TWI607861B - Exposure method, exposure equipment and 3-d structure - Google Patents
Exposure method, exposure equipment and 3-d structure Download PDFInfo
- Publication number
- TWI607861B TWI607861B TW105111020A TW105111020A TWI607861B TW I607861 B TWI607861 B TW I607861B TW 105111020 A TW105111020 A TW 105111020A TW 105111020 A TW105111020 A TW 105111020A TW I607861 B TWI607861 B TW I607861B
- Authority
- TW
- Taiwan
- Prior art keywords
- photocurable material
- optical fiber
- exposure
- light source
- light output
- Prior art date
Links
Landscapes
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
Description
本揭露係有關於一種3D列印技術,且特別係有關於一種曝光方法、曝光設備及其所形成的三維結構。 The present disclosure relates to a 3D printing technique, and in particular to an exposure method, an exposure apparatus, and a three-dimensional structure formed thereby.
由於具備低成本、製程簡單等優點,近年來3D列印技術廣泛受到設計及製造業之注目。然而,受限於製作設備的技術能力,所製作的3D結構之臨界尺寸皆為數十微米的等級,不利於生產微型且精細的產品。 Due to its low cost and simple process, 3D printing technology has attracted wide attention in design and manufacturing in recent years. However, limited by the technical capabilities of the fabrication equipment, the critical dimensions of the fabricated 3D structures are on the order of tens of microns, which is not conducive to the production of miniature and fine products.
舉例而言,以噴墨式列印(Inkjet Print)製程所製作的3D結構,最終結構的臨界尺寸受到墨滴的尺寸所限制。再者,以光燒結(Selective Laser Sintering)或光融解(Selective Laser Melting)製程所製作的3D結構,最終結構的臨界尺寸則是受到光源的光束尺寸(beam size)所限制。由於臨界尺寸無法進一步縮小,因而限制了3D列印在微機電系統及列印電子方面的應用。因此,仍有需要對3D列印技術進行改良,以使其具有更小的臨界尺寸。 For example, in a 3D structure fabricated by an inkjet printing process, the critical dimension of the final structure is limited by the size of the ink droplets. Furthermore, in the 3D structure fabricated by the Selective Laser Sintering or Selective Laser Melting process, the critical dimension of the final structure is limited by the beam size of the source. Since the critical dimension cannot be further reduced, the application of 3D printing to MEMS and printed electronics is limited. Therefore, there is still a need to improve the 3D printing technology to have a smaller critical dimension.
本揭露之一實施例係提供一種曝光方法,包括:塗佈光可固化材料於基板上;利用光纖提供第一光源進行曝光,使光可固化材料的至少一部分固化,以形成第一光固化材 料,其中光纖具有光輸出端,以及朝向光輸出端逐漸縮窄的錐狀部分;以及移除未受到第一光源曝光的光可固化材料,保留第一光固化材料。 An embodiment of the present disclosure provides an exposure method comprising: coating a photocurable material on a substrate; providing a first light source by using an optical fiber for exposure, curing at least a portion of the photocurable material to form a first photocurable material And wherein the optical fiber has a light output end, and a tapered portion that gradually narrows toward the light output end; and removes the photocurable material that is not exposed by the first light source, leaving the first photocurable material.
本揭露之另一實施例係提供一種曝光設備,包括:承載平台,其中承載平台用以放置光可固化材料;光源模組,其中光源模組包括光纖,其中光纖具有光輸出端,以及朝向光輸出端逐漸縮窄的錐狀部分,且光纖提供光源以對光可固化材料實施曝光步驟;以及控制模組,控制光纖的移動。 Another embodiment of the present disclosure provides an exposure apparatus including: a carrier platform, wherein the carrier platform is configured to place a photocurable material; and a light source module, wherein the light source module includes an optical fiber, wherein the optical fiber has a light output end, and the light is directed toward the light The tapered end of the output is tapered, and the optical fiber provides a light source to perform an exposure step on the photocurable material; and a control module that controls the movement of the optical fiber.
本揭露之又一實施例係提供一種三維結構,包括:基板;以及光固化結構,形成於基板上,且其中光固化結構在垂直於基板的上表面之方向具有10-1000μm的高度,且固化結構在平行於基板的上表面之方向上具有寬度及長度,其中寬度與長度中的至少其中一者為1-100nm。 Yet another embodiment of the present disclosure provides a three-dimensional structure including: a substrate; and a photocurable structure formed on the substrate, wherein the photocurable structure has a height of 10 to 1000 μm in a direction perpendicular to an upper surface of the substrate, and is cured The structure has a width and a length in a direction parallel to the upper surface of the substrate, wherein at least one of the width and the length is 1-100 nm.
100‧‧‧曝光設備 100‧‧‧Exposure equipment
110‧‧‧承載平台 110‧‧‧Loading platform
120‧‧‧光源模組 120‧‧‧Light source module
130‧‧‧控制模組 130‧‧‧Control Module
202‧‧‧基板 202‧‧‧Substrate
204、204-1、204-2‧‧‧光可固化材料 204, 204-1, 204-2‧‧‧Photocurable materials
204a、204a-1、204a-2、204b-1‧‧‧光固化材料 204a, 204a-1, 204a-2, 204b-1‧‧‧ light curing materials
206‧‧‧光罩 206‧‧‧Photomask
210‧‧‧光纖 210‧‧‧ fiber
210-A‧‧‧光輸出端 210-A‧‧‧Light output
210-B‧‧‧錐狀部分 210-B‧‧‧Cone
212‧‧‧光源產生器 212‧‧‧Light source generator
220、510‧‧‧光源 220, 510‧‧‧ light source
250、260‧‧‧三維結構 250, 260‧‧‧ three-dimensional structure
260a‧‧‧第一部分 260a‧‧‧Part 1
260b‧‧‧第二部分 260b‧‧‧ Part II
610‧‧‧蝕刻槽體 610‧‧‧etching tank
620‧‧‧蝕刻溶液 620‧‧‧etching solution
630‧‧‧控制器 630‧‧‧ Controller
D‧‧‧距離 D‧‧‧Distance
L‧‧‧長度 L‧‧‧ length
R‧‧‧區域 R‧‧‧ area
W‧‧‧寬度 W‧‧‧Width
△x、△y、△z‧‧‧臨界尺寸 △x, △y, △z‧‧‧ critical dimensions
圖1為本揭露一些實施例之曝光設備的剖面示意圖。 1 is a schematic cross-sectional view of an exposure apparatus according to some embodiments of the present disclosure.
圖2A至圖2B為本揭露一些實施例之曝光方法的製程剖面示意圖。 2A-2B are schematic cross-sectional views showing processes of an exposure method according to some embodiments of the present disclosure.
圖3為圖2A中區域R的放大剖面示意圖。 Figure 3 is an enlarged cross-sectional view of the region R of Figure 2A.
圖4A至圖4E為本揭露一些實施例之曝光方法的製程剖面示意圖。 4A-4E are schematic cross-sectional views showing a process of an exposure method according to some embodiments of the present disclosure.
圖5A至圖5E為本揭露另一些實施例之曝光方法的製程剖面示意圖。 5A-5E are schematic cross-sectional views showing processes of an exposure method according to other embodiments of the present disclosure.
圖6A至圖6B為本揭露一些實施例之形成一具有錐狀部分 之光纖的製程剖面示意圖。 6A-6B illustrate forming a tapered portion of some embodiments of the present disclosure Schematic diagram of the process profile of the optical fiber.
為使本發明之上述和其他目的、特徵、優點能更明顯易懂,下文特舉出較佳實施例,並配合所附圖式,作詳細說明如下。為簡化圖式與突顯技術特徵,各元件可能未依照比例描繪。在各實施例中可能會出現相同的元件符號以簡化描述,但這不代表各實施例之間必然有特定的關聯性。 The above and other objects, features and advantages of the present invention will become more <RTIgt; In order to simplify the drawings and highlight the technical features, the components may not be drawn to scale. The same element symbols may be used in the various embodiments to simplify the description, but this does not necessarily mean that there is a certain degree of association between the embodiments.
圖1為本揭露一些實施例之曝光設備100的剖面示意圖。請參照圖1,曝光設備100可包括承載平台110、光源模組120以及控制模組130。承載平台110係用以放置基板202。在一些實施例中,可利用承載平台110的真空系統(未繪示)先將基板202固定於承載平台110上,再將欲進行曝光的材料,例如,光可固化材料204塗佈於基板202上。在一些實施例中,承載平台110可被配置用以控制基板202及光可固化材料204在Z軸方向的移動。換言之,可藉由承載平台110控制光可固化材料204與光源模組120之間的距離。 FIG. 1 is a cross-sectional view of an exposure apparatus 100 in accordance with some embodiments of the present disclosure. Referring to FIG. 1 , the exposure apparatus 100 can include a carrying platform 110 , a light source module 120 , and a control module 130 . The carrier platform 110 is used to place the substrate 202. In some embodiments, the substrate 202 can be first fixed on the carrying platform 110 by using a vacuum system (not shown) of the carrying platform 110, and then the material to be exposed, for example, the photocurable material 204, is applied to the substrate 202. on. In some embodiments, the carrier platform 110 can be configured to control the movement of the substrate 202 and the photocurable material 204 in the Z-axis direction. In other words, the distance between the photocurable material 204 and the light source module 120 can be controlled by the carrier platform 110.
光源模組120包括光源產生器212及光纖210。光源模組120可被配置用以提供將光可固化材料204固化的曝光光源。曝光光源可包括紫外光。曝光光源的波長λ可為100-450nm。在一些實施例中,光源波長λ可為100-400nm。在另一些實施例中,光源波長λ可為200-400nm。曝光光源可為線光源或雷射。 The light source module 120 includes a light source generator 212 and an optical fiber 210. The light source module 120 can be configured to provide an exposure source that cures the photocurable material 204. The exposure source can include ultraviolet light. The wavelength λ of the exposure light source may be 100-450 nm. In some embodiments, the source wavelength λ can be from 100 to 400 nm. In other embodiments, the source wavelength λ can be between 200 and 400 nm. The exposure source can be a line source or a laser.
請繼續參照圖1,光纖210具有光輸出端210-A以及朝向光輸出端210-A逐漸縮窄的錐狀部分210-B。在曝光步驟 中,光纖210被配置用以將光源產生器212所發射的曝光光源傳導至光可固化材料204。相較於不具有錐狀部分的光纖,由於光纖210具有錐狀部分210-B,因此可大幅縮小光輸出端210-A的光輸出面積,進而可大幅降低三維結構的臨界尺寸,此部分將於下文中詳細討論。 With continued reference to FIG. 1, the optical fiber 210 has a light output end 210-A and a tapered portion 210-B that tapers toward the light output end 210-A. In the exposure step The optical fiber 210 is configured to conduct the exposure light source emitted by the light source generator 212 to the photocurable material 204. Compared with the optical fiber without the tapered portion, since the optical fiber 210 has the tapered portion 210-B, the light output area of the light output end 210-A can be greatly reduced, and the critical dimension of the three-dimensional structure can be greatly reduced. Discussed in detail below.
控制模組130被配置用以控制光纖210在X軸、Y軸及Z軸方向的移動,藉以對光可固化材料204進行區域性曝光(localized exposing)。其中,透過控制光纖210在Z軸的移動,控制模組130可調整所曝光的線寬,並有助於降低三維結構的臨界尺寸。在一些實施例中,控制模組130例如可使用適用於原子力顯微鏡的控制模組,其通常可包括壓電陶瓷掃描器、懸臂樑、偏移量偵測器、掃描器、迴饋電路及電腦控制系統。在此為簡化圖式,僅示意性的繪示懸臂樑。 The control module 130 is configured to control the movement of the optical fiber 210 in the X-axis, Y-axis, and Z-axis directions, thereby locally exposing the photocurable material 204. Wherein, by controlling the movement of the optical fiber 210 in the Z-axis, the control module 130 can adjust the exposed line width and help to reduce the critical dimension of the three-dimensional structure. In some embodiments, the control module 130 can use, for example, a control module suitable for an atomic force microscope, which can generally include a piezoelectric ceramic scanner, a cantilever beam, an offset detector, a scanner, a feedback circuit, and a computer control. system. Here, for the sake of simplicity, the cantilever beam is only schematically illustrated.
圖2A至圖2B為本揭露一些實施例之曝光方法的製程剖面示意圖。請參照圖2A,首先,在基板202上塗佈一層光可固化材料204。基板202可包括半導體基板、玻璃、高分子材料、陶瓷、金屬或上述之組合。光可固化材料204為具有流動性的高分子材料,可均勻塗佈於基板202的表面上而形成一薄膜。當光可固化材料204受到特定波長的光線照射(曝光)時,高分子會產生交聯反應而被固化。光可固化材料204具有光可固化的官能基團,例如,烯基、羧基(carboxyl group)、不飽和聚酯基(unsaturated polyester group)、丙烯醯基(acryl group)、環氧基(epoxy)或其他合適之官能基團。光可固化材料204可使用任何適合光可固化材料。在一些實施例中,光可固化材料204 可包括負型光阻材料,例如,酚醛樹脂(phenolic resins)、聚異戊二烯橡膠(polyisoprene rubber)或其他負型光阻材料。在一些實施例中,光可固化材料204可包括環氧樹脂、丙烯酸系樹脂或其他合適的光可固化高分子。 2A-2B are schematic cross-sectional views showing processes of an exposure method according to some embodiments of the present disclosure. Referring to FIG. 2A, first, a layer of photocurable material 204 is coated on the substrate 202. Substrate 202 can comprise a semiconductor substrate, glass, polymeric material, ceramic, metal, or a combination thereof. The photocurable material 204 is a polymer material having fluidity and can be uniformly coated on the surface of the substrate 202 to form a film. When the photocurable material 204 is irradiated (exposed) by light of a specific wavelength, the polymer is cured by a crosslinking reaction. The photocurable material 204 has a photocurable functional group, for example, an alkenyl group, a carboxyl group, an unsaturated polyester group, an acryl group, an epoxy group. Or other suitable functional groups. The photocurable material 204 can use any suitable photocurable material. In some embodiments, the photocurable material 204 Negative photoresist materials may be included, for example, phenolic resins, polyisoprene rubber, or other negative photoresist materials. In some embodiments, the photocurable material 204 can comprise an epoxy, an acrylic, or other suitable photocurable polymer.
繼續參照圖2A,然後,利用光纖210將光源220傳導至光可固化材料204的表面,藉以對部分的光可固化材料204進行曝光,以形成光固化材料204a。請參照圖2B,接著,在形成光固化材料204a之後,移除未受到光源220曝光而固化的光可固化材料204。在此可理解的是,光固化材料204a之尺寸是取決於光輸出端210-A的光輸出面積。光輸出面積越小,則固化的材料204a之尺寸也越小。在本揭露中,藉由在光纖210的一端形成錐狀部分210-B,可大幅降低光輸出端210-A的光輸出面積。因此,可有效降低三維結構的臨界尺寸。 With continued reference to FIG. 2A, light source 220 is then utilized to conduct light source 220 to the surface of photocurable material 204, thereby exposing portions of photocurable material 204 to form photocurable material 204a. Referring to FIG. 2B, next, after the photocurable material 204a is formed, the photocurable material 204 that is not cured by exposure of the light source 220 is removed. It will be understood herein that the size of the photocurable material 204a is dependent on the light output area of the light output end 210-A. The smaller the light output area, the smaller the size of the cured material 204a. In the present disclosure, by forming the tapered portion 210-B at one end of the optical fiber 210, the light output area of the light output end 210-A can be greatly reduced. Therefore, the critical dimension of the three-dimensional structure can be effectively reduced.
圖6A至圖6B為本揭露一些實施例之形成一具有錐狀部分之光纖210的製程剖面示意圖,圖中虛線部分為光纖210的尖端在蝕刻溶液620的放大示意圖。請參照圖6A,首先,在蝕刻槽體610中裝入蝕刻溶液620,並將光纖210的一部分浸泡於蝕刻溶液620中。接著,如圖6B所示,利用控制器630緩慢且逐漸地將光纖210自蝕刻溶液620中抽離。由於越靠近端點的部分浸泡於蝕刻溶液620中的時間越久,因此光纖材料被蝕刻移除的量也越多。如此一來,即可形成具有錐狀部分210-B的光纖210。 6A-6B are schematic cross-sectional views showing a process for forming an optical fiber 210 having a tapered portion according to some embodiments. The dotted line in the figure is an enlarged schematic view of the tip end of the optical fiber 210 in the etching solution 620. Referring to FIG. 6A, first, an etching solution 620 is placed in the etching bath 610, and a part of the optical fiber 210 is immersed in the etching solution 620. Next, as shown in FIG. 6B, the optical fiber 210 is slowly and gradually extracted from the etching solution 620 by the controller 630. The longer the portion closer to the end point is immersed in the etching solution 620, the more the fiber material is removed by etching. In this way, the optical fiber 210 having the tapered portion 210-B can be formed.
光纖210可選用習知的光纖材料。在一些實施例中,光纖210可包括石英玻璃。蝕刻溶液620可為酸性溶液、鹼 性溶液或其他合適的蝕刻溶液。可依據光纖210的材料選擇合適的蝕刻溶液620。舉例而言,在光纖210為石英玻璃的實施例中,可選擇氫氟酸(HF)溶液作為蝕刻溶液620。 The optical fiber 210 can be selected from conventional optical fiber materials. In some embodiments, the optical fiber 210 can comprise quartz glass. The etching solution 620 can be an acidic solution or a base. Sexual solution or other suitable etching solution. A suitable etching solution 620 can be selected depending on the material of the optical fiber 210. For example, in embodiments where the optical fiber 210 is quartz glass, a hydrofluoric acid (HF) solution may be selected as the etching solution 620.
控制器630的功能在於控制光纖210自蝕刻溶液620中抽離的速度。藉由調整光纖210的抽離速度,可調整錐狀部分210-B的剖面輪廓(profile)以及光輸出端210-A的光輸出面積大小。舉例而言,抽離速度越慢,光輸出端210-A的光輸出面積越小。在一些實施例中,控制器630可包括步進式馬達。 The function of controller 630 is to control the rate at which fiber 210 is extracted from etching solution 620. By adjusting the extraction speed of the optical fiber 210, the profile of the tapered portion 210-B and the light output area of the light output terminal 210-A can be adjusted. For example, the slower the extraction speed, the smaller the light output area of the light output terminal 210-A. In some embodiments, controller 630 can include a stepper motor.
如第6B圖所示,藉由浸泡於蝕刻溶液620中,可大幅降低光纖210之光輸出端210-A的光輸出面積。在一些實施例中,光輸出端210-A的光輸出面積為10-106nm2。在一些實施例中,光輸出端210-A的光輸出面積為10-105nm2。在一些實施例中,光輸出端210-A的光輸出面積為10-104nm2。由於光輸出端210-A的光輸出面積降低,提高了曝光製程的解析度,三維結構的臨界尺寸亦可隨之降低。 As shown in FIG. 6B, by immersing in the etching solution 620, the light output area of the light output end 210-A of the optical fiber 210 can be greatly reduced. In some embodiments, the light output end 210-A has a light output area of 10-10 6 nm 2 . In some embodiments, the light output end 210-A has a light output area of 10-10 5 nm 2 . In some embodiments, the light output end 210-A has a light output area of 10-10 4 nm 2 . Since the light output area of the light output terminal 210-A is lowered, the resolution of the exposure process is improved, and the critical dimension of the three-dimensional structure can also be reduced.
在本實施例中,是採用等向性的蝕刻方法蝕刻,且所採用的光纖210為圓柱狀,因此所得到的光輸出端210-A具有實質上呈圓形的切面。然而,本揭露並不以此為限。光輸出端210-A亦可具有其他形狀的切面,例如,矩形、橢圓形或不規則多邊形。為了改變光輸出端210-A之切面形狀,可使用具有其他形狀(例如,矩形)切面的光纖210進行上述蝕刻步驟,或是可採用其他蝕刻方法(例如,乾式蝕刻)蝕刻光纖210。此外,亦可使用機械研磨或模造成型的方法形成錐狀部分210-B。 In the present embodiment, the etching is performed by an isotropic etching method, and the optical fiber 210 used is cylindrical, so that the obtained light output terminal 210-A has a substantially circular cut surface. However, the disclosure is not limited thereto. The light output end 210-A can also have other shaped cut surfaces, such as rectangular, elliptical or irregular polygons. In order to change the shape of the cut surface of the light output end 210-A, the above etching step may be performed using the optical fiber 210 having other shapes (for example, rectangular) cut surfaces, or the optical fiber 210 may be etched by other etching methods (for example, dry etching). Further, the tapered portion 210-B may be formed by a mechanical grinding or molding method.
本案發明人發現錐狀部分210-B的剖面輪廓、光可 固化材料的選擇以及光纖與光可固化材料的距離皆可能會影響曝光製程。這些參數將於下文中詳細討論。 The inventor of the present invention found that the profile of the tapered portion 210-B, light can be The choice of curing material and the distance between the fiber and the photocurable material may affect the exposure process. These parameters are discussed in detail below.
圖3為圖2A中區域R的放大剖面示意圖。請參照圖3,錐狀部分210-B的剖面輪廓具有長度L及寬度W。長度L與寬度W的比例L/W可控制於特定的範圍之內。在一些實施例中,長度L與寬度W的比例L/W為5-20。若L/W的比值太小,曝光光源將在錐狀部份大量損失,而難以有效固化光可固化材料。另外,當L/W的比值太小時,因浸泡於蝕刻溶液中的長度L太短,會難以控制浸泡時間。一旦浸泡時間太短,則光纖受到蝕刻移除的量太少,無法有效降低光輸出端210-A的光輸出面積。反之,若浸泡時間太長,則光纖受到蝕刻移除的量太多,因此錐狀部分210-B的寬度無法逐漸縮窄,而是急遽地縮窄。如此一來,將導致光纖斷裂。然而,若L/W的比值太大,則錐狀部分210-B的長度L太長,控制模組將難以精準地控制光纖的移動量,且在移動光纖的過程中,可能會造成光纖的彎折或撓曲。 Figure 3 is an enlarged cross-sectional view of the region R of Figure 2A. Referring to FIG. 3, the cross-sectional profile of the tapered portion 210-B has a length L and a width W. The ratio L/W of the length L to the width W can be controlled within a specific range. In some embodiments, the ratio L/W of length L to width W is 5-20. If the ratio of L/W is too small, the exposure light source will be largely lost in the tapered portion, and it is difficult to effectively cure the photocurable material. In addition, when the ratio of L/W is too small, it is difficult to control the soaking time because the length L soaked in the etching solution is too short. Once the immersion time is too short, the amount of fiber removed by the etch is too small to effectively reduce the light output area of the light output end 210-A. On the other hand, if the immersion time is too long, the amount of the optical fiber to be removed by etching is too large, so that the width of the tapered portion 210-B cannot be gradually narrowed, but is sharply narrowed. As a result, the fiber will be broken. However, if the ratio of L/W is too large, the length L of the tapered portion 210-B is too long, and the control module will have difficulty in accurately controlling the amount of movement of the optical fiber, and may cause optical fiber during the process of moving the optical fiber. Bend or flex.
仍請參照圖3,錐狀部分210-B的長度L可依據所使用的曝光光源波長而控制於特定的範圍之內。在一些實施例中,曝光光源的波長為λ,且長度L與波長λ的比例L/λ例如是大於10。值得注意的是,當光纖210的輪廓變化過於劇烈時,會大幅降低光纖210收束曝光光源的能力。因此,透過控制錐狀部分210-B的長度L與波長λ的比例L/λ大於10,可確保光纖210的輪廓變化不會對曝光光源的收束產生影響,提高本揭露曝光製程的穩定性。 Still referring to Figure 3, the length L of the tapered portion 210-B can be controlled within a particular range depending on the wavelength of the exposure source used. In some embodiments, the wavelength of the exposure source is λ, and the ratio L/λ of the length L to the wavelength λ is, for example, greater than 10. It is worth noting that when the profile of the optical fiber 210 changes too much, the ability of the optical fiber 210 to condense the exposure light source is greatly reduced. Therefore, by controlling the ratio L/λ of the length L of the tapered portion 210-B to the wavelength λ to be greater than 10, it is ensured that the contour change of the optical fiber 210 does not affect the convergence of the exposure light source, thereby improving the stability of the exposure process of the present disclosure. .
在此特別說明的是,在選擇光可固化材料時,需 要考量的是光可固化材料與曝光光源的匹配,以及光可固化材料的折射率與光纖的折射率之比例。當使用能量不匹配的曝光光源,可能導致光固化材料固化不完全或固化反應速率太低。如此一來,將提高能源消耗及生產成本並且降低產品的產率。因此,可依據曝光光源的波長選用合適的光可固化材料,亦可依據光可固化材料使用所需的曝光光源。在一些實施例中,光可固化材料可以是具有不飽和聚酯基、丙烯醯基或環氧基等官能基團的高分子材料,且所使用的曝光光源是波長100-400nm的UV光。另外,為了使光線能夠從光輸出端輸出而進入光可固化材料,光可固化材料的折射率與光纖的折射率應盡可能相近。若光可固化材料的折射率太低,則光線可能會在光纖與光可固化材料的界面產生全反射,而使光線無法進入光可固化材料。在一些實施例中,光纖的折射率為n1,光可固化材料的折射率為n2,且n1/n2為0.9-1.1。在另一些實施例中,光纖的折射率n1可實質上等於光可固化材料的折射率n2。 What is specifically stated here is that when selecting a photocurable material, it is required What is to be considered is the matching of the photocurable material to the exposure source and the ratio of the refractive index of the photocurable material to the refractive index of the fiber. When an energy mismatched exposure light source is used, it may result in incomplete curing of the photocurable material or a too low curing reaction rate. As a result, energy consumption and production costs will be increased and the yield of the product will be reduced. Therefore, a suitable photocurable material can be selected according to the wavelength of the exposure light source, and the desired exposure light source can be used according to the photocurable material. In some embodiments, the photocurable material may be a polymer material having a functional group such as an unsaturated polyester group, an acrylonitrile group or an epoxy group, and the exposure light source used is UV light having a wavelength of 100 to 400 nm. In addition, in order for light to be output from the light output end into the photocurable material, the refractive index of the photocurable material should be as close as possible to the refractive index of the fiber. If the refractive index of the photocurable material is too low, the light may cause total reflection at the interface between the optical fiber and the photocurable material, so that the light cannot enter the photocurable material. In some embodiments, the optical fiber has a refractive index n1, the photocurable material has a refractive index n2, and n1/n2 is 0.9-1.1. In other embodiments, the refractive index n1 of the optical fiber can be substantially equal to the refractive index n2 of the photocurable material.
仍請參照圖3,在進行曝光步驟的期間,光纖210與光可固化材料204相隔一段距離D。在本揭露中,此距離D亦被稱為光纖與光可固化材料的最短距離。距離D可控制於特定的範圍之內。在一些實施例中,光纖與光可固化材料的距離D為0.1-100nm。在另一些實施例中,光纖與光可固化材料的距離D為0.1-1nm。若距離D太小因而使光纖直接接觸光可固化材料,則尚未固化的光可固化材料可能會附著於光纖的表面並且固化,並導致光纖的使用壽命縮短,亦可能會刮傷光可固化材料的表面,進而降低產品良率且提高生產成本。反之,若距離 D太大,則光纖的光輸出效率降低。如此一來,將導致曝光固化的時間必須延長,進而降低生產效率。再者,若距離D太大,則從光纖輸出的光聚焦的效果會變差。因此,所得到的三維結構之臨界尺寸也會隨之增大,不利於臨界尺寸的微小化。 Still referring to FIG. 3, during the exposure step, the optical fiber 210 is separated from the photocurable material 204 by a distance D. In the present disclosure, this distance D is also referred to as the shortest distance between the fiber and the photocurable material. The distance D can be controlled within a specific range. In some embodiments, the distance D between the fiber and the photocurable material is from 0.1 to 100 nm. In other embodiments, the distance D between the fiber and the photocurable material is from 0.1 to 1 nm. If the distance D is too small to directly contact the optically curable material, the uncured photocurable material may adhere to the surface of the fiber and solidify, resulting in shortened fiber life and scratching the photocurable material. Surface, which in turn reduces product yield and increases production costs. Conversely, if the distance If D is too large, the optical output efficiency of the optical fiber is lowered. As a result, the exposure time will be prolonged, which will reduce the production efficiency. Furthermore, if the distance D is too large, the effect of focusing light output from the optical fiber is deteriorated. Therefore, the critical dimension of the obtained three-dimensional structure also increases, which is disadvantageous for miniaturization of the critical dimension.
由於光可固化材料或下方基板的表面粗糙度不一,可能會使得光纖與光可固化材料的距離D產生變化,而影響曝光製程的均勻性。因此,在本揭露一些實施例中,可透過控制模組(未繪示)動態對光纖於Z軸進行微調,使得光纖與光可固化材料保持固定的距離,以提升曝光製程在不同區域的均勻性。如前所述,控制模組例如為可適用於原子力顯微鏡等具有垂直微調能力的控制模組。 Due to the different surface roughness of the photocurable material or the underlying substrate, the distance D between the optical fiber and the photocurable material may be changed to affect the uniformity of the exposure process. Therefore, in some embodiments of the present disclosure, the Z-axis of the optical fiber can be finely adjusted through a control module (not shown) to maintain a fixed distance between the optical fiber and the photocurable material to improve the uniformity of the exposure process in different regions. Sex. As described above, the control module is, for example, a control module having a vertical fine adjustment capability such as an atomic force microscope.
本揭露亦提供一種曝光方法。第圖4A至圖4E為本揭露一些實施例之曝光方法的製程剖面示意圖。請參照圖4A,首先,於基板202上塗佈光可固化材料204-1。基板202與光可固化材料204-1的材料如上文所述,在此不再詳述。可利用合適的方法塗佈光可固化材料204,例如,旋轉塗佈法(spin coating)、浸漬塗佈法(immersion coating)、噴塗法(spray coating)、印刷法(printing)等等。接著,如圖4B所示,利用光纖210將光源220傳導至光可固化材料204-1的表面,藉以對至少一部分光可固化材料204-1的表面進行曝光,以形成光固化材料204a-1。 The disclosure also provides an exposure method. 4A to 4E are schematic cross-sectional views showing a process of an exposure method according to some embodiments of the present disclosure. Referring to FIG. 4A, first, a photocurable material 204-1 is coated on the substrate 202. The materials of the substrate 202 and the photocurable material 204-1 are as described above and will not be described in detail herein. The photocurable material 204 can be applied by a suitable method, for example, spin coating, immersion coating, spray coating, printing, and the like. Next, as shown in FIG. 4B, the light source 220 is conducted to the surface of the photocurable material 204-1 by using the optical fiber 210, thereby exposing the surface of at least a portion of the photocurable material 204-1 to form the photocurable material 204a-1. .
請參照圖4C,塗佈光可固化材料204-2於光可固化材料204-1上。接著,請參照圖4D,利用光纖210將光源220傳導至光可固化材料204-2的表面,藉以對至少一部分光可固化 材料204-2的表面進行曝光,以形成光固化材料204a-2。光可固化材料204-2所選用的材料的與塗佈方法可類似於光可固化材料204-1,在此不再詳述。在一些實施例中,光可固化材料204-2相同於光可固化材料204-1。在另一些實施例中,光可固化材料204-2也可不同於光可固化材料204-1,因此可視需要更換光纖210與曝光光源220。 Referring to FIG. 4C, the photocurable material 204-2 is coated on the photocurable material 204-1. Next, referring to FIG. 4D, the light source 220 is conducted to the surface of the photocurable material 204-2 by using the optical fiber 210, thereby curing at least a portion of the light. The surface of the material 204-2 is exposed to form a photocurable material 204a-2. The material and coating method selected for the photocurable material 204-2 can be similar to the photocurable material 204-1, and will not be described in detail herein. In some embodiments, the photocurable material 204-2 is the same as the photocurable material 204-1. In other embodiments, the photocurable material 204-2 can also be different than the photocurable material 204-1, so the optical fiber 210 and the exposure light source 220 can be replaced as needed.
在一些實施例中,可重複進行圖4A-4B的步驟多次,以得到所需的三維結構。在其他實施例中,當光可固化材料204-2不同於光可固化材料204-1時,依據所需的三維結構,可分別重複進行圖4A-4B與圖4C-4D的步驟多次,以使最終結構中的光固化材料204a-1與204a-2分別具有所需的厚度。此厚度是沿著垂直於基板上表面的方向(即,Z軸方向)量測而得,因此在本揭露中,此厚度亦可被稱為高度。光固化材料204a-1與204a-2的高度可達到微米級以上。在一些實施例中,光固化材料204a-1與204a-2的高度可為10-1000μm。 In some embodiments, the steps of Figures 4A-4B can be repeated multiple times to obtain the desired three-dimensional structure. In other embodiments, when the photocurable material 204-2 is different from the photocurable material 204-1, the steps of FIGS. 4A-4B and 4C-4D may be repeated multiple times depending on the desired three-dimensional structure, The photocurable materials 204a-1 and 204a-2 in the final structure are each provided to have a desired thickness. This thickness is measured along a direction perpendicular to the upper surface of the substrate (i.e., the Z-axis direction), and thus, in the present disclosure, this thickness may also be referred to as a height. The height of the photocurable materials 204a-1 and 204a-2 can reach the order of micrometers or more. In some embodiments, the height of the photocurable materials 204a-1 and 204a-2 may range from 10 to 1000 [mu]m.
應注意的是,在本揭露中所列舉的實施例僅用於說明,並非用以限定。本領域人士應可理解,依據所需的三維結構,光可固化材料可包括3種或3種以上,並且可依據所需的高度分別決定每一種光可固化材料的曝光步驟重複次數。 It should be noted that the embodiments set forth in the disclosure are for illustrative purposes only and are not intended to be limiting. It should be understood by those skilled in the art that depending on the desired three-dimensional structure, the photocurable material may include three or more kinds, and the number of exposure steps of each photocurable material may be determined according to the required height.
請參照圖4E,在所有曝光步驟完成之後,移除未受到光源220曝光的光可固化材料204-1及204-2,並保留光固化材料204a-1及204a-2,以形成三維結構250。可使用合適的方法移除光可固化材料204-1及204-2,例如,電漿灰化或利用顯影劑清洗。在本實施例中,為了縮短製程所費時間,光可固化材 料的移除步驟係在所有曝光步驟完成之後實施。然而,移除光可固化材料之步驟的順序及次數可視需要調整。舉例而言,在一些實施例中,可在每一次曝光步驟完成之後實施一次移除光可固化材料的步驟。 Referring to FIG. 4E, after all the exposure steps are completed, the photocurable materials 204-1 and 204-2 not exposed by the light source 220 are removed, and the photocurable materials 204a-1 and 204a-2 are left to form a three-dimensional structure 250. . The photocurable materials 204-1 and 204-2 can be removed using a suitable method, for example, plasma ashing or cleaning with a developer. In this embodiment, in order to shorten the time required for the process, the photocurable material The removal step of the material is carried out after all the exposure steps have been completed. However, the order and number of steps of removing the photocurable material can be adjusted as needed. For example, in some embodiments, the step of removing the photocurable material can be performed once after each exposure step is completed.
請參照圖4E,三維結構250在X方向上的尺寸為△x,在Y方向上的尺寸為△y,在Z方向上的尺寸為△z。△x、△y及△z能夠實現的最小值分別被定義為三維結構250在X、Y及Z方向上的臨界尺寸。應可理解的是,三維結構250在X、Y及Z方向上的臨界尺寸分別取決於光纖210在X、Y及Z方向上最小移動距離(亦即,控制模組在X、Y及Z方向上的控制精準度)。如上所述,在一些實施例中,當使用原子力顯微鏡的控制模組控制光纖210的移動時,光纖210在X、Y及Z方向上最小移動距離可達到奈米等級,並可大幅降低三維結構的臨界尺寸。在一些實施例中,三維結構250在X、Y及Z方向上的臨界尺寸△x、△y及△z可各自為1-100nm。 Referring to FIG. 4E, the dimension of the three-dimensional structure 250 in the X direction is Δx, the dimension in the Y direction is Δy, and the dimension in the Z direction is Δz. The minimum values that Δx, Δy, and Δz can achieve are defined as the critical dimensions of the three-dimensional structure 250 in the X, Y, and Z directions, respectively. It should be understood that the critical dimensions of the three-dimensional structure 250 in the X, Y, and Z directions are respectively determined by the minimum moving distance of the optical fiber 210 in the X, Y, and Z directions (ie, the control module is in the X, Y, and Z directions). Control accuracy on the basis). As described above, in some embodiments, when the control module of the atomic force microscope is used to control the movement of the optical fiber 210, the minimum moving distance of the optical fiber 210 in the X, Y, and Z directions can reach the nanometer level, and the three-dimensional structure can be greatly reduced. Critical dimension. In some embodiments, the critical dimensions Δx, Δy, and Δz of the three-dimensional structure 250 in the X, Y, and Z directions may each be 1-100 nm.
圖5A至圖5E為本揭露另一些實施例之曝光方法的製程剖面示意圖。為了簡化說明,圖5A至圖5E中相同於圖4A至圖4E的部分不再詳述。請參照圖5A,塗佈光可固化材料204於基板202上。接著,請參照圖5B,提供一光罩206作為遮罩,利用光源510對光可固化材料204表面的一部份進行曝光,以形成光固化材料204b-1,如圖5C所示。在形成光固化材料204b-1之後,移開光罩206。然後,請參照圖5D,在移開光罩206之後,利用前述實施例所述的方法,以光纖210及光源220,對光可固化材料204的剩餘部分(亦即,先前受到光罩206遮蔽的部分或 未經過光源510固化的部分)進行曝光,以形成光固化材料204a-1。 5A-5E are schematic cross-sectional views showing processes of an exposure method according to other embodiments of the present disclosure. In order to simplify the explanation, the portions in FIGS. 5A to 5E which are the same as those in FIGS. 4A to 4E are not described in detail. Referring to FIG. 5A, a photocurable material 204 is coated on the substrate 202. Next, referring to FIG. 5B, a mask 206 is provided as a mask, and a portion of the surface of the photocurable material 204 is exposed by the light source 510 to form a photocurable material 204b-1, as shown in FIG. 5C. After the photocurable material 204b-1 is formed, the photomask 206 is removed. Then, referring to FIG. 5D, after removing the reticle 206, the remaining portion of the photocurable material 204 (ie, previously masked by the reticle 206) is shielded by the optical fiber 210 and the light source 220 by the method described in the previous embodiment. Part or The portion which has not been cured by the light source 510 is exposed to form the photocurable material 204a-1.
請參照圖5E,可重複進行圖5A-5D的步驟多次,以完成三維結構260。三維結構260包括第一部分260a及第二部分260b。第一部分260a使用光纖210及光源220曝光固化,因此具有較小的臨界尺寸。第二部分260b因使用光源510進行大面積曝光固化,所以臨界尺寸遠大於第一部分260a。特別說明的是,在本實施例中是先以光罩206及光源510進行大面積曝光,再以光纖210及光源220對未經過光源510固化的部分進行曝光。在其他實施例中,亦可視需要先以光纖210及光源220進行小面積的曝光之後,再以光罩206及光源510進行大面積曝光。 Referring to FIG. 5E, the steps of FIGS. 5A-5D may be repeated multiple times to complete the three-dimensional structure 260. The three-dimensional structure 260 includes a first portion 260a and a second portion 260b. The first portion 260a is exposed and cured using the optical fiber 210 and the light source 220, and thus has a smaller critical dimension. The second portion 260b is cured by large-area exposure using the light source 510, so the critical dimension is much larger than the first portion 260a. In particular, in the present embodiment, the mask 206 and the light source 510 are first exposed to a large area, and then the optical fiber 210 and the light source 220 are exposed to portions that have not been cured by the light source 510. In other embodiments, a small area exposure may be performed by using the optical fiber 210 and the light source 220 as needed, and then the large area exposure is performed by the photomask 206 and the light source 510.
圖5A至圖5E所繪示的實施例為一種兩步驟曝光方法,其使用波長相同但是光輸出面積不同的光源。利用光輸出面積極小的光源進行極小面積的曝光及固化反應,可降低三維結構的臨界尺寸。另一方面,利用光輸出面積較大的光源進行大面積的曝光及固化反應,可大幅降低製程所需的時間且提高生產效率。因此,本實施例可快速且大量生產高複雜度與高精密度的三維結構。 The embodiment illustrated in Figures 5A through 5E is a two-step exposure method that uses light sources of the same wavelength but different light output areas. The use of a light source with a small positive light source for a very small area of exposure and curing reaction can reduce the critical dimension of the three-dimensional structure. On the other hand, a large-area exposure and curing reaction is performed by using a light source having a large light output area, which can greatly reduce the time required for the process and improve the production efficiency. Therefore, the present embodiment can quickly and mass-produce a three-dimensional structure of high complexity and high precision.
綜上所述,本揭露提供一種曝光設備。此曝光設備包括具有錐狀部分的光纖,因此可大幅降低光輸出面積及三維結構的臨界尺寸。再者,此曝光設備控制光纖於X、Y、Z方向的移動,可同時降低三維結構在三維方向上的臨界尺寸,同時亦可提升曝光製程在不同區域的均勻性。另外,本揭露亦提供一種曝光方法。在一些實施例中,此曝光方法透過使用具有 錐狀部分的光纖進行光可固化材料的曝光及固化,可大幅降低三維結構的臨界尺寸。在另一些實施例中,本揭露提供一種兩步驟曝光方法。此兩步驟曝光方法透過使用波長相同但光輸出面積不同的光源進行光可固化材料的曝光及固化,可快速且大量生產高複雜度與高精密度的三維結構。 In summary, the present disclosure provides an exposure apparatus. The exposure apparatus includes an optical fiber having a tapered portion, thereby greatly reducing the light output area and the critical dimension of the three-dimensional structure. Moreover, the exposure device controls the movement of the optical fiber in the X, Y, and Z directions, and simultaneously reduces the critical dimension of the three-dimensional structure in the three-dimensional direction, and also improves the uniformity of the exposure process in different regions. In addition, the present disclosure also provides an exposure method. In some embodiments, this exposure method has The tapered portion of the optical fiber exposes and cures the photocurable material, which greatly reduces the critical dimension of the three-dimensional structure. In other embodiments, the present disclosure provides a two-step exposure method. The two-step exposure method can perform high-complexity and high-precision three-dimensional structures quickly and in large quantities by exposing and curing the photocurable material using light sources having the same wavelength but different light output areas.
雖然本發明已以數個較佳實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作任意之更動與潤飾,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 While the invention has been described above in terms of several preferred embodiments, it is not intended to limit the scope of the present invention, and any one of ordinary skill in the art can make any changes without departing from the spirit and scope of the invention. The scope of the present invention is defined by the scope of the appended claims.
100‧‧‧曝光設備 100‧‧‧Exposure equipment
110‧‧‧承載平台 110‧‧‧Loading platform
120‧‧‧光源模組 120‧‧‧Light source module
130‧‧‧控制模組 130‧‧‧Control Module
202‧‧‧基板 202‧‧‧Substrate
204‧‧‧光可固化材料 204‧‧‧Photocurable materials
210‧‧‧光纖 210‧‧‧ fiber
210-A‧‧‧光輸出端 210-A‧‧‧Light output
210-B‧‧‧錐狀部分 210-B‧‧‧Cone
212‧‧‧光源產生器 212‧‧‧Light source generator
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105111020A TWI607861B (en) | 2016-04-08 | 2016-04-08 | Exposure method, exposure equipment and 3-d structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105111020A TWI607861B (en) | 2016-04-08 | 2016-04-08 | Exposure method, exposure equipment and 3-d structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201736089A TW201736089A (en) | 2017-10-16 |
TWI607861B true TWI607861B (en) | 2017-12-11 |
Family
ID=61021483
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105111020A TWI607861B (en) | 2016-04-08 | 2016-04-08 | Exposure method, exposure equipment and 3-d structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI607861B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103896484A (en) * | 2012-12-28 | 2014-07-02 | 清华大学 | Method and device for fabricating optical fiber taper zone |
JP2015085626A (en) * | 2013-10-31 | 2015-05-07 | 国立大学法人横浜国立大学 | Method for producing molded body |
-
2016
- 2016-04-08 TW TW105111020A patent/TWI607861B/en active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103896484A (en) * | 2012-12-28 | 2014-07-02 | 清华大学 | Method and device for fabricating optical fiber taper zone |
JP2015085626A (en) * | 2013-10-31 | 2015-05-07 | 国立大学法人横浜国立大学 | Method for producing molded body |
Also Published As
Publication number | Publication date |
---|---|
TW201736089A (en) | 2017-10-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10095117B2 (en) | Imprint apparatus | |
KR100907573B1 (en) | Manufacturing method of mold, imprint apparatus and structure | |
JP5480530B2 (en) | Fine structure transfer method and fine structure transfer apparatus | |
US8168373B2 (en) | Method for fabricating 3D microstructure | |
JP5648362B2 (en) | Method for producing mold for nanoimprint, method for producing resin pattern by nanoimprint method, and mold for nanoimprint | |
US8973494B2 (en) | Imprint method and imprint apparatus | |
US20020006588A1 (en) | Method for fabricating 3-D structures with smoothly-varying topographic features in photo-sensitized epoxy resists | |
US10001707B2 (en) | Exposure method, exposure equipment and 3-D structure | |
KR102383372B1 (en) | Lithography apparatus and method of manufacturing article | |
TWI607861B (en) | Exposure method, exposure equipment and 3-d structure | |
JP5531463B2 (en) | Master plate used for manufacturing micro contact print stamps and manufacturing method thereof, micro contact printing stamp and manufacturing method thereof, and pattern forming method using micro contact printing stamp | |
JP2003291159A (en) | Resin curing method, manufacturing method for resin molding, etc., appliance used for them, and product to be obtained | |
TW201640562A (en) | Substrate having thin film layer for pattern-formation mask, and method for manufacturing patterned substrate | |
JP2019216143A (en) | Molding apparatus for molding composition on substrate using mold and manufacturing method for article | |
KR102367025B1 (en) | Molding apparatus for molding composition on substrate using mold and method of manufacturing article | |
US20070148591A1 (en) | Pattern and wiring pattern and processes for producing them | |
JP2005217370A (en) | Method of manufacturing piezoelectric element | |
JP2012009742A (en) | Pattern forming method and imprint material | |
KR100964681B1 (en) | Forming method of patterns on inner wall of pipe member and coating appratus used thereof | |
KR20090112195A (en) | Curved mold having minute pattern and method for fablicating thereof | |
JP2021027107A (en) | Imprint apparatus, imprint method, and article manufacturing method | |
JP7466375B2 (en) | Imprinting method, imprinting apparatus and method for manufacturing article | |
JP2023179278A (en) | Molding device, imprint device, and manufacturing method of article | |
CN115692192A (en) | Non-photosensitive adhesive graphical processing technology | |
JP2023072644A (en) | Foreign matter removal method, foreign matter removal device, and manufacturing method of article |