TWI609184B - 非磁性物質傳輸方法 - Google Patents

非磁性物質傳輸方法 Download PDF

Info

Publication number
TWI609184B
TWI609184B TW105132867A TW105132867A TWI609184B TW I609184 B TWI609184 B TW I609184B TW 105132867 A TW105132867 A TW 105132867A TW 105132867 A TW105132867 A TW 105132867A TW I609184 B TWI609184 B TW I609184B
Authority
TW
Taiwan
Prior art keywords
magnetic
magnetic field
rotating
particles
string
Prior art date
Application number
TW105132867A
Other languages
English (en)
Other versions
TW201814293A (zh
Inventor
陳慶耀
李彥宏
許人權
Original Assignee
國立交通大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 國立交通大學 filed Critical 國立交通大學
Priority to TW105132867A priority Critical patent/TWI609184B/zh
Priority to US15/414,039 priority patent/US10016765B2/en
Application granted granted Critical
Publication of TWI609184B publication Critical patent/TWI609184B/zh
Publication of TW201814293A publication Critical patent/TW201814293A/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/23Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp
    • B03C1/24Magnetic separation acting directly on the substance being separated with material carried by oscillating fields; with material carried by travelling fields, e.g. generated by stationary magnetic coils; Eddy-current separators, e.g. sliding ramp with material carried by travelling fields
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61MDEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
    • A61M37/00Other apparatus for introducing media into the body; Percutany, i.e. introducing medicines into the body by diffusion through the skin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/50273Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the means or forces applied to move the fluids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L3/00Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
    • B01L3/50Containers for the purpose of retaining a material to be analysed, e.g. test tubes
    • B01L3/502Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
    • B01L3/5027Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
    • B01L3/502761Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip specially adapted for handling suspended solids or molecules independently from the bulk fluid flow, e.g. for trapping or sorting beads, for physically stretching molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2200/00Solutions for specific problems relating to chemical or physical laboratory apparatus
    • B01L2200/06Fluid handling related problems
    • B01L2200/0647Handling flowable solids, e.g. microscopic beads, cells, particles
    • B01L2200/0652Sorting or classification of particles or molecules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L2400/00Moving or stopping fluids
    • B01L2400/04Moving fluids with specific forces or mechanical means
    • B01L2400/0403Moving fluids with specific forces or mechanical means specific forces
    • B01L2400/043Moving fluids with specific forces or mechanical means specific forces magnetic forces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/005Pretreatment specially adapted for magnetic separation
    • B03C1/01Pretreatment specially adapted for magnetic separation by addition of magnetic adjuvants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C1/00Magnetic separation
    • B03C1/02Magnetic separation acting directly on the substance being separated
    • B03C1/30Combinations with other devices, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/18Magnetic separation whereby the particles are suspended in a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/20Magnetic separation of bulk or dry particles in mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03CMAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03C2201/00Details of magnetic or electrostatic separation
    • B03C2201/26Details of magnetic or electrostatic separation for use in medical or biological applications
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/48Treatment of water, waste water, or sewage with magnetic or electric fields

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hematology (AREA)
  • Engineering & Computer Science (AREA)
  • Dispersion Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Clinical Laboratory Science (AREA)
  • Analytical Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dermatology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Public Health (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Anesthesiology (AREA)
  • Veterinary Medicine (AREA)
  • Fluid Mechanics (AREA)
  • Physics & Mathematics (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Description

非磁性物質傳輸方法
本發明是有關於一種物質傳輸方法,特別是指一種非磁性物質的傳輸方法。
微型全分析系統(Micro-Total-Analysis System,μ-TAS)或稱實驗室晶片(Lab-on-a-chip)由於可有效的提升生醫檢測效率,近年來已成為熱門的研究領域。其中,微流體系統更是提升相關分析檢測效能的關鍵元素之一,因此,有關微流體驅動的技術更是吸引相關技術領域者積極投入研究。
目前常用的微流體驅動方式大致可區分為機械式及非機械微幫浦兩大類。其中,非機械微幫浦主要以壓電片為驅動源,調整施加電流使壓變片增大縮小以擠壓幫浦腔體,達到驅動流體之目的,或是藉由材料的設計選擇,利用加熱或施加壓力方式,使不同材質之腔體體積發生變化以驅動流體。然而,此類型的幫浦必須具有可動式或被動式微閥門以控制流體流動的方向,在高頻率及長期使用下,閥門容易磨損而影響微幫浦本身的壽命和可靠度;而後 期所發展之無閥門幫浦則是透過檢測晶片之微流道的漸張/漸縮或特殊幾何外型設計,使流體流經漸張微流道和漸縮微流道所產生的壓力差作為控制流體流向之機制,以取代原本之閥門設計。但是此類技術主要缺點為微流道外型較複雜,製作時程及成本較高,且其複雜的微流道在幫浦高頻率振動下容易產生逆流,而影響流體/微粒子的驅動效率。
非機械式微幫浦主要透過磁場、電場及雷射光等非接觸力,在微流道中操控微粒子運動,使其形成為微幫浦、微閥門或作為微混合器。例如Alex Terry等人(Terray,Alex,John Oakey,and David WM Marr."Microfluidic control using colloidal devices." Science 296.5574(2002):1841-1844)利用光學捕捉(optical trapping)技術,透過雷射光操控矽酸膠(Colloidal Silica)微粒子,於微流道中聚集、旋轉、串接及蠕動,以達成阻隔、過濾或加速特定微粒子移動之目的。而Li等人(Li Zhang,et al."Controlled propulsion and cargo transport of rotating nickel nanowires near a patterned solid surface." ACS nano 4.10(2010):6228-6234)則是利用了磁性材料製成之奈米線於旋轉磁場作用下帶動非磁性微粒子移動,而為使外型對稱之奈米線在旋轉過程中產生淨推力而移動,需在垂直奈米線旋轉方向設置一可調整角度的邊界牆,並使此邊界牆貼近奈米線之一端,藉由邊界層效應讓奈米線旋轉時兩側產生不對稱的阻力,而沿著邊界牆以滾動 方式帶著非磁性微粒子前進。前述方式雖可較精準操控微粒子,惟此項技術需相當精密之儀器,操作成本亦相當高。
因此,本發明之目的,即在提供一種可用於傳輸非磁性物質的非磁性物質傳輸方法。
於是,本發明非磁性物質傳輸方法,包含一第一磁場施加步驟及一旋轉磁場產生步驟。
該第一磁場施加步驟是將一分散有多數磁性粒子的流體置於一流道中,沿一第一方向施加一第一磁場於該等磁性粒子,令該等磁性粒子沿該第一方向排列彼此吸附而形成一長條的磁性粒子串。
該旋轉磁場產生步驟是自鄰近該磁性粒子串的其中一端注入一非磁性物質,並施加成一預定相位角的第二、三磁場,令該第二、三磁場配合產生一旋轉磁場,該磁性粒子串於受到該旋轉磁場的作用後朝一預定方向旋轉而斷裂形成多段沿該預定方向旋轉的磁性段,以令該流體產生沿該預定方向的流場進而帶動該非磁性物質朝向遠離該磁性粒子串的其中另一端移動。
本發明之功效在於:利用施加第一磁場於磁性粒子,讓磁性粒子可沿磁場作用方向彼此吸附排列成一磁性粒子串,再施 加一旋轉磁場於該磁性粒子串,讓該磁性粒子串轉動且於轉動過程斷裂形成多條磁性段,以令流體產生沿預定方向的流場進而帶動該非磁性物質朝向遠離該磁性粒子串的其中另一端移動。
21‧‧‧第一磁場施加步驟
22‧‧‧旋轉磁場產生步驟
M‧‧‧磁性粒子
Mb‧‧‧磁性粒子串
Ms‧‧‧磁性段
F‧‧‧流體
P‧‧‧非磁性物質
X‧‧‧第一方向
900‧‧‧磁場產生裝置
901‧‧‧載臺
902‧‧‧電磁鐵
M11‧‧‧第一線圈組
M22‧‧‧第二線圈組
100‧‧‧透明晶片
101‧‧‧長管狀流道
1011‧‧‧入口
1012‧‧‧出口
本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中:圖1是說明本發明非磁性物質傳輸方法的實施例的文字流程圖;圖2是說明該實施例的流程示意圖;圖3是說明用以實施該等具體例的磁場產生裝置的示意圖;圖4是說明該具體例1的磁性粒子串Mb受到旋轉磁場的作用下,於不同時間(t)過程的光學顯微鏡金相圖;圖5是說明該具體例2的磁性粒子串Mb受到旋轉磁場的作用下,於不同時間(t)過程的光學顯微鏡金相圖;圖6是說明該具體例1的非磁性粒子經磁性粒子串Mb受到旋轉磁場的作用下,於不同時間(t)過程的位移軌跡圖;圖7是說明該具體例2的非磁性粒子經磁性粒子串Mb受到旋轉磁場的作用下,於不同時間(t)過程的位移軌跡圖。
參閱圖1、2,本發明非磁性物質傳輸方法的一實施例是可用於在一微流道中進行非磁性物質的傳輸,該微流道可以是一般生物檢測晶片的流道,或是人體的血管等,而該非磁性物質可以是藥物、檢體,或是流體等。該實施例包含一第一磁場施加步驟21,及一旋轉磁場產生步驟22。
該第一磁場施加步驟21是將一分散有多數磁性粒子M的流體F置於一流道3中,沿一第一方向X施加一第一磁場於該等磁性粒子M,令該等磁性粒子沿該第一方向X排列彼此吸附而形成一長條的磁性粒子串Mb
接著,進行該旋轉磁場產生步驟22,自鄰近該磁性粒子串Mb的其中一端注入一非磁性物質P,並施加二個成一預定相位角的第二磁場及第三磁場,而令該第二磁場及第三磁場配合產生一作用於該磁性粒子串Mb的旋轉磁場,讓該磁性粒子串Mb於受到該旋轉磁場的作用後朝該旋轉磁場的方向旋轉,並令該磁性粒子串Mb於旋轉的過程產生多重斷裂,而形成多段沿該預定方向旋轉的磁性段Ms,從而讓該流體F產生沿該等磁性段Ms旋轉方向的流場,進而帶動該非磁性物質P朝向遠離該磁性粒子串Mb的其中另一端移動。
詳細的說,該等磁性粒子M是利用在絕緣材料(如環氧樹脂(Epoxy)、聚苯乙烯(PS)、二氧化矽(SiO2)等構成的顆粒外包 覆一層具有順磁特性的材料(例如氧化鐵(Fe3O4)、鐵鈷(FeCo)而得。此外,為了更易於控制該磁性粒子串Mb於磁場作用下的排列及斷裂特性,該等磁性粒子M的粒徑約為3~6.0μm之間。
該第一磁場的目的是為了讓該等磁性粒子M可沿磁場施加方向串接排列,且該等磁性粒子M的排列方向即為後續非磁性物質P的傳輸方向,因此,較佳地,該第一磁場的方向為與該非磁性物質P的傳輸方向平行。
該第二磁場與該第三磁場夾設一相位角,而可配合產生該旋轉磁場,從而可讓串接排列的磁性粒子串Mb受到該旋轉磁場的作用而進行旋轉並產生多重斷裂。當該第二、三磁場夾設的相位角非為90°時,該旋轉磁場於該磁性粒子串Mb的作用力會有不均勻的狀況,容易導致斷裂後的該等磁性段Ms的轉速不一,且會有轉動方向偏移的缺點,因此,較佳地,該第二、三磁場的相位角為控制在90°,且該第二、三磁場的其中一者與該第一磁場方向平行,另一者與該第一磁場方向垂直。
由於該磁性粒子串Mb的旋轉及斷裂除了受到該旋轉磁場的影響之外,也會受到該流體F的黏度,及磁性粒子M的粒徑、數量等因數的影響。當一由N顆磁性粒子組成的磁性粒子串於一旋轉磁場下運動時,此磁性粒子串會同時承受磁扭力(Mm)及流體的黏滯阻力(Mv),而無因數參數(Mason number,Mn)即可用於判 定該磁性粒子串在該旋轉磁場作用下旋轉,當該磁性粒子串的磁性粒子之間的吸引力無法承受轉動的慣性力及流體阻力時,該磁性粒子串會在轉動時斷裂的參考參數。而本發明的目的則是利用控制讓該磁性粒子串Mb於旋轉過程中可產生多重斷裂,藉由該多重斷裂產生之該等磁性段Ms亦可沿該預定方向旋轉而讓該流體F產生沿該旋轉方向的流場的特性,而用以傳輸非磁性物質。因此,該等磁性粒子M的數量N為控制在不小於5,且進一步將該系統中的Mason number控制在介於0.012~0.03。以確保該磁性粒子串Mb於旋轉過程中可產生多重斷裂。
Mason number(Mn)=η f/μ 0 μ sM2
η:流體的黏滯係數
f:旋轉磁場的頻率
μ 0μ s:真空磁導率以及流體的磁導率
M:磁性粒子的磁化強度
相較先前技術,本發明僅需藉由產生正交之第二、三磁場,並控制藉由該第二、三磁場產生的旋轉磁場足以讓該磁性粒子串Mb於旋轉過程中產生多重斷裂,即可用於將該非磁性物質P向該預定方向傳輸,不僅結構簡單、操控方便,且可具有較低的製程成本。
茲利用下述具體例進一步說明本發明該非磁性物質傳 輸方法。
具體例1
配合參閱圖2、3,圖3是以可產生該第二、三磁場的相位角為90°為例作說明。
首先提供一如圖3所示的磁場產生裝置900。該磁場產生裝置900具有一透明的載臺901、四個電磁鐵902,及二個電源供應器AC1、AC2。該載臺901於中心位置具有一作用區,並於兩兩相對遠離的位置各具有一個置放區,該等電磁鐵902分別對應固設於該置放區,且兩個相對的電磁鐵902的線圈分別與一個電源供應器連接,而形成兩組線圈組。其中,與該第一方向X平行的線圈組為第一線圈組M11,用以產生一第二磁場(即平行電場),與該第一方向X垂直的線圈組為第二線圈組M22,用以產生一第三磁場(即垂直電場)。
將一具有成長管狀流道101的透明晶片100設置於該作用區。其中,該長管狀流道101具有彼此相對遠離的一入口1011及一出口1012,且該透明晶片100的長管狀流道101為與該第一方向平行設置。接著,自該長管狀流道101的入口1011注入分散有多數磁性粒子M的流體F,並利用該第一線圈組M11啟動一穩定的第一磁場,令該等磁性粒子M於受到該第一磁場的作用後沿該流道101的長度方向彼此吸附排列成一磁性粒子串Mb。其中,該流體F 是選自蒸餾水,該等磁性粒子M是選自聚苯乙烯粒外層包覆氧化鐵(Fe3O4/PS)的磁性顆粒,粒徑為4.5um且數量N=8。
然後,再自該流道101的入口1011注入一由螢光標記之聚合物(fluorescently-tagged polymer),粒徑約4.4μm(即非磁性物質P)。接著,關閉該第一磁場,再利用該第一、二線圈組M11、M22產生彼此正交的第二、三磁場,並利用該第二、三磁場配合產生一足以讓該磁性粒子串Mb沿一順時鐘方向旋轉並於旋轉過程中產生多重斷裂的旋轉磁場,而讓該磁性粒子串Mb形成多段沿該順時鐘方向旋轉的磁性段Ms,即可令該流體F產生沿該順時鐘方向的流場,而帶動該非磁性物質P朝向該流道101的出口1012(即該磁性粒子串Mb的其中另一端)移動。
其中,該第一磁場強度之振幅為:39Oe,該AC1、AC2的頻率為:1Hz。第二磁場強度之振幅:14.6Oe、第三磁場強度之振幅:14.6Oe。
具體例2
該具體例2的相關操作參數條件與該第一實施例大致雷同,不同處在於該具體例2的磁性粒子M的數量為11(N=11),且該第二、三磁場的磁場方向與該具體例1相反,即該具體例2會產生令該磁性粒子串Mb沿一逆時鐘方向旋轉的旋轉磁場。
參閱圖4、5,圖4、5分別為該具體例1、2的磁性粒子 串Mb受到該旋轉磁場的作用下,於不同時間(t)過程之光學顯微鏡金相圖。其中,圖4中1、8為分別表示磁性粒子串Mb的第1顆磁性粒子及第8顆磁性粒子,圖5中1、11則分別表示磁性粒子串Mb的第1顆磁性粒子及第11顆磁性粒子。由圖4、5可知,藉由該旋轉磁場的作用,該磁性粒子串Mb於旋轉過程會產生多重斷裂,而可帶動該非磁性物質P朝向該等磁性段Ms的旋轉方向移動。
參閱圖6、7,圖6、7分別為圖4、5中,該非磁性物質P在不同時間(t)過程之位移軌跡圖。由該等軌跡圖可明顯看出,該非磁性物質P會隨著該磁性粒子串Mb的旋轉、斷裂而朝向遠離該磁性粒子串Mb的方向移動傳輸,且傳輸的距離會與該磁性粒子串Mb的長度成正比。由圖4可知該具體例1(N=8),該非磁性物質P的最遠傳輸距離約為25μm,而由圖5則可得知該具體例2(N=11),該非磁性物質P的最遠傳輸距離約為37μm。此外,由該圖4、5也可知,當該非磁性物質P被移動傳輸至該磁性粒子串Mb的末端時,若未將該非磁性物質P移出因該等磁性段Ms旋轉產生的渦流區,則該非磁性離子P會再順著該等磁性段Ms的旋轉方向而被反向再傳輸至該磁性粒子串Mb的前端。
綜上所述,本發明的傳輸方法利用先提供一穩定平行磁場(第一磁場),讓該等磁性粒子M可吸附排列成一磁性粒子串Mb,接著再施加二個彼此相交成一相位角的第二、三磁場而產生 旋轉磁場,並控制令該旋轉磁場的強度足以讓該磁性粒子串Mb於旋轉過程產生多重斷裂,而讓該流體F產生沿該等磁性段Ms旋轉方向的流場,即可用以帶動該非磁性物質P朝向遠離該磁性粒子串Mb的其中另一端傳輸,不僅容易控制且設備簡單,因此可更增加使用便利性而有更廣泛的應用,故確實可達成本發明之目的。
惟以上所述者,僅為本發明之實施例而已,當不能以此限定本發明實施之範圍,凡是依本發明申請專利範圍及專利說明書內容所作之簡單的等效變化與修飾,皆仍屬本發明專利涵蓋之範圍內。
21‧‧‧第一磁場施加步驟
22‧‧‧旋轉磁場產生步驟

Claims (6)

  1. 一種非磁性物質傳輸方法,包含:一第一磁場施加步驟,將一分散有多數磁性粒子的流體置於一流道中,沿一第一方向施加一第一磁場於該等磁性粒子,令該等磁性粒子沿該第一方向排列彼此吸附而形成一長條的磁性粒子串;及一旋轉磁場產生步驟,自鄰近該磁性粒子串的其中一端注入一非磁性物質,並施加成一預定相位角的第二、三磁場,令該第二、三磁場配合產生一旋轉磁場,該磁性粒子串於受到該旋轉磁場的作用後朝一預定方向旋轉並重覆進行斷裂及重組而形成多段沿該預定方向旋轉的磁性段,以令該流體產生沿該預定方向的流場進而帶動該非磁性物質朝向遠離該磁性粒子串的其中另一端移動。
  2. 如請求項1所述的非磁性物質傳輸方法,其中,該第二、三磁場的相位角為90°。
  3. 如請求項1所述的非磁性物質傳輸方法,其中,定義該等磁性粒子的數量為N,N>2,該第二、三磁場的強度為控制在令Mason number(Mn)介於0.012~0.03。
  4. 如請求項3所述的非磁性物質傳輸方法,其中,該第二、三磁場的頻率為控制在1Hz以上,該等磁性粒子的粒徑介於3~6μm,且N不小於5。
  5. 如請求項4所述的非磁性物質傳輸方法,其中,該第二、三磁場強度之振幅為控制在14~20Oe。
  6. 如請求項1所述的非磁性物質傳輸方法,其中,該流道具 有沿該第一方向相對設置的一入口及一出口,該磁性粒子串的長度與該入口至該出口的長度相當,該非磁性物質是自該入口注入,而於該旋轉磁場產生步驟後,自該入口傳輸至該出口。
TW105132867A 2016-10-12 2016-10-12 非磁性物質傳輸方法 TWI609184B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105132867A TWI609184B (zh) 2016-10-12 2016-10-12 非磁性物質傳輸方法
US15/414,039 US10016765B2 (en) 2016-10-12 2017-01-24 Method for advancing non-magnetically responsive functional agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105132867A TWI609184B (zh) 2016-10-12 2016-10-12 非磁性物質傳輸方法

Publications (2)

Publication Number Publication Date
TWI609184B true TWI609184B (zh) 2017-12-21
TW201814293A TW201814293A (zh) 2018-04-16

Family

ID=61230628

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105132867A TWI609184B (zh) 2016-10-12 2016-10-12 非磁性物質傳輸方法

Country Status (2)

Country Link
US (1) US10016765B2 (zh)
TW (1) TWI609184B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532548A (zh) * 2003-03-21 2004-09-29 北京博奥生物芯片有限责任公司 带有磁化轴的微型器件及其使用方法
WO2012041809A1 (en) * 2010-09-29 2012-04-05 Baden-Wuerttemberg Stiftung Ggmbh Method of transporting magnetic particles
CN104162379A (zh) * 2014-07-30 2014-11-26 江苏大学 一种微流控芯片磁珠混沌混合方法及装置
TW201517978A (zh) * 2013-11-06 2015-05-16 Univ Nat Chiao Tung 流體混合方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI241273B (en) 2004-11-16 2005-10-11 Univ Nat Cheng Kung Microvalve
EP1662256A1 (en) * 2004-11-25 2006-05-31 Spinomix S.A. Tailored magnetic particles and method to produce same
TWI311610B (en) 2007-01-24 2009-07-01 Nat Chung Hsing Universit Portable valve-less peristaltic micropumps and fabricating method for the same
TWI394984B (zh) 2007-07-31 2013-05-01 Raydium Semiconductor Corp 光鑷夾產生裝置與使光鑷夾具有動量之方法以及微粒導引之光鑷夾光場圖形

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532548A (zh) * 2003-03-21 2004-09-29 北京博奥生物芯片有限责任公司 带有磁化轴的微型器件及其使用方法
WO2012041809A1 (en) * 2010-09-29 2012-04-05 Baden-Wuerttemberg Stiftung Ggmbh Method of transporting magnetic particles
TW201517978A (zh) * 2013-11-06 2015-05-16 Univ Nat Chiao Tung 流體混合方法
CN104162379A (zh) * 2014-07-30 2014-11-26 江苏大学 一种微流控芯片磁珠混沌混合方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
微磁性粒子操控之力學探討實驗研究 2011年7月 陳慶耀、許世璁,國立交通大學機械工程學系碩士論文 *

Also Published As

Publication number Publication date
US10016765B2 (en) 2018-07-10
TW201814293A (zh) 2018-04-16
US20180099292A1 (en) 2018-04-12

Similar Documents

Publication Publication Date Title
Fahrni et al. Micro-fluidic actuation using magnetic artificial cilia
Kuo et al. A hydrogel-based intravascular microgripper manipulated using magnetic fields
Zhou et al. Magnetoresponsive surfaces for manipulation of nonmagnetic liquids: design and applications
Marchi et al. Highly magneto-responsive elastomeric films created by a two-step fabrication process
JP5272082B2 (ja) 磁壁の伝播のための導管中の磁性粒子の操作
JP2009543703A (ja) マイクロ流体システム
Cui et al. Hypersonic‐induced 3D hydrodynamic tweezers for versatile manipulations of micro/nanoscale objects
CN206637105U (zh) 一种用于微流控芯片的电磁微阀
CN106999719B (zh) 用于非接触式轴向粒子旋转和解耦的粒子推进的方法和装置
Khalil et al. Magnetic-based motion control of sperm-shaped microrobots using weak oscillating magnetic fields
Ganguly et al. Field-assisted self-assembly of superparamagnetic nanoparticles for biomedical, MEMS and BioMEMS applications
van Pelt et al. Microfluidic magnetic bead conveyor belt
Zheng et al. A BioMEMS chip with integrated micro electromagnet array towards bio-particles manipulation
JP6090878B2 (ja) スピン制御機構及びスピンデバイス
Ando et al. Magnetic fluids and their use in transducers
TWI609184B (zh) 非磁性物質傳輸方法
US10385893B2 (en) Electropermanent magnet activated microfluidic droplet size modulation
TWI659211B (zh) 微流體裝置
JP5534493B1 (ja) スピンモータ及びスピン回転部材
Blaire et al. Hybrid Bio-Mag-MEMS combining magnetophoresis and dielectrophoresis
Poesio et al. Resonance induced wetting state transition of a ferrofluid droplet on superhydrophobic surfaces
US20130169393A1 (en) Microscale or nanoscale magnetic tweezers and process for fabricating such tweezers
Ahn et al. A novel type of a microfluidic system using ferrofluids for an application of μ-TAS
WO2007020703A1 (ja) 回転磁場によるマニピュレーション方法
ES2686108T3 (es) Procedimiento para la fabricación de micro-objetos

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees