TWI610907B - Method of producing vinyl chloride - Google Patents

Method of producing vinyl chloride Download PDF

Info

Publication number
TWI610907B
TWI610907B TW105125621A TW105125621A TWI610907B TW I610907 B TWI610907 B TW I610907B TW 105125621 A TW105125621 A TW 105125621A TW 105125621 A TW105125621 A TW 105125621A TW I610907 B TWI610907 B TW I610907B
Authority
TW
Taiwan
Prior art keywords
vinyl chloride
group
dichloroethane
catalyst
producing vinyl
Prior art date
Application number
TW105125621A
Other languages
Chinese (zh)
Other versions
TW201808865A (en
Inventor
黃慶連
洪萬墩
陳博明
吳建慧
李國通
鄭雅文
温明憲
Original Assignee
臺灣塑膠工業股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺灣塑膠工業股份有限公司 filed Critical 臺灣塑膠工業股份有限公司
Priority to TW105125621A priority Critical patent/TWI610907B/en
Application granted granted Critical
Publication of TWI610907B publication Critical patent/TWI610907B/en
Publication of TW201808865A publication Critical patent/TW201808865A/en

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Catalysts (AREA)

Abstract

本發明提出一種氯乙烯的製造方法,其可包含於反應器中導入1,2-二氯乙烷氣體;以及在上述反應器中,在有特定結構之金屬有機骨架觸媒的存在下,使1,2-二氯乙烷氣體進行催化裂解步驟,從而形成氯乙烯。催化裂解步驟可於200℃至300℃裂解溫度下進行。應用上述製造方法可達到60%至90%之1,2-二氯乙烷的轉化率。 The present invention provides a method for producing vinyl chloride, which may include introducing 1,2-dichloroethane gas into a reactor; and in the above reactor, in the presence of a metal organic skeleton catalyst having a specific structure, The 1,2-dichloroethane gas is subjected to a catalytic cracking step to form vinyl chloride. The catalytic cracking step can be carried out at a cracking temperature of from 200 ° C to 300 ° C. The conversion rate of 60% to 90% of 1,2-dichloroethane can be achieved by the above production method.

Description

氯乙烯的製造方法 Method for producing vinyl chloride

本發明是有關於一種氯乙烯的製造方法,且特別是有關於一種將金屬有機骨架觸媒應用於催化裂解步驟中的氯乙烯之製造方法。上述製造方法可有效降低裂解溫度,並提高1,2-二氯乙烷的轉化率,以製得氯乙烯。 The present invention relates to a method for producing vinyl chloride, and more particularly to a method for producing a vinyl chloride by applying a metal organic skeleton catalyst to a catalytic cracking step. The above manufacturing method can effectively reduce the cracking temperature and increase the conversion rate of 1,2-dichloroethane to produce vinyl chloride.

聚氯乙烯(Poly Vinyl Chloride;PVC)具有耐酸鹼腐蝕、耐熱等優點,且其質地可為軟性、彈性或脆性,因此在現今工業中被大量運用於耐火材、人造革、一次性塑膠手套、地板、桌布或塑膠鞋等各式商品中。 Poly Vinyl Chloride (PVC) has the advantages of acid and alkali corrosion resistance, heat resistance, etc., and its texture can be soft, elastic or brittle. Therefore, it is widely used in refractory materials, artificial leather and disposable plastic gloves in today's industry. Floor, tablecloth or plastic shoes and other products.

聚氯乙烯係由氯乙烯經聚合反應而製得。因此,目前也發展出各種製備氯乙烯的方法。一般而言,常用之氯乙烯的製造方法可例如將乙烯直接氯化,或利用氧氯化法先形成1,2-二氯乙烷(Ethylene dichloride;EDC),再經約500℃之熱裂解反應,以製得氯乙烯。 Polyvinyl chloride is obtained by polymerizing vinyl chloride. Therefore, various methods for preparing vinyl chloride have also been developed. In general, a conventional method for producing vinyl chloride can, for example, directly chlorinate ethylene or first form 1,2-dichloroethane (EDC) by oxychlorination, followed by thermal cracking at about 500 ° C. The reaction is carried out to obtain vinyl chloride.

具體而言,上述利用1,2-二氯乙烷進行熱裂解的反應,工業上常使用1,2-二氯乙烷-氯乙烯熱裂解爐(EDC-Vinyl Chloride Monomer(VCM)Furnace)進行, 其中1,2-二氯乙烷的轉化率約55%至60%。上述EDC-VCM熱裂解爐之溫度約介於490℃至500℃之間,隨著裂解溫度越高,雖然可得較高的1,2-二氯乙烷轉化率,但高反應溫度使得能源的消耗增加、副產物濃度提高,且熱裂解爐中的積碳量增加,反而提高製造成本。 Specifically, the above-mentioned reaction for thermal cracking using 1,2-dichloroethane is carried out industrially using a 1,2-dichloroethane-vinyl chloride thermal cracking furnace (EDC-Vinyl Chloride Monomer (VCM) Furnace). , Among them, the conversion rate of 1,2-dichloroethane is about 55% to 60%. The temperature of the above EDC-VCM pyrolysis furnace is between 490 ° C and 500 ° C. The higher the cracking temperature, the higher the conversion rate of 1,2-dichloroethane, but the higher the reaction temperature makes the energy The consumption is increased, the by-product concentration is increased, and the amount of carbon deposited in the thermal cracking furnace is increased, which in turn increases the manufacturing cost.

為解決上述問題,目前有一方法係藉由裂解觸媒,輔助1,2-二氯乙烷之裂解反應的進行,進而可在較低的反應溫度下製得氯乙烯。利用裂解觸媒可減少能源消耗、降低副產物濃度以及積碳量,進而可降低製程的危險性和製造成本。一般而言,常見的裂解觸媒包含載體以及活性成分,其中所述活性成分主要可為金屬氯化物。 In order to solve the above problems, there is currently a method for assisting the cracking reaction of 1,2-dichloroethane by a cracking catalyst, thereby producing vinyl chloride at a lower reaction temperature. The use of cracking catalysts can reduce energy consumption, reduce by-product concentration, and carbon deposits, thereby reducing process hazards and manufacturing costs. In general, common cleavage catalysts comprise a carrier and an active ingredient, wherein the active ingredient is primarily a metal chloride.

然而,前述以金屬氯化物為活性成分的裂解觸媒之使用壽命短,在實際應用上常需更換。此外,上述以金屬氯化物為活性成分的裂解觸媒之單位產率低。因為上述種種原因,目前已知的裂解觸媒仍無法有效地降低氯乙烯的製造成本。 However, the aforementioned cracking catalyst having a metal chloride as an active component has a short service life and is often required to be replaced in practical use. Further, the above-mentioned cracking catalyst having a metal chloride as an active component has a low unit yield. For various reasons as described above, the currently known cracking catalysts are still unable to effectively reduce the manufacturing cost of vinyl chloride.

金屬有機骨架觸媒(Metal Organic Framework;MOF)是一種具有永久性孔洞結構的固體,其係由金屬離子或金屬團簇間的節點與各種有機基團鍵結所產生的三維結構。近年來,具有晶體性質、高比表面積、大孔徑以及低密度的金屬有機骨架觸媒,常被應用於各種催化反應中。舉例而言,金屬有機骨架觸媒可應用於氣體儲存、純化、分子感應、藥物傳遞以及光催化等領域中。 Metal Organic Framework (MOF) is a solid with a permanent pore structure, which is a three-dimensional structure produced by bonding metal ions or nodes between metal clusters and various organic groups. In recent years, metal-organic framework catalysts having crystal properties, high specific surface area, large pore diameter, and low density have been frequently used in various catalytic reactions. For example, metal-organic framework catalysts can be used in the fields of gas storage, purification, molecular sensing, drug delivery, and photocatalysis.

然而,作為金屬有機骨架觸媒的金屬種類以及 與之鍵結的有機基團種類繁多,其針對特定應用領域之選擇性和穩定性尚待探討。再者,目前尚未有針對裂解1,2-二氯乙烷氣體,以製得氯乙烯之催化裂解步驟而存在之金屬有機骨架觸媒。 However, as a metal organic skeleton catalyst, the metal species and There are a wide variety of organic groups bonded to it, and its selectivity and stability for specific application areas remains to be explored. Furthermore, there is currently no metal-organic framework catalyst for cracking 1,2-dichloroethane gas to produce a catalytic cracking step of vinyl chloride.

鑒於金屬有機骨架觸媒的上述優點以及其發展性,目前亟需提出一種氯乙烯的製造方法,其係將金屬有機骨架觸媒應用於催化裂解步驟中,進而可降低裂解溫度、提高觸媒單位產率,並有效提高1,2-二氯乙烷的轉化率,以製得氯乙烯。 In view of the above advantages and development of the metal-organic framework catalyst, it is urgent to propose a method for producing vinyl chloride, which is to apply a metal-organic framework catalyst to the catalytic cracking step, thereby reducing the cracking temperature and increasing the catalyst unit. The yield and the conversion rate of 1,2-dichloroethane are effectively increased to obtain vinyl chloride.

因此,本發明之一態樣是在提供一種氯乙烯的製造方法,其係使用金屬有機骨架觸媒進行催化裂解步驟。在本發明之方法中,金屬有機骨架觸媒具有高的觸媒單位產率,且可在低溫下提高1,2-二氯乙烷的轉化率。 Accordingly, an aspect of the present invention provides a method for producing vinyl chloride which is subjected to a catalytic cracking step using a metal organic skeleton catalyst. In the process of the present invention, the metal-organic framework catalyst has a high catalyst unit yield and can increase the conversion of 1,2-dichloroethane at low temperatures.

根據本發明之上述態樣,提出一種氯乙烯的製造方法。在一實施例中,上述製造方法可包含下述步驟:首先,於反應器中導入1,2-二氯乙烷氣體。之後,在上述反應器中,在有金屬有機骨架觸媒的存在下,使1,2-二氯乙烷氣體進行催化裂解步驟,從而形成氯乙烯。其中,催化裂解步驟可於200℃至300℃的裂解溫度下進行,且金屬有機骨架觸媒具有如下式(I)所示之結構:M1[(M2)x(L1)(L2)y] 式(I) According to the above aspect of the invention, a method for producing vinyl chloride is proposed. In one embodiment, the above manufacturing method may comprise the steps of first introducing 1,2-dichloroethane gas into the reactor. Thereafter, in the above reactor, the 1,2-dichloroethane gas is subjected to a catalytic cracking step in the presence of a metal organic skeleton catalyst to form vinyl chloride. Wherein, the catalytic cracking step can be carried out at a cracking temperature of 200 ° C to 300 ° C, and the metal organic skeleton catalyst has a structure represented by the following formula (I): M1 [(M2) x (L1) (L2) y] (I)

於式(I)中,M1和M2可選自於鋅離子(Zn2+)、銅離子 (Cu2+)、鈷離子(Co2+)、鋁離子(Al3+)和鉻離子(Cr3+)所組成之族群的一者,L1可選自於由苯甲酸基以及吡啶基所組成之一族群之一者,L2可選自於由硝酸根離子、氯離子、氨根離子(-NH2)、磺酸根離子(-SO3H)以及氧基所組成之一族群之一者,x可為0或1,且y可為0至3之整數。 In formula (I), M1 and M2 may be selected from the group consisting of zinc ions (Zn 2+ ), copper ions (Cu 2+ ), cobalt ions (Co 2+ ), aluminum ions (Al 3+ ), and chromium ions (Cr). 3+ ) One of the groups consisting of L1 may be selected from one of a group consisting of a benzoic acid group and a pyridyl group, and L2 may be selected from a nitrate ion, a chloride ion, an ammonia ion (- One of a group consisting of NH 2 ), a sulfonate ion (-SO 3 H), and an oxy group, x may be 0 or 1, and y may be an integer from 0 to 3.

依據本發明之一實施例,前述金屬有機骨架觸媒與1,2-二氯乙烷氣體毎小時的反應重量比可為1:15至2:1。 According to an embodiment of the present invention, the reaction weight ratio of the metal-organic framework catalyst to the 1,2-dichloroethane gas 毎 hour may be 1:15 to 2:1.

依據本發明之一實施例,苯甲酸基可為對硝基苯甲酸基或2-磺酸鈉對苯二甲酸基。 According to an embodiment of the invention, the benzoic acid group may be p-nitrobenzoic acid or sodium 2-sulfonate terephthalate.

依據本發明之一實施例,吡啶基可為2,2’-聯吡啶基或4,4’-聯吡啶基。 According to an embodiment of the present invention, the pyridyl group may be 2,2'-bipyridyl or 4,4'-bipyridyl.

依據本發明之一實施例,反應器可為固定床反應器或流動床反應器。 According to an embodiment of the invention, the reactor may be a fixed bed reactor or a fluidized bed reactor.

依據本發明之一實施例,在前述催化裂解步驟中,1,2-二氯乙烷氣體於反應器中之滯留時間可為5秒至100秒。 According to an embodiment of the present invention, in the aforementioned catalytic cracking step, the residence time of the 1,2-dichloroethane gas in the reactor may be from 5 seconds to 100 seconds.

依據本發明之一實施例,1,2-二氯乙烷氣體於反應器中之氣體空間速度可為10/小時至1000/小時。 According to an embodiment of the invention, the gas space velocity of the 1,2-dichloroethane gas in the reactor may range from 10/hour to 1000/hour.

依據本發明之一實施例,催化裂解步驟可於0.1MPa至1.5MPa之壓力下進行。 According to an embodiment of the invention, the catalytic cracking step can be carried out at a pressure of from 0.1 MPa to 1.5 MPa.

依據本發明之一實施例,1,2-二氯乙烷氣體之轉化率可為60%至90%。 According to an embodiment of the present invention, the conversion of 1,2-dichloroethane gas may be from 60% to 90%.

應用本發明之氯乙烯的製造方法,其係使用金 屬有機骨架觸媒進行催化裂解步驟,可在低溫下提高1,2-二氯乙烷的轉化率,以製得氯乙烯。 A method for producing vinyl chloride according to the present invention, which uses gold It is an organic skeleton catalyst for catalytic cracking step, which can increase the conversion rate of 1,2-dichloroethane at a low temperature to obtain vinyl chloride.

本發明之一態樣是在提出一種氯乙烯的製造方法,其係利用特定結構之金屬有機骨架觸媒進行催化裂解步驟,其中上述金屬有機骨架觸媒與1,2-二氯乙烷氣體具有特定的反應重量比。藉由上述製造方法,可在低溫下提高1,2-二氯乙烷的轉化率,以製得氯乙烯。本發明之氯乙烯的製造方法更具有觸媒單位產率高以及滯留時間短的優點,因此可降低氯乙烯的生產成本。 One aspect of the present invention is to provide a method for producing vinyl chloride by performing a catalytic cracking step using a metal-organic framework catalyst of a specific structure, wherein the metal-organic framework catalyst and 1,2-dichloroethane gas have Specific reaction weight ratio. By the above production method, the conversion ratio of 1,2-dichloroethane can be increased at a low temperature to obtain vinyl chloride. The method for producing vinyl chloride of the present invention has the advantages of high catalyst unit yield and short residence time, thereby reducing the production cost of vinyl chloride.

本發明此處所稱之金屬有機骨架觸媒可具有如下式(I)所示之結構:M1[(M2)x(L1)(L2)y] 式(I) The metal organic skeleton catalyst referred to herein may have the structure represented by the following formula (I): M1[(M2)x(L1)(L2)y] Formula (I)

於式(I)中,M1和M2係選自於鋅離子(Zn2+)、銅離子(Cu2+)、鈷離子(Co2+)、鋁離子(Al3+)和鉻離子(Cr3+)所組成之族群的一者,L1選自於由苯甲酸基以及吡啶基所組成之一族群之一者,L2係選自於由硝酸根離子、氯離子、氨根離子(-NH2)、磺酸根離子(-SO3H)以及氧基所組成之一族群之一者,x為0或1,且y為0至3之整數。 In formula (I), M1 and M2 are selected from the group consisting of zinc ions (Zn 2+ ), copper ions (Cu 2+ ), cobalt ions (Co 2+ ), aluminum ions (Al 3+ ), and chromium ions (Cr). 3+ ) One of the groups consisting of L1 selected from one of a group consisting of a benzoic acid group and a pyridyl group, and the L2 system is selected from the group consisting of nitrate ions, chloride ions, and ammonia ions (-NH) 2 ), one of a group consisting of a sulfonate ion (-SO 3 H) and an oxy group, x is 0 or 1, and y is an integer from 0 to 3.

較佳地,上述之苯甲酸基可為對硝基苯甲酸基或2-磺酸鈉對苯二甲酸基。較佳地,上述吡啶基可為2,2’-聯吡啶基或4,4’-聯吡啶基。 Preferably, the benzoic acid group described above may be p-nitrobenzoic acid or sodium 2-sulfonate terephthalate. Preferably, the above pyridyl group may be 2,2'-bipyridyl or 4,4'-bipyridyl.

本發明此處所稱之反應重量比係指所述催化裂解步驟進行時,欲裂解特定重量之1,2-二氯乙烷氣體時,所需要的金屬有機骨架觸媒的重量。 The reaction weight ratio referred to herein as the weight refers to the weight of the metal-organic framework catalyst required to crack a specific weight of 1,2-dichloroethane gas during the catalytic cracking step.

本發明此處所稱之觸媒單位產率係指每小時每單位重量的金屬有機骨架觸媒可裂解的1,2-二氯乙烷氣體之量。每小時之上述反應重量比越小,代表單位重量份之金屬有機骨架觸媒可裂解的1,2-二氯乙烷氣體越多,因此觸媒單位產率越高。 The catalyst unit yield referred to herein is the amount of 1,2-dichloroethane gas per unit weight of metal-organic framework catalyst cleavable per hour. The smaller the weight ratio of the above reaction per hour, the more unity parts of the metal organic skeleton catalyst cleavable 1,2-dichloroethane gas, so the higher the catalyst unit yield.

本發明此處所稱之低溫係指催化裂解步驟可於200℃至300℃之溫度下進行。 The term "low temperature" as used herein means that the catalytic cracking step can be carried out at a temperature of from 200 ° C to 300 ° C.

在一實施例中,本發明之氯乙烯的製造方法可包含下述步驟:首先,於反應器中導入1,2-二氯乙烷氣體。之後,在上述反應器中,在有如上式(I)所示之金屬有機骨架觸媒的存在下,使1,2-二氯乙烷氣體進行催化裂解步驟,從而形成氯乙烯。其中,催化裂解步驟可於200℃至300℃裂解溫度下進行。 In one embodiment, the method for producing vinyl chloride of the present invention may comprise the steps of first introducing a 1,2-dichloroethane gas into the reactor. Thereafter, in the above reactor, the 1,2-dichloroethane gas is subjected to a catalytic cracking step in the presence of a metal organic skeleton catalyst represented by the above formula (I) to form vinyl chloride. Wherein, the catalytic cracking step can be carried out at a cracking temperature of 200 ° C to 300 ° C.

倘若未使用上述之金屬有機骨架觸媒,則無法於不高於300℃之裂解溫度下進行催化裂解步驟。再者,若使用如上式(I)所示之金屬有機骨架觸媒以外的金屬有機骨架觸媒,觸媒單位產率低且1,2-二氯乙烷的轉化效果不佳。再者,倘若上述裂解溫度高於300℃,則1,2-二氯乙烷裂解後容易產生副產物,但若裂解溫度低於200℃,1,2-二氯乙烷無法完全裂解。因此,若催化裂解步驟的裂解溫度未落於本發明所主張的範圍內,會降低1,2-二氯乙烷的轉化率,進 而影響氯乙烯的產率。 If the above metal-organic framework catalyst is not used, the catalytic cracking step cannot be carried out at a cracking temperature of not higher than 300 °C. Further, when a metal organic skeleton catalyst other than the metal organic skeleton catalyst represented by the above formula (I) is used, the catalyst unit yield is low and the conversion effect of 1,2-dichloroethane is not good. Further, if the above-mentioned cracking temperature is higher than 300 ° C, by-products are easily generated after the cracking of 1,2-dichloroethane, but if the cracking temperature is lower than 200 ° C, 1,2-dichloroethane cannot be completely cracked. Therefore, if the cracking temperature of the catalytic cracking step does not fall within the range claimed by the present invention, the conversion rate of 1,2-dichloroethane is lowered. It affects the yield of vinyl chloride.

在一實施例中,金屬有機骨架觸媒與1,2-二氯乙烷氣體每小時的反應重量比可為1:15至2:1。倘若上述反應重量比少於1:15,金屬有機骨架觸媒無法維持高裂解率,使1,2-二氯乙烷的轉化率降低,進而影響氯乙烯的產率。若上述反應重量比高於2:1,雖有機會提高1,2-二氯乙烷的轉化率,但觸媒單位產率以及產能大幅降低,進而增加氯乙烯的製造成本。 In one embodiment, the reaction ratio of the metal organic skeleton catalyst to the 1,2-dichloroethane gas per hour may be from 1:15 to 2:1. If the above reaction weight ratio is less than 1:15, the metal organic skeleton catalyst cannot maintain a high cracking rate, and the conversion rate of 1,2-dichloroethane is lowered, thereby affecting the yield of vinyl chloride. If the above reaction weight ratio is higher than 2:1, there is an opportunity to increase the conversion ratio of 1,2-dichloroethane, but the catalyst unit yield and productivity are greatly reduced, thereby increasing the manufacturing cost of vinyl chloride.

在一實施例中,上述之反應器可為固定床反應器或流動床反應器。 In one embodiment, the reactor described above can be a fixed bed reactor or a fluidized bed reactor.

在一實施例中,1,2-二氯乙烷氣體於反應器中之滯留時間可為5秒至100秒。若滯留時間過短,1,2-二氯乙烷氣體的裂解不完全,造成氯乙烯的產率降低,並產生副產物。若上述滯留時間過長,並無益於氯乙烯的製備。 In one embodiment, the residence time of the 1,2-dichloroethane gas in the reactor can range from 5 seconds to 100 seconds. If the residence time is too short, the cracking of 1,2-dichloroethane gas is incomplete, resulting in a decrease in the yield of vinyl chloride and the production of by-products. If the above residence time is too long, it does not benefit from the preparation of vinyl chloride.

在一實施例中,1,2-二氯乙烷氣體於反應器中之氣體空間速度可為10/小時至1000/小時。 In one embodiment, the gas space velocity of the 1,2-dichloroethane gas in the reactor can range from 10/hour to 1000/hour.

在一實施例中,催化裂解步驟可於0.1MPa至1.5MPa之壓力下進行。 In one embodiment, the catalytic cracking step can be carried out at a pressure of from 0.1 MPa to 1.5 MPa.

在一實施例中,利用本發明之氯乙烯的製造方法,可達到60%至90%之1,2-二氯乙烷之轉化率。 In one embodiment, the conversion of 1,2-dichloroethane of 60% to 90% can be achieved by the method for producing vinyl chloride of the present invention.

以下對上述之金屬有機骨架觸媒的製造方法進行說明,其中分為上式(I)之x為0(後稱為第一型金屬有機骨架觸媒)或x為1(後稱為第二型金屬有機骨架觸媒)的二種情況分別進行說明。 Hereinafter, a method for producing the above-described metal-organic framework catalyst will be described, wherein x of the above formula (I) is 0 (hereinafter referred to as a first type metal organic skeleton catalyst) or x is 1 (hereinafter referred to as second The two cases of the metal-organic framework catalyst are described separately.

製備第一型金屬有機骨架觸媒Preparation of the first type of metal organic skeleton catalyst

首先,將0.37毫莫耳至37.29毫莫耳之苯甲酸類化合物、吡啶類化合物或其鹽類以及1毫莫耳至100毫莫耳之第一金屬鹽,加入含有2.59毫莫耳至259毫莫耳之12N的濃鹽酸之1毫升至500毫升的去離子水或1毫升至500毫升之二甲基甲醯胺中。接著,於100℃至300℃下加熱達1天至10天,以獲得粗產物。將粗產物乾燥後,進行清洗與純化,即可製得本發明之第一型金屬有機骨架觸媒。 First, a benzoic acid compound of 0.37 millimolar to 37.29 millimolar, a pyridine compound or a salt thereof, and a first metal salt of 1 millimolar to 100 millimolar are added, containing 2.59 millimolar to 259 milligrams. 1 ml of concentrated hydrochloric acid of 12N to 500 ml of deionized water or 1 ml to 500 ml of dimethylformamide. Next, it is heated at 100 ° C to 300 ° C for 1 day to 10 days to obtain a crude product. After the crude product is dried, it is washed and purified to obtain the first type of metal organic skeleton catalyst of the present invention.

在一實施例中,上述之清洗與純化可例如將粗產物以熱去離子水清洗並乾燥後,再與1毫升至500毫升的乙醇混合,於0.5MPa至250MPa的壓力以及100℃至300℃之溫度下加熱10至72小時。過濾與乾燥後,再利用1毫升至500毫升的氟化銨於10℃至150℃下迴流5小時至50小時。經20℃至80℃之去離子水清洗與乾燥後,以製得本發明之第一型金屬有機骨架觸媒。 In one embodiment, the above cleaning and purification may, for example, wash the crude product with hot deionized water and dry it, and then mix it with 1 ml to 500 ml of ethanol at a pressure of 0.5 MPa to 250 MPa and 100 ° C to 300 ° C. Heat at temperature for 10 to 72 hours. After filtration and drying, refluxing is carried out using 1 ml to 500 ml of ammonium fluoride at 10 ° C to 150 ° C for 5 hours to 50 hours. After washing and drying with deionized water at 20 ° C to 80 ° C, the first type of metal organic skeleton catalyst of the present invention is obtained.

在另一實施例中,上述之清洗與純化可例如利用索式萃取法,使用甲醇作為洗滌液清洗72小時至120小時後乾燥,以製得本發明之第一型金屬有機骨架觸媒。 In another embodiment, the above cleaning and purification can be carried out, for example, by a soxhlet extraction method using methanol as a washing liquid for 72 hours to 120 hours, followed by drying to obtain a first type of metal organic skeleton catalyst of the present invention.

本發明此處所稱之苯甲酸類化合物之鹽類可例如為具有硝酸根離子、氯離子、氨根離子(-NH2)、磺酸根離子(-SO3H)或氧基等官能基之苯甲酸鈉鹽。 The salt of the benzoic acid compound referred to herein may be, for example, a benzene having a functional group such as a nitrate ion, a chloride ion, an ammonia ion (-NH 2 ), a sulfonate ion (-SO 3 H) or an oxy group. Sodium formate salt.

本發明此處所稱之吡啶類化合物之鹽類可例如為具有硝酸根離子、氯離子、氨根離子(-NH2)、磺酸根離 子(-SO3H)或氧基等官能基之吡啶鈉鹽。 The salt of the pyridine compound referred to herein may be, for example, a sodium pyridine having a functional group such as a nitrate ion, a chloride ion, an ammonia ion (-NH 2 ), a sulfonate ion (-SO 3 H) or an oxy group. salt.

本發明此處所稱之第一金屬鹽可例如為鋅、銅、鈷、鋁或鉻之金屬鹽。 The first metal salt referred to herein as a metal salt may be, for example, a metal salt of zinc, copper, cobalt, aluminum or chromium.

製備第二型金屬有機骨架觸媒Preparation of a second type of metal-organic framework catalyst

第二型金屬有機骨架觸媒係由前述之第一型金屬有機骨架觸媒,進一步反應而製得。將0.5毫莫耳至50毫莫耳之第一型金屬有機骨架觸媒,於真空中加熱至50℃至200℃達12小時至72小時,以脫除第一型金屬有機骨架觸媒之孔隙中的氣體。接著,於隔氧環境中,混合上述脫氣後的第一型金屬有機骨架觸媒、0.075毫莫耳至7.5毫莫耳之第二金屬鹽以及10毫升至1000毫升的無水乙醇(純度大於99.5%),以形成第二混合物。將第二混合物加熱到50℃至300℃下並持溫12小時至72小時,以製得本發明之第二型金屬有機骨架觸媒。 The second type of metal organic skeleton catalyst is prepared by further reacting the first type of metal organic skeleton catalyst described above. The first type metal organic skeleton catalyst of 0.5 millimolar to 50 millimolar is heated in a vacuum to 50 ° C to 200 ° C for 12 hours to 72 hours to remove pores of the first type metal organic skeleton catalyst The gas in it. Next, mixing the degassed first type metal organic skeleton catalyst, the second metal salt of 0.075 millimolar to 7.5 millimolar, and the anhydrous ethanol of 10 ml to 1000 ml in an oxygen-containing environment (purity greater than 99.5) %) to form a second mixture. The second mixture is heated to 50 ° C to 300 ° C and held at a temperature of 12 hours to 72 hours to obtain a second type of metal organic skeleton catalyst of the present invention.

在一實施例中,可利用甲醇與去離子水清洗所製得之第二型金屬有機骨架觸媒,並於50℃至200℃下真空加熱第二型金屬有機骨架觸媒達12小時至72小時,以進一步提升所製得之第二型金屬有機骨架觸媒的純度。 In one embodiment, the second type metal organic skeleton catalyst can be cleaned by using methanol and deionized water, and the second type metal organic skeleton catalyst is heated under vacuum at 50 ° C to 200 ° C for 12 hours to 72 hours. Hours to further enhance the purity of the prepared second type metal-organic framework catalyst.

此處所稱之第二金屬鹽可例如為鋅、銅、鈷、鋁或鉻之金屬鹽。此外,前述之第一金屬鹽以及第二金屬鹽具有不同之金屬離子。 The second metal salt referred to herein may be, for example, a metal salt of zinc, copper, cobalt, aluminum or chromium. Further, the aforementioned first metal salt and second metal salt have different metal ions.

特別說明的是,式(I)中的L1和L2的相對含量取決於所使用之苯甲酸類化合物、吡啶類化合物及其鹽類, 其係根據苯甲酸類化合物、吡啶類化合物及其鹽類上的官能基比例以及種類而定。 In particular, the relative amounts of L1 and L2 in the formula (I) depend on the benzoic acid compound, the pyridine compound and the salt thereof to be used. It depends on the ratio and type of the functional group on the benzoic acid compound, the pyridine compound, and the salt thereof.

以下利用數個製備例以及實施例,具體說明本發明之進行方式。 Hereinafter, the mode of carrying out the present invention will be specifically described using a plurality of preparation examples and examples.

製備例1Preparation Example 1

將3.35克(12.5毫莫耳)的2-磺酸鈉對二苯甲酸、1.25克(12.5毫莫耳)的氧化鉻(CrO3)以及0.91克(25毫莫耳)的12N之濃鹽酸溶於50毫升的去離子水中。接著,將上述混合溶液倒入鐵氟龍內襯之不銹鋼水熱釜中,並於200℃下進行水熱反應達6天。之後,進行過濾並以400毫升之煮沸的去離子水清洗三遍後,進行乾燥,以形成第一純化產物。然後,將第一純化產物以及40毫升的乙醇混合,並於高壓鍋(壓力約為250MPa)中,以100℃加熱達20小時,以形成第二純化產物。再來,於150℃下真空乾燥6小時後,將第二純化產物與300毫升的氟化銨(30mM)於60℃下進行迴流10小時。之後,以60℃的熱去離子水進行三次的清洗步驟以及過濾後,進行乾燥,以製得第一型金屬有機骨架觸媒。將金屬有機骨架觸媒真空加熱至150℃達48小時,以脫除其孔隙內的氣體。接著,於充氮氣的手套箱內,混合500毫克之第一型金屬有機骨架觸媒、300毫克(2.24毫莫耳)的氯化鋁以及100毫升的無水乙醇(純度99.5%)。之後,加熱上述混合溶液至90℃並持溫24小時,以製得未純化之製備例1的金屬有機骨架觸媒。接著,將上述未純化之製備 例1的金屬有機骨架觸媒過濾、以甲醇清除殘餘的氯化鋁,並以去離子水與甲醇進行清洗。之後,於105℃下進行真空加熱達12小時,以製得製備例1之金屬有機骨架觸媒。 3.35 grams (12.5 millimoles) of sodium 2-sulfonate p-dibenzoic acid, 1.25 grams (12.5 millimoles) of chromium oxide (CrO 3 ) and 0.91 grams (25 millimoles) of 12N concentrated hydrochloric acid In 50 ml of deionized water. Next, the above mixed solution was poured into a Teflon-lined stainless steel hydrothermal kettle, and hydrothermal reaction was carried out at 200 ° C for 6 days. Thereafter, it was filtered and washed three times with 400 ml of boiled deionized water, and then dried to form a first purified product. Then, the first purified product and 40 ml of ethanol were mixed and heated at 100 ° C for 20 hours in an autoclave (pressure of about 250 MPa) to form a second purified product. Further, after drying under vacuum at 150 ° C for 6 hours, the second purified product was refluxed with 300 ml of ammonium fluoride (30 mM) at 60 ° C for 10 hours. Thereafter, the washing step was carried out three times with hot deionized water at 60 ° C, and after filtration, drying was carried out to obtain a first type metal organic skeleton catalyst. The metal organic framework catalyst was vacuum heated to 150 ° C for 48 hours to remove gas from its pores. Next, 500 mg of the first type metal organic skeleton catalyst, 300 mg (2.24 mmol) of aluminum chloride, and 100 ml of absolute ethanol (purity 99.5%) were mixed in a nitrogen-filled glove box. Thereafter, the above mixed solution was heated to 90 ° C and held at a temperature for 24 hours to obtain an unpurified metal organic skeleton catalyst of Preparation Example 1. Next, the above-mentioned unpurified metal organic skeleton catalyst of Preparation Example 1 was filtered, and residual aluminum chloride was removed with methanol, and washed with deionized water and methanol. Thereafter, vacuum heating was carried out at 105 ° C for 12 hours to obtain a metal organic skeleton catalyst of Preparation Example 1.

製備例2Preparation Example 2

將3.5克(21.01毫莫耳)的對苯二甲酸、4克(21.1毫莫耳)的硝酸鋅(Zn(NO3)2)溶於150毫升的二甲基甲醯胺中。接著,將上述混合溶液倒入鐵氟龍內襯之不銹鋼水熱釜中,並於180℃下進行水熱反應達2天。之後,進行過濾並以二甲基甲醯胺清洗三遍後,進行乾燥。接著,以索式萃取法,使用甲醇作為洗滌液清洗12小時後乾燥,即可製得製備例2之金屬有機骨架觸媒。 3.5 g (21.01 mmol) of terephthalic acid and 4 g (21.1 mmol) of zinc nitrate (Zn(NO 3 ) 2 ) were dissolved in 150 ml of dimethylformamide. Next, the above mixed solution was poured into a Teflon-lined stainless steel hydrothermal kettle, and hydrothermal reaction was carried out at 180 ° C for 2 days. Thereafter, the mixture was filtered and washed three times with dimethylformamide, followed by drying. Next, the metal organic skeleton catalyst of Preparation Example 2 was obtained by a soxhlet extraction method using methanol as a washing liquid for 12 hours and then drying.

製備例3Preparation Example 3

將3.5克(22.41毫莫耳)的2,2’-聯吡啶、3克(21.07毫莫耳)的氯化鋁(AlCl3)溶於200毫升的二甲基甲醯胺中。接著,將上述混合溶液倒入鐵氟龍內襯之不銹鋼水熱釜中,並於150℃下進行水熱反應達3天。之後,進行過濾並以二甲基甲醯胺清洗三遍後,進行乾燥。接著,以索式萃取法,使用甲醇作為洗滌液清洗12小時後乾燥,即可製得製備例3之金屬有機骨架觸媒。 3.5 g (22.41 mmol) of 2,2'-bipyridine and 3 g (21.07 mmol) of aluminum chloride (AlCl 3 ) were dissolved in 200 ml of dimethylformamide. Next, the above mixed solution was poured into a Teflon-lined stainless steel hydrothermal kettle, and hydrothermal reaction was carried out at 150 ° C for 3 days. Thereafter, the mixture was filtered and washed three times with dimethylformamide, followed by drying. Next, the metal organic skeleton catalyst of Preparation Example 3 was obtained by a soxhlet extraction method using methanol as a washing liquid for 12 hours and then drying.

製備比較例1Preparation Comparative Example 1

首先,將活性碳於80℃下與1N的鹽酸回流達 24小時,以進行表面處理。之後,利用純水清洗上述活性碳,並於120℃之真空烘箱中乾燥。在真空環境以及30℃下,將表面處理後之活性碳浸泡於10wt.%的氯化鋇水溶液中達24小時,之後取出並靜置。接著,置於120℃之真空烘箱中乾燥後,即製得製備比較例1之金屬氯化物觸媒。 First, the activated carbon is refluxed with 1N hydrochloric acid at 80 ° C. 24 hours for surface treatment. Thereafter, the above activated carbon was washed with pure water and dried in a vacuum oven at 120 °C. The surface treated activated carbon was immersed in a 10 wt.% aqueous solution of ruthenium chloride for 24 hours in a vacuum atmosphere at 30 ° C, and then taken out and allowed to stand. Next, after drying in a vacuum oven at 120 ° C, the metal chloride catalyst of Comparative Example 1 was prepared.

製備比較例2Preparation Comparative Example 2

製備比較例2係以與製備比較例1相同的方法製得,不同的是,製備比較例2係將氯化鋇置換為氯化鈣。 Preparation Comparative Example 2 was prepared in the same manner as in Preparation Comparative Example 1, except that Comparative Example 2 was prepared by replacing cerium chloride with calcium chloride.

實施例1Example 1

實施例1係使用製備例1之金屬有機骨架觸媒來進行。首先,於流動床反應器中填裝50克之製備例1的金屬有機骨架觸媒。接著,將1,2-二氯乙烷氣體導入流動床反應器中,使1,2-二氯乙烷氣體與金屬有機骨架觸媒接觸,並製得氯乙烯。其中,1,2-二氯乙烷氣體的滯留時間為25秒,其氣體空間流速為130/小時,流動床反應器中的溫度為220℃,且金屬有機骨架觸媒與1,2-二氯乙烷氣體每小時的反應重量比為1:5。關於實施例1之條件以及評價結果悉如表1所示。 Example 1 was carried out using the metal organic skeleton catalyst of Preparation Example 1. First, 50 g of the metal organic skeleton catalyst of Preparation Example 1 was placed in a fluidized bed reactor. Next, 1,2-dichloroethane gas was introduced into a fluidized bed reactor, and 1,2-dichloroethane gas was brought into contact with a metal organic skeleton catalyst, and vinyl chloride was obtained. Among them, the residence time of 1,2-dichloroethane gas is 25 seconds, the gas space velocity is 130/hour, the temperature in the fluidized bed reactor is 220 °C, and the metal organic skeleton catalyst and 1,2-two The reaction weight ratio of ethyl chloride gas per hour is 1:5. The conditions and the evaluation results of Example 1 are shown in Table 1.

實施例2至3以及比較例1至2Examples 2 to 3 and Comparative Examples 1 to 2

實施例2至3以及比較例1至2係使用與實施例1相同的方法進行,不同的是,實施例2至3以及比較例1至2 係改變所使用之金屬有機骨架觸媒或製程條件。關於實施例2至3以及比較例1至2之條件以及評價結果悉如表1所示,此處不另贅述。 Examples 2 to 3 and Comparative Examples 1 to 2 were carried out in the same manner as in Example 1, except that Examples 2 to 3 and Comparative Examples 1 to 2 were used. The metal-organic framework catalyst or process conditions used are changed. The conditions and evaluation results of Examples 2 to 3 and Comparative Examples 1 to 2 are shown in Table 1, and are not described herein.

評價方式Evaluation method

1. 裂解溫度Pyrolysis temperature

本發明此處所稱之裂解溫度係指製造氯乙烯時,在金屬有機骨架觸媒的存在下,1,2-二氯乙烷裂解為氯乙烯所需的溫度。一般而言,1,2-二氯乙烷之裂解溫度越低,代表金屬有機骨架觸媒之催化效能越佳。 The term "cracking temperature" as used herein refers to the temperature required for the cracking of 1,2-dichloroethane to vinyl chloride in the presence of a metal organic skeleton catalyst in the manufacture of vinyl chloride. In general, the lower the pyrolysis temperature of 1,2-dichloroethane, the better the catalytic performance of the metal-organic framework catalyst.

2. 1,2-二氯乙烷轉化率2. 1,2-Dichloroethane conversion rate

本發明此處所稱之1,2-二氯乙烷(EDC)轉化率係以下式(II)計算而得。 The 1,2-dichloroethane (EDC) conversion referred to herein is calculated by the following formula (II).

Figure TWI610907BD00001
,其中
Figure TWI610907BD00002
Figure TWI610907BD00001
,among them
Figure TWI610907BD00002

表1

Figure TWI610907BD00003
Table 1
Figure TWI610907BD00003

接下來請參考表1。本發明之實施例1至3在金屬有機骨架觸媒的存在下,可於200℃至300℃的低溫下進行催化裂解步驟,且可達到60%至90%的1,2-二氯乙烷的轉化率。此外,使用金屬有機骨架觸媒也可縮短滯留時間,進而可提高單位時間中氯乙烯的生產效能。再者,以裂解相同量之1,2-二氯乙烷而言,金屬有機骨架觸媒的使用量較低,換言之,本發明之實施例1至3之金屬有機骨架觸媒的觸媒單位產率高。 Please refer to Table 1 below. Embodiments 1 to 3 of the present invention can carry out a catalytic cracking step at a low temperature of 200 ° C to 300 ° C in the presence of a metal organic skeleton catalyst, and can reach 60% to 90% of 1,2-dichloroethane. Conversion rate. In addition, the use of a metal-organic framework catalyst can also shorten the residence time, thereby increasing the production efficiency of vinyl chloride per unit time. Further, in the case of cracking the same amount of 1,2-dichloroethane, the amount of the metal organic skeleton catalyst used is low, in other words, the catalyst unit of the metal organic skeleton catalyst of Examples 1 to 3 of the present invention. High yield.

另一方面,根據表1之比較例1至2可知,若使用其他類型的觸媒,催化裂解溫度升高、滯留時間也較長,且1,2-二氯乙烷的轉化率不佳。再者,若欲裂解與本發明實施例相當量的1,2-二氯乙烷,比較例1至2之觸媒的使用量較高,代表比較例1至2之觸媒單位產率低。 On the other hand, according to Comparative Examples 1 to 2 of Table 1, it was found that if other types of catalysts were used, the catalytic cracking temperature was increased, the residence time was also long, and the conversion ratio of 1,2-dichloroethane was not good. Further, if the amount of 1,2-dichloroethane equivalent to the embodiment of the present invention is to be cleaved, the use amount of the catalyst of Comparative Examples 1 to 2 is high, and the catalyst unit yields of Comparative Examples 1 to 2 are low. .

據此,應用本發明之氯乙烯的製造方法,藉由 金屬有機骨架觸媒進行催化裂解步驟,可有效降低催化裂解溫度、提高1,2-二氯乙烷的轉化率、減少1,2-二氯乙烷之滯留時間以及提高觸媒單位產率。催化裂解步驟之裂解溫度降低,可有效增長金屬有機骨架觸媒觸媒使用壽命、減緩反應器中的積碳速度以及減少副產物的產生,進而可提高氯乙烯的生產效能和降低氯乙烯的製造成本。 According to this, the method for producing vinyl chloride of the present invention is applied by The metal organic skeleton catalyst undergoes a catalytic cracking step, which can effectively reduce the catalytic cracking temperature, increase the conversion rate of 1,2-dichloroethane, reduce the residence time of 1,2-dichloroethane, and increase the catalyst unit yield. The pyrolysis temperature of the catalytic cracking step is lowered, which can effectively increase the service life of the metal-organic framework catalyst, slow down the carbon deposition rate in the reactor, and reduce the generation of by-products, thereby improving the production efficiency of vinyl chloride and reducing the production of vinyl chloride. cost.

雖然本發明已以數個實施例揭露如上,然其並非用以限定本發明,在本發明所屬技術領域中任何具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several embodiments, it is not intended to limit the scope of the invention, and the invention may be practiced in various embodiments without departing from the spirit and scope of the invention. The scope of protection of the present invention is defined by the scope of the appended claims.

Claims (9)

一種氯乙烯的製造方法,包含:於一反應器中導入1,2-二氯乙烷氣體:以及於該反應器中,在一金屬有機骨架(Metal Organic Framework;MOF)觸媒的存在下,使該1,2-二氯乙烷氣體進行一催化裂解步驟,從而形成氯乙烯,且其中該催化裂解步驟係於200℃至300℃之一裂解溫度下進行,且該金屬有機骨架觸媒具有如下式(I)所示之結構:M1[(M2)x(L1)(L2)y] 式(I)於該式(I)中,該M1和該M2係選自於鋅離子(Zn2+)、銅離子(Cu2+)、鈷離子(Co2+)、鋁離子(Al3+)和鉻離子(Cr3+)所組成之族群的一者,該L1係選自於由苯甲酸基以及吡啶基所組成之一族群之一者,該L2係選自於由硝酸根離子、氯離子、氨根離子(-NH2)、磺酸根離子(-SO3H)以及氧基所組成之一族群之一者,該x為0或1,且該y為0至3之整數。 A method for producing vinyl chloride, comprising: introducing a 1,2-dichloroethane gas into a reactor: and in the reactor, in the presence of a metal organic framework (MOF) catalyst, The 1,2-dichloroethane gas is subjected to a catalytic cracking step to form vinyl chloride, and wherein the catalytic cracking step is carried out at a cracking temperature of 200 ° C to 300 ° C, and the metal organic skeleton catalyst has The structure represented by the following formula (I): M1[(M2)x(L1)(L2)y] In the formula (I), the M1 and the M2 are selected from zinc ions (Zn 2 ) + ), one of a group consisting of copper ions (Cu 2+ ), cobalt ions (Co 2+ ), aluminum ions (Al 3+ ), and chromium ions (Cr 3+ ) selected from benzene One of a group consisting of a formate group and a pyridyl group selected from the group consisting of a nitrate ion, a chloride ion, an amino ion (-NH 2 ), a sulfonate ion (-SO 3 H), and an oxy group. To form one of a group, the x is 0 or 1, and the y is an integer from 0 to 3. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該金屬有機骨架觸媒與該1,2-二氯乙烷氣體毎小時之一反應重量比為1:15至2:1。 The method for producing vinyl chloride according to claim 1, wherein the metal organic skeleton catalyst and the 1,2-dichloroethane gas have a reaction weight ratio of 1:15 to 2:1. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該苯甲酸基為對硝基苯甲酸基或2-磺酸鈉對苯二甲酸基。 The method for producing vinyl chloride according to claim 1, wherein the benzoic acid group is p-nitrobenzoic acid group or sodium 2-sulfonate terephthalic acid group. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該吡啶基為2,2’-聯吡啶基或4,4’-聯吡啶基。 The method for producing vinyl chloride according to claim 1, wherein the pyridyl group is a 2,2'-bipyridyl group or a 4,4'-bipyridyl group. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該反應器為一固定床反應器或一流動床反應器。 The method for producing vinyl chloride according to claim 1, wherein the reactor is a fixed bed reactor or a fluidized bed reactor. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中在該催化裂解步驟中,該1,2-二氯乙烷氣體於該反應器中之一滯留時間為5秒至100秒。 The method for producing vinyl chloride according to claim 1, wherein in the catalytic cracking step, the 1,2-dichloroethane gas has a residence time of 5 seconds to 100 seconds in the reactor. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該1,2-二氯乙烷氣體於該反應器中之一氣體空間速度為10/小時至1000/小時。 The method for producing vinyl chloride according to claim 1, wherein the 1,2-dichloroethane gas has a gas space velocity of from 10/hr to 1000/hr in the reactor. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該催化裂解步驟係於0.1MPa至1.5MPa之一壓力下進行。 The method for producing vinyl chloride according to claim 1, wherein the catalytic cracking step is carried out at a pressure of from 0.1 MPa to 1.5 MPa. 如申請專利範圍第1項所述之氯乙烯的製造方法,其中該1,2-二氯乙烷氣體之一轉化率為60%至90%。 The method for producing vinyl chloride according to claim 1, wherein one of the 1,2-dichloroethane gases has a conversion ratio of 60% to 90%.
TW105125621A 2016-08-11 2016-08-11 Method of producing vinyl chloride TWI610907B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105125621A TWI610907B (en) 2016-08-11 2016-08-11 Method of producing vinyl chloride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105125621A TWI610907B (en) 2016-08-11 2016-08-11 Method of producing vinyl chloride

Publications (2)

Publication Number Publication Date
TWI610907B true TWI610907B (en) 2018-01-11
TW201808865A TW201808865A (en) 2018-03-16

Family

ID=61728602

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105125621A TWI610907B (en) 2016-08-11 2016-08-11 Method of producing vinyl chloride

Country Status (1)

Country Link
TW (1) TWI610907B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268457A (en) * 2014-10-22 2016-01-27 台湾塑胶工业股份有限公司 Catalyst for cracking 1, 2-dichloroethane and method for catalyzing 1, 2-dichloroethane cracking

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268457A (en) * 2014-10-22 2016-01-27 台湾塑胶工业股份有限公司 Catalyst for cracking 1, 2-dichloroethane and method for catalyzing 1, 2-dichloroethane cracking

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
蕭義樺,MIL-101-Cr-SO3H-Al(III)的全合成並應用於二氯乙烷脫氯化氫反應,明志科技大學,2016/07/15 *

Also Published As

Publication number Publication date
TW201808865A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
CN104105681B (en) For the method manufacturing Fluorine containing olefine
JPH02167238A (en) Production of chlorotrifluoroethylene and
CN107400243B (en) Preparation method of zirconium-based microporous coordination polymer
WO2016078225A1 (en) Trans-1,1,1,4,4,4-hexafluoro-2-butene synthesis method
CN105080604B (en) A kind of crosslinked polystyrene microsphere surface synthesis and the preparation method of immobilized N hydroxyphthalimides catalyst
JP2016505578A (en) Method for producing 1,3,3,3-tetrafluoropropene
CN105712889A (en) Method for preparing (1R,2S) -2- (3, 4-difluorophenyl) cyclopropylamine
TWI577446B (en) Cracking catalyst of 1,2-dichloroethane, method of producing the same and application thereof
CN115722255A (en) Supported catalyst for producing 1,2, 3-pentachloropropane and preparation method and application thereof
TWI610907B (en) Method of producing vinyl chloride
CN101543781A (en) Catalyst for preparing propylene by oxidizing and dehydrogenating propane and preparation method thereof
WO2015035735A1 (en) Method for preparing intermediate compound of sitagliptin
CN104707619B (en) Graphene/Cu-Mn-Ti composite catalyst, and preparation method and application thereof
KR102223388B1 (en) Preparation method of ruthenium-platinum-tin catalyst for hydrogenation of cyclohexane dicarboxylic acid (CHDA) and method for producing cyclohexane dimethanol (CHDM) using said catalyst
JPH03115234A (en) Dehydrofluorination of fluorinated alkane and dehydrogenation method
CN104010999B (en) Prepare the method for fluorinated olefin compound
CN111393255A (en) Process for producing 1,1,2, 3-tetrachloropropene in high yield
CN104692998B (en) The preparation method of bis- fluoro- 2- chloroethanes of 1,1-
CN111848331A (en) Method for synthesizing 2-chloro-3, 3, 3-trifluoropropene through gas phase fluorination
CN103467243B (en) Method for catalyzing toluene selective chlorination by using H-L type molecular sieve
CN110950735B (en) Method for preparing 1,1,1,4,4, 4-hexafluoro-2-butyne by gas phase method
CN112624896A (en) Continuous synthesis method of m-difluorobenzene based on microchannel reactor
CN112892591A (en) Preparation method of catalyst for synthesizing diphenyl carbonate, catalyst and application
CN1335291A (en) Preparation of 1,1,1,3,3-pentachloropropane
CN104496745B (en) A kind of preparation method for synthesizing chlorohydrocarbon