TWI607971B - Manufacturing method of infrared absorption powder - Google Patents

Manufacturing method of infrared absorption powder Download PDF

Info

Publication number
TWI607971B
TWI607971B TW103135548A TW103135548A TWI607971B TW I607971 B TWI607971 B TW I607971B TW 103135548 A TW103135548 A TW 103135548A TW 103135548 A TW103135548 A TW 103135548A TW I607971 B TWI607971 B TW I607971B
Authority
TW
Taiwan
Prior art keywords
powder
infrared absorbing
tungsten
drying
present
Prior art date
Application number
TW103135548A
Other languages
Chinese (zh)
Other versions
TW201613826A (en
Inventor
莊佳哲
高有志
盧振國
李冠諭
洪子景
李建興
Original Assignee
台虹科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台虹科技股份有限公司 filed Critical 台虹科技股份有限公司
Priority to TW103135548A priority Critical patent/TWI607971B/en
Priority to CN201410615412.6A priority patent/CN105621488B/en
Publication of TW201613826A publication Critical patent/TW201613826A/en
Application granted granted Critical
Publication of TWI607971B publication Critical patent/TWI607971B/en

Links

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

紅外線吸收粉末的製作方法 Infrared absorption powder manufacturing method

本發明係相關於一種紅外線吸收粉末的製作方法,尤指一種可提高生產效率及安全性的紅外線吸收粉末的製作方法。 The present invention relates to a method for producing an infrared absorbing powder, and more particularly to a method for producing an infrared absorbing powder which can improve production efficiency and safety.

由於氧化鎢銫具有優異的可見光穿透性及紅外線遮蔽性,氧化鎢銫通常被應用於製作紅外線吸收膜,以提供紅外線吸收及隔熱等功能。一般而言,為了製作紅外線吸收膜,氧化鎢銫是先以粉末型態被研磨成奈米級微粒子,再進一步均勻分散於樹脂基質中以形成紅外線吸收膜。在先前技術中,製造氧化鎢銫粉末的方法有兩種,第一種方法是將含鎢材料及含銫材料置放於充有氫氣的腔室中,並進行加熱以得到氧化鎢銫粉末;而第二種方法是將含鎢材料及含銫材料的水溶液加入還原劑,並置放於高溫高壓的水熱反應器中進行還原反應以得到氧化鎢銫粉末。然而,第一種製造氧化鎢銫粉末的方法有可能會因高溫而造成氫氣爆炸,增加生產氧化鎢銫粉末的危險性,而第二種製造氧化鎢銫粉末的方法必須在水熱反應器中進行還原反應,其生產效率較低,無法大量地生產氧化鎢銫粉末。 Since tungsten oxide ruthenium has excellent visible light transmittance and infrared shielding properties, tungsten ruthenium oxide is generally used for producing an infrared absorbing film to provide functions such as infrared absorption and heat insulation. In general, in order to produce an infrared absorbing film, tungsten ruthenium oxide is first ground into a nano-sized fine particle in a powder form, and further uniformly dispersed in a resin matrix to form an infrared absorbing film. In the prior art, there are two methods for manufacturing a tungsten oxide tantalum powder. The first method is to place a tungsten-containing material and a tantalum-containing material in a chamber filled with hydrogen and heat it to obtain a tungsten oxide tantalum powder; The second method is to add an aqueous solution containing a tungsten material and a cerium-containing material to a reducing agent, and place it in a high temperature and high pressure hydrothermal reactor for reduction reaction to obtain a tungsten ruthenium oxide powder. However, the first method for producing tungsten oxide niobium powder may cause hydrogen explosion due to high temperature, increasing the risk of producing tungsten oxide niobium powder, and the second method for producing tungsten oxide niobium powder must be in a hydrothermal reactor. The reduction reaction is carried out, and the production efficiency is low, and the tungsten oxide ruthenium powder cannot be produced in a large amount.

本發明之目的在於提供一種可提高生產效率及安全性的紅外線吸收粉末的製作方法,以解決先前技術的問題。 SUMMARY OF THE INVENTION An object of the present invention is to provide a method for producing an infrared absorbing powder which can improve production efficiency and safety, and to solve the problems of the prior art.

本發明紅外線吸收粉末的製作方法包含將含鎢鹽類溶於水中以形 成一溶液;烘乾該溶液以得到一粉末;以及於一負壓環境中對該粉末進行煆燒處理以得到該紅外線吸收粉末。 The method for preparing the infrared absorbing powder of the present invention comprises dissolving a tungsten-containing salt in water to form Forming a solution; drying the solution to obtain a powder; and calcining the powder in a negative pressure environment to obtain the infrared absorbing powder.

在本發明一實施例中,該製作方法另包含在進行該煆燒處理之前混合一還原劑於該粉末中。 In an embodiment of the invention, the manufacturing method further comprises mixing a reducing agent in the powder prior to performing the calcining treatment.

在本發明一實施例中,該還原劑是選自於由蔗糖、葡萄糖、焦糖、果糖及含醣類的碳水化合物所組成的群組。 In an embodiment of the invention, the reducing agent is selected from the group consisting of sucrose, glucose, caramel, fructose, and carbohydrates containing sugars.

在本發明一實施例中,該製作方法另包含在進行煆燒處理時置放一含炭原料於該粉末旁。 In an embodiment of the invention, the manufacturing method further comprises placing a carbonaceous material adjacent to the powder during the calcining process.

在本發明一實施例中,該含炭原料是選自於由焦炭、活性碳、木炭、碳黑所組成的群組。 In an embodiment of the invention, the carbonaceous material is selected from the group consisting of coke, activated carbon, charcoal, and carbon black.

在本發明一實施例中,該粉末是在攝氏650度及850度之間進行煆燒處理。 In an embodiment of the invention, the powder is calcined at between 650 degrees Celsius and 850 degrees Celsius.

在本發明一實施例中,該負壓環境的氣壓是小於160mm-Hg。 In an embodiment of the invention, the pressure in the negative pressure environment is less than 160 mm-Hg.

在本發明一實施例中,將該含鎢鹽類溶於水中以形成該溶液係為將鹼金族金屬鹽類及該含鎢鹽類溶於水中以形成該溶液。 In one embodiment of the invention, the tungsten-containing salt is dissolved in water to form the solution by dissolving the alkali metal group metal salt and the tungsten-containing salt in water to form the solution.

在本發明一實施例中該鹼金族金屬鹽類是由化學式MpN表示,M是鹼金族元素,N是帶負價之陰離子或陰離子團,1p12。 In one embodiment of the invention, the alkali metal group metal salt is represented by the chemical formula M p N, M is an alkali gold group element, and N is a negatively charged anion or anion group, 1 p 12.

在本發明一實施例中,該紅外線吸收粉末是由化學式MxWO3-y表 示,M是鹼金族元素,W是鎢,O是氧,0.001<x<1,0y<0.8。 In an embodiment of the invention, the infrared absorbing powder is represented by the chemical formula M x WO 3-y , M is an alkali gold group element, W is tungsten, and O is oxygen, 0.001<x<1,0 y<0.8.

在本發明一實施例中,烘乾該溶液的方式包含噴霧乾燥、冷凍乾燥、加熱乾燥、微波乾燥、真空乾燥、旋轉加熱乾燥及/或熱風乾燥。 In an embodiment of the invention, the method of drying the solution comprises spray drying, freeze drying, heat drying, microwave drying, vacuum drying, rotary heating drying, and/or hot air drying.

在本發明一實施例中,該紅外線吸收粉末是氧化鎢粉末,由化學式WOz表示,W是鎢,O是氧,其中2.2z2.99。 In an embodiment of the invention, the infrared absorbing powder is a tungsten oxide powder, represented by the chemical formula WO z , W is tungsten, and O is oxygen, wherein 2.2 z 2.99.

相較於先前技術,本發明紅外線吸收粉末的製作方法是在負壓環境中進行煆燒處理,以改善形成紅外線吸收粉末時的還原環境。由於本發明紅外線吸收粉末的製作方法不需要在充有氫氣的腔室中進行,因此本發明紅外線吸收粉末的製作方法不會有氫氣爆炸的問題,進而增加生產紅外線吸收粉末的安全性。再者,本發明紅外線吸收粉末的製作方法是在煆燒爐中進行還原反應,其生產量會大於在水熱反應器中進行還原反應的生產量,因此,本發明紅外線吸收粉末的製作方法亦可以提高紅外線吸收粉末的生產效率。 Compared with the prior art, the infrared absorbing powder of the present invention is produced by calcining in a negative pressure environment to improve the reducing environment when the infrared absorbing powder is formed. Since the method for producing the infrared absorbing powder of the present invention does not need to be carried out in a chamber filled with hydrogen, the method for producing the infrared absorbing powder of the present invention does not have the problem of hydrogen explosion, thereby increasing the safety of producing the infrared absorbing powder. Furthermore, the method for producing the infrared absorbing powder of the present invention is to carry out a reduction reaction in a crucible furnace, and the production amount thereof is larger than the production amount of the reduction reaction in the hydrothermal reactor. Therefore, the method for producing the infrared absorbing powder of the present invention is also The production efficiency of the infrared absorbing powder can be improved.

100‧‧‧真空煆燒爐 100‧‧‧vacuum crucible furnace

110‧‧‧含銫鹽類 110‧‧‧铯 salts

120‧‧‧含鎢鹽類 120‧‧‧Tungsten salts

130‧‧‧水 130‧‧‧ water

A‧‧‧溶液 A‧‧‧ solution

B‧‧‧粉末 B‧‧‧ powder

C‧‧‧還原劑 C‧‧‧Reducing agent

D‧‧‧紅外線吸收粉末 D‧‧‧Infrared absorbing powder

210至230‧‧‧步驟 210 to 230‧‧ steps

第1圖是本發明紅外線吸收粉末的製作方法的示意圖。 Fig. 1 is a schematic view showing a method of producing an infrared absorbing powder of the present invention.

第2圖是本發明紅外線吸收粉末的製作方法的流程圖。 Fig. 2 is a flow chart showing a method of producing the infrared absorbing powder of the present invention.

第3圖是本發明紅外線吸收粉末的第一實施例的XRD圖譜。 Fig. 3 is an XRD pattern of the first embodiment of the infrared absorbing powder of the present invention.

第4圖是本發明紅外線吸收粉末的第二實施例的XRD圖譜。 Figure 4 is an XRD pattern of a second embodiment of the infrared absorbing powder of the present invention.

第5圖是本發明紅外線吸收粉末的第三實施例的XRD圖譜。 Fig. 5 is an XRD pattern of a third embodiment of the infrared absorbing powder of the present invention.

第6圖是本發明紅外線吸收粉末的第四實施例的XRD圖譜。 Fig. 6 is an XRD pattern of a fourth embodiment of the infrared absorbing powder of the present invention.

第7圖是本發明紅外線吸收粉末的第五實施例的XRD圖譜。 Fig. 7 is an XRD pattern of a fifth embodiment of the infrared absorbing powder of the present invention.

請參考第1圖。第1圖是本發明紅外線吸收粉末的製作方法的示意圖。如第1圖所示,本發明紅外線吸收粉末的製作方法是先將含銫鹽類110及含鎢鹽類120溶於水130中以形成一溶液A。含銫鹽類110可以是選自碳酸銫鹽類及氯化銫鹽類。含鎢鹽類120可以是鎢酸、偏鎢酸銨、正鎢酸銨、仲鎢酸銨、鹼金族鎢酸鹽、矽化鎢、硫化鎢、氯氧鎢、純氧鎢、六氯化鎢、四氯化鎢、溴化鎢、氟化鎢、碳化鎢、碳氧化鎢及其他含有鎢之鹽類。當形成溶液A之後,本發明紅外線吸收粉末的製作方法會烘乾溶液A以得到一粉末B。烘乾溶液的方式包含噴霧乾燥、冷凍乾燥、加熱乾燥、微波乾燥、真空乾燥、旋轉加熱乾燥及/或熱風乾燥等。粉末B中的含銫鹽類及含鎢鹽類會均勻地分散。當得到粉末B之後,本發明紅外線吸收粉末的製作方法會添加一還原劑C,並混合還原劑C於粉末B中。還原劑C可以是選自於由蔗糖、葡萄糖、焦糖、果糖及含醣類的碳水化合物所組成的群組。最後,本發明紅外線吸收粉末的製作方法會於一負壓環境中(例如在一真空煆燒爐100中)對粉末B進行煆燒處理以得到紅外線吸收粉末D,亦即氧化鎢銫粉末。 Please refer to Figure 1. Fig. 1 is a schematic view showing a method of producing an infrared absorbing powder of the present invention. As shown in Fig. 1, the infrared absorbing powder of the present invention is prepared by first dissolving a cerium-containing salt 110 and a tungsten-containing salt 120 in water 130 to form a solution A. The onium containing salt 110 may be selected from the group consisting of barium carbonate salts and barium chloride salts. The tungsten-containing salt 120 may be tungstic acid, ammonium metatungstate, ammonium orthotride, ammonium paratungstate, alkali gold tungstate, tungsten telluride, tungsten sulfide, tungsten oxychloride, pure tungsten oxide, tungsten hexachloride, tetrachloroethylene. Tungsten, tungsten bromide, tungsten fluoride, tungsten carbide, tungsten carbide and other salts containing tungsten. After the formation of the solution A, the method of producing the infrared absorbing powder of the present invention will dry the solution A to obtain a powder B. The method of drying the solution includes spray drying, freeze drying, heat drying, microwave drying, vacuum drying, rotary heating drying, and/or hot air drying. The cerium-containing salts and the tungsten-containing salts in the powder B are uniformly dispersed. After the powder B is obtained, the infrared absorbing powder of the present invention is prepared by adding a reducing agent C and mixing the reducing agent C to the powder B. The reducing agent C may be selected from the group consisting of sucrose, glucose, caramel, fructose, and carbohydrates containing sugars. Finally, the method for producing the infrared absorbing powder of the present invention is subjected to a calcining treatment of the powder B in a negative pressure environment (for example, in a vacuum crucible furnace 100) to obtain an infrared absorbing powder D, that is, a tungsten oxide cerium powder.

在本發明實施例中,進行煆燒處理時的負壓環境的氣壓是小於160mm-Hg,如此可以減少氧氣在反應腔室中的含量,進而改善粉末B形成紅外線吸收粉末時的還原環境。依據上述配置,當本發明製作方法在對粉末B進行煆燒處理時,不需要在充有氫氣的腔室中進行,因此本發明製作方法不會有氫氣爆炸的問題,進而增加生產紅外線吸收粉末的安全性。再者,本發明製作方法是在真空煆燒爐100中進行還原反應,其生產量會大於在水熱反應器中進行還原反應的生產量,也就是說,本發明製作方法可以提高紅外線吸收粉末的生產效率。 In the embodiment of the present invention, the gas pressure of the negative pressure environment during the calcination treatment is less than 160 mm-Hg, so that the content of oxygen in the reaction chamber can be reduced, thereby improving the reducing environment when the powder B forms the infrared absorbing powder. According to the above configuration, when the method of the present invention is subjected to the calcination treatment of the powder B, it is not required to be carried out in a chamber filled with hydrogen gas, so that the production method of the present invention does not have the problem of hydrogen explosion, thereby increasing the production of infrared absorbing powder. Security. Furthermore, the production method of the present invention is to carry out a reduction reaction in a vacuum crucible furnace 100, and the production amount thereof is greater than the production amount of the reduction reaction in the hydrothermal reactor, that is, the production method of the present invention can improve the infrared absorption powder. Production efficiency.

另外,在本發明紅外線吸收粉末的製作方法中,溶液A中的鎢離子與銫離子的莫耳比是1:0.33,而粉末B是在攝氏650度及850度之間進行 煆燒處理。氧化鎢銫粉末可以由化學式CsxWO3-y表示,Cs是銫,W是鎢,O是氧,0.001<x<1,0y<0.8。 Further, in the method for producing an infrared absorbing powder of the present invention, the molar ratio of tungsten ion to cerium ion in the solution A is 1:0.33, and the powder B is sintered at between 650 degrees Celsius and 850 degrees Celsius. The tungsten oxide niobium powder can be represented by the chemical formula Cs x WO 3-y , Cs is 铯, W is tungsten, O is oxygen, 0.001<x<1,0 y<0.8.

另一方面,在本發明實施例中,還原劑C不一定要加入粉末B中,粉末B亦可以直接放入真空煆燒爐100中進行還原反應。再者,為了進一步改善還原環境,本發明紅外線吸收粉末的製作方法可以在進行煆燒處理時置放一含炭原料於粉末B旁。含炭原料可以是選自於由焦炭、活性碳、木炭、碳黑所組成的群組。 On the other hand, in the embodiment of the present invention, the reducing agent C does not have to be added to the powder B, and the powder B can also be directly placed in the vacuum crucible furnace 100 for the reduction reaction. Furthermore, in order to further improve the reducing environment, the method for producing the infrared absorbing powder of the present invention can place a carbonaceous raw material beside the powder B during the calcining treatment. The carbonaceous material may be selected from the group consisting of coke, activated carbon, charcoal, and carbon black.

請參考第2圖,第2圖是本發明紅外線吸收粉末的製作方法的流程圖。本發明紅外線吸收粉末的製作方法的流程如下列步驟:步驟210:將含銫鹽類及含鎢鹽類溶於水中以形成一溶液;步驟220:烘乾該混合溶液以得到一粉末;以及步驟230:於一負壓環境中對該粉末進行煆燒處理以得到該紅外線吸收粉末。 Please refer to FIG. 2, which is a flow chart of a method for producing the infrared absorbing powder of the present invention. The flow of the method for preparing the infrared absorbing powder of the present invention is as follows: Step 210: dissolving the cerium-containing salt and the tungsten-containing salt in water to form a solution; Step 220: drying the mixed solution to obtain a powder; 230: The powder is subjected to a calcination treatment in a negative pressure environment to obtain the infrared absorbing powder.

本發明紅外線吸收粉末的製作方法的流程亦可以包含其他步驟,例如在步驟220及步驟230之間可另包含混合一還原劑於該粉末中之步驟。再者,在步驟230中進行煆燒處理時,可置放一含炭原料於該粉末旁。 The flow of the method for producing the infrared absorbing powder of the present invention may also include other steps. For example, between step 220 and step 230, a step of mixing a reducing agent into the powder may be further included. Further, when the calcination treatment is carried out in step 230, a carbonaceous material may be placed beside the powder.

舉例來說,在本發明第一實施例中,本發明紅外線吸收粉末的製作方法是將碳酸銫鹽類及鎢酸鹽類溶於去離子水中以形成溶液A。溶液A會進一步被加熱至攝氏120度以完全蒸發水分而得到粉末B。粉末B再和還原劑C充分混合並置放於真空煆燒爐中。之後真空煆燒爐的腔室會在接近0mm-Hg的負壓環境下,以每分攝氏15度的升溫速率加熱至攝氏750度。真空煆燒爐的腔室會在攝氏750度維持10小時後再自然冷卻至室溫,如此即可 以得到氧化鎢銫粉末。 For example, in the first embodiment of the present invention, the infrared absorbing powder of the present invention is prepared by dissolving strontium carbonate salts and tungstates in deionized water to form solution A. Solution A was further heated to 120 ° C to completely evaporate water to obtain Powder B. Powder B is then thoroughly mixed with reducing agent C and placed in a vacuum crucible furnace. The chamber of the vacuum crucible is then heated to 750 degrees Celsius at a rate of 15 degrees Celsius per minute under a negative pressure of approximately 0 mm-Hg. The chamber of the vacuum crucible furnace will be cooled to room temperature after 750 degrees Celsius for 10 hours. To obtain a tungsten oxide tantalum powder.

請參考第3圖,第3圖是本發明紅外線吸收粉末的第一實施例的XRD圖譜。如第3圖所示,經由X光繞射儀分析所得到的XRD圖譜,本發明第一實施例的氧化鎢銫粉末是六方晶系Cs0.33WO3結構。 Please refer to Fig. 3, which is an XRD pattern of the first embodiment of the infrared absorbing powder of the present invention. As shown in Fig. 3, the obtained XRD pattern was analyzed by an X-ray diffractometer, and the tungsten oxide tantalum powder of the first embodiment of the present invention was a hexagonal Cs 0.33 WO 3 structure.

在本發明第二實施例中,本發明紅外線吸收粉末的製作方法是將碳酸銫鹽類及鎢酸鹽類溶於去離子水中以形成溶液A。溶液A會進一步被加熱至攝氏120度以完全蒸發水分而得到粉末B。粉末B再直接置放於真空煆燒爐中,且適量焦炭會置放於粉末B旁。之後真空煆燒爐的腔室會在接近0mm-Hg的負壓環境下,以每分攝氏15度的升溫速率加熱至攝氏850度。真空煆燒爐的腔室會在攝氏850度維持6小時後再自然冷卻至室溫,如此即可以得到氧化鎢銫粉末。 In the second embodiment of the present invention, the infrared absorbing powder of the present invention is produced by dissolving strontium carbonate salts and tungstates in deionized water to form solution A. Solution A was further heated to 120 ° C to completely evaporate water to obtain Powder B. Powder B is placed directly in a vacuum crucible, and an appropriate amount of coke is placed next to powder B. The chamber of the vacuum crucible is then heated to 850 degrees Celsius at a rate of 15 degrees Celsius per minute under a negative pressure of approximately 0 mm-Hg. The chamber of the vacuum crucible furnace is naturally cooled to room temperature after maintaining it at 850 ° C for 6 hours, so that a tungsten oxide niobium powder can be obtained.

請參考第4圖,第4圖是本發明紅外線吸收粉末的第二實施例的XRD圖譜。如第4圖所示,經由X光繞射儀分析所得到的XRD圖譜,本發明第二實施例的氧化鎢銫粉末是六方晶系Cs0.33WO3結構。 Please refer to Fig. 4, which is an XRD pattern of a second embodiment of the infrared absorbing powder of the present invention. As shown in Fig. 4, the XRD pattern obtained by analyzing the X-ray diffractometer, the tungsten oxide tantalum powder of the second embodiment of the present invention is a hexagonal Cs 0.33 WO 3 structure.

在本發明第三實施例中,本發明紅外線吸收粉末的製作方法是將碳酸銫鹽類及偏鎢酸銨鹽類溶於去離子水中以形成溶液A。溶液A會進一步被加熱至攝氏120度以完全蒸發水分而得到粉末B。粉末B再直接置放於真空煆燒爐中。之後真空煆燒爐的腔室會在接近0mm-Hg的負壓環境下,以每分攝氏5度的升溫速率加熱至攝氏800度。真空煆燒爐的腔室會在攝氏800度維持6小時後再自然冷卻至室溫,如此即可以得到氧化鎢銫粉末。 In the third embodiment of the present invention, the infrared absorbing powder of the present invention is produced by dissolving cerium carbonate salts and ammonium metatungstate salts in deionized water to form solution A. Solution A was further heated to 120 ° C to completely evaporate water to obtain Powder B. Powder B was placed directly in a vacuum crucible furnace. After that, the chamber of the vacuum crucible furnace is heated to 800 degrees Celsius at a heating rate of 5 degrees per minute in a negative pressure environment close to 0 mm-Hg. The chamber of the vacuum crucible furnace is naturally cooled to room temperature after being maintained at 800 ° C for 6 hours, so that a tungsten oxide niobium powder can be obtained.

請參考第5圖,第5圖是本發明紅外線吸收粉末的第三實施例的 XRD圖譜。如第5圖所示,經由X光繞射儀分析所得到的XRD圖譜,本發明第三實施例的氧化鎢銫粉末是六方晶系Cs0.33WO3結構。 Please refer to Fig. 5, which is an XRD pattern of a third embodiment of the infrared absorbing powder of the present invention. As shown in Fig. 5, the obtained XRD pattern was analyzed by an X-ray diffractometer, and the tungsten oxide tantalum powder of the third embodiment of the present invention was a hexagonal Cs 0.33 WO 3 structure.

另一方面,在本發明其他實施例中,含銫鹽類110可以被其他鹼金族金屬鹽類取代(亦即步驟210可以將其他鹼金族金屬鹽類及含鎢鹽類120溶於水130中以形成溶液A)。鹼金族金屬鹽類是由化學式MpN表示,M是鹼金族元素包括Li、Na、K、Rb、Cr或上述之組合,N是帶負價之陰離子或陰離子團,1p12。鹼金族金屬鹽類MpN可以是鹼金族碳酸鹽、鹼金族碳酸氫鹽、鹼金族硝酸鹽、鹼金族亞硝酸鹽、鹼金族氫氧化物、鹼金族鹵化鹽、鹼金族硫酸鹽、鹼金族亞硫酸鹽及其他含有鹼金族金屬鹽類的其中至少一種。換句話說,上述形成的紅外線吸收粉末可以是由化學式MxWO3-y表示,M是鹼金族元素,W是鎢,O是氧,0.001<x<1,0y<0.8。 On the other hand, in other embodiments of the present invention, the cerium-containing salt 110 may be substituted with other alkali metal group metal salts (ie, step 210 may dissolve other alkali metal group metal salts and tungsten salt-containing salts 120 in water). 130 to form solution A). The alkali metal group metal salt is represented by the chemical formula M p N, M is an alkali gold group element including Li, Na, K, Rb, Cr or a combination thereof, and N is a negatively charged anion or anion group, 1 p 12. The alkali metal group metal salt M p N may be an alkali gold group carbonate, an alkali gold group hydrogencarbonate, an alkali gold group nitrate, an alkali gold group nitrite, an alkali gold group hydroxide, an alkali gold group halogenated salt, At least one of an alkali gold sulfate, an alkali gold sulfite, and other alkali metal-containing metal salts. In other words, the infrared absorbing powder formed above may be represented by the chemical formula M x WO 3-y , M is an alkali gold group element, W is tungsten, and O is oxygen, 0.001 < x < 1, 0 y<0.8.

舉例來說,在本發明第四實施例中,本發明紅外線吸收粉末的製作方法是將碳酸鉀鹽類及鎢酸鹽類溶於去離子水中以形成溶液A。溶液A會進一步被加熱至攝氏120度以完全蒸發水分而得到粉末B。粉末B再直接置放於真空煆燒爐中,且適量焦炭會置放於粉末B旁。之後真空煆燒爐的腔室會在接近0mm-Hg的負壓環境下,以每分攝氏5度的升溫速率加熱至攝氏700度。真空煆燒爐的腔室會在攝氏700度維持6小時後再自然冷卻至室溫,如此即可以得到氧化鎢鉀粉末。 For example, in the fourth embodiment of the present invention, the infrared absorbing powder of the present invention is prepared by dissolving potassium carbonate and tungstate in deionized water to form solution A. Solution A was further heated to 120 ° C to completely evaporate water to obtain Powder B. Powder B is placed directly in a vacuum crucible, and an appropriate amount of coke is placed next to powder B. The chamber of the vacuum crucible furnace is then heated to 700 degrees Celsius at a rate of 5 degrees Celsius per minute in a negative pressure environment of approximately 0 mm-Hg. The chamber of the vacuum crucible furnace is maintained at 700 ° C for 6 hours and then naturally cooled to room temperature, so that potassium tungsten oxide powder can be obtained.

請參考第6圖,第6圖是本發明紅外線吸收粉末的第四實施例的XRD圖譜。如第6圖所示,經由X光繞射儀分析所得到的XRD圖譜,本發明第四實施例的氧化鎢鉀粉末是是六方晶系K0.33WO3結構。 Please refer to Fig. 6, which is an XRD pattern of a fourth embodiment of the infrared absorbing powder of the present invention. As shown in Fig. 6, the XRD pattern obtained by analyzing the X-ray diffractometer, the potassium tungsten oxide powder of the fourth embodiment of the present invention is a hexagonal K 0.33 WO 3 structure.

另外,在本發明紅外線吸收粉末的製作方法中,不一定要加入含 銫鹽類110或鹼金族金屬鹽類於水130中,本發明紅外線吸收粉末的製作方法亦可以只加入含鎢鹽類120於水130中以形成溶液A(亦即步驟210可以只將含鎢鹽類120溶於水130中以形成溶液A)。 In addition, in the method for producing the infrared absorbing powder of the present invention, it is not necessary to add The strontium salt 110 or the alkali gold metal salt is used in the water 130. The method for preparing the infrared absorbing powder of the present invention may also add only the tungsten-containing salt 120 in the water 130 to form the solution A (ie, step 210 may only contain Tungsten salt 120 is dissolved in water 130 to form solution A).

舉例來說,在本發明第五實施例中,本發明紅外線吸收粉末的製作方法是將鎢酸鹽類溶於去離子水中以形成溶液A。溶液A會進一步被加熱至攝氏120度以完全蒸發水分而得到粉末B。粉末B再直接置放於真空煆燒爐中,且適量焦炭會置放於粉末B旁。之後真空煆燒爐的腔室會在接近0mm-Hg的負壓環境下,以每分攝氏5度的升溫速率加熱至攝氏750度。真空煆燒爐的腔室會在攝氏750度維持6小時後再自然冷卻至室溫,如此即可以得到氧化鎢粉末。氧化鎢粉末可以由化學式WOz表示,W是鎢,O是氧,其中2.2z2.99。 For example, in the fifth embodiment of the present invention, the infrared absorbing powder of the present invention is produced by dissolving a tungstate in deionized water to form a solution A. Solution A was further heated to 120 ° C to completely evaporate water to obtain Powder B. Powder B is placed directly in a vacuum crucible, and an appropriate amount of coke is placed next to powder B. The chamber of the vacuum crucible is then heated to 750 degrees Celsius at a rate of 5 degrees Celsius per minute in a negative pressure environment of approximately 0 mm-Hg. The chamber of the vacuum crucible furnace is maintained at 750 degrees Celsius for 6 hours and then naturally cooled to room temperature, so that tungsten oxide powder can be obtained. The tungsten oxide powder can be represented by the chemical formula WO z , W is tungsten, and O is oxygen, of which 2.2 z 2.99.

請參考第7圖,第7圖是本發明紅外線吸收粉末的第五實施例的XRD圖譜。如第7圖所示,經由X光繞射儀分析所得到的XRD圖譜,本發明第五實施例的氧化鎢粉末是是六方晶系WO2.72結構。 Please refer to Fig. 7, which is an XRD pattern of a fifth embodiment of the infrared absorbing powder of the present invention. As shown in Fig. 7, the obtained XRD pattern was analyzed by an X-ray diffractometer, and the tungsten oxide powder of the fifth embodiment of the present invention was a hexagonal WO 2.72 structure.

相較於先前技術,本發明紅外線吸收粉末的製作方法是在負壓環境中進行煆燒處理,以改善形成紅外線吸收粉末時的還原環境。由於本發明紅外線吸收粉末的製作方法不需要在充有氫氣的腔室中進行,因此本發明紅外線吸收粉末的製作方法不會有氫氣爆炸的問題,進而增加生產紅外線吸收粉末的安全性。再者,本發明紅外線吸收粉末的製作方法是在煆燒爐中進行還原反應,其生產量會大於在水熱反應器中進行還原反應的生產量,因此,本發明紅外線吸收粉末的製作方法亦可以提高紅外線吸收粉末的生產效率。 Compared with the prior art, the infrared absorbing powder of the present invention is produced by calcining in a negative pressure environment to improve the reducing environment when the infrared absorbing powder is formed. Since the method for producing the infrared absorbing powder of the present invention does not need to be carried out in a chamber filled with hydrogen, the method for producing the infrared absorbing powder of the present invention does not have the problem of hydrogen explosion, thereby increasing the safety of producing the infrared absorbing powder. Furthermore, the method for producing the infrared absorbing powder of the present invention is to carry out a reduction reaction in a crucible furnace, and the production amount thereof is larger than the production amount of the reduction reaction in the hydrothermal reactor. Therefore, the method for producing the infrared absorbing powder of the present invention is also The production efficiency of the infrared absorbing powder can be improved.

以上所述僅為本發明之較佳實施例,凡依本發明申請專利範圍所 做之均等變化與修飾,皆應屬本發明之涵蓋範圍。 The above description is only a preferred embodiment of the present invention, and the scope of the patent application according to the present invention is Equal variations and modifications are intended to be within the scope of the present invention.

100‧‧‧真空煆燒爐 100‧‧‧vacuum crucible furnace

110‧‧‧含銫鹽類 110‧‧‧铯 salts

120‧‧‧含鎢鹽類 120‧‧‧Tungsten salts

130‧‧‧水 130‧‧‧ water

A‧‧‧溶液 A‧‧‧ solution

B‧‧‧粉末 B‧‧‧ powder

C‧‧‧還原劑 C‧‧‧Reducing agent

D‧‧‧紅外線吸收粉末 D‧‧‧Infrared absorbing powder

Claims (8)

一種紅外線吸收粉末的製作方法,包含:將含銫鹽類及含鎢鹽類溶於水中以形成一溶液;烘乾該溶液以得到一粉末;以及於一負壓環境中在攝氏650度及850度之間對該粉末進行煆燒處理以得到該紅外線吸收粉末,其中該負壓環境的氣壓是小於160mm-Hg。 A method for preparing an infrared absorbing powder, comprising: dissolving a cerium-containing salt and a tungsten-containing salt in water to form a solution; drying the solution to obtain a powder; and 650 degrees Celsius and 850 in a negative pressure environment The powder is subjected to a calcination treatment to obtain the infrared absorbing powder, wherein the pressure in the negative pressure environment is less than 160 mm-Hg. 如請求項1所述的製作方法,另包含:在進行該煆燒處理之前混合一還原劑於該粉末中。 The manufacturing method according to claim 1, further comprising: mixing a reducing agent in the powder before performing the calcining treatment. 如請求項2所述的製作方法,其中該還原劑是選自於由蔗糖、葡萄糖、焦糖、果糖及含醣類的碳水化合物所組成的群組。 The production method according to claim 2, wherein the reducing agent is selected from the group consisting of sucrose, glucose, caramel, fructose, and carbohydrates containing sugars. 如請求項1所述的製作方法,另包含:在進行煆燒處理時置放一含炭原料於該粉末旁。 The method according to claim 1, further comprising: placing a carbonaceous material beside the powder during the calcining treatment. 如請求項4所述的製作方法,其中該含炭原料是選自於由焦炭、活性碳、木炭、碳黑所組成的群組。 The production method according to claim 4, wherein the carbonaceous material is selected from the group consisting of coke, activated carbon, charcoal, and carbon black. 如請求項1所述的製作方法,其中其中該混合溶液中鎢離子與銫離子的莫耳比是1:0.33。 The production method according to claim 1, wherein a molar ratio of tungsten ions to cerium ions in the mixed solution is 1:0.33. 如請求項6所述的製作方法,其中該紅外線吸收粉末是氧化鎢銫粉末,由化學式CsxWO3-y表示,Cs是銫,W是鎢,O是氧,其中0.001<x<1,0y<0.8。 The production method according to claim 6, wherein the infrared absorbing powder is a tungsten ruthenium oxide powder, represented by a chemical formula Cs x WO 3-y , Cs is 铯, W is tungsten, and O is oxygen, wherein 0.001<x<1, 0 y<0.8. 如請求項1所述的製作方法,其中烘乾該溶液的方式包含噴霧乾燥、冷凍乾燥、加熱乾燥、微波乾燥、真空乾燥、旋轉加熱乾燥及/或熱風乾燥。 The production method according to claim 1, wherein the method of drying the solution comprises spray drying, freeze drying, heat drying, microwave drying, vacuum drying, rotary heat drying, and/or hot air drying.
TW103135548A 2014-10-14 2014-10-14 Manufacturing method of infrared absorption powder TWI607971B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103135548A TWI607971B (en) 2014-10-14 2014-10-14 Manufacturing method of infrared absorption powder
CN201410615412.6A CN105621488B (en) 2014-10-14 2014-11-05 Method for producing infrared absorbing powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103135548A TWI607971B (en) 2014-10-14 2014-10-14 Manufacturing method of infrared absorption powder

Publications (2)

Publication Number Publication Date
TW201613826A TW201613826A (en) 2016-04-16
TWI607971B true TWI607971B (en) 2017-12-11

Family

ID=56036896

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103135548A TWI607971B (en) 2014-10-14 2014-10-14 Manufacturing method of infrared absorption powder

Country Status (2)

Country Link
CN (1) CN105621488B (en)
TW (1) TWI607971B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7182786B2 (en) * 2019-03-25 2022-12-05 国立研究開発法人産業技術総合研究所 Method for producing precious metal hydrosol
CN115003631B (en) * 2020-01-31 2024-06-14 住友金属矿山株式会社 Electromagnetic wave-absorbing particle, electromagnetic wave-absorbing particle dispersion, and method for producing electromagnetic wave-absorbing particle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200530132A (en) * 2003-10-20 2005-09-16 Sumitomo Metal Mining Co Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
CN101428344A (en) * 2008-12-17 2009-05-13 四川大学 Nano-scale wolfram carbine composite powder and method of manufacturing the same
CN103708558A (en) * 2013-12-31 2014-04-09 大连工业大学 CsxWOyFz powder and preparation method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100590154C (en) * 2003-10-20 2010-02-17 住友金属矿山株式会社 Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
JP4666226B2 (en) * 2006-05-18 2011-04-06 住友金属鉱山株式会社 Near-infrared absorption filter for plasma display panel, method for producing the same, and plasma display panel
CN103539205A (en) * 2013-11-15 2014-01-29 哈尔滨工业大学 Method for preparing controllable-morphology-and-size mixed-valence tungsten-based nanoparticles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200530132A (en) * 2003-10-20 2005-09-16 Sumitomo Metal Mining Co Infrared shielding material microparticle dispersion, infrared shield, process for producing infrared shielding material microparticle, and infrared shielding material microparticle
CN101428344A (en) * 2008-12-17 2009-05-13 四川大学 Nano-scale wolfram carbine composite powder and method of manufacturing the same
CN103708558A (en) * 2013-12-31 2014-04-09 大连工业大学 CsxWOyFz powder and preparation method thereof

Also Published As

Publication number Publication date
TW201613826A (en) 2016-04-16
CN105621488A (en) 2016-06-01
CN105621488B (en) 2017-08-25

Similar Documents

Publication Publication Date Title
CN106629613B (en) A kind of preparation method of ion insertion type two-dimensional material
JP6299871B2 (en) Lithium titanate composite product precursor and method for producing the same
EP2894233B1 (en) Method for leaching valuable metals contained in waste denitrification catalyst by using roasting and water leaching
TWI640479B (en) Mathod for manufacturing composite-tungsten-oxide nanoparticles
US20160293947A1 (en) Solid-electrolyte precursor, manufacturing method therefor, method for manufacturing solid electrolyte, and method for manufacturing solid-electrolyte/electrode-active-material complex
TWI607971B (en) Manufacturing method of infrared absorption powder
JP2020528637A (en) Manufacturing method of electrode active material
Pontón et al. Co-precipitation synthesis of Y2W3O12 submicronic powder
KR20140050249A (en) Process for preparing tungsten doped vanadium dioxide
Lu et al. Hydrothermal synthesis of plate-like sodium niobate particles
CN105347310B (en) A kind of method for preparing high-purity calcium based hydrotalcite
Xu et al. Effect of Cl− on the properties of Li2TiO3 ceramic powders synthesized by in-situ hydrolysis
US20200274159A1 (en) Process for making an electrode active material
TWI631090B (en) Near infrared absorption material and method for fabricating the same
Siwińska-Stefańska et al. Advanced hybrid materials based on titanium dioxide for environmental and electrochemical applications
JP2008156167A (en) Spherical peroxotitanium hydrate and spherical titanium oxide and method for producing the same
Liu et al. Silicone-oil-assisted synthesis of high-quality sodium niobate nanowires
US20190002302A1 (en) Hydrate of Rare Earth Metal Sulfate, Method for Producing Same, and Chemical Thermal Storage Material
CN109553136B (en) Method for preparing composite alkali metal niobate powder
KR101605503B1 (en) Manufacturing method of high-purity ITO powder using low-purity Indium metal and Tin metal
Kunshina et al. Synthesis of ZnTa 2 O 6 from peroxide solutions
CN113666412B (en) Preparation method of bamboo-like nano indium tin oxide powder
Liang et al. Microstructure and Photocatalytic Activity of the Anti-Virus CaWO4: Eu3+ Nanoparticles
JP7088231B2 (en) Nickel hydroxide particles
CN107973343A (en) A kind of method that room temperature solid-state reaction prepares nanometer bismuth oxide

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees