TWI610318B - Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient - Google Patents

Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient Download PDF

Info

Publication number
TWI610318B
TWI610318B TW105127814A TW105127814A TWI610318B TW I610318 B TWI610318 B TW I610318B TW 105127814 A TW105127814 A TW 105127814A TW 105127814 A TW105127814 A TW 105127814A TW I610318 B TWI610318 B TW I610318B
Authority
TW
Taiwan
Prior art keywords
layer
temperature coefficient
titanium nitride
dielectric layer
manufacturing
Prior art date
Application number
TW105127814A
Other languages
Chinese (zh)
Other versions
TW201810299A (en
Inventor
溫文瑩
趙基宏
潘欽寒
Original Assignee
新唐科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新唐科技股份有限公司 filed Critical 新唐科技股份有限公司
Priority to TW105127814A priority Critical patent/TWI610318B/en
Priority to CN201610832910.5A priority patent/CN107785351B/en
Application granted granted Critical
Publication of TWI610318B publication Critical patent/TWI610318B/en
Publication of TW201810299A publication Critical patent/TW201810299A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/20Resistors
    • H01L28/24Resistors with an active material comprising a refractory, transition or noble metal, metal compound or metal alloy, e.g. silicides, oxides, nitrides

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本揭露提供一種零溫度係數電阻元件,包括:一半導體基板;一第一介電層,位於半導體基板上;一第一氮化鈦層,具有負溫度係數,位於第一介電層上;一第二介電層,位於第一氮化鈦層上;一導電結構,內埋於第二介電層中;以及一第二氮化鈦層,具有正溫度係數,位於第二介電層上,其中第二氮化鈦層與第一氮化鈦層連接。本揭露亦提供一種零溫度係數電阻元件的製造方法,以及一種負溫度係數電阻材料的製造方法。 The present disclosure provides a zero temperature coefficient resistive element including: a semiconductor substrate; a first dielectric layer on the semiconductor substrate; a first titanium nitride layer having a negative temperature coefficient on the first dielectric layer; A second dielectric layer on the first titanium nitride layer; a conductive structure embedded in the second dielectric layer; and a second titanium nitride layer having a positive temperature coefficient and located on the second dielectric layer , Wherein the second titanium nitride layer is connected to the first titanium nitride layer. The present disclosure also provides a method for manufacturing a zero temperature coefficient resistive element and a method for manufacturing a negative temperature coefficient resistive material.

Description

零溫度係數電阻元件及其製造方法、負溫度係數電阻材料的製造方法 Zero temperature coefficient resistance element and manufacturing method thereof, and manufacturing method of negative temperature coefficient resistance material

本揭露係有關於電阻元件,且特別是有關於一種零溫度係數電阻元件及其製造方法。 The disclosure relates to a resistive element, and more particularly to a zero temperature coefficient resistive element and a manufacturing method thereof.

在半導體積體電路中,為了提供穩定且不隨溫度改變的電壓,低溫度係數的電阻搭配能隙參考電路(Band-gap reference circuit)是一種可節省面積的設計方式。以半導體製程中所使用到的材料來說,目前尚無法用單一材料做到零溫度係數。 In semiconductor integrated circuits, in order to provide a stable voltage that does not change with temperature, a resistor with a low temperature coefficient and a band-gap reference circuit are a design method that can save area. For materials used in semiconductor manufacturing processes, it is not yet possible to achieve zero temperature coefficients with a single material.

在矽製程所使用的材料中,類金屬材料可提供較低的溫度係數來製作薄膜電阻。常用的類金屬材料包括氮化鉭(TaN)、氮化鈦(TiN),其中氮化鉭(TaN)具有負溫度係數(negative temperature coefficient;NTC),而氮化鈦(TiN)具有正溫度係數(positive temperature coefficient;PTC)。雖然過去研究曾結合正溫度係數電阻材料和負溫度係數電阻材料來產生零溫度電阻的效應,但是並不是所有半導體工廠都具備適用於兩種不同電阻材料的沉積設備。 Among the materials used in the silicon process, metal-like materials can provide lower temperature coefficients for making thin film resistors. Common metal-like materials include tantalum nitride (TaN) and titanium nitride (TiN), where tantalum nitride (TaN) has a negative temperature coefficient (NTC), and titanium nitride (TiN) has a positive temperature coefficient (positive temperature coefficient; PTC). Although previous studies have combined positive temperature coefficient resistance materials and negative temperature coefficient resistance materials to produce the effect of zero temperature resistance, not all semiconductor factories have deposition equipment suitable for two different resistance materials.

因此,目前亟需能夠在一製程技術中製造具有正和負兩種溫度係數之電阻材料的方法。 Therefore, there is an urgent need for a method capable of manufacturing a resistive material having both positive and negative temperature coefficients in one process technology.

根據一實施例,本揭露提供一種零溫度係數電阻元件,包括:一半導體基板;一第一介電層,位於半導體基板上;一第一氮化鈦層,具有負溫度係數,位於第一介電層上;一第二介電層,位於第一氮化鈦層上;一導電結構,內埋於第二介電層中;以及一第二氮化鈦層,具有正溫度係數,位於第二介電層上,其中第二氮化鈦層與第一氮化鈦層連接。 According to an embodiment, the present disclosure provides a zero temperature coefficient resistive element including: a semiconductor substrate; a first dielectric layer on the semiconductor substrate; and a first titanium nitride layer having a negative temperature coefficient on the first dielectric. On the electrical layer; a second dielectric layer on the first titanium nitride layer; a conductive structure embedded in the second dielectric layer; and a second titanium nitride layer having a positive temperature coefficient and located on the first On the two dielectric layers, the second titanium nitride layer is connected to the first titanium nitride layer.

根據另一實施例,本揭露提供一種零溫度係數電阻元件的製造方法,包括:提供一半導體基板;形成第一介電層於半導體基板上;形成一第一氮化鈦層於第一介電層上;形成一第二介電層於第一氮化鈦層上;對第二介電層實施一熱處理;形成一導電結構於第二介電層中;以及形成一第二氮化鈦層於第二介電層上,其中第二氮化鈦層與第一氮化鈦層連接。 According to another embodiment, the present disclosure provides a method for manufacturing a zero temperature coefficient resistive element, including: providing a semiconductor substrate; forming a first dielectric layer on the semiconductor substrate; forming a first titanium nitride layer on the first dielectric Forming a second dielectric layer on the first titanium nitride layer; performing a heat treatment on the second dielectric layer; forming a conductive structure in the second dielectric layer; and forming a second titanium nitride layer On the second dielectric layer, the second titanium nitride layer is connected to the first titanium nitride layer.

根據又一實施例,本揭露提供一種零溫度係數電阻元件,包括:一半導體基板;一閘極結構,具有正溫度係數,位於半導體基板上;以及一電阻層,具有負溫度係數,位於閘極結構上;其中電阻層與閘極結構直接接觸。 According to yet another embodiment, the present disclosure provides a zero temperature coefficient resistive element including: a semiconductor substrate; a gate structure having a positive temperature coefficient on the semiconductor substrate; and a resistance layer having a negative temperature coefficient on the gate Structurally; where the resistive layer is in direct contact with the gate structure.

根據又一實施例,本揭露提供一種零溫度係數電阻元件的製造方法,包括:提供一半導體基板;形成一閘極結構於半導體基板上;形成一電阻層於閘極結構上;形成一介電層於電阻層上;以及對介電層實施一熱處理。 According to yet another embodiment, the present disclosure provides a method for manufacturing a zero temperature coefficient resistive element, including: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; forming a resistive layer on the gate structure; forming a dielectric Layer on the resistive layer; and performing a heat treatment on the dielectric layer.

根據再一實施例,本揭露提供一種負溫度係數電 阻材料的製造方法,包括:提供具有正溫度係數之一電阻材料;以及對電阻材料實施一熱處理,以使電阻材料具有負溫度係數;其中電阻材料為氮化鈦。 According to yet another embodiment, the present disclosure provides a negative temperature coefficient A method for manufacturing a resistive material includes: providing a resistive material having a positive temperature coefficient; and performing a heat treatment on the resistive material so that the resistive material has a negative temperature coefficient; wherein the resistive material is titanium nitride.

為讓本揭露之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下: In order to make the above and other objects, features, and advantages of the present disclosure more comprehensible, the following describes the preferred embodiments in detail with the accompanying drawings, as follows:

100、300‧‧‧零溫度係數電阻元件 100, 300‧‧‧ zero temperature coefficient resistance element

102、302‧‧‧半導體基板 102, 302‧‧‧ semiconductor substrate

104‧‧‧第一介電層 104‧‧‧First dielectric layer

106‧‧‧第一氮化鈦層 106‧‧‧ first titanium nitride layer

108‧‧‧第二介電層 108‧‧‧Second dielectric layer

110‧‧‧導電結構 110‧‧‧ conductive structure

112‧‧‧金屬層 112‧‧‧metal layer

114‧‧‧第二氮化鈦層 114‧‧‧second titanium nitride layer

200、400、500‧‧‧方法流程圖 200, 400, 500‧‧‧ method flow chart

202-214、402-410、502-504‧‧‧步驟 202-214, 402-410, 502-504‧‧‧ steps

304‧‧‧多晶矽層 304‧‧‧polycrystalline silicon layer

306‧‧‧金屬矽化層 306‧‧‧metal silicide layer

308‧‧‧閘極結構 308‧‧‧Gate structure

310‧‧‧電阻層 310‧‧‧resistance layer

本揭露最好配合圖式及詳細說明閱讀以便了解。要強調的是,根據工業上的標準作業,各個特徵未必依照比例繪製。事實上,為了清楚之討論,可能任意的放大或縮小各個特徵的尺寸。 This disclosure is best read in conjunction with the drawings and detailed description for easy understanding. It is emphasized that, in accordance with standard industry practice, individual features are not necessarily drawn to scale. In fact, for the sake of clarity, the size of each feature may be arbitrarily enlarged or reduced.

第1圖為根據本揭露一實施例顯示零溫度係數電阻元件於製程一中間階段的剖面圖;第2圖為根據本揭露一實施例顯示零溫度係數電阻元件的製造方法流程圖;第3圖為根據本揭露另一實施例顯示零溫度係數電阻元件於製程一中間階段的剖面圖;第4圖為根據本揭露另一實施例顯示零溫度係數電阻元件的製造方法流程圖;第5圖為根據本揭露再一實施例顯示負溫度係數電阻材料的製造方法流程圖;第6A、7A圖為根據本揭露一些實施例顯示不同製程所製造之電阻材料的溫度係數;第6B、7B圖為根據本揭露一些實施例顯示不同製程所製造 之電阻材料的TEM圖;以及第8圖為根據本揭露一實施例顯示零溫度係數電阻元件中兩種電阻材料的溫度係數。 FIG. 1 is a cross-sectional view showing a zero temperature coefficient resistive element in an intermediate stage of a process according to an embodiment of the present disclosure; FIG. 2 is a flowchart showing a method for manufacturing a zero temperature coefficient resistive element according to an embodiment of the present disclosure; FIG. 4 is a cross-sectional view showing a zero temperature coefficient resistive element in an intermediate stage of a process according to another embodiment of the present disclosure; FIG. 4 is a flowchart showing a method for manufacturing a zero temperature coefficient resistive element according to another embodiment of the present disclosure; According to yet another embodiment of the present disclosure, a flowchart of a method for manufacturing a negative temperature coefficient resistive material is shown. Figures 6A and 7A show temperature coefficients of resistive materials manufactured in different processes according to some embodiments of the present disclosure. This disclosure shows some examples showing different manufacturing processes And FIG. 8 is a diagram showing temperature coefficients of two kinds of resistance materials in a zero temperature coefficient resistance element according to an embodiment of the present disclosure.

以下依本揭露之不同特徵舉出數個不同的實施例。本揭露中特定的元件及安排係為了簡化,但本揭露並不以這些實施例為限。舉例而言,於第二元件上形成第一元件的描述可包括第一元件與第二元件直接接觸的實施例,亦包括具有額外的元件形成在第一元件與第二元件之間、使得第一元件與第二元件並未直接接觸的實施例。此外,為簡明起見,本揭露在不同例子中以重複的元件符號及/或字母表示,但不代表所述各實施例及/或結構間具有特定的關係。 Several different embodiments are listed below according to the different features of this disclosure. The specific elements and arrangements in this disclosure are for simplicity, but this disclosure is not limited to these embodiments. For example, the description of forming the first element on the second element may include an embodiment in which the first element is in direct contact with the second element, and also includes an additional element formed between the first element and the second element such that the first element An embodiment in which an element is not in direct contact with a second element. In addition, for the sake of brevity, the disclosure is represented by repeated element symbols and / or letters in different examples, but it does not mean that there is a specific relationship between the embodiments and / or structures.

此外,實施例中可能用到與空間相關的用詞,像是「上方」、「下方」、「較高的」、「較低的」及類似的用詞,這些關係詞係為了便於描述圖式中一個(些)元件或特徵與另一個(些)元件或特徵之間的關係。這些空間關係詞包括使用中或操作中的裝置之不同方位,以及圖式中所描述的方位。裝置可能被轉向不同方位(旋轉90度或其他方位),則其中使用的空間相關形容詞也可依此相同解釋。 In addition, embodiments may use terms related to space, such as "above," "below," "higher," "lower," and similar terms. These relational words are for the convenience of describing the figure. The relationship between one element (s) or feature and another element (s) or feature in the formula. These spatial relations include different positions of the device in use or operation, as well as the positions described in the drawings. The device may be turned to different orientations (rotated 90 degrees or other orientations), and the spatially related adjectives used therein can be interpreted the same way.

必須了解的是,當某層在其它層或基板「上」時,有可能是指直接在其它層或基板上,或指其它層或基板之間夾設其它層。 It must be understood that when a layer is "on" another layer or substrate, it may mean directly on the other layer or substrate, or another layer sandwiched between other layers or substrates.

本揭露一些實施例提供一種零溫度係數電阻元件及其製造方法,利用常用的類金屬材料氮化鈦(TiN),透過製 程步驟的安排,使氮化鈦(TiN)在不同製程步驟中經歷不同的熱處理,進而使在不同製程步驟中所形成的氮化鈦(TiN)具有正溫度係數或負溫度係數。這樣一來,可將具有正溫度係數和具有負溫度係數的氮化鈦依適當比例結合而獲得零溫度係數的效應。 Some embodiments of the present disclosure provide a zero temperature coefficient resistive element and a method for manufacturing the same, using a common metal-like material, titanium nitride (TiN), through The arrangement of the process steps enables the titanium nitride (TiN) to undergo different heat treatments in different process steps, so that the titanium nitride (TiN) formed in the different process steps has a positive temperature coefficient or a negative temperature coefficient. In this way, the effect of zero temperature coefficient can be obtained by combining titanium nitride with positive temperature coefficient and negative temperature coefficient with appropriate proportions.

本揭露一些實施例也提供另一種樣態之零溫度係數電阻元件及其製造方法,使多晶矽閘極結構與常用的類金屬材料氮化鈦(TiN)連接,經過後續的熱處理後,即可獲得具有正溫度係數的多晶矽閘極結構與具有負溫度係數的電阻材料,進而獲得零溫度係數的效應。 Some embodiments of the present disclosure also provide another aspect of a zero temperature coefficient resistive element and a method for manufacturing the same. The polycrystalline silicon gate structure is connected to a commonly used metal-like material, titanium nitride (TiN). A polycrystalline silicon gate structure with a positive temperature coefficient and a resistive material with a negative temperature coefficient can obtain the effect of a zero temperature coefficient.

上述本揭露實施例提供之零溫度係數電阻元件製造方法,均利用熱處理使具有正溫度係數的類金屬材料(例如:氮化鈦)轉變為具有負溫度係數的電阻材料。 In the method for manufacturing a zero temperature coefficient resistance element provided in the embodiments of the present disclosure described above, a metal-like material having a positive temperature coefficient (for example, titanium nitride) is converted into a resistance material having a negative temperature coefficient by using heat treatment.

以下描述本揭露的一些實施例。第1、3圖為根據一些實施例顯示形成零溫度係數電阻元件於製程之中間階段剖面圖。第2、4圖為根據一些實施例顯示零溫度係數電阻元件的製程方法流程圖。在第1~4圖所述的階段之前、期間、及/或之後可提供額外的操作,像是一些習知的半導體製程步驟。在不同的實施例中,前述的一些階段可以被置換或移除。可加入額外的特徵到半導體元件結構。在不同的實施例中,以下所述的一些元件可以被置換或移除。為達清楚說明的目的,於第1、3圖的剖面圖中省略部分的元件。 Some embodiments of the disclosure are described below. Figures 1 and 3 are cross-sectional views showing the middle stage of forming a zero temperature coefficient resistive element according to some embodiments. FIG. 2 and FIG. 4 are flowcharts of a method for manufacturing a zero temperature coefficient resistive element according to some embodiments. Additional operations may be provided before, during, and / or after the phases described in Figures 1 to 4, such as some conventional semiconductor process steps. In different embodiments, some of the aforementioned stages may be replaced or removed. Additional features can be added to the semiconductor element structure. In various embodiments, some of the elements described below may be replaced or removed. For the purpose of clear description, some elements are omitted in the sectional views of FIGS. 1 and 3.

第1圖為根據本揭露一實施例顯示零溫度係數電阻元件100於製程一中間階段的剖面圖。 FIG. 1 is a cross-sectional view showing a zero temperature coefficient resistive element 100 at an intermediate stage of a process according to an embodiment of the disclosure.

如第1圖所示,零溫度係數電阻元件100包括一半導體基板102。半導體基板102可由合適的半導體材料形成,像是矽、鍺、鑽石、或其類似的材料。或者,化合物材料像是鍺化矽、碳化矽、砷鎵(arsenic gallium)、銦鎵(indium gallium)、磷化銦、碳化矽鍺(silicon germanium carbide)、磷化鎵砷(gallium arsenic phosphide)、磷化鎵銦(gallium indium phosphide)、前述材料之組合、及其類似的材料,也可使用其他晶向(crystal orientations)。 As shown in FIG. 1, the zero temperature coefficient resistive element 100 includes a semiconductor substrate 102. The semiconductor substrate 102 may be formed of a suitable semiconductor material, such as silicon, germanium, diamond, or the like. Alternatively, the compound material is like silicon germanium, silicon carbide, arsenic gallium, indium gallium, indium phosphide, silicon germanium carbide, gallium arsenic phosphide, Gallium indium phosphide, a combination of the foregoing materials, and similar materials may use other crystal orientations.

此外,半導體基板102可包括一絕緣體上覆矽(silicon-on-insulator;SOI)基板。一般來說,絕緣體上覆矽(SOI)基板包括一層半導體材料,像是磊晶矽、鍺、鍺化矽、絕緣體上覆矽(SOI)、絕緣體上覆矽鍺(silicon germanium on insulator;SGOI)、或前述材料之組合。半導體基板102可摻雜p-型摻雜物,像是硼、鋁、鎵、或其類似的材料,儘管半導體基板102也可如習知的摻雜n-型摻雜物。 In addition, the semiconductor substrate 102 may include a silicon-on-insulator (SOI) substrate. Generally, a silicon-on-insulator (SOI) substrate includes a layer of semiconductor material, such as epitaxial silicon, germanium, silicon germanium, silicon-on-insulator (SOI), and silicon-germanium on insulator (SGOI). , Or a combination of the foregoing. The semiconductor substrate 102 may be doped with a p-type dopant, such as boron, aluminum, gallium, or a similar material, although the semiconductor substrate 102 may be doped with a n-type dopant as is conventionally known.

第一介電層104位於半導體基板102上。第一介電層104的材料可包括四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)、或其他類似的材料。在一些實施例中,第一介電層104可作為一蝕刻停止層(Etch-stop layer;ESL)。 The first dielectric layer 104 is located on the semiconductor substrate 102. The material of the first dielectric layer 104 may include Tetra Ethyl Ortho Silicate (TEOS), or other similar materials. In some embodiments, the first dielectric layer 104 can be used as an etch stop layer (ESL).

第一氮化鈦層106位於第一介電層104上。第一氮化鈦層106具有負溫度係數,大約為-300~-600ppm/℃。在一些實施例中,第一氮化鈦層106的厚度可介於100~1000埃,例如:400埃、600埃、或800埃。在此,第一氮化鈦層106也可稱為第一薄膜電阻層。 The first titanium nitride layer 106 is located on the first dielectric layer 104. The first titanium nitride layer 106 has a negative temperature coefficient of approximately -300 to -600 ppm / ° C. In some embodiments, the thickness of the first titanium nitride layer 106 may be between 100 and 1000 angstroms, for example: 400 angstroms, 600 angstroms, or 800 angstroms. Here, the first titanium nitride layer 106 may also be referred to as a first thin film resistance layer.

第二介電層108位於第一氮化鈦層106上。第二介電層108的材料可包括硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)、磷-矽玻璃(Phospho-Silicate Glass;PSD)、硼-矽玻璃(Boro-Silicate Glass;BSG)、或其他類似的材料。第二介電層108中可包括導電結構110。導電結構110的材料可包括合適的導電材料像是銅合金、鋁、鎢、銀、前述材料之任何組合及/或其類似的材料。在一些實施例中,導電結構110可例如為接觸(contact)。 The second dielectric layer 108 is located on the first titanium nitride layer 106. The material of the second dielectric layer 108 may include Boron-Doped Phospho-Silicate Glass (BPSG), Phospho-Silicate Glass (PSD), Boro-Silicate Glass; BSG), or other similar materials. The second dielectric layer 108 may include a conductive structure 110 therein. The material of the conductive structure 110 may include a suitable conductive material such as a copper alloy, aluminum, tungsten, silver, any combination of the foregoing materials, and / or the like. In some embodiments, the conductive structure 110 may be, for example, a contact.

金屬層112位於第二介電層108上。金屬層112之間的距離可依據設計而決定。金屬層112的厚度可大於約0.4μm,但本發明不受此限制,可由當時半導體技術規格決定。 The metal layer 112 is on the second dielectric layer 108. The distance between the metal layers 112 may be determined according to design. The thickness of the metal layer 112 may be greater than about 0.4 μm, but the present invention is not limited thereto, and may be determined by the technical specifications of the semiconductor at the time.

第二氮化鈦層114位於第二介電層108上。更明確的說,第二氮化鈦層114覆蓋於第二介電層108之上表面,並延伸至金屬層112之一側壁及一部分的上表面,如第1圖所示。第二氮化鈦層114經由其背表面與第二介電層108和金屬層112接觸。第二氮化鈦層114具有正溫度係數,大約為300~600ppm/℃。第二氮化鈦層114透過金屬層112和導電結構110與第一氮化鈦層106連接。在一些實施例中,第二氮化鈦層114的厚度可介於100~1000埃,例如:400埃、600埃、或800埃。在此,第二氮化鈦層114也可稱為第二薄膜電阻層。 The second titanium nitride layer 114 is located on the second dielectric layer 108. More specifically, the second titanium nitride layer 114 covers the upper surface of the second dielectric layer 108, and extends to one side wall and a part of the upper surface of the metal layer 112, as shown in FIG. 1. The second titanium nitride layer 114 is in contact with the second dielectric layer 108 and the metal layer 112 via its back surface. The second titanium nitride layer 114 has a positive temperature coefficient of about 300 to 600 ppm / ° C. The second titanium nitride layer 114 is connected to the first titanium nitride layer 106 through the metal layer 112 and the conductive structure 110. In some embodiments, the thickness of the second titanium nitride layer 114 may be between 100 and 1000 angstroms, for example: 400 angstroms, 600 angstroms, or 800 angstroms. Here, the second titanium nitride layer 114 may also be referred to as a second thin film resistance layer.

如第1圖所示,具有負溫度係數之第一薄膜電阻層(即是,第一氮化鈦層106)和具有正溫度係數之第二薄膜電阻層(即是,第二氮化鈦層114)互相連接/串聯,產生零溫度係數的效應,進而形成零溫度係數電阻元件100。 As shown in Fig. 1, a first thin-film resistor layer having a negative temperature coefficient (that is, the first titanium nitride layer 106) and a second thin-film resistor layer having a positive temperature coefficient (that is, a second titanium nitride layer) 114) Connected / connected in series to produce a zero temperature coefficient effect, thereby forming a zero temperature coefficient resistance element 100.

值得一提的是,相較於過去研究利用正溫度係數和負溫度係數的兩種不同電阻材料的結合,例如:具有負溫度係數的氮化鉭(TaN)和具有正溫度係數的氮化鈦(TiN),來產生零溫度電阻的效應,根據本揭露一些實施例所提供的零溫度電阻元件係透過製程步驟的安排,使同一種電阻材料(氮化鈦)具有正溫度係數和負溫度係數,再將具有正溫度係數和負溫度係數的氮化鈦依適當比例結合以產生零溫度係數的效應。在此,所述氮化鈦的結合可透過串聯或並聯來達成。也就是說,相較於過去研究需要適用於兩種不同電阻材料的沉積設備,在本揭露一些實施例中,只需要一種適用於氮化鈦的沉積設備即可達到製造零溫度係數元件的目的。 It is worth mentioning that, compared to previous studies, the combination of two different resistance materials using a positive temperature coefficient and a negative temperature coefficient, for example: tantalum nitride (TaN) with a negative temperature coefficient and titanium nitride with a positive temperature coefficient (TiN) to generate the effect of zero temperature resistance. According to the zero temperature resistance element provided by some embodiments of the present disclosure, the same resistance material (titanium nitride) has a positive temperature coefficient and a negative temperature coefficient through the arrangement of process steps. Then, titanium nitride with a positive temperature coefficient and a negative temperature coefficient is combined according to an appropriate ratio to produce the effect of a zero temperature coefficient. Here, the bonding of the titanium nitride can be achieved through series or parallel. That is to say, compared with the previous research that requires deposition equipment suitable for two different resistance materials, in some embodiments of the disclosure, only one deposition equipment suitable for titanium nitride is needed to achieve the purpose of manufacturing a zero temperature coefficient device .

第2圖為根據本揭露一實施例顯示零溫度係數電阻元件的製造方法流程圖200。為達說明的目的,以下將配合第1、2圖一起進行描述。 FIG. 2 is a flowchart 200 of a method for manufacturing a zero temperature coefficient resistive element according to an embodiment of the disclosure. For the purpose of explanation, the following description will be described with reference to FIGS. 1 and 2.

首先,進行步驟202,提供一半導體基板102。半導體基板102可由合適的半導體材料形成,像是矽、鍺、鑽石、或其類似的材料。或者,化合物材料像是鍺化矽、碳化矽、砷鎵(arsenic gallium)、銦鎵(indium gallium)、磷化銦、碳化矽鍺(silicon germanium carbide)、磷化鎵砷(gallium arsenic phosphide)、磷化鎵銦(gallium indium phosphide)、前述材料之組合、及其類似的材料,也可使用其他晶向(crystal orientations)。 First, step 202 is performed to provide a semiconductor substrate 102. The semiconductor substrate 102 may be formed of a suitable semiconductor material, such as silicon, germanium, diamond, or the like. Alternatively, the compound material is like silicon germanium, silicon carbide, arsenic gallium, indium gallium, indium phosphide, silicon germanium carbide, gallium arsenic phosphide, Gallium indium phosphide, a combination of the foregoing materials, and similar materials may use other crystal orientations.

此外,半導體基板102可包括一絕緣體上覆矽(silicon-on-insulator;SOI)基板。一般來說,絕緣體上覆矽(SOI) 基板包括一層半導體材料,像是磊晶矽、鍺、鍺化矽、絕緣體上覆矽(SOI)、絕緣體上覆矽鍺(silicon germanium on insulator;SGOI)、或前述材料之組合。半導體基板102可摻雜p-型摻雜物,像是硼、鋁、鎵、或其類似的材料,儘管半導體基板102也可如習知的摻雜n-型摻雜物。 In addition, the semiconductor substrate 102 may include a silicon-on-insulator (SOI) substrate. Generally, silicon-on-insulator (SOI) The substrate includes a layer of semiconductor material, such as epitaxial silicon, germanium, silicon germanium, silicon on insulator (SOI), silicon germanium on insulator (SGOI), or a combination of the foregoing materials. The semiconductor substrate 102 may be doped with a p-type dopant, such as boron, aluminum, gallium, or a similar material, although the semiconductor substrate 102 may be doped with a n-type dopant as is conventionally known.

接下來,進行步驟204,形成第一介電層104於半導體基板102上。第一介電層104的材料可包括四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)、或其他類似的材料。第一介電層104可由合適的製程沈積,像是化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、高密度電漿化學氣相沉積(HDPCVD)、旋塗式製程(spin-on process)、濺鍍製程、或前述製程之組合。 Next, step 204 is performed to form a first dielectric layer 104 on the semiconductor substrate 102. The material of the first dielectric layer 104 may include Tetra Ethyl Ortho Silicate (TEOS), or other similar materials. The first dielectric layer 104 can be deposited by a suitable process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high-density plasma chemical vapor deposition (HDPCVD), A spin-on process, a sputtering process, or a combination of the foregoing processes.

接下來,進行步驟206,形成一第一氮化鈦層106於第一介電層104上。可由合適的製程像是化學氣相沉積(CVD)、物理氣相沉積(PVD)、或前述製程之組合,形成厚度介於100~600埃,例如:400埃的第一氮化鈦層106。 Next, step 206 is performed to form a first titanium nitride layer 106 on the first dielectric layer 104. The first titanium nitride layer 106 can be formed by a suitable process such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or a combination of the foregoing processes to a thickness of 100 to 600 angstroms, for example, 400 angstroms.

接著,進行步驟208,形成一第二介電層108於第一氮化鈦層106上。第二介電層108的材料可包括硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)、磷-矽玻璃(Phospho-Silicate Glass;PSD)、硼-矽玻璃(Boro-Silicate Glass;BSG)、或其他類似的材料。第二介電層108可由合適的製程沈積,像是化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、高密度電漿化學氣相沉積(HDPCVD)、旋塗式製程(spin-on process)、濺鍍製程、或前述製程之組合。 Next, step 208 is performed to form a second dielectric layer 108 on the first titanium nitride layer 106. The material of the second dielectric layer 108 may include Boron-Doped Phospho-Silicate Glass (BPSG), Phospho-Silicate Glass (PSD), Boro-Silicate Glass; BSG), or other similar materials. The second dielectric layer 108 may be deposited by a suitable process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high-density plasma chemical vapor deposition (HDPCVD), A spin-on process, a sputtering process, or a combination of the foregoing processes.

接下來,進行步驟210,對第二介電層108實施一熱處理。在一實施例中,熱處理為一硼摻雜磷-矽玻璃熱處理(BPSG flow),其製程溫度介於800℃~900℃。在其他實施例中,熱處理的溫度範圍可介於460℃~900℃。 Next, step 210 is performed to perform a heat treatment on the second dielectric layer 108. In one embodiment, the heat treatment is a boron-doped phosphorus-silica glass heat treatment (BPSG flow), and the process temperature is between 800 ° C and 900 ° C. In other embodiments, the temperature range of the heat treatment may be between 460 ° C and 900 ° C.

應注意的是,在一般矽製程中,氮化鈦(TiN)通常在用於接觸層(contact layer)之後作為金屬能障層以避免擴散及/或提供金屬附著性,其後續製程溫度都小於450℃。然而,步驟206是在形成接觸層(contact layer)之前形成所述之第一氮化鈦層106,因此,此第一氮化鈦層106將經歷後續步驟210的熱處理,例如:硼摻雜磷-矽玻璃熱處理(BPSG flow)。經實驗發現,當第一氮化鈦層106經過硼摻雜磷-矽玻璃熱處理(BPSG flow)(製程溫度介於800℃~900℃)之後,經過熱處理的氮化鈦的溫度係數由原本的正溫度係數變為負溫度係數。因為在進行硼摻雜磷-矽玻璃熱處理(BPSG flow)的過程中,氮化鈦與上層的氧化物反應而產生新的結構,或是氮化鈦本身因為硼摻雜磷-矽玻璃熱處理(BPSG flow)而產生相變化,使得第一氮化鈦層106對於溫度的敏感度及特性產生改變。因此,於步驟210進行熱處理之後,第一氮化鈦層106轉變為具有負溫度係數之電阻材料層。 It should be noted that, in general silicon processes, titanium nitride (TiN) is usually used as a metal energy barrier layer after being used in a contact layer to avoid diffusion and / or provide metal adhesion. The subsequent process temperatures are lower than 450 ° C. However, step 206 is to form the first titanium nitride layer 106 before the contact layer is formed. Therefore, the first titanium nitride layer 106 will undergo the heat treatment of the subsequent step 210, such as boron-doped phosphorus -Silicon glass heat treatment (BPSG flow). It has been found through experiments that after the first titanium nitride layer 106 is subjected to a boron-doped phosphorus-silica glass heat treatment (BPSG flow) (process temperature ranging from 800 ° C to 900 ° C), the temperature coefficient of the heat-treated titanium nitride is changed from the original The positive temperature coefficient becomes a negative temperature coefficient. Because in the process of boron-doped phosphorus-silica glass heat treatment (BPSG flow), titanium nitride reacts with the upper oxide to produce a new structure, or titanium nitride itself is caused by boron-doped phosphorus-silica glass heat treatment ( BPSG flow), which causes a phase change, so that the temperature sensitivity and characteristics of the first titanium nitride layer 106 are changed. Therefore, after the heat treatment is performed in step 210, the first titanium nitride layer 106 is transformed into a resistive material layer having a negative temperature coefficient.

接下來,進行步驟212,形成一導電結構110於第二介電層108中。第二介電層108可利用例如:微影罩幕(photolithographic masking)及蝕刻製程進行圖案化,據此,微影罩形成於第二介電層108上,並接著曝露於一圖案化光線。曝光之後,移除預定的部分微影罩幕以曝露底下的第二介電層 108,接著進行蝕刻以移除曝露的部分,據此圖案化第二介電層108以形成一開口。應注意的是,可透過任何其他合適的半導體圖案化技術來形成開口,像是蝕刻製程、雷射剝除製程(laser ablation process)、前述製程之任何組合及/或其類似的製程。 Next, step 212 is performed to form a conductive structure 110 in the second dielectric layer 108. The second dielectric layer 108 can be patterned using, for example, photolithographic masking and etching processes. According to this, the photolithographic mask is formed on the second dielectric layer 108 and then exposed to a patterned light. After exposure, remove a predetermined portion of the lithographic mask to expose the second dielectric layer underneath 108, followed by etching to remove the exposed portion, and patterning the second dielectric layer 108 to form an opening. It should be noted that the opening may be formed by any other suitable semiconductor patterning technology, such as an etching process, a laser ablation process, any combination of the foregoing processes, and / or a similar process.

在一些實施例中,阻障層、晶種層(seed layer)可沉積於開口的表面上。接著,可填充導電材料至開口中以形成與第一氮化鈦層106接觸的導電結構110。填充在開口中的導電材料可為任何合適的導電材料,像是銅合金、鋁、鎢、銀、前述材料之任何組合及/或其類似的材料。可利用合適的技術形成導電材料,像是無電解電鍍(electro-less plating process)製程、化學氣相沉積(CVD)、電鍍(electroplating)及/或類似的技術。 In some embodiments, a barrier layer and a seed layer may be deposited on the surface of the opening. Next, a conductive material may be filled into the opening to form a conductive structure 110 in contact with the first titanium nitride layer 106. The conductive material filled in the opening may be any suitable conductive material, such as copper alloy, aluminum, tungsten, silver, any combination of the foregoing materials, and / or the like. The conductive material may be formed using a suitable technique, such as an electro-less plating process, chemical vapor deposition (CVD), electroplating, and / or the like.

根據一些實施例,實施一平坦化製程以移除多餘的導電材料。平坦化製程可利用合適的技術來執行,像是研磨(grinding)、磨光(polishing)及/或化學蝕刻、蝕刻及研磨技術的組合。根據一些實施例,平坦化製程可利用化學機械平坦化(chemical mechanical polishing;CMP)製程來執行。 According to some embodiments, a planarization process is performed to remove excess conductive material. The planarization process may be performed using a suitable technique, such as a combination of grinding, polishing, and / or chemical etching, etching, and polishing techniques. According to some embodiments, the planarization process may be performed using a chemical mechanical polishing (CMP) process.

在進行步驟214之前,可先形成金屬層112於第二介電層108和導電結構110上。金屬層112可由任何合適的製程沉積,像是化學氣相沉積(CVD)、原子層沉積(ALD)、或物理氣相沉積(PVD)。在一些實施例中,金屬層112的厚度可大於約0.4μm,例如可介於0.4μm~0.5μm,但本發明不限於此,可由當時但導體技術製程規格所決定。 Before step 214 is performed, a metal layer 112 may be formed on the second dielectric layer 108 and the conductive structure 110. The metal layer 112 may be deposited by any suitable process, such as chemical vapor deposition (CVD), atomic layer deposition (ALD), or physical vapor deposition (PVD). In some embodiments, the thickness of the metal layer 112 may be greater than about 0.4 μm, for example, it may be between 0.4 μm and 0.5 μm. However, the present invention is not limited to this, and may be determined by the current technical specifications of the conductor technology.

接下來,進行步驟214,形成一第二氮化鈦層114於第二介電層108上。可由合適的製程像是化學氣相沉積(CVD)、物理氣相沉積(PVD)、或前述製程之組合,形成厚度介於100~600埃,例如:400埃的第一氮化鈦層106。在一些實施例中,第二氮化鈦層114覆蓋於第二介電層108之上表面,並延伸至金屬層112之一側壁及一部分上表面。如第1圖所示,第二氮化鈦層114透過金屬層112與導電結構110與第一氮化鈦層106互相連接/串聯。應注意的是,於步驟214之後,第二氮化鈦層114所經歷的製程溫度都小於約450℃,經實驗發現,這樣的製程溫度所形成的氮化鈦具有正溫度係數。 Next, step 214 is performed to form a second titanium nitride layer 114 on the second dielectric layer 108. The first titanium nitride layer 106 can be formed by a suitable process such as chemical vapor deposition (CVD), physical vapor deposition (PVD), or a combination of the foregoing processes to a thickness of 100 to 600 angstroms, for example, 400 angstroms. In some embodiments, the second titanium nitride layer 114 covers the upper surface of the second dielectric layer 108 and extends to a side wall and a part of the upper surface of the metal layer 112. As shown in FIG. 1, the second titanium nitride layer 114 is connected / connected to each other through the metal layer 112, the conductive structure 110, and the first titanium nitride layer 106. It should be noted that after step 214, the process temperature experienced by the second titanium nitride layer 114 is less than about 450 ° C. It is found through experiments that the titanium nitride formed at such a process temperature has a positive temperature coefficient.

本實施例提供的製造方法將氮化鈦分別安排在不同製程步驟中,在接觸層(contact layer)前形成之第一氮化鈦層因經歷製程溫度介於460℃~900℃的熱處理,如硼摻雜磷-矽玻璃熱處理(BPSG flow),故轉變為具有負溫度係數的電阻材料;而在接觸層後形成之第二氮化鈦層因所經歷的製程溫度都小於約450℃,故為具有正溫度係數的電阻材料。因此,本實施例提供的製造方法在製程的不同步驟中,形成具有正溫度係數和負溫度係數的氮化鈦,並將兩者進行結合以產生零溫度係數電阻元件。 The manufacturing method provided in this embodiment arranges titanium nitride in different process steps. The first titanium nitride layer formed before the contact layer undergoes heat treatment at a process temperature between 460 ° C and 900 ° C. Boron-doped phosphorus-silica glass heat treatment (BPSG flow), so it is transformed into a resistance material with a negative temperature coefficient; and the second titanium nitride layer formed after the contact layer is less than about 450 ° C because of the process temperature experienced, so It is a resistive material with a positive temperature coefficient. Therefore, the manufacturing method provided in this embodiment forms titanium nitride with a positive temperature coefficient and a negative temperature coefficient in different steps of the manufacturing process, and combines the two to generate a zero temperature coefficient resistance element.

第3圖為根據本揭露另一實施例顯示薄膜電阻元件300於製程一中間階段的剖面圖。此零溫度係數電阻元件300包括一半導體基板302。半導體基板302的材料可參考第1圖所述之內容,不在此贅述。 FIG. 3 is a cross-sectional view showing a thin film resistor element 300 at an intermediate stage of a process according to another embodiment of the disclosure. The zero temperature coefficient resistive element 300 includes a semiconductor substrate 302. For the material of the semiconductor substrate 302, reference may be made to the content described in FIG.

閘極結構308位於半導體基板302上。閘極結構308 具有正溫度係數,大約為500~800ppm/℃。在一些實施例中,閘極結構308可包括多晶矽層304和金屬矽化層306。多晶矽層304位於半導體基板302上。在一些實施例中,多晶矽層304可由摻雜或未摻雜的多晶矽形成。金屬矽化層306位於多晶矽層304上。在一些實施例中,金屬矽化層306可由合適的材料形成,像是矽化鈦、矽化鈷、矽化鎳、矽化鉭、或前述材料之組合。 The gate structure 308 is located on the semiconductor substrate 302. Gate structure 308 Has a positive temperature coefficient, about 500 ~ 800ppm / ℃. In some embodiments, the gate structure 308 may include a polycrystalline silicon layer 304 and a metal silicide layer 306. The polycrystalline silicon layer 304 is located on the semiconductor substrate 302. In some embodiments, the polycrystalline silicon layer 304 may be formed of doped or undoped polycrystalline silicon. The metal silicide layer 306 is located on the polycrystalline silicon layer 304. In some embodiments, the metal silicide layer 306 may be formed of a suitable material, such as titanium silicide, cobalt silicide, nickel silicide, tantalum silicide, or a combination of the foregoing materials.

電阻層310位於閘極結構308上,且電阻層310與閘極結構308直接接觸。更確切的說,電阻層310覆蓋半導體基板302上表面,並延伸至閘極結構308之一側壁及一部分的上表面。電阻層310具有負溫度係數,大約為-300~-600ppm/℃。電阻層310的材料係擇於下列所組成的族群:氮化鈦(TiN)。在一些實施例中,電阻層310的厚度可介於100~1000埃,例如:400埃、600埃、或800埃。在此,電阻層310也可視為一薄膜電阻層。 The resistance layer 310 is located on the gate structure 308, and the resistance layer 310 is in direct contact with the gate structure 308. More specifically, the resistance layer 310 covers the upper surface of the semiconductor substrate 302 and extends to one side wall and a part of the upper surface of the gate structure 308. The resistance layer 310 has a negative temperature coefficient of approximately -300 to -600 ppm / ° C. The material of the resistance layer 310 is selected from the group consisting of titanium nitride (TiN). In some embodiments, the thickness of the resistance layer 310 may be between 100 and 1000 angstroms, for example: 400 angstroms, 600 angstroms, or 800 angstroms. Here, the resistance layer 310 can also be regarded as a thin film resistance layer.

如第3圖所示,具有負溫度係數之薄膜電阻層310和具有正溫度係數之閘極結構308互相連接/串聯,產生零溫度係數的效應,進而形成零溫度係數電阻元件300。 As shown in FIG. 3, the thin film resistance layer 310 having a negative temperature coefficient and the gate structure 308 having a positive temperature coefficient are connected / connected in series, and a zero temperature coefficient effect is generated, thereby forming a zero temperature coefficient resistance element 300.

值得一提的是,雖然過去研究曾利用正溫度係數和負溫度係數的兩種不同電阻材料的結合,例如:具有負溫度係數的氮化鉭(TaN)和具有正溫度係數的氮化鈦(TiN),來產生零溫度電阻的效應,然而,這樣的製程方法需要進行兩次電阻材料的沉積,且需要具備適用於兩種不同電阻材料的沉積設備。相較之下,根據本揭露一些實施例所提供的零溫度電阻元 件係直接將電阻材料(例如:氮化鈦)形成於閘極結構上,經由一後續的熱處理,使電阻材料(例如:氮化鈦)具有負溫度係數,而閘極結構經由熱處理後原本就會具有正溫度係數,藉此產生零溫度係數的效應,形成零溫度係數電阻元件。也就是說,相較於過去研究需要進行兩次電阻材料的沉積以及使用兩種不同的沉積設備,在本揭露一些實施例中,只需要進行一次電阻材料的沉積且只需要一種適用於電阻材料(例如:氮化鈦)的沉積設備即可達到製造零溫度係數電阻元件的目的。 It is worth mentioning that although previous studies have used a combination of two different resistance materials with a positive temperature coefficient and a negative temperature coefficient, for example: tantalum nitride (TaN) with a negative temperature coefficient and titanium nitride (TaN) with a positive temperature coefficient ( TiN) to produce the effect of zero temperature resistance. However, such a process method requires two depositions of the resistance material, and needs to have deposition equipment suitable for two different resistance materials. In contrast, the zero-temperature resistance element provided by some embodiments according to the present disclosure The component is directly formed with a resistive material (for example: titanium nitride) on the gate structure. After a subsequent heat treatment, the resistive material (for example: titanium nitride) has a negative temperature coefficient, and the gate structure is originally formed after the heat treatment. Will have a positive temperature coefficient, thereby generating the effect of a zero temperature coefficient, forming a zero temperature coefficient resistance element. That is, compared with the previous research that required two depositions of the resistive material and the use of two different deposition devices, in some embodiments of the present disclosure, only one deposition of the resistive material is needed and only one suitable for the resistive material is needed. The deposition equipment (such as titanium nitride) can achieve the purpose of manufacturing a zero temperature coefficient resistance element.

第4圖為根據本揭露另一實施例顯示零溫度係數電阻元件的製造方法流程圖400。為達說明的目的,以下將配合第3、4圖一起進行描述。 FIG. 4 is a flowchart 400 of a method for manufacturing a zero temperature coefficient resistive element according to another embodiment of the disclosure. For the purpose of explanation, the following description will be described with reference to FIGS. 3 and 4.

首先,進行步驟402,提供一半導體基板302。半導體基板302的材料可參考第1圖所述之內容,不在此贅述。 First, step 402 is performed to provide a semiconductor substrate 302. For the material of the semiconductor substrate 302, reference may be made to the content described in FIG.

接下來,進行步驟404,形成一閘極結構308於半導體基板302上。閘極結構308具有正溫度係數,大約為300~600ppm/℃。在一些實施例中,閘極結構308可包括多晶矽層304和金屬矽化層306。多晶矽層304形成於半導體基板302上。在一些實施例中,多晶矽層304可由摻雜或未摻雜的多晶矽形成。多晶矽層304可由合適的製程形成,像是低壓化學氣相沉積(low-pressure chemical vapor deposition;LPCVD)、及/或其類似的製程。金屬矽化層306形成於多晶矽層304上。在一些實施例中,金屬矽化層306可由合適的材料形成,像是矽化鈦、矽化鈷、矽化鎳、矽化鉭、或前述材料之組合。金屬矽化層306可由合適的製程形成,像是化學氣相沉積(CVD)、及/或其類似 的製程。 Next, step 404 is performed to form a gate structure 308 on the semiconductor substrate 302. The gate structure 308 has a positive temperature coefficient of approximately 300-600 ppm / ° C. In some embodiments, the gate structure 308 may include a polycrystalline silicon layer 304 and a metal silicide layer 306. A polycrystalline silicon layer 304 is formed on the semiconductor substrate 302. In some embodiments, the polycrystalline silicon layer 304 may be formed of doped or undoped polycrystalline silicon. The polycrystalline silicon layer 304 may be formed by a suitable process, such as low-pressure chemical vapor deposition (LPCVD), and / or a similar process. A metal silicide layer 306 is formed on the polycrystalline silicon layer 304. In some embodiments, the metal silicide layer 306 may be formed of a suitable material, such as titanium silicide, cobalt silicide, nickel silicide, tantalum silicide, or a combination of the foregoing materials. The metal silicide layer 306 may be formed by a suitable process, such as chemical vapor deposition (CVD), and / or the like. Process.

接下來,進行步驟406,形成一電阻層310於閘極結構308上。電阻層310的材料係擇於下列所組成的族群:氮化鈦(TiN)、及氮化鉭(TaN)。可由合適的製程像是物理氣相沉積(PVD)、化學氣相沉積(CVD)、或前述製程之組合,形成厚度介於100~600埃,例如:400埃的電阻層310。 Next, step 406 is performed to form a resistance layer 310 on the gate structure 308. The material of the resistance layer 310 is selected from the group consisting of titanium nitride (TiN) and tantalum nitride (TaN). The resistive layer 310 may be formed by a suitable process such as physical vapor deposition (PVD), chemical vapor deposition (CVD), or a combination of the foregoing processes to a thickness of 100 to 600 angstroms, for example, 400 angstroms.

接著,進行步驟408,形成一介電層(未顯示)於第一電阻層310上。介電層的材料可包括硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)、磷-矽玻璃(Phospho-Silicate Glass;PSG)、硼-矽玻璃(Boro-Silicate Glass;BSG)、四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)、旋塗式玻璃(Spin-On-Glass;SOG)、常壓化學氣相沉積(APCVD)氧化物、或其他類似的材料。介電層可由合適的沉積製程形成,像是化學氣相沉積(CVD)、物理氣相沉積(PVD)、原子層沉積(ALD)、高密度電漿化學氣相沉積(HDPCVD)、旋塗式製程(spin-on process)、濺鍍製程、或前述製程之組合。 Next, step 408 is performed to form a dielectric layer (not shown) on the first resistive layer 310. The material of the dielectric layer may include Boron-Doped Phospho-Silicate Glass (BPSG), Phospho-Silicate Glass (PSG), Boro-Silicate Glass (BSG) ), Tetra Ethyl Ortho Silicate (TEOS), Spin-On-Glass (SOG), atmospheric pressure chemical vapor deposition (APCVD) oxide, or other similar materials. The dielectric layer can be formed by a suitable deposition process, such as chemical vapor deposition (CVD), physical vapor deposition (PVD), atomic layer deposition (ALD), high-density plasma chemical vapor deposition (HDPCVD), spin coating A spin-on process, a sputtering process, or a combination of the foregoing processes.

接著,進行步驟410,對介電層實施一熱處理。在一實施例中,熱處理為一硼摻雜磷-矽玻璃熱處理(BPSG flow),其製程溫度介於800℃~900℃。在其他實施例中,熱處理的溫度範圍可介於460℃~900℃。 Next, step 410 is performed to perform a heat treatment on the dielectric layer. In one embodiment, the heat treatment is a boron-doped phosphorus-silica glass heat treatment (BPSG flow), and the process temperature is between 800 ° C and 900 ° C. In other embodiments, the temperature range of the heat treatment may be between 460 ° C and 900 ° C.

應注意的是,步驟406是在形成接觸層(contact layer)之前形成所述之電阻層310,因此,此電阻層310將經歷後續步驟410的熱處理,例如:硼摻雜磷-矽玻璃熱處理(BPSG flow)。經實驗發現,當電阻層310經過硼摻雜磷-矽玻璃熱處理 (BPSG flow)(製程溫度介於800℃~900℃)之後,電阻層310的溫度係數由原本的正溫度係數變為負溫度係數。以氮化鈦為例,其溫度係數由大約300~600ppm/℃變成大約-300~-600ppm/℃,因為在進行硼摻雜磷-矽玻璃熱處理(BPSG flow)的過程中,氮化鈦與上層的氧化物反應而產生新的結構,或是氮化鈦本身因為硼摻雜磷-矽玻璃熱處理(BPSG flow)而產生相變化,使得氮化鈦對於溫度的敏感度及特性產生改變。因此,於步驟410進行熱處理之後,電阻層310轉變為具有負溫度係數之電阻層。同時,由於經過熱處理之後的閘極結構308原本就會具有正溫度係數,於是,本實施例在同一層中結合了具有正溫度係數的閘極結構308和具有負溫度係數的電阻層310,產生零溫度係數的效應。 It should be noted that, in step 406, the resistive layer 310 is formed before the contact layer is formed. Therefore, the resistive layer 310 will undergo a subsequent heat treatment in step 410, such as a boron-doped phosphorus-silica glass heat treatment ( BPSG flow). It was found through experiments that when the resistance layer 310 was heat-treated by boron-doped phosphor-silica glass (BPSG flow) (the process temperature is between 800 ° C. and 900 ° C.), the temperature coefficient of the resistance layer 310 is changed from an original positive temperature coefficient to a negative temperature coefficient. Taking titanium nitride as an example, its temperature coefficient has changed from about 300 to 600 ppm / ° C to about -300 to -600 ppm / ° C, because during the process of boron-doped phosphorus-silica glass heat treatment (BPSG flow), titanium nitride and The upper oxide reacts to produce a new structure, or the titanium nitride itself undergoes a phase change due to boron-doped phosphorus-silica glass heat treatment (BPSG flow), which changes the sensitivity and characteristics of titanium nitride to temperature. Therefore, after the heat treatment is performed in step 410, the resistance layer 310 is transformed into a resistance layer having a negative temperature coefficient. At the same time, since the gate structure 308 after heat treatment originally has a positive temperature coefficient, this embodiment combines the gate structure 308 with a positive temperature coefficient and the resistance layer 310 with a negative temperature coefficient in the same layer, resulting in Effect of zero temperature coefficient.

本實施例提供的製造方法將電阻層(例如:氮化鈦)直接形成在閘極結構上,在接觸層(contact layer)前形成之電阻層(例如:氮化鈦)因經歷製程溫度介於460℃~900℃的熱處理,如硼摻雜磷-矽玻璃熱處理(BPSG flow),故轉變為具有負溫度係數的電阻材料;而在熱處理後之閘極結構原本就會具有正溫度係數。因此,本實施例提供的製造方法在一製程技術中,以具有正溫度係數的閘極結構取代正溫度係數電阻,結合經熱處理後具有負溫度係數的電阻材料(例如:氮化鈦),以產生零溫度係數電阻元件。 In the manufacturing method provided in this embodiment, a resistance layer (for example: titanium nitride) is directly formed on the gate structure, and a resistance layer (for example: titanium nitride) formed before the contact layer is subjected to a process temperature between Heat treatment at 460 ℃ ~ 900 ℃, such as boron-doped phosphorus-silica glass heat treatment (BPSG flow), is transformed into a resistive material with a negative temperature coefficient; and the gate structure after the heat treatment originally has a positive temperature coefficient. Therefore, the manufacturing method provided in this embodiment replaces the positive temperature coefficient resistor with a gate structure having a positive temperature coefficient in a process technology, and combines a resistance material (eg, titanium nitride) with a negative temperature coefficient after heat treatment to Generates a zero temperature coefficient resistive element.

第5圖為根據本揭露一實施例顯示負溫度係數電阻材料的製造方法流程圖500。 FIG. 5 is a flowchart 500 of a method for manufacturing a negative temperature coefficient resistance material according to an embodiment of the disclosure.

首先,進行步驟502,提供具有正溫度係數之一電 阻材料。接著,進行步驟504,對電阻材料實施一熱處理,以使電阻材料具有負溫度係數。在一實施例中,電阻材料為氮化鈦(TiN),其在熱處理前後,溫度係數從大約300~600ppm/℃變成大約-300~-600ppm/℃。在一些實施例中,熱處理的溫度範圍可介於460℃~900℃。在一實施例中,熱處理為硼摻雜磷-矽玻璃熱處理(BPSG flow),其溫度範圍大約介於800℃~900℃。 First, step 502 is performed to provide a voltage having a positive temperature coefficient. 阻 材料。 Resistance material. Next, step 504 is performed to perform a heat treatment on the resistive material so that the resistive material has a negative temperature coefficient. In one embodiment, the resistive material is titanium nitride (TiN), and its temperature coefficient is changed from about 300 to 600 ppm / ° C to about -300 to -600 ppm / ° C before and after the heat treatment. In some embodiments, the temperature range of the heat treatment may be between 460 ° C and 900 ° C. In one embodiment, the heat treatment is boron-doped phosphorus-silica glass heat treatment (BPSG flow), and the temperature range is about 800 ° C to 900 ° C.

應注意的是,上述實施例僅為說明之用,本揭露之範疇並非以此為限。以下,針對不同製程所形成之電阻材料進行電阻率溫度係數(temperature coefficient of resistivity;TCR)的檢測,並觀察電阻材料之TEM圖。 It should be noted that the above-mentioned embodiments are for illustrative purposes only, and the scope of this disclosure is not limited thereto. In the following, the temperature coefficient of resistivity (TCR) is measured for the resistive materials formed in different processes, and the TEM images of the resistive materials are observed.

電阻率溫度係數檢測Resistivity temperature coefficient detection

針對經過熱處理的氮化鈦進行電阻率溫度係數(temperature coefficient of resistivity;TCR)的檢測。首先,於溫度T0,使用4156 Sweep V,Sense I,由V/I求出R0。接著,改變測試溫度為T1,以同樣方法得到R1,由(R1-R0)/R0求出在溫度T1的電阻變動率。其他溫度類推,所測得結果如第6A圖所示。第6A圖中所載「具虛設條」及「無虛設條」代表不同的元件佈局圖形。W代表元件寬度,L代表元件長度。Y軸(R-R0)代表特定溫度電阻對基準溫度電阻的變動率,電阻由一般的電性參數分析儀(Agilent 4156)進行量測。 The temperature coefficient of resistivity (TCR) of the heat-treated titanium nitride is measured. First, at temperature T0, use 4156 Sweep V, Sense I, and find R0 from V / I. Next, change the test temperature to T1, obtain R1 in the same way, and obtain the resistance change rate at temperature T1 from (R1-R0) / R0. For other temperatures, the measured results are shown in Figure 6A. The "with dummy bars" and "no dummy bars" shown in Figure 6A represent different component layout graphics. W stands for component width and L stands for component length. The Y-axis (R-R0) represents the change rate of the specific temperature resistance from the reference temperature resistance. The resistance is measured by a general electrical parameter analyzer (Agilent 4156).

由第6A圖可得知經過熱處理的氮化鈦具有負溫度係數。 It can be seen from FIG. 6A that the heat-treated titanium nitride has a negative temperature coefficient.

此外,藉由穿透式電子顯微鏡對於製程中經過熱 處理的氮化鈦層進行分析。第6B圖顯示經過熱處理的氮化鈦層之TEM圖。如第6B圖所示,可看到兩層不同的結構,下層為原本沉積的氮化鈦,上層為經過熱處理後額外產生的結構。此結果顯示,氮化鈦層經過熱處理後,可能與上方的氧化物反應而產生新的結構。 In addition, the transmission electron microscope The treated titanium nitride layer was analyzed. Figure 6B shows a TEM image of the heat-treated titanium nitride layer. As shown in Figure 6B, two different structures can be seen, the lower layer is the originally deposited titanium nitride, and the upper layer is an additional structure after heat treatment. The results show that after heat treatment of the titanium nitride layer, it may react with the oxide above to produce a new structure.

另一方面,針對未經過熱處理的氮化鈦進行電阻率溫度係數(temperature coefficient of resistivity;TCR)的檢測。類似地,於溫度T0,使用4156 Sweep V,Sense I,由V/I求出R0。接著,改變測試溫度為T1,以同樣方法得到R1,由(R1-R0)/R0求出在溫度T1的電阻變動率。其他溫度類推,所測得結果如第7A圖所示。第7A圖中所載「具虛設條」及「無虛設條」代表不同的元件佈局圖形。W代表元件寬度,L代表元件長度。Y軸(R-R0)代表特定溫度電阻對基準溫度電阻的變動率,電阻由一般的電性參數分析儀(Agilent 4156)進行量測。由第7A圖可得知未經過熱處理的氮化鈦具有正溫度係數。 On the other hand, the temperature coefficient of resistivity (TCR) of titanium nitride that has not been heat-treated is measured. Similarly, at temperature T0, use 4156 Sweep V, Sense I to find R0 from V / I. Next, change the test temperature to T1, obtain R1 in the same way, and obtain the resistance change rate at temperature T1 from (R1-R0) / R0. Other temperature analogies, the measured results are shown in Figure 7A. The "with dummy bars" and "no dummy bars" shown in Figure 7A represent different component layout graphics. W stands for component width and L stands for component length. The Y-axis (R-R0) represents the change rate of the specific temperature resistance from the reference temperature resistance. The resistance is measured by a general electrical parameter analyzer (Agilent 4156). It can be seen from FIG. 7A that titanium nitride which has not been heat-treated has a positive temperature coefficient.

此外,藉由穿透式電子顯微鏡對於製程中未經過熱處理的氮化鈦層進行分析。第7B圖顯示未經過熱處理的氮化鈦層之TEM圖。如第7B圖所示,未經過熱處理的氮化鈦層仍然只有一層結構。 In addition, the titanium nitride layer that was not heat-treated in the process was analyzed by a transmission electron microscope. Figure 7B shows a TEM image of the titanium nitride layer without heat treatment. As shown in FIG. 7B, the titanium nitride layer without heat treatment still has only one structure.

第8圖顯示本揭露一實施例所提供之零溫度係數電阻元件中兩種電阻材料的溫度係數。此處,零溫度係數電阻元件係透過多晶矽閘極結構和氮化鈦層結合,經過熱處理後所得。如第8圖所示,在此零溫度係數電阻元件中,多晶矽閘極結構)具有正溫度係數,而氮化鈦層具有負溫度係數。 FIG. 8 shows the temperature coefficients of two kinds of resistance materials in the zero temperature coefficient resistance element provided by an embodiment of the disclosure. Here, the zero temperature coefficient resistive element is obtained by combining a polycrystalline silicon gate structure with a titanium nitride layer and subjecting it to heat treatment. As shown in FIG. 8, in this zero temperature coefficient resistive element, the polycrystalline silicon gate structure) has a positive temperature coefficient, and the titanium nitride layer has a negative temperature coefficient.

綜上所述,本揭露提供一種零溫度係數電阻元件及其製造方法,透過製程步驟的安排,在接觸層(contact layer)前形成一氮化鈦層,此氮化鈦層在經歷後續製程溫度介於800℃~900℃的硼摻雜磷-矽玻璃熱處理(BPSG flow)之後,轉變為具有負溫度係數的電阻材料。將此具有負溫度係數的氮化鈦層與具有正溫度係數的電阻元件像是氮化鈦層或閘極結構結合,進而獲得零溫度係數電阻元件。本揭露提供之零溫度係數電阻元件製造方法,均利用熱處理使具有正溫度係數的類金屬材料(例如:氮化鈦)轉變為具有負溫度係數的電阻材料。 In summary, the present disclosure provides a zero temperature coefficient resistive element and a method for manufacturing the same. Through the arrangement of process steps, a titanium nitride layer is formed before a contact layer, and the titanium nitride layer undergoes subsequent process temperatures. After the boron-doped phosphor-silica glass heat treatment (BPSG flow) between 800 ° C and 900 ° C, it is transformed into a resistive material with a negative temperature coefficient. This titanium nitride layer with a negative temperature coefficient is combined with a resistor element with a positive temperature coefficient, such as a titanium nitride layer or a gate structure, to obtain a zero temperature coefficient resistor element. The manufacturing methods of the zero temperature coefficient resistance elements provided in this disclosure all use heat treatment to transform a metal-like material (for example, titanium nitride) with a positive temperature coefficient into a resistance material with a negative temperature coefficient.

雖然本揭露已以數個較佳實施例揭露如上,然其並非用以限定本揭露,任何所屬技術領域中具有通常知識者,在不脫離本揭露之精神和範圍內,當可作任意之更動與潤飾,因此本揭露之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present disclosure has been disclosed as above with several preferred embodiments, it is not intended to limit the present disclosure. Any person with ordinary knowledge in the technical field may make arbitrary changes without departing from the spirit and scope of the present disclosure. And retouching, so the scope of protection of this disclosure shall be determined by the scope of the attached patent application.

200‧‧‧方法流程圖 200‧‧‧Method flow chart

202-214‧‧‧步驟 202-214‧‧‧step

Claims (17)

一種零溫度係數電阻元件,包括:一半導體基板;一第一介電層,位於該半導體基板上;一第一氮化鈦層,具有負溫度係數,位於該第一介電層上,其中該第一氮化鈦層係經過一熱處理而包含一氧化層並具有該負溫度係數;一第二介電層,位於該第一氮化鈦層上;一導電結構,內埋於該第二介電層中;一金屬層,位於該第二介電層和該導電結構上;以及一第二氮化鈦層,具有正溫度係數,位於該第二介電層上,其中該第二氮化鈦層透過該導電結構和該金屬層與該第一氮化鈦層連接。 A zero temperature coefficient resistive element includes: a semiconductor substrate; a first dielectric layer on the semiconductor substrate; a first titanium nitride layer having a negative temperature coefficient on the first dielectric layer, wherein the The first titanium nitride layer undergoes a heat treatment and includes an oxide layer and has the negative temperature coefficient; a second dielectric layer is located on the first titanium nitride layer; a conductive structure is embedded in the second dielectric layer. An electrical layer; a metal layer on the second dielectric layer and the conductive structure; and a second titanium nitride layer with a positive temperature coefficient on the second dielectric layer, wherein the second nitride A titanium layer is connected to the first titanium nitride layer through the conductive structure and the metal layer. 如申請專利範圍第1項所述之零溫度係數電阻元件,其中該第一介電層的材料包括四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)。 The zero temperature coefficient resistive element according to item 1 of the scope of the patent application, wherein the material of the first dielectric layer includes Tetra Ethyl Ortho Silicate (TEOS). 如申請專利範圍第1項所述之零溫度係數電阻元件,其中該第二介電層的材料包括一硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)。 The zero temperature coefficient resistive element according to item 1 of the application, wherein the material of the second dielectric layer comprises a boron-doped phosphor-silicon glass (BPSG). 一種零溫度係數電阻元件的製造方法,包括:提供一半導體基板;形成一第一介電層於該半導體基板上;形成一第一氮化鈦層於該第一介電層上;形成一第二介電層於該第一氮化鈦層上; 對該第二介電層實施一熱處理;形成一導電結構於該第二介電層中;形成一金屬層於該第二介電層和該導電結構上;以及形成一第二氮化鈦層於該第二介電層上,其中該第二氮化鈦層透過該導電結構和該金屬層與該第一氮化鈦層連接;其中該第一氮化鈦層經過該熱處理而包含一氧化層。 A method for manufacturing a zero temperature coefficient resistive element includes: providing a semiconductor substrate; forming a first dielectric layer on the semiconductor substrate; forming a first titanium nitride layer on the first dielectric layer; forming a first Two dielectric layers on the first titanium nitride layer; Performing a heat treatment on the second dielectric layer; forming a conductive structure in the second dielectric layer; forming a metal layer on the second dielectric layer and the conductive structure; and forming a second titanium nitride layer On the second dielectric layer, the second titanium nitride layer is connected to the first titanium nitride layer through the conductive structure and the metal layer; and the first titanium nitride layer includes an oxide after the heat treatment. Floor. 如申請專利範圍第4項所述之零溫度係數電阻元件的製造方法,其中該第一介電層的材料包括四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)。 According to the method for manufacturing a zero temperature coefficient resistive element described in item 4 of the scope of patent application, wherein the material of the first dielectric layer includes Tetra Ethyl Ortho Silicate (TEOS). 如申請專利範圍第4項所述之零溫度係數電阻元件的製造方法,其中該第二介電層的材料包括一硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)。 According to the method for manufacturing a zero temperature coefficient resistive element according to item 4 of the scope of the patent application, wherein the material of the second dielectric layer includes a boron-doped phosphor-silicon glass (BPSG). 如申請專利範圍第4項所述之零溫度係數電阻元件的製造方法,其中該熱處理的溫度範圍介於460~900℃。 According to the method for manufacturing a zero temperature coefficient resistive element described in item 4 of the scope of patent application, the temperature range of the heat treatment is between 460 and 900 ° C. 一種零溫度係數電阻元件,包括:一半導體基板;一閘極結構,經過一熱處理,具有正溫度係數,位於該半導體基板上;以及一電阻層,具有負溫度係數,位於該閘極結構上,其中該電阻層係經過該熱處理而包含一氧化層並具有該負溫度係數;其中該電阻層與該閘極結構直接接觸。 A zero temperature coefficient resistance element includes: a semiconductor substrate; a gate structure, after a heat treatment, has a positive temperature coefficient and is located on the semiconductor substrate; and a resistance layer having a negative temperature coefficient and is located on the gate structure, The resistive layer includes an oxide layer and has the negative temperature coefficient after the heat treatment; wherein the resistive layer is in direct contact with the gate structure. 如申請專利範圍第8項所述之零溫度係數電阻元件,其中該閘極結構包括一多晶矽層和一金屬矽化物層,且該電阻層 和該金屬矽化物層連接。 The zero temperature coefficient resistive element according to item 8 of the patent application scope, wherein the gate structure includes a polycrystalline silicon layer and a metal silicide layer, and the resistive layer Connected to this metal silicide layer. 如申請專利範圍第8項所述之零溫度係數電阻元件,其中該電阻層的材料係為氮化鈦(TiN)。 The zero temperature coefficient resistive element according to item 8 of the scope of the patent application, wherein the material of the resistive layer is titanium nitride (TiN). 一種零溫度係數電阻元件的製造方法,包括:提供一半導體基板;形成一閘極結構於該半導體基板上;形成一電阻層於該閘極結構上;形成一介電層於該電阻層上;以及對該介電層實施一熱處理;其中該電阻層經過該熱處理而包含一氧化層。 A method for manufacturing a zero temperature coefficient resistance element includes: providing a semiconductor substrate; forming a gate structure on the semiconductor substrate; forming a resistance layer on the gate structure; forming a dielectric layer on the resistance layer; And performing a heat treatment on the dielectric layer; wherein the resistance layer includes an oxide layer after the heat treatment. 如申請專利範圍第11項所述之零溫度係數電阻元件的製造方法,其中該閘極結構包括一多晶矽層和一金屬矽化物層,且該電阻層和該金屬矽化物層連接。 According to the method for manufacturing a zero temperature coefficient resistive element according to item 11 of the scope of patent application, the gate structure includes a polycrystalline silicon layer and a metal silicide layer, and the resistance layer is connected to the metal silicide layer. 如申請專利範圍第11項所述之零溫度係數電阻元件的製造方法,其中該電阻層的材料係為氮化鈦(TiN)。 According to the method for manufacturing a zero-temperature-coefficient resistor element according to item 11 of the scope of patent application, the material of the resistance layer is titanium nitride (TiN). 如申請專利範圍第11項所述之零溫度係數電阻元件的製造方法,其中該介電層的材料包括一硼摻雜磷-矽玻璃(Boron-Doped Phospho-Silicate Glass;BPSG)、磷矽玻璃(Phosphosilicate Glass;PSG)、硼-矽玻璃(Boro-Silicate Glass;BSG)、四乙氧基矽烷(Tetra Ethyl Ortho Silicate;TEOS)、旋塗式玻璃(Spin-On-Glass;SOG)、常壓化學氣相沉積(APCVD)氧化物、或前述材料之組合。 The manufacturing method of the zero temperature coefficient resistive element according to item 11 of the scope of the patent application, wherein the material of the dielectric layer includes a boron-doped phosphor-silicon glass (BPSG), phosphor-silicon glass (Phosphosilicate Glass (PSG)), Boro-Silicate Glass (BSG), Tetra Ethyl Ortho Silicate (TEOS), Spin-On-Glass (SOG), atmospheric pressure Chemical vapor deposition (APCVD) oxide, or a combination of the foregoing materials. 如申請專利範圍第11項所述之零溫度係數電阻元件的製造方法,其中該熱處理的溫度範圍介於460~900℃。 According to the method for manufacturing a zero-temperature-coefficient resistor element according to item 11 of the scope of patent application, the temperature range of the heat treatment is between 460 and 900 ° C. 一種負溫度係數電阻材料的製造方法,包括:提供具有正溫度係數之一電阻材料;以及對該電阻材料實施一熱處理,以使該電阻材料包含一氧化層而具有負溫度係數;其中該電阻材料為氮化鈦。 A method for manufacturing a negative temperature coefficient resistance material includes: providing a resistance material having a positive temperature coefficient; and performing a heat treatment on the resistance material so that the resistance material includes an oxide layer and having a negative temperature coefficient; wherein the resistance material For titanium nitride. 如申請專利範圍第16項所述之負溫度係數電阻材料的製造方法,其中該熱處理的溫度範圍介於460~900℃。 The method for manufacturing a negative temperature coefficient resistive material as described in item 16 of the scope of patent application, wherein the temperature range of the heat treatment is between 460 ~ 900 ° C.
TW105127814A 2016-08-30 2016-08-30 Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient TWI610318B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105127814A TWI610318B (en) 2016-08-30 2016-08-30 Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient
CN201610832910.5A CN107785351B (en) 2016-08-30 2016-09-20 Zero temperature coefficient resistor assembly and method of making same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105127814A TWI610318B (en) 2016-08-30 2016-08-30 Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient

Publications (2)

Publication Number Publication Date
TWI610318B true TWI610318B (en) 2018-01-01
TW201810299A TW201810299A (en) 2018-03-16

Family

ID=61437676

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105127814A TWI610318B (en) 2016-08-30 2016-08-30 Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient

Country Status (2)

Country Link
CN (1) CN107785351B (en)
TW (1) TWI610318B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083766B2 (en) 2019-05-06 2021-08-10 Charsire Biotechnology Corp. Uses of soybean seed extract composition for alleviating cancer pain and/or treating cancer skin inflammation

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591413A (en) * 1967-08-25 1971-07-06 Nippon Electric Co Resistor structure for thin film variable resistor
US4104607A (en) * 1977-03-14 1978-08-01 The United States Of America As Represented By The Secretary Of The Navy Zero temperature coefficient of resistance bi-film resistor
TW200503226A (en) * 2003-06-02 2005-01-16 Ibm Method of fabrication of thin film resistor with 0 TCR
CN1801489A (en) * 2005-01-06 2006-07-12 国际商业机器公司 Tunable temperature coefficient of resistance resistors and method of fabricating same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6759729B1 (en) * 2002-10-16 2004-07-06 Newport Fab, Llc Temperature insensitive resistor in an IC chip
US8659085B2 (en) * 2010-08-24 2014-02-25 Stmicroelectronics Pte Ltd. Lateral connection for a via-less thin film resistor
JP2012074481A (en) * 2010-09-28 2012-04-12 Renesas Electronics Corp Semiconductor device
CN103325507B (en) * 2013-06-21 2017-02-22 广州天极电子科技有限公司 High-stability film resistor and manufacturing method thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3591413A (en) * 1967-08-25 1971-07-06 Nippon Electric Co Resistor structure for thin film variable resistor
US4104607A (en) * 1977-03-14 1978-08-01 The United States Of America As Represented By The Secretary Of The Navy Zero temperature coefficient of resistance bi-film resistor
TW200503226A (en) * 2003-06-02 2005-01-16 Ibm Method of fabrication of thin film resistor with 0 TCR
CN1801489A (en) * 2005-01-06 2006-07-12 国际商业机器公司 Tunable temperature coefficient of resistance resistors and method of fabricating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11083766B2 (en) 2019-05-06 2021-08-10 Charsire Biotechnology Corp. Uses of soybean seed extract composition for alleviating cancer pain and/or treating cancer skin inflammation

Also Published As

Publication number Publication date
CN107785351B (en) 2020-03-06
TW201810299A (en) 2018-03-16
CN107785351A (en) 2018-03-09

Similar Documents

Publication Publication Date Title
KR100714765B1 (en) Method of fabrication of thin film resistor with 0 tcr
TWI748140B (en) Semiconductor structures and methods for forming the same
KR100974145B1 (en) Semiconductor ic structure
TWI384497B (en) Thin film resistor with current density enhancing layer (cdel) and method of manufacturing the same
US20160141366A1 (en) Field Effect Transistors and Methods of Forming Same
KR102192013B1 (en) Device including mim capacitor and resistor
CN106898556B (en) Semiconductor structure and its manufacturing method
US9093375B2 (en) Metal gate structure and method
US10763324B2 (en) Systems and methods for forming a thin film resistor integrated in an integrated circuit device
TW201444021A (en) Cu/CuMn barrier layer
US11637100B2 (en) Semiconductor device having capacitor and resistor and a method of forming the same
TW201711154A (en) Method and design of low sheet resistance meol resistors
TWI610318B (en) Resistor device with zero temperature coefficient and method of manufacturing the same, method of manufacturing a resistive material with negative temperature coefficient
US10262893B2 (en) Method of forming inter-level dielectric structures on semiconductor devices
JP2010027874A (en) Semiconductor device and method of manufacturing same
US10229968B2 (en) Advanced metal insulator metal capacitor
TWI610417B (en) Thin film resistor device and method of manufacturing the same
JP2000174019A (en) Semiconductor device and manufacture thereof
US10381432B2 (en) Advanced metal insulator metal capacitor
US9484252B2 (en) Integrated circuits including selectively deposited metal capping layers on copper lines and methods for fabricating the same
JP2013211360A (en) Method of manufacturing resistance element, resistance element, and semiconductor device
KR20190073723A (en) Method for fabricating semiconductor device