‧‧‧光導管開口 134‧‧‧light pipe opening

136‧‧‧阻障層 136‧‧‧Barrier layer

138‧‧‧光導管 138‧‧‧light pipe

140‧‧‧彩色濾光層 140‧‧‧color filter

142‧‧‧微聚光鏡 142‧‧‧Micro Condenser

144‧‧‧隔離結構 144‧‧‧Isolated structure

Claims (19)

一種影像感測器,包括:一感光元件,設置於一基底表面;至少一圖案化導電層,設置於該基底上,該圖案化導電層包括至少一內連線(interconnect),設置於該感光元件的一側;至少一下介電層,設置於該基底上並覆蓋該內連線;至少一光學屏障層,覆蓋該下介電層,且該光學屏障層與該下介電層完整地階梯覆蓋該內連線;以及至少一上介電層,覆蓋該光學屏障層,其中該光學屏障層之折射係數大於該上介電層與該下介電層之折射係數。 An image sensor includes: a photosensitive element disposed on a substrate surface; at least one patterned conductive layer disposed on the substrate; the patterned conductive layer includes at least one interconnect disposed on the photosensitive One side of the element; at least a lower dielectric layer is disposed on the substrate and covers the interconnect; at least one optical barrier layer covers the lower dielectric layer, and the optical barrier layer and the lower dielectric layer are completely stepped Covering the interconnect; and at least one upper dielectric layer covering the optical barrier layer, wherein a refractive index of the optical barrier layer is greater than a refractive index of the upper dielectric layer and the lower dielectric layer. 如請求項1所述之影像感測器,其中該光學屏障層與該下介電層階梯覆蓋該內連線,且該光學屏障層與該下介電層之間具有一介面,該介面隨著該下介電層和該光學屏障層所覆蓋之該內連線而高低起伏並包括複數個側面部分與複數個平坦部分。 The image sensor according to claim 1, wherein the optical barrier layer and the lower dielectric layer cover the interconnector in steps, and there is an interface between the optical barrier layer and the lower dielectric layer, and the interface follows It fluctuates between the lower dielectric layer and the interconnection line covered by the optical barrier layer and includes a plurality of side portions and a plurality of flat portions. 如請求項2所述之影像感測器,其中該等側面部分大體上垂直於該基底之表面。 The image sensor of claim 2, wherein the side portions are substantially perpendicular to a surface of the substrate. 如請求項2所述之影像感測器,其中該等側面部分分別為一傾斜面,且與該基底表面具有小於90度之一夾角。 The image sensor according to claim 2, wherein the side portions are respectively inclined surfaces and have an included angle with the surface of the substrate of less than 90 degrees. 如請求項1所述之影像感測器,其包括複數層圖案化導電層依序設置於該基底上,各該層圖案化導電層分別包括至少一內連線,且該光學屏障層覆 蓋最上層之該內連線。 The image sensor according to claim 1, comprising a plurality of patterned conductive layers sequentially disposed on the substrate, each of the patterned conductive layers includes at least one interconnect, and the optical barrier layer covers Cover the top interconnector. 如請求項1所述之影像感測器,其包括複數層圖案化導電層依序設置於該基底上,且各該層圖案化導電層之表面由下而上依序設置有該下介電層、該光學屏障層及該上介電層,使各該光學屏障層分別覆蓋各該層圖案化導電層之該內連線。 The image sensor according to claim 1, comprising a plurality of patterned conductive layers sequentially disposed on the substrate, and a surface of each of the patterned conductive layers is provided with the lower dielectric in order from bottom to top. Layer, the optical barrier layer and the upper dielectric layer, so that each of the optical barrier layers respectively covers the interconnections of the patterned conductive layers of the layer. 如請求項1所述之影像感測器,另包括:一彩色濾光層,設置於該上介電層上,並覆蓋該感光元件;以及一微聚光鏡,設置於該彩色濾光層上,並覆蓋該感光元件。 The image sensor according to claim 1, further comprising: a color filter layer disposed on the upper dielectric layer and covering the photosensitive element; and a micro condenser lens disposed on the color filter layer, And cover the photosensitive element. 如請求項1所述之影像感測器,另包括一光導管(light pipe),設置於該感光元件上並位於該下介電層、該光學屏障層與該上介電層中。 The image sensor according to claim 1, further comprising a light pipe disposed on the photosensitive element and located in the lower dielectric layer, the optical barrier layer and the upper dielectric layer. 如請求項1所述之影像感測器,其中該上介電層與該下介電層之材料分別包括二氧化矽。 The image sensor according to claim 1, wherein the materials of the upper dielectric layer and the lower dielectric layer include silicon dioxide, respectively. 如請求項1所述之影像感測器,其中該光學屏障層之材料包括氮化矽、碳化矽、鋁、矽或鎢。 The image sensor according to claim 1, wherein the material of the optical barrier layer includes silicon nitride, silicon carbide, aluminum, silicon, or tungsten. 一種影像感測器的製作方法,包括:提供一基底,並於該基底表面形成一感光元件;於該基底上形成一圖案化導電層,該圖案化導電層包括至少一內連線,設置於該感光元件之一側; 於該圖案化導電層上形成一下介電層,完整地階梯覆蓋該圖案化導電層;於該基底上形成一光學屏障層,完整地階梯覆蓋該下介電層以及該圖案化導電層;以及於該基底上形成一上介電層,覆蓋該光學屏障層,其中該光學屏障層之折射係數大於該上介電層與該下介電層之折射係數。 A method for manufacturing an image sensor includes: providing a substrate and forming a photosensitive element on the surface of the substrate; and forming a patterned conductive layer on the substrate, the patterned conductive layer including at least one interconnect line and disposed on the substrate. One side of the photosensitive element; Forming a lower dielectric layer on the patterned conductive layer to completely cover the patterned conductive layer stepwise; forming an optical barrier layer on the substrate to completely stepwise cover the lower dielectric layer and the patterned conductive layer; and An upper dielectric layer is formed on the substrate to cover the optical barrier layer, wherein a refractive index of the optical barrier layer is greater than a refractive index of the upper dielectric layer and the lower dielectric layer. 如請求項11所述之影像感測器的製作方法,其中該方法包括於該基底上形成複數層圖案化導電層,且該光學屏障層階梯覆蓋最上層之該圖案化導電層。 The method for manufacturing an image sensor according to claim 11, wherein the method includes forming a plurality of patterned conductive layers on the substrate, and the optical barrier layer covers the patterned conductive layer in the uppermost step. 如請求項11所述之影像感測器的製作方法,其中該方法包括於該基底上形成複數層圖案化導電層,且在各該層圖案化導電層之表面分別依序形成一下介電層、一光學屏障層以及一上介電層,各該光學屏障層分別階梯覆蓋各該層圖案化導電層。 The method for manufacturing an image sensor according to claim 11, wherein the method includes forming a plurality of patterned conductive layers on the substrate, and sequentially forming a dielectric layer on the surface of each of the patterned conductive layers. , An optical barrier layer and an upper dielectric layer, each optical barrier layer covering each of the patterned conductive layers in steps. 如請求項11所述之影像感測器的製作方法,其中該光學屏障層與該下介電層之間具有一介面,該介面隨著該下介電層和該光學屏障層所覆蓋之該圖案化導電層而高低起伏並包括複數個側面部分與複數個平坦部分。 The method for manufacturing an image sensor according to claim 11, wherein an interface exists between the optical barrier layer and the lower dielectric layer, and the interface follows the area covered by the lower dielectric layer and the optical barrier layer. The patterned conductive layer is undulating and includes a plurality of side portions and a plurality of flat portions. 如請求項11所述之影像感測器的製作方法,另包括:移除部分該上介電層、該下介電層與該光學屏障層,以於該感光元件上形成一光導管開口;以及於該光導管開口中填入高折射率材料,以於該感光元件上形成一光導管。 The method for manufacturing an image sensor according to claim 11, further comprising: removing a part of the upper dielectric layer, the lower dielectric layer and the optical barrier layer to form a light pipe opening on the photosensitive element; A high refractive index material is filled into the light pipe opening to form a light pipe on the photosensitive element. 如請求項15所述之影像感測器的製作方法,另包括於填入高折射率材料之前先於該光導管開口中形成一阻障層。 The method for manufacturing an image sensor according to claim 15, further comprising forming a barrier layer in the light pipe opening before filling the high refractive index material. 如請求項11所述之影像感測器的製作方法,另包括:於該上介電層上形成一彩色濾光層,並覆蓋該感光元件;以及於該彩色濾光層上形成一微聚光鏡,並覆蓋該感光元件。 The method for manufacturing an image sensor according to claim 11, further comprising: forming a color filter layer on the upper dielectric layer and covering the photosensitive element; and forming a micro condenser lens on the color filter layer. And cover the photosensitive element. 如請求項11所述之影像感測器的製作方法,其中該上介電層與該下介電層之材料分別包括二氧化矽。 The method for manufacturing an image sensor according to claim 11, wherein the materials of the upper dielectric layer and the lower dielectric layer include silicon dioxide, respectively. 如請求項11所述之影像感測器的製作方法,其中該光學屏障層之材料包括氮化矽、碳化矽、鋁、矽或鎢。The method for manufacturing an image sensor according to claim 11, wherein the material of the optical barrier layer includes silicon nitride, silicon carbide, aluminum, silicon, or tungsten.
TW105127650A 2016-08-29 2016-08-29 Image sensor and fabrication method thereof TWI615957B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105127650A TWI615957B (en) 2016-08-29 2016-08-29 Image sensor and fabrication method thereof
CN201610819519.1A CN107785383B (en) 2016-08-29 2016-09-13 Image sensor and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105127650A TWI615957B (en) 2016-08-29 2016-08-29 Image sensor and fabrication method thereof

Publications (2)

Publication Number Publication Date
TWI615957B true TWI615957B (en) 2018-02-21
TW201807813A TW201807813A (en) 2018-03-01

Family

ID=61438172

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127650A TWI615957B (en) 2016-08-29 2016-08-29 Image sensor and fabrication method thereof

Country Status (2)

Country Link
CN (1) CN107785383B (en)
TW (1) TWI615957B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI599028B (en) * 2016-10-14 2017-09-11 力晶科技股份有限公司 Image sensor and fabrication method thereof
US11121162B2 (en) * 2019-05-07 2021-09-14 Taiwan Semiconductor Manufacturing Company, Ltd. Light pipe structure with high quantum efficiency

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113622A1 (en) * 2004-11-30 2006-06-01 International Business Machines Corporation A damascene copper wiring image sensor
TW200910583A (en) * 2007-06-28 2009-03-01 Sony Corp Solid-state imaging device and camera module
US20120202307A1 (en) * 2011-02-09 2012-08-09 Canon Kabushiki Kaisha Semiconductor device manufacturing method

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010283145A (en) * 2009-06-04 2010-12-16 Sony Corp Solid-state image pickup element and method of manufacturing the same, electronic apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060113622A1 (en) * 2004-11-30 2006-06-01 International Business Machines Corporation A damascene copper wiring image sensor
TW200910583A (en) * 2007-06-28 2009-03-01 Sony Corp Solid-state imaging device and camera module
US20120202307A1 (en) * 2011-02-09 2012-08-09 Canon Kabushiki Kaisha Semiconductor device manufacturing method

Also Published As

Publication number Publication date
CN107785383A (en) 2018-03-09
CN107785383B (en) 2020-04-21
TW201807813A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
TWI767044B (en) Image sensor scheme for optical and electrical improvement
US20230335572A1 (en) Extra doped region for back-side deep trench isolation
US9899436B1 (en) Image sensor and related fabrication method
TW201926573A (en) CMOS image sensor and method of forming the same
US9030587B2 (en) Solid-state image sensor with light-guiding portion
US20080096303A1 (en) Fabrication method of image sensing device
US11646340B2 (en) Semiconductor image sensor
JP2010093081A (en) Solid-state imaging device and method for manufacturing the same
JP2005322888A (en) Cmos image sensor equipped with prisms and its manufacturing method
TW200810100A (en) Image sensor and the method for manufacturing the same
TWI768582B (en) Integrated chip and method for forming integrated chip
US11552118B2 (en) Image sensor including a double-sided spherical lens
KR20070069833A (en) Cmos image sensor and method for manufacturing the same
KR100585137B1 (en) CMOS image sensor having high image light collection efficiency and method for manufacturing the same
KR20220147503A (en) Backside structure for image sensor
US20140159184A1 (en) Image sensor and method for fabricating the same
US20230361147A1 (en) Band-pass filter for stacked sensor
US9391227B2 (en) Manufacturing method of semiconductor device
TWI615957B (en) Image sensor and fabrication method thereof
TWI717795B (en) Image sensor and method for forming the same
KR101380311B1 (en) An image sensor and a method of manufacturing the same
CN107958913B (en) Image sensor and manufacturing method thereof
TWI622165B (en) Image sensor and fabrication method thereof
TWI669811B (en) Image sensors with light pipe-alike
TWI843961B (en) Image sensor integrated chip and method of forming the same