TWI611404B - Resistive random access memory without having an active electrode and manufacturing method thereof - Google Patents

Resistive random access memory without having an active electrode and manufacturing method thereof Download PDF

Info

Publication number
TWI611404B
TWI611404B TW104139724A TW104139724A TWI611404B TW I611404 B TWI611404 B TW I611404B TW 104139724 A TW104139724 A TW 104139724A TW 104139724 A TW104139724 A TW 104139724A TW I611404 B TWI611404 B TW I611404B
Authority
TW
Taiwan
Prior art keywords
layer
metal oxide
resistive
resistive memory
conductive layer
Prior art date
Application number
TW104139724A
Other languages
Chinese (zh)
Other versions
TW201719654A (en
Inventor
劉志益
江崑祺
林盟崇
Original Assignee
國立高雄應用科技大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立高雄應用科技大學 filed Critical 國立高雄應用科技大學
Priority to TW104139724A priority Critical patent/TWI611404B/en
Publication of TW201719654A publication Critical patent/TW201719654A/en
Application granted granted Critical
Publication of TWI611404B publication Critical patent/TWI611404B/en

Links

Landscapes

  • Semiconductor Memories (AREA)

Abstract

一種電阻式記憶體包含一基板、一絕緣層、一下導電層、一電阻層、一金屬氧化層及一上導電層。該電阻式記憶體製造方法包含:提供該基板;形成該絕緣層於該基板上;形成該下導電層於該絕緣層上;形成該電阻層於該下導電層上;形成該金屬氧化層於該電阻層上;形成該上導電層於該金屬氧化層上,以形成一記憶體元件,且該金屬氧化層形成於該電阻層及上導電層之間。由於該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態。 A resistive memory comprises a substrate, an insulating layer, a lower conductive layer, a resistive layer, a metal oxide layer and an upper conductive layer. The resistive memory manufacturing method includes: providing the substrate; forming the insulating layer on the substrate; forming the lower conductive layer on the insulating layer; forming the resistive layer on the lower conductive layer; forming the metal oxide layer on Forming the upper conductive layer on the metal oxide layer to form a memory device, and the metal oxide layer is formed between the resistance layer and the upper conductive layer. Since the metal oxide layer provides metal ions to the resistive layer to form a plurality of filamentary paths, an electrochemical transition of the memory element is formed.

Description

未採用活性電極之電阻式記憶體及其製造方法 Resistive memory without active electrode and manufacturing method thereof

本發明係關於一種電阻式記憶體〔resistive random access memory,resistive RAM〕及其製造方法構造及其製造方法;特別是關於一種未採用或減少採用活性電極〔active electrode〕之電阻式記憶體及其製造方法構造及其製造方法。 The present invention relates to a resistive memory (resistive RAM) and a method for fabricating the same, and a method of fabricating the same, and more particularly to a resistive memory that does not employ or reduce an active electrode and Manufacturing method construction and manufacturing method thereof.

一般而言,習用電阻式記憶體揭示於許多國內及國外專利資料,例如:中華民國專利公告第I473209號之〝電阻式記憶體的製造方法〞發明專利,其揭示一種電阻式記憶體的製造方法。該方法包括先將一基材放置於一濺鍍室內,在該基材上形成一下電極。在該濺鍍室中提供一銅靶材及一二氧化矽靶材,或提供一複合靶材,其由銅與二氧化矽相混合形成。然後,利用該銅靶材及二氧化矽靶材進行一共濺鍍製程,或是利用該複合靶材進行一濺鍍製程,以便在該下電極之表面上沉積一摻銅二氧化矽混合膜層,且該摻銅二氧化矽混合膜層可作為一可變電阻膜層。該摻銅二氧化矽混合膜層之Cu/(Cu+Si)的莫耳百分比為1%至15%。另外,在該可變電阻膜層上形成一上電極,以形成一電阻式記憶體。 In general, the conventional resistive memory is disclosed in many domestic and foreign patent materials, for example, the manufacturing method and the invention patent of the resistive memory of the Republic of China Patent Publication No. I473209, which discloses the manufacture of a resistive memory. method. The method includes first placing a substrate in a sputtering chamber and forming a lower electrode on the substrate. A copper target and a cerium oxide target are provided in the sputtering chamber, or a composite target is provided, which is formed by mixing copper with cerium oxide. Then, using the copper target and the cerium oxide target to perform a common sputtering process, or using the composite target to perform a sputtering process to deposit a copper-doped cerium oxide mixed film layer on the surface of the lower electrode And the copper-doped ceria mixed film layer can be used as a variable resistance film layer. The Cu/(Cu+Si) molar percentage of the copper-doped ceria mixed film layer is from 1% to 15%. Further, an upper electrode is formed on the variable resistance film layer to form a resistive memory.

事實上,前述第I473209號之該可變電阻膜層採用濺鍍製程將活性金屬銅摻雜於二氧化矽電阻切換層,且又採用濺鍍製程將銅金屬濺鍍形成該上電極,但銅金屬 於半導體製程中需要繁複製造程序,因此使其製程困難度增加。另外,在半導體製程中銅金屬亦極易造成擴散,因而進一步造成記憶體元件的可靠度降低。 In fact, the variable resistive film layer of the above No. I473209 is doped with a reactive metal copper on the ceria resistive switching layer by a sputtering process, and the copper metal is sputtered to form the upper electrode by a sputtering process, but copper metal The complicated manufacturing process is required in the semiconductor manufacturing process, which makes the process difficulty increase. In addition, copper metal is also prone to diffusion in the semiconductor process, which further reduces the reliability of the memory device.

另一習用電阻式記憶體,如中華民國專利公告第I489461號之〝電阻式記憶體結構、其操作方法及製作方法〞發明專利,其揭示一種電阻式記憶體結構、其操作方法及製作方法。該電阻式記憶體結構包括一第一電極層、一電阻切換層、一擴散金屬層及一第二電極層。該電阻切換層披覆於該第一電極層上,而該擴散金屬層披覆於該電阻切換層上,且該第二電極層披覆於該擴散金屬層上。另外,在該電阻切換層內設置至少一電極延伸部。 Another conventional resistive memory, such as the resistive memory structure of the Republic of China Patent Publication No. I489461, its operation method and manufacturing method, and the invention patent, discloses a resistive memory structure, an operation method thereof and a manufacturing method thereof. The resistive memory structure includes a first electrode layer, a resistance switching layer, a diffusion metal layer and a second electrode layer. The resistance switching layer is coated on the first electrode layer, and the diffusion metal layer is coated on the resistance switching layer, and the second electrode layer is coated on the diffusion metal layer. Further, at least one electrode extension portion is provided in the resistance switching layer.

事實上,前述第I489461號之該擴散金屬層作為絲狀路徑成長來源,使記憶體元件於寫入過程利用該擴散金屬層之擴散金屬成長其絲狀路徑,以便作為記憶體元件的記憶狀態。然而,該擴散金屬與活性金屬之間兩者作用機制相同,因此記憶體元件仍需經由活性金屬方可進行轉態。 In fact, the diffusion metal layer of the above-mentioned No. I489461 is used as a source of filamentary path growth, so that the memory element grows its filamentary path by the diffusion metal of the diffusion metal layer during the writing process, so as to be a memory state of the memory element. However, the interaction mechanism between the diffusion metal and the active metal is the same, so the memory element still needs to be transformed by the active metal.

簡言之,前述第I489461號之電阻記憶體的製造方法利用在該擴散金屬層上形成一金屬層,以便利用該金屬層作為一上電極〔第二電極層〕。在操作時,施加電壓於該金屬層上,並利用電場使該擴散金屬進入該電阻切換層中,使其成長金屬絲狀路徑,以便形成為該擴散金屬層之延伸部,藉此形成記憶體元件的記憶狀態。然而,此方法仍須要透過活性金屬作為絲狀路徑成長的核心,將會因不同的操作環境而使記憶體元件的記憶過程有所差異。 In short, the method of manufacturing the resistive memory of the above-mentioned No. I489461 utilizes forming a metal layer on the diffusion metal layer to utilize the metal layer as an upper electrode [second electrode layer]. In operation, a voltage is applied to the metal layer, and the diffusion metal is introduced into the resistance switching layer by an electric field to grow a wire-like path to form an extension of the diffusion metal layer, thereby forming a memory. The memory state of the component. However, this method still needs to pass through the active metal as the core of the filamentary path growth, and the memory process of the memory component will be different due to different operating environments.

顯然,習用電阻式記憶體必然存在進一步提供如何避免採用活性金屬而降低操作環境因素對記憶元件之記憶狀態之影響,因而使記憶體元件能在不同操作環境中提供穩定記憶狀態的潛在需求。前述中華民國專利公告第 I473209號及第I489461號之專利僅為本發明技術背景之參考及說明目前技術發展狀態而已,其並非用以限制本發明之範圍。 Obviously, the conventional resistive memory necessarily has the further requirement of how to avoid the use of active metal and reduce the influence of operating environment factors on the memory state of the memory element, thereby enabling the memory element to provide a stable memory state in different operating environments. The aforementioned Republic of China Patent Notice The patents of I473209 and I489461 are only for reference to the technical background of the present invention and the state of the art is not intended to limit the scope of the present invention.

有鑑於此,本發明為了滿足上述需求,其提供一種未採用或減少採用活性電極之電阻式記憶體構造及其製造方法,其將至少一金屬氧化層形成於一電阻層上,並將一上導電層形成於該金屬氧化層上,如此該金屬氧化層形成於該電阻層及上導電層之間,且該金屬氧化層提供金屬離子而使記憶體元件進行電化學轉態,以便在不同操作環境下產生相同切換操作特性,以改善習用記憶體元件之切換操作特性在不同操作環境〔無水氣環境或乾燥環境〕中無法穩定操作之技術缺點。 In view of the above, the present invention provides a resistive memory structure using an active electrode and a method of fabricating the same, which comprises forming at least one metal oxide layer on a resistive layer, and A conductive layer is formed on the metal oxide layer, such that the metal oxide layer is formed between the resistive layer and the upper conductive layer, and the metal oxide layer provides metal ions to electrochemically shift the memory element for different operations. The same switching operation characteristics are generated in the environment to improve the technical disadvantages that the switching operation characteristics of the conventional memory components cannot be stably operated in different operating environments [an airless environment or a dry environment].

本發明較佳實施例之主要目的係提供一種未採用或減少採用活性電極之電阻式記憶體構造及其製造方法,其將至少一金屬氧化層形成於一電阻層上,並將一上導電層形成於該金屬氧化層上,如此該金屬氧化層形成於該電阻層及上導電層之間,且該金屬氧化層提供金屬離子而使記憶體元件進行電化學轉態,以便在不同操作環境〔無水氣環境或乾燥環境〕下產生相同切換操作特性,以達成提升電阻式記憶體之操作穩定性之目的。 The main object of the preferred embodiment of the present invention is to provide a resistive memory structure using no active electrode or a method for fabricating the same, which comprises forming at least one metal oxide layer on a resistive layer and an upper conductive layer. Formed on the metal oxide layer, such that the metal oxide layer is formed between the resistive layer and the upper conductive layer, and the metal oxide layer provides metal ions to electrochemically transfer the memory element for different operating environments [ The same switching operation characteristics are produced in an anhydrous gas environment or a dry environment to achieve the purpose of improving the operational stability of the resistive memory.

為了達成上述目的,本發明較佳實施例之電阻式記憶體構造包含:一基板;一絕緣層,其設置於該基板上;一下導電層,其設置於該絕緣層上;一電阻層,其設置於該下導電層上;至少一金屬氧化層,其設置於該電阻層上;及一上導電層,其設置於該金屬氧化層上,以形 成一記憶體元件,且該金屬氧化層形成於該電阻層及上導電層之間;其中該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態。 In order to achieve the above object, a resistive memory structure according to a preferred embodiment of the present invention comprises: a substrate; an insulating layer disposed on the substrate; a lower conductive layer disposed on the insulating layer; and a resistive layer Provided on the lower conductive layer; at least one metal oxide layer disposed on the resistance layer; and an upper conductive layer disposed on the metal oxide layer to form Forming a memory element, and the metal oxide layer is formed between the resistance layer and the upper conductive layer; wherein the metal oxide layer provides metal ions to the resistance layer to form a plurality of filamentous paths, thereby forming an electrification of the memory element Learn to change.

為了達成上述目的,本發明另一較佳實施例之電阻式記憶體構造包含:一基板;一絕緣層,其設置於該基板上;一下導電層,其設置於該絕緣層上;一電阻層,其設置於該下導電層上;數個金屬氧化層,其設置於該電阻層上;及一上導電層,其設置於數個該金屬氧化層上,以形成一記憶體元件,且數個該金屬氧化層形成於該電阻層及上導電層之間;其中數個該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態。 In order to achieve the above object, a resistive memory structure according to another preferred embodiment of the present invention includes: a substrate; an insulating layer disposed on the substrate; a lower conductive layer disposed on the insulating layer; and a resistive layer Provided on the lower conductive layer; a plurality of metal oxide layers disposed on the resistive layer; and an upper conductive layer disposed on the plurality of metal oxide layers to form a memory device, and The metal oxide layer is formed between the resistive layer and the upper conductive layer; wherein the plurality of metal oxide layers provide metal ions to the resistive layer to form a plurality of filamentary paths, thereby forming an electrochemical transition state of the memory device .

本發明較佳實施例之該金屬氧化層為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜。 In the preferred embodiment of the invention, the metal oxide layer is a film of a mixture of an active metal oxide film or an active metal oxide.

本發明較佳實施例之該金屬氧化層包含銅、銀或其它活性金屬。 The metal oxide layer of the preferred embodiment of the invention comprises copper, silver or other active metal.

本發明較佳實施例之該金屬氧化層包含一硫化物薄膜、一氮化物薄膜或其混合物薄膜。 In the preferred embodiment of the invention, the metal oxide layer comprises a sulfide film, a nitride film or a mixture film thereof.

為了達成上述目的,本發明較佳實施例之電阻式記憶體製造方法包含:提供一基板;形成一絕緣層於該基板上;形成一下導電層於該絕緣層上; 形成一電阻層於該下導電層上;形成一金屬氧化層於該電阻層上;及形成一上導電層於該金屬氧化層上,以形成一記憶體元件,且該金屬氧化層形成於該電阻層及上導電層之間;其中該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態。 In order to achieve the above object, a resistive memory manufacturing method according to a preferred embodiment of the present invention includes: providing a substrate; forming an insulating layer on the substrate; forming a conductive layer on the insulating layer; Forming a resistive layer on the lower conductive layer; forming a metal oxide layer on the resistive layer; and forming an upper conductive layer on the metal oxide layer to form a memory device, and the metal oxide layer is formed thereon Between the resistive layer and the upper conductive layer; wherein the metal oxide layer provides metal ions to the resistive layer to form a plurality of filamentary paths, thereby forming an electrochemical transition of the memory element.

本發明較佳實施例之該金屬氧化層為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜。 In the preferred embodiment of the invention, the metal oxide layer is a film of a mixture of an active metal oxide film or an active metal oxide.

本發明較佳實施例之該金屬氧化層包含銅、銀或其它活性金屬。 The metal oxide layer of the preferred embodiment of the invention comprises copper, silver or other active metal.

本發明較佳實施例之該金屬氧化層包含一硫化物薄膜、一氮化物薄膜或其混合物薄膜。 In the preferred embodiment of the invention, the metal oxide layer comprises a sulfide film, a nitride film or a mixture film thereof.

本發明較佳實施例之該金屬氧化層之厚度為介於1至100奈米之間。 In the preferred embodiment of the invention, the metal oxide layer has a thickness of between 1 and 100 nm.

本發明較佳實施例之該下導電層之厚度為介於10至1000奈米之間,而該電阻層之厚度為介於20至500奈米之間。 In a preferred embodiment of the invention, the thickness of the lower conductive layer is between 10 and 1000 nanometers, and the thickness of the resistive layer is between 20 and 500 nanometers.

本發明較佳實施例之該金屬氧化層由熱蒸鍍法、濺鍍法、共濺鍍法、電子束蒸鍍法、電漿氧化法或其它成形方法形成。 The metal oxide layer of the preferred embodiment of the present invention is formed by a thermal evaporation method, a sputtering method, a co-sputtering method, an electron beam evaporation method, a plasma oxidation method, or other forming methods.

110‧‧‧電阻式記憶體元件 110‧‧‧Resistive memory components

112‧‧‧基板 112‧‧‧Substrate

114‧‧‧絕緣層 114‧‧‧Insulation

116‧‧‧下導電層 116‧‧‧lower conductive layer

118‧‧‧電阻層 118‧‧‧resistance layer

120‧‧‧上導電層 120‧‧‧Upper conductive layer

a‧‧‧金屬氧化層 A‧‧‧metal oxide layer

212‧‧‧初始化動作 212‧‧‧Initial action

214‧‧‧抹除動作 214‧‧‧Erasing action

216‧‧‧寫入動作 216‧‧‧Write action

312‧‧‧步驟 312‧‧ steps

314‧‧‧步驟 314‧‧‧Steps

316‧‧‧步驟 316‧‧‧Steps

318‧‧‧步驟 318‧‧‧Steps

320‧‧‧步驟 320‧‧‧Steps

324‧‧‧步驟 324‧‧‧Steps

412‧‧‧初始化動作 412‧‧‧Initial action

414‧‧‧抹除動作 414‧‧‧Erasing action

416‧‧‧寫入動作 416‧‧‧Write action

512‧‧‧初始化動作 512‧‧‧Initial action

514‧‧‧抹除動作 514‧‧‧Erasing action

516‧‧‧寫入動作 516‧‧‧Write action

612‧‧‧寫入電壓 612‧‧‧Write voltage

614‧‧‧抹除電壓 614‧‧‧Erase voltage

616‧‧‧寫入電壓 616‧‧‧Write voltage

618‧‧‧抹除電壓 618‧‧‧ erase voltage

712‧‧‧高電阻狀態 712‧‧‧High resistance state

714‧‧‧低電阻狀態 714‧‧‧Low resistance state

第1圖:本發明較佳實施例之電阻式記憶體構造之剖面示意圖。 Fig. 1 is a cross-sectional view showing the structure of a resistive memory according to a preferred embodiment of the present invention.

第2圖:本發明較佳實施例之電阻式記憶體之電阻切換特性之電壓及電流關係之示意圖。 Fig. 2 is a view showing the relationship between voltage and current of the resistance switching characteristic of the resistive memory according to the preferred embodiment of the present invention.

第3圖:本發明較佳實施例之電阻式記憶體製造方法之 流程示意圖。 Figure 3 is a diagram showing a method of manufacturing a resistive memory according to a preferred embodiment of the present invention Schematic diagram of the process.

第4圖:習用電阻式記憶體元件在無水氣或乾燥環境下進行電阻切換操作之電壓及電流關係之示意圖。 Figure 4: Schematic diagram of the relationship between voltage and current of a conventional resistive memory device in a gas-free or dry environment.

第5圖:本發明較佳實施例之電阻式記憶體在無水氣或乾燥環境下進行電阻切換操作之電壓及電流關係之示意圖。 Fig. 5 is a view showing the relationship between voltage and current of a resistive memory in a gas-free or dry environment in a preferred embodiment of the present invention.

第6圖:本發明較佳實施例之電阻式記憶體在大氣環境下之操作電壓示意圖。 Figure 6 is a schematic view showing the operating voltage of the resistive memory in the atmosphere of the preferred embodiment of the present invention.

第7圖:本發明較佳實施例之電阻式記憶體在無水氣或乾燥環境下進行高低電阻之間切換操作與穩定切換次數之示意圖。 Figure 7 is a schematic diagram showing the switching operation between high and low resistance and the number of stable switching times of the resistive memory in the preferred embodiment of the present invention in an anhydrous gas or dry environment.

為了充分瞭解本發明,於下文將舉例較佳實施例並配合所附圖式作詳細說明,且其並非用以限定本發明。 In order to fully understand the present invention, the preferred embodiments of the present invention are described in detail below, and are not intended to limit the invention.

一般而言,記憶體元件通常可分為兩大類,即揮發性記憶體與非揮發性記憶體〔non-volatile memory〕兩種。非揮發性記憶體為其記憶狀態在不需透過電源持續供應下,仍能將其記憶狀態儲存於元件中。目前在各種非揮發性記憶體中,又以可快速寫入與抹除之快閃記憶體〔flash RAM〕格外受到重視。然而,隨著元件不斷的縮小,快閃記憶體也逐漸面臨到過大的寫入電壓、過長的寫入時間、面臨物理微縮極限與閘極過薄導致記憶時間縮短的困境。因此,新開發的非揮發性記憶體逐漸取代快閃記憶體,其中電阻式記憶體元件具有寫入抹除時間短、操作電壓及電流低〔低消耗功率〕、記憶時間長、多狀態記憶、結構簡單、簡化的寫入與讀出方式及所需面積小等優點。 In general, memory components can be generally divided into two categories, namely, volatile memory and non-volatile memory. The non-volatile memory can still store its memory state in the component without being continuously supplied through the power supply. At present, among various non-volatile memories, flash memory which can be quickly written and erased is particularly valued. However, as components continue to shrink, flash memory is gradually facing the problem of excessive write voltage, excessive write time, physical miniaturization limit and too thin gate, resulting in shortened memory time. Therefore, the newly developed non-volatile memory gradually replaces the flash memory, wherein the resistive memory device has a short write erase time, low operating voltage and current (low power consumption), long memory time, multi-state memory, The structure is simple, the writing and reading modes are simplified, and the required area is small.

除了前述諸優點之外,電阻式記憶體與互補金屬氧化物半導體〔CMOS,Complementary Metal-Oxide Semiconductor〕之間具有製程整合容易且不受限制的優 點。故現今非揮發性記憶體研究發展主流以電阻式記憶體為最具前瞻性記憶元件。 In addition to the above advantages, the resistive memory and the complementary metal-oxide semiconductor (CMOS, Complementary Metal-Oxide Semiconductor) have easy and unrestricted process integration. point. Therefore, the current mainstream of research on non-volatile memory is the use of resistive memory as the most forward-looking memory component.

有鑑於此,本發明較佳實施例之未採用或減少採用活性電極之電阻式記憶體構造及其製造方法主要用以改善習用電阻式記憶體元件的電化學轉態隨著環境水氣的壓力改變而發生顯著切換特性〔操作特性〕變化的技術問題,而具有不需採用複雜的處理製程及降低成本的優點,且達成提升電阻式記憶體之操作穩定性之目的。 In view of the above, the resistive memory structure using the active electrode and the manufacturing method thereof are not used or improved in the preferred embodiment of the present invention, and are mainly used to improve the electrochemical transition state of the conventional resistive memory device with the pressure of the ambient water and gas. The technical problem of significant switching characteristics (operating characteristics) changes is changed, and the advantages of not requiring complicated processing processes and cost reduction are achieved, and the operational stability of the resistive memory is achieved.

一般而言,燈絲理論為電阻式記憶體之電阻切換機制的理論之一。燈絲理論機制主要利用寫入及抹除動作,反覆在電阻層內部的電流傳導路徑〔current conductive path〕或導電路徑之形成與斷裂,進而使電阻式記憶體元件形成低電阻狀態〔low resistance state,LRS〕及高電阻狀態〔high resistance state,HRS〕,以便做為數位訊號裡〝0〞與〝1〞訊號之判別。 In general, filament theory is one of the theories of the resistance switching mechanism of resistive memory. The filament theoretical mechanism mainly uses the writing and erasing actions to repeatedly form and break the current conductive path or the conductive path inside the resistive layer, thereby forming the resistive memory element into a low resistance state. LRS] and high resistance state (HRS) are used as the discrimination between 〝0〞 and 〝1〞 signals in the digital signal.

承上,電阻式記憶體之切換特性採用絲狀傳導路徑〔電流傳導路徑〕的形成與斷裂,進而將元件在低電阻狀態及高電阻狀態之間操作切換。當絲狀傳導路徑形成時,元件為處於低電阻狀態,即為數位信號裡的〝1〞。反之,當絲狀傳導路徑斷裂時,元件轉變為高電阻狀態,即為數位信號裡的〝0〞。 According to the above, the switching characteristic of the resistive memory adopts the formation and fracture of the filament-shaped conduction path (current conduction path), thereby switching the element between the low resistance state and the high resistance state. When the filamentary conduction path is formed, the component is in a low resistance state, that is, 〝1〞 in the digital signal. Conversely, when the filamentary conduction path breaks, the component transitions to a high resistance state, which is 〝0〞 in the digital signal.

第1圖揭示本發明較佳實施例之電阻式記憶體構造之剖面示意圖,其構造包含六個結構層,但其並非用以限定本發明之範圍。請參照第1圖所示,舉例而言,本發明較佳實施例之記憶體構造適用於形成一電阻式記憶體元件〔resistive RAM〕110或適用於其它一般記憶體元件,該電阻式記憶體元件110包含一基板〔substrate〕112、一絕緣層〔isolating layer〕114、一下導電層〔lower electrode layer〕116、一電阻層〔resistive layer〕118、至少 一個或數個金屬氧化層〔metallic oxide layer〕a及一上導電層〔upper electrode layer〕120。該絕緣層114、下導電層116、電阻層118、金屬氧化層a及上導電層120由下而上依序設置於該基板112上。 1 is a cross-sectional view of a resistive memory structure in accordance with a preferred embodiment of the present invention, the construction of which includes six structural layers, but is not intended to limit the scope of the invention. Referring to FIG. 1 , for example, the memory structure of the preferred embodiment of the present invention is suitable for forming a resistive memory element 110 or for other general memory elements, the resistive memory. The component 110 includes a substrate 112, an isolating layer 114, a lower electrode layer 116, a resistive layer 118, and at least One or more metal oxide layers a and an upper electrode layer 120. The insulating layer 114, the lower conductive layer 116, the resistive layer 118, the metal oxide layer a, and the upper conductive layer 120 are sequentially disposed on the substrate 112 from bottom to top.

舉例而言,本發明另一較佳實施例之該下導電層116之厚度為10至1000奈米。本發明另一較佳實施例之該下導電層116具有一特定晶體排列方向,且該晶體排列方向包含(100)、(200)或(110)。本發明另一較佳實施例之該電阻層118之厚度為20至500奈米。本發明另一較佳實施例之該金屬氧化層a之厚度為1至100奈米。 For example, in another preferred embodiment of the present invention, the lower conductive layer 116 has a thickness of 10 to 1000 nm. In another preferred embodiment of the present invention, the lower conductive layer 116 has a specific crystal alignment direction, and the crystal alignment direction includes (100), (200) or (110). In another preferred embodiment of the present invention, the resistive layer 118 has a thickness of 20 to 500 nm. In another preferred embodiment of the present invention, the metal oxide layer a has a thickness of from 1 to 100 nm.

第2圖揭示本發明較佳實施例之電阻式記憶體之切換特性之電壓及電流關係之示意圖,其橫軸為電壓,而其縱軸為電流。請參照第1及2圖所示,該電阻式記憶體元件110之切換特性依序包含一初始化動作〔Forming〕212、一抹除動作〔RESET〕214及一寫入動作〔SET〕216,但其並非用以限定本發明之範圍。 Fig. 2 is a view showing the relationship between voltage and current of the switching characteristics of the resistive memory according to the preferred embodiment of the present invention, wherein the horizontal axis is voltage and the vertical axis is current. Referring to FIGS. 1 and 2, the switching characteristics of the resistive memory device 110 sequentially include an initializing operation 212, a erase operation 214, and a write operation SET 216. It is not intended to limit the scope of the invention.

請再參照第1及2圖所示,在元件製造完成後,由於該電阻式記憶體元件110之初始電阻狀態〔initial resistance state,IRS〕為初始電阻值過高狀態,因此其近似絕緣狀態,故需要提供該初始化動作212,如此方能使該電阻式記憶體元件110開始執行電阻切換功能,即執行記憶功能。 Referring to FIGS. 1 and 2 again, after the component is manufactured, since the initial resistance state (IRS) of the resistive memory device 110 is an initial resistance value is too high, the approximate insulation state is Therefore, the initialization action 212 needs to be provided, so that the resistive memory element 110 can start performing the resistance switching function, that is, performing the memory function.

請再參照第1及2圖所示,當該電阻式記憶體元件110製備完成後,對該電阻式記憶體元件110進行該初始化動作212。舉例而言,該初始化動作212的偏壓由0V開始正向增加,隨著當偏壓增加至V1時,電流急遽上升、電阻值瞬間下降或減少,並在該電阻式記憶體元件110之內部形成一絲狀傳導路徑,且該電阻式記憶體元件110之電阻轉變為低電阻狀態,即完成該初始化動作212,以 便後續執行該抹除動作214。 Referring to FIGS. 1 and 2 again, after the preparation of the resistive memory device 110 is completed, the initializing operation 212 is performed on the resistive memory device 110. For example, the bias voltage of the initialization action 212 increases from 0V to the positive direction. As the bias voltage increases to V1, the current rises sharply, the resistance value decreases or decreases instantaneously, and is inside the resistive memory element 110. Forming a filament-like conduction path, and the resistance of the resistive memory element 110 transitions to a low resistance state, that is, completing the initialization action 212 to The erase action 214 is subsequently performed.

接著,對該電阻式記憶體元件110進行該抹除動作214,並適當施予一抹除電壓,該抹除電壓的偏壓由0V開始負向增加,以便施加一負向偏壓。隨著負向偏壓增加電流也逐漸增加,其電壓與電流形成正比關係。當該負向電壓增加至V2時,電流急遽下降、電阻瞬間增加,並在該電阻式記憶體元件110內部的該絲狀傳導路徑形成斷裂,且該電阻式記憶體元件110之電阻轉變為高電阻狀態,即完成該抹除動作214,以便後續執行該寫入動作216。 Then, the erasing action 214 is performed on the resistive memory device 110, and an erase voltage is appropriately applied. The bias voltage of the erase voltage is negatively increased from 0 V to apply a negative bias. As the negative bias voltage increases, the current also gradually increases, and its voltage is proportional to the current. When the negative voltage is increased to V2, the current is rapidly decreased, the resistance is instantaneously increased, and the filament-like conduction path inside the resistive memory element 110 is broken, and the resistance of the resistive memory element 110 is changed to high. The resist state, i.e., the erase action 214 is completed, to subsequently perform the write action 216.

接著,對該電阻式記憶體元件110進行該寫入動作216,並適當施予一寫入電壓,該寫入電壓的偏壓由0V開始正向增加,以便施加一正偏壓。隨著偏壓增加至V3時,電阻值瞬間下降或減少、電流急遽上升,並在該電阻式記憶體元件110之內部再次形成該絲狀傳導路徑,且該電阻式記憶體元件110之電阻再次轉變為低電阻狀態,即完成該寫入動作216。如此,該電阻式記憶體元件110已完成電阻式記憶體的操作機制,即已完成執行記憶功能。將該抹除動作214及寫入動作216不斷依序重覆執行,即可操作該電阻式記憶體元件110。 Next, the write operation 216 is performed on the resistive memory device 110, and a write voltage is applied as appropriate, and the bias voltage of the write voltage is positively increased from 0 V to apply a positive bias. As the bias voltage is increased to V3, the resistance value is instantaneously decreased or decreased, the current is rapidly increased, and the filament-shaped conduction path is again formed inside the resistive memory element 110, and the resistance of the resistive memory element 110 is again The write to action 216 is accomplished by transitioning to a low resistance state. As such, the resistive memory component 110 has completed the operational mechanism of the resistive memory, that is, the memory function has been completed. The erasing operation 214 and the writing operation 216 are continuously performed in sequence, and the resistive memory element 110 can be operated.

請再參照第1及2圖所示,為避免該電阻式記憶體元件110在形成該絲狀傳導路徑後,其流經該電阻式記憶體元件110的電流持續上升,甚至在高電流狀態下可造成該電阻式記憶體元件110永久性的破壞。為避免流經該電阻式記憶體元件110的電流持續上升,故在對該電阻式記憶體元件110施予該初始化動作212及寫入動作216時,適當設定一限制電流I1及I3,如第2圖所示,以保護該電阻式記憶體元件110。另外,在該抹除動作214中,該絲狀傳導路徑會隨著反向偏壓增大而斷裂,故不需要設定限制電流,如第2圖所示,其中該抹除電流為I2。 Referring to FIGS. 1 and 2 again, in order to prevent the resistive memory device 110 from forming a wire-shaped conduction path, the current flowing through the resistive memory device 110 continues to rise, even at a high current state. This resistive memory element 110 can be permanently destroyed. In order to prevent the current flowing through the resistive memory device 110 from rising continuously, when the initializing operation 212 and the writing operation 216 are applied to the resistive memory device 110, a limiting current I1 and I3 are appropriately set, as described in 2 is shown to protect the resistive memory element 110. In addition, in the erasing action 214, the filament-like conduction path is broken as the reverse bias voltage increases, so that it is not necessary to set the limiting current, as shown in FIG. 2, wherein the erasing current is I2.

第3圖揭示本發明較佳實施例之電阻式記憶體製造方法之流程示意圖,其包含六個步驟方塊。請參照第1、2及3圖所示,在步驟312中提供製備完成含該絕緣層114及下導電層116之基板112,在步驟314中沉積該電阻層118,在步驟324中沉積該金屬氧化層a〔例如:以熱蒸鍍法沉積奈米等級銅氧化物薄膜〕,在步驟316中沉積該上導電層120,在步驟318中在該電阻層118的內部形成該絲狀傳導路徑,在步驟320中執行記憶功能。 FIG. 3 is a flow chart showing a method of manufacturing a resistive memory according to a preferred embodiment of the present invention, which comprises six step blocks. Referring to FIGS. 1, 2 and 3, in step 312, a substrate 112 having the insulating layer 114 and the lower conductive layer 116 is prepared, and the resistive layer 118 is deposited in step 314, and the metal is deposited in step 324. The oxide layer a (for example, depositing a nano-scale copper oxide film by thermal evaporation), depositing the upper conductive layer 120 in step 316, and forming the filament-like conduction path inside the resistance layer 118 in step 318, The memory function is performed in step 320.

請再參照第1圖所示,該金屬氧化層a形成於該電阻層118及上導電層120之間。該金屬氧化層a由熱蒸鍍法、共濺鍍法、電子束蒸鍍法、電漿氧化法〔plasma oxidation〕或其它成形方法形成。由於該金屬氧化層a在無水氣環境或乾燥環境下易解離金屬離子〔例如:銅離子、銀離子或其它活性金屬離子〕,因此該電阻式記憶體元件110之操作特性在無水氣環境或乾燥環境中形成穩定,以達成提升該電阻式記憶體元件110之操作穩定性。 Referring to FIG. 1 again, the metal oxide layer a is formed between the resistance layer 118 and the upper conductive layer 120. The metal oxide layer a is formed by a thermal evaporation method, a co-sputtering method, an electron beam evaporation method, a plasma oxidation method, or other molding methods. Since the metal oxide layer a is easily dissociated from metal ions (for example, copper ions, silver ions or other active metal ions) in an anhydrous gas atmosphere or a dry environment, the operational characteristics of the resistive memory device 110 are in an anhydrous gas atmosphere or dried. Stabilization is formed in the environment to achieve improved operational stability of the resistive memory element 110.

請再參照第1圖所示,該金屬氧化層a之銅氧化物薄膜取代習用電阻式記憶體元件之活性金屬銅層,即習用電阻式記憶體不需採用以活性金屬作為電極,以便達成降低製造成本及簡化製程作業。另外,該金屬氧化層a為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜。舉例而言,該金屬氧化層包含一硫化物薄膜、一氮化物薄膜或其混合物薄膜。 Referring to FIG. 1 again, the copper oxide film of the metal oxide layer a replaces the active metal copper layer of the conventional resistive memory device, that is, the conventional resistive memory does not need to use the active metal as the electrode, so as to achieve the reduction. Manufacturing costs and streamlined process operations. Further, the metal oxide layer a is a film of a mixture of an active metal oxide film or an active metal oxide. For example, the metal oxide layer comprises a film of a sulfide, a film of a nitride or a mixture thereof.

請再參照第1圖所示,該金屬氧化層a為一單一金屬氧化層或一複合金屬氧化層。該金屬氧化層a為一金屬氧化物薄膜〔例如:銅氧化物薄膜〕、一硫化物薄膜或其它金屬氧化物薄膜。該金屬氧化層a包含:銅氧化物、銀氧化物、鎳氧化物或其任意混合物;氧化銅、氧化亞銅、銅、硫化銅或其任意混合物;硫化銅、硫化銀、硫化鎳或 其任意混合物。 Referring again to FIG. 1, the metal oxide layer a is a single metal oxide layer or a composite metal oxide layer. The metal oxide layer a is a metal oxide film (for example, a copper oxide film), a sulfide film or other metal oxide film. The metal oxide layer a comprises: copper oxide, silver oxide, nickel oxide or any mixture thereof; copper oxide, cuprous oxide, copper, copper sulfide or any mixture thereof; copper sulfide, silver sulfide, nickel sulfide or Any mixture thereof.

請再參照第1及3圖所示,舉例而言,本發明較佳實施例採用該電阻式記憶體元件110之製備過程如下: Referring to FIGS. 1 and 3 again, for example, the preferred embodiment of the present invention uses the resistive memory device 110 as follows:

該基板112為P型晶圓,且該基板112先以RCA清洗去除晶圓上的原生氧化層、微粒與有機物,再使用水平爐管搭配濕式氧化法成長200nm或其它適當厚度的二氧化矽〔SiO2〕,以形成該絕緣層114,以防止該基板112發生漏電,並降低寄生效應。 The substrate 112 is a P-type wafer, and the substrate 112 is first cleaned by RCA to remove the native oxide layer, particles and organic matter on the wafer, and then the horizontal furnace tube is used with the wet oxidation method to grow 200 nm or other suitable thickness of cerium oxide. [SiO 2 ] to form the insulating layer 114 to prevent leakage of the substrate 112 and to reduce parasitic effects.

接著,在完成濕式氧化法後,以多層金屬濺鍍〔sputter〕系統、電子束〔E-beam〕蒸鍍系統或其它適當技術手段沉積20nm或其它適當厚度的鈦〔Ti〕或氮化鈦〔TiN〕,以做為一黏著層〔adhesive layer〕,以便黏著該絕緣層114及下導電層116。 Next, after the wet oxidation process is completed, 20 nm or other suitable thickness of titanium [Ti] or titanium nitride is deposited by a multilayer metal sputtering system, an electron beam (E-beam) evaporation system, or other suitable techniques. [TiN] is used as an adhesive layer to adhere the insulating layer 114 and the lower conductive layer 116.

接著,以適當技術手段〔例如:化學氣相沉積系統〕沉積150nm或其它適當厚度的鎢〔tungsten〕,以做為該下導電層116〔即下導電極〕,即完成含該下導電層116之該基板112,如第3圖之步驟312所示。 Next, 150 nm or other suitable thickness of tungsten is deposited by a suitable technical means (for example, a chemical vapor deposition system) as the lower conductive layer 116 (ie, the lower conductive electrode), that is, the lower conductive layer 116 is completed. The substrate 112 is shown as step 312 of FIG.

接著,以射頻磁控濺鍍機〔RF-Magnetron Sputter〕或其它技術手段濺鍍20nm或其它適當厚度的二氧化矽〔SiO2〕,以做為該電阻層118,如第3圖之步驟314所示。 Next, a 20 nm or other suitable thickness of cerium oxide [SiO 2 ] is sputtered by a RF magnetron sputtering machine (RF-Magnetron Sputter) or other techniques as the resistance layer 118, as in step 314 of FIG. Shown.

習用電阻式記憶體元件則採用在沉積上導電層時,以熱蒸鍍機或其它適當技術手段直接蒸鍍適當厚度的銅〔Cu〕,以做為上導電層,並利用金屬遮罩定義出上導電層的面積,且其無法於無水氣環境中進行電化學式轉態的電阻切換操作。 Conventional resistive memory components are used to directly deposit a suitable thickness of copper [Cu] by a thermal vaporizer or other suitable technique when depositing a conductive layer, as an upper conductive layer, and defined by a metal mask. The area of the upper conductive layer, and it is not possible to perform an electrochemically-switched resistance switching operation in an anhydrous gas environment.

接著,在沉積該上導電層120前,以熱蒸鍍機或其它適當技術手段直接蒸鍍適當厚度的銅氧化物 〔CuxO〕薄膜,以做為該金屬氧化層a,如第3圖之步驟324所示。 Next, before depositing the upper conductive layer 120, directly deposit a copper oxide [Cu x O] film of a suitable thickness by a thermal vapor deposition machine or other suitable technical means as the metal oxide layer a, as shown in FIG. Step 324 is shown.

接著,以熱蒸鍍機〔Thermal Evaporation〕或其它技術手段蒸鍍200nm或其它適當厚度的低活性金屬或惰性金屬,例如:鎳〔Ni〕,以做為該上導電層120〔即上導電極〕,並且利用金屬遮罩定該上導電層120之面積,如第3圖之步驟316所示。 Then, a low-active metal or an inert metal such as nickel [Ni] of 200 nm or other suitable thickness is vapor-deposited by a thermal evaporation machine or other technical means to serve as the upper conductive layer 120. And, the area of the upper conductive layer 120 is determined by a metal mask, as shown in step 316 of FIG.

本發明之電性量測採用HP 4155B半導體參數分析儀進行測試,並利用LabVIEW程式編輯軟體所開發之自動化量測程式進行各式電性分析,該上導電層120連接電源輸出端,而該下導電層116連接至接地端〔ground〕。 The electrical measurement of the present invention is tested by the HP 4155B semiconductor parameter analyzer, and various electrical analysis is performed by using the automated measurement program developed by the LabVIEW program editing software. The upper conductive layer 120 is connected to the power output terminal, and the lower conductive layer 120 is connected to the power output terminal. The conductive layer 116 is connected to the ground.

第4圖揭示習用電阻式記憶體元件在無水氣或乾燥環境下進行電阻切換操作之電壓及電流關係之示意圖。請參照第4圖所示,其顯示習用電阻式記憶體元件在無水氣或乾燥環境下進行電阻切換操作依序包含一初始化動作412、一抹除動作414及一寫入動作416。當對習用電阻式記憶體元件進行該初始化動作412後,元件便進入硬性崩潰現象。一旦元件進入硬性崩潰狀態時,其無論進行該抹除動作414或寫入動作416皆無法對元件進行操作,即電化學式電阻記憶體無法於無水氣環境中以電化學效應進行轉態。 Fig. 4 is a view showing the relationship between voltage and current of a conventional resistive memory device for performing a resistance switching operation in an anhydrous gas or a dry environment. Referring to FIG. 4, the conventional resistive memory device performs a resistance switching operation in an anhydrous gas or dry environment, and includes an initialization operation 412, an erasing action 414, and a writing operation 416. When the initialization action 412 is performed on a conventional resistive memory device, the component enters a hard collapse phenomenon. Once the component enters a hard collapse state, it does not operate the component regardless of whether the erase operation 414 or the write operation 416 is performed, that is, the electrochemical resistance memory cannot be transformed by the electrochemical effect in an anhydrous gas environment.

第5圖揭示本發明較佳實施例之電阻式記憶體在無水氣或乾燥環境下進行電阻切換操作之電壓及電流關係之示意圖。請參照第1及5圖所示,其顯示將該電阻式記憶體元件110於無水氣環境中,對其進行該初始化動作512,並經該初始化動作512後,接著進行該抹除動作514,並繼續進行該寫入動作516,其確認該電阻式記憶體元件110在無水氣環境中仍可進行電阻式轉態。 Fig. 5 is a view showing the relationship between the voltage and current of the resistance-switching operation of the resistive memory in the anhydrous gas or dry environment according to the preferred embodiment of the present invention. Referring to FIGS. 1 and 5, the resistive memory device 110 is shown in an anhydrous environment, and the initialization operation 512 is performed. After the initialization operation 512, the erase operation 514 is performed. The write operation 516 is continued to confirm that the resistive memory device 110 can still undergo a resistive transition in an anhydrous gas environment.

第6圖揭示本發明較佳實施例之電阻式記憶體 在大氣環境下之操作電壓示意圖。請參照第1及6圖所示,其顯示將該電阻式記憶體元件110在大氣環境中具有一寫入電壓612及一抹除電壓614。相對的,將該電阻式記憶體元件110於無水氣環境中具有一寫入電壓616及一抹除電壓618。在大氣環境中之該寫入電壓612及抹除電壓614與無水氣環境中之該寫入電壓616及抹除電壓618差異無幾。本發明較佳實施例之該電阻式記憶體元件110顯示於不同氣氛中之轉態特性較無差異。 Figure 6 shows a resistive memory in accordance with a preferred embodiment of the present invention Schematic diagram of operating voltage in an atmospheric environment. Referring to Figures 1 and 6, it is shown that the resistive memory device 110 has a write voltage 612 and an erase voltage 614 in the atmosphere. In contrast, the resistive memory device 110 has a write voltage 616 and an erase voltage 618 in an anhydrous gas environment. The write voltage 612 and the erase voltage 614 in the atmosphere are not much different from the write voltage 616 and the erase voltage 618 in an anhydrous gas environment. In the preferred embodiment of the present invention, the resistive memory element 110 exhibits no difference in transition characteristics in different atmospheres.

第7圖揭示本發明較佳實施例之電阻式記憶體在無水氣或乾燥環境下進行高低電阻之間切換操作與穩定切換次數之示意圖。請參照第1及7圖所示,其顯示透過對元件持續循環的寫入與抹除,由循環寫入過程中分別取出一高電阻狀態712及一低電阻狀態714,其顯示元件可在無水氣環境下於該高電阻狀態712及低電阻狀態714之間穩定切換數次。 Fig. 7 is a view showing the switching operation between the high and low resistance and the number of stable switching times of the resistive memory in the preferred embodiment of the present invention in an anhydrous gas or dry environment. Referring to Figures 1 and 7, it is shown that through the writing and erasing of the continuous cycle of the component, a high resistance state 712 and a low resistance state 714 are respectively taken out from the cyclic writing process, and the display component can be in the waterless state. The switching between the high resistance state 712 and the low resistance state 714 is stably performed several times in a gaseous environment.

請再參照第1、4及5圖所示,其顯示習用電阻式記憶體元件於無水氣環境中將無法進行轉態;反之,本發明較佳實施例之該電阻式記憶體元件110採用無活性電極仍可於無水氣環境中進行轉態,即該上導電層120之無活性電極〔相對較低活性金屬電極或惰性金屬電極〕之絲狀路徑在無水氣或乾燥狀態下仍可由該金屬氧化層a之銅氧化物薄膜供應銅離子。因此本發明較佳實施例之該電阻式記憶體元件110將不受環境氣氛影響,且可將習用電阻式記憶體元件之活性金屬電極以該金屬氧化層a之銅氧化物薄膜取代。 Referring to Figures 1, 4 and 5 again, it is shown that the conventional resistive memory device will not be able to undergo a transition state in an anhydrous gas environment; otherwise, the resistive memory device 110 of the preferred embodiment of the present invention adopts no The active electrode can still be transformed in an anhydrous gas environment, that is, the filamentary path of the inactive electrode (relatively lower active metal electrode or inert metal electrode) of the upper conductive layer 120 can still be obtained from the metal in an anhydrous gas or in a dry state. The copper oxide film of the oxide layer a supplies copper ions. Therefore, the resistive memory device 110 of the preferred embodiment of the present invention is not affected by the ambient atmosphere, and the active metal electrode of the conventional resistive memory device can be replaced by the copper oxide film of the metal oxide layer a.

上述實驗數據為在特定條件之下所獲得的初步實驗結果,其僅用以易於瞭解或參考本發明之技術內容而已,其尚需進行其他相關實驗。該實驗數據及其結果並非用以限制本發明之權利範圍。 The above experimental data is preliminary experimental results obtained under specific conditions, which are only used to easily understand or refer to the technical content of the present invention, and other related experiments are still required. The experimental data and its results are not intended to limit the scope of the invention.

前述較佳實施例僅舉例說明本發明及其技術特徵,該實施例之技術仍可適當進行各種實質等效修飾及/或替換方式予以實施;因此,本發明之權利範圍須視後附申請專利範圍所界定之範圍為準。本案著作權限制使用於中華民國專利申請用途。 The foregoing preferred embodiments are merely illustrative of the invention and the technical features thereof, and the techniques of the embodiments can be carried out with various substantial equivalent modifications and/or alternatives; therefore, the scope of the invention is subject to the appended claims. The scope defined by the scope shall prevail. The copyright limitation of this case is used for the purpose of patent application in the Republic of China.

110‧‧‧電阻式記憶體元件 110‧‧‧Resistive memory components

112‧‧‧基板 112‧‧‧Substrate

114‧‧‧絕緣層 114‧‧‧Insulation

116‧‧‧下導電層 116‧‧‧lower conductive layer

118‧‧‧電阻層 118‧‧‧resistance layer

120‧‧‧上導電層 120‧‧‧Upper conductive layer

a‧‧‧金屬氧化層 A‧‧‧metal oxide layer

Claims (10)

一種未採用活性電極之電阻式記憶體構造,其包含:一基板;一絕緣層,其設置於該基板上;一下導電層,其設置於該絕緣層上;一電阻層,其設置於該下導電層上;至少一金屬氧化層,其設置於該電阻層上,且該金屬氧化層為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜;及一上導電層,其設置於該金屬氧化層上,以形成一記憶體元件,且該金屬氧化層形成於該電阻層及上導電層之間;其中該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態,而在無水氣環境下仍能繼續電阻轉態,且不需要設置活性電極。 A resistive memory structure without an active electrode, comprising: a substrate; an insulating layer disposed on the substrate; a lower conductive layer disposed on the insulating layer; and a resistive layer disposed under the substrate On the conductive layer; at least one metal oxide layer disposed on the resistance layer, and the metal oxide layer is a mixture film of an active metal oxide film or an active metal oxide; and an upper conductive layer disposed on the conductive layer Forming a memory element on the metal oxide layer, and the metal oxide layer is formed between the resistance layer and the upper conductive layer; wherein the metal oxide layer provides metal ions to the resistance layer to form a plurality of filamentary paths, thereby forming a plurality of filamentary paths The electrochemical transition of the memory element is formed, and the resistance transition can be continued in the anhydrous gas environment, and the active electrode is not required to be disposed. 一種未採用活性電極之電阻式記憶體構造,其包含:一基板;一絕緣層,其設置於該基板上;一下導電層,其設置於該絕緣層上;一電阻層,其設置於該下導電層上;數個金屬氧化層,其設置於該電阻層上,且該數個金屬氧化層為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜;及一上導電層,其設置於數個該金屬氧化層上,以形成一記憶體元件,且數個該金屬氧化層形成於該電阻層及上導電層之間;其中數個該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態,而在無水氣環境下仍能繼續電阻轉態,且不需要設置活性電極。 A resistive memory structure without an active electrode, comprising: a substrate; an insulating layer disposed on the substrate; a lower conductive layer disposed on the insulating layer; and a resistive layer disposed under the substrate a plurality of metal oxide layers disposed on the resistive layer, wherein the plurality of metal oxide layers are a mixture of an active metal oxide film or an active metal oxide; and an upper conductive layer disposed Depositing a plurality of the metal oxide layers to form a memory device, and a plurality of the metal oxide layers are formed between the resistance layer and the upper conductive layer; wherein the plurality of metal oxide layers provide metal ions to the resistance layer A plurality of filamentary paths are formed, thereby forming an electrochemical transition of the memory element, while continuing the resistance transition in an anhydrous gas environment, and there is no need to provide an active electrode. 依申請專利範圍第1或2項所述之電阻式記憶體構造, 其中該金屬氧化層由熱蒸鍍法、共濺鍍法、電子束蒸鍍法或電漿氧化法形成。 According to the resistive memory structure described in claim 1 or 2, The metal oxide layer is formed by a thermal evaporation method, a co-sputtering method, an electron beam evaporation method, or a plasma oxidation method. 依申請專利範圍第1或2項所述之電阻式記憶體構造,其中該金屬氧化層包含銅、銀或其組合氧化物。 The resistive memory structure of claim 1 or 2, wherein the metal oxide layer comprises copper, silver or a combination oxide thereof. 依申請專利範圍第1或2項所述之電阻式記憶體構造,其中該金屬氧化層包含一硫化物薄膜或一氮化物薄膜。 The resistive memory structure of claim 1 or 2, wherein the metal oxide layer comprises a sulfide film or a nitride film. 一種未採用活性電極之電阻式記憶體製造方法,其包含:提供一基板;形成一絕緣層於該基板上;形成一下導電層於該絕緣層上;形成一電阻層於該下導電層上;形成一金屬氧化層於該電阻層上,且該金屬氧化層為一活性金屬氧化物薄膜或一活性金屬氧化物之混合物薄膜;及形成一上導電層於該金屬氧化層上,以形成一記憶體元件,且該金屬氧化層形成於該電阻層及上導電層之間;其中該金屬氧化層提供金屬離子至該電阻層而形成數個絲狀路徑,因而形成該記憶體元件的電化學轉態,而在無水氣環境下仍能繼續電阻轉態,且不需要設置活性電極。 A method for manufacturing a resistive memory without using an active electrode, comprising: providing a substrate; forming an insulating layer on the substrate; forming a conductive layer on the insulating layer; forming a resistive layer on the lower conductive layer; Forming a metal oxide layer on the resistive layer, and the metal oxide layer is a film of a mixture of an active metal oxide film or an active metal oxide; and forming an upper conductive layer on the metal oxide layer to form a memory a body element, and the metal oxide layer is formed between the resistance layer and the upper conductive layer; wherein the metal oxide layer provides metal ions to the resistance layer to form a plurality of filamentous paths, thereby forming an electrochemical turn of the memory element State, while in the anhydrous gas environment can continue to resist the transition state, and does not need to set the active electrode. 依申請專利範圍第6項所述之電阻式記憶體製造方法,其中該金屬氧化層由熱蒸鍍法、共濺鍍法、電子束蒸鍍法或電漿氧化法形成。 The method of manufacturing a resistive memory according to claim 6, wherein the metal oxide layer is formed by a thermal evaporation method, a co-sputtering method, an electron beam evaporation method, or a plasma oxidation method. 依申請專利範圍第6項所述之電阻式記憶體製造方法,其中該金屬氧化層包含銅、銀或其組合氧化物。 The method of manufacturing a resistive memory according to claim 6, wherein the metal oxide layer comprises copper, silver or a combination oxide thereof. 依申請專利範圍第6項所述之電阻式記憶體製造方法,其中該金屬氧化層包含一硫化物薄膜或一氮化物薄膜。 The method of manufacturing a resistive memory according to claim 6, wherein the metal oxide layer comprises a sulfide film or a nitride film. 依申請專利範圍第6項所述之電阻式記憶體製造方法,其中該金屬氧化層之厚度為介於1至100奈米之間。 The method of manufacturing a resistive memory according to claim 6, wherein the metal oxide layer has a thickness of between 1 and 100 nm.
TW104139724A 2015-11-27 2015-11-27 Resistive random access memory without having an active electrode and manufacturing method thereof TWI611404B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104139724A TWI611404B (en) 2015-11-27 2015-11-27 Resistive random access memory without having an active electrode and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104139724A TWI611404B (en) 2015-11-27 2015-11-27 Resistive random access memory without having an active electrode and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201719654A TW201719654A (en) 2017-06-01
TWI611404B true TWI611404B (en) 2018-01-11

Family

ID=59687697

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104139724A TWI611404B (en) 2015-11-27 2015-11-27 Resistive random access memory without having an active electrode and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI611404B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI676170B (en) * 2018-12-22 2019-11-01 國立中山大學 Selector and method for manufacturing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043926B2 (en) * 2006-05-19 2011-10-25 Samsung Electronics Co., Ltd. Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same
TWI473209B (en) * 2009-12-09 2015-02-11 Univ Nat Taiwan Science Tech Method of fabricating resistance memory
TWI489461B (en) * 2012-09-04 2015-06-21 Ind Tech Res Inst Resistive ram, controlling method and manufacturing method
US20150287918A1 (en) * 2014-04-02 2015-10-08 Taiwan Semiconductor Manufacturing Co., Ltd. Rram cell bottom electrode formation
TW201539731A (en) * 2014-02-07 2015-10-16 Crossbar Inc Scalable silicon based resistive memory device
US20150340406A1 (en) * 2014-05-20 2015-11-26 Crossbar, Inc. Resistive memory architecture and devices

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8043926B2 (en) * 2006-05-19 2011-10-25 Samsung Electronics Co., Ltd. Nonvolatile memory devices including oxygen-deficient metal oxide layers and methods of manufacturing the same
TWI473209B (en) * 2009-12-09 2015-02-11 Univ Nat Taiwan Science Tech Method of fabricating resistance memory
TWI489461B (en) * 2012-09-04 2015-06-21 Ind Tech Res Inst Resistive ram, controlling method and manufacturing method
TW201539731A (en) * 2014-02-07 2015-10-16 Crossbar Inc Scalable silicon based resistive memory device
US20150287918A1 (en) * 2014-04-02 2015-10-08 Taiwan Semiconductor Manufacturing Co., Ltd. Rram cell bottom electrode formation
US20150340406A1 (en) * 2014-05-20 2015-11-26 Crossbar, Inc. Resistive memory architecture and devices

Also Published As

Publication number Publication date
TW201719654A (en) 2017-06-01

Similar Documents

Publication Publication Date Title
US7777215B2 (en) Resistive memory structure with buffer layer
Zhang et al. Role of oxygen vacancies at the TiO2/HfO2 interface in flexible oxide‐based resistive switching memory
Chang et al. Revealing conducting filament evolution in low power and high reliability Fe3O4/Ta2O5 bilayer RRAM
US9281476B2 (en) Resistive memory and method for fabricating the same
JP7020690B2 (en) Memristor element and its manufacturing method
JP2008135752A (en) Resistive memory element containing dopant, and method for manufacturing the same
JP2008022007A (en) Non-volatile memory element containing variable resistance substance, and its manufacturing method
CN108831992A (en) A kind of resistance-variable storing device and preparation method thereof of hafnium doping zinc-oxide change resistance layer
Bousoulas et al. Influence of Ti top electrode thickness on the resistive switching properties of forming free and self-rectified TiO2− x thin films
Kang et al. NiO-based resistive memory devices with highly improved uniformity boosted by ionic liquid pre-treatment
Huang et al. Enhancement of DC/AC resistive switching performance in AlOx memristor by two-technique bilayer approach
Hu et al. Forming-free resistive switching characteristics in tantalum oxide and manganese oxide based crossbar array structure
CN104425712A (en) Completely-transparent resistive random access memory adopting rare earth oxide as storage layer and production method thereof
Wei et al. Analysis of the resistive switching behaviors of vanadium oxide thin film
Abbas et al. Stopping Voltage‐Dependent PCM and RRAM‐Based Neuromorphic Characteristics of Germanium Telluride
TWI611404B (en) Resistive random access memory without having an active electrode and manufacturing method thereof
Hsu et al. Impact of annealing environment on performance of InWZnO conductive bridge random access memory
US20160315256A1 (en) V-shape resistive memory element
Zhang et al. The improvement of the embedded Ag nanoislands on the performance of Au/Ag/HfO x/HfO2/Ag-NIs/Au devices
Maity et al. Enhanced stability and low operational voltage of resistive switching behavior in defect engineered LaMnO3 film
CN106887519B (en) Preparation method of resistive random access memory for realizing multi-value storage
TWI569487B (en) Resistive random access memory structure having a dissociation buffer layer and manufacturing method thereof
Chan et al. Effects of bottom electrode on resistive switching of silver programmable metallization cells with GdxOy/AlxOy solid electrolytes
CN210272427U (en) Li Resistive Random Access Memory (RRAM) of ZnO
TWI500193B (en) Memory device and manufacturing method thereof

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees