TWI606687B - Concentrator photovoltaic module and the alignment device and method thereof - Google Patents
Concentrator photovoltaic module and the alignment device and method thereof Download PDFInfo
- Publication number
- TWI606687B TWI606687B TW105127936A TW105127936A TWI606687B TW I606687 B TWI606687 B TW I606687B TW 105127936 A TW105127936 A TW 105127936A TW 105127936 A TW105127936 A TW 105127936A TW I606687 B TWI606687 B TW I606687B
- Authority
- TW
- Taiwan
- Prior art keywords
- concentrating
- lens
- laser light
- circuit board
- optical
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於一種聚光型太陽能模組及其對位裝置及對位方法,尤指一種利用傾斜式光源組裝聚光型太陽能模組之對位裝置及方法。 The invention relates to a concentrating solar module, a aligning device and a aligning method thereof, in particular to a aligning device and a method for assembling a concentrating solar module by using a tilting light source.
再生能源開發相關議題受到全球重視,其中,太陽能產業發展相當迅速,一方面著重於降低太陽電池製造成本,另一方面則致力於優化太陽能源的利用率及太陽電池轉換效率等,促進太陽能產業普及化。 The issues related to renewable energy development have received global attention. Among them, the solar energy industry has developed rapidly. On the one hand, it focuses on reducing the cost of manufacturing solar cells, while on the other hand, it is committed to optimizing the utilization of solar energy sources and solar cell conversion efficiency to promote the popularity of the solar energy industry. Chemical.
太陽電池可分為矽晶太陽電池、化合物太陽電池及有機太陽電池,而化合物太陽電池中又以III-V族太陽能電池之轉換效率為最高,包括砷化鎵(GaAs)、砷化銦鎵(InGaAs)及磷化銦鎵(InGaP)等III-V族化合物,目前已成功將不同材質之III-V族化合物層疊為多接面太陽電池,擴大可以吸收太陽光之波長範圍,與矽晶太陽電池相較之下,大幅提升太陽能能量轉換效率。 Solar cells can be divided into twin solar cells, compound solar cells and organic solar cells, while compound solar cells have the highest conversion efficiency of III-V solar cells, including gallium arsenide (GaAs) and indium gallium arsenide ( III-V compounds such as InGaAs) and InGaP, have successfully stacked III-V compounds of different materials into multi-junction solar cells, expanding the wavelength range that can absorb sunlight, and crystallizing the sun. In comparison to batteries, solar energy conversion efficiency is greatly improved.
由於III-V族太陽能電池面積較小且轉換效率高,將其搭配聚光透鏡而組裝成聚光型太陽能模組(Concentrator Photovoltaic module),透過聚光透鏡將太陽光匯聚於小面積的太陽電池上進行發電,藉以提高電池的發電效率。聚光型太陽能模組主要由聚光透鏡、太陽電池、電路板及模組框架所組成,其中太陽電池與電路板結合後稱為接收器,一般係採用一千倍聚光倍率之菲涅爾透鏡,其搭配使用之太陽電池面積僅須平板式矽晶太陽電池的千分之一,然而,由於聚光透鏡焦點必須落在太陽電池上,才能使聚 光型太陽能模組發揮聚光功能,因此必須搭配使用太陽光追蹤器(Sun Tracker),使模組朝向太陽的方位。 Due to the small size and high conversion efficiency of the III-V solar cells, they are assembled into a Concentrator Photovoltaic module with a condenser lens, and the solar light is concentrated by a condenser lens to a small area of solar cells. Power generation is performed to improve the power generation efficiency of the battery. The concentrating solar module is mainly composed of a concentrating lens, a solar cell, a circuit board and a module frame. The solar cell and the circuit board are combined as a receiver, and generally adopt a Freundian concentrating magnification of one thousand times. The lens, which is used in combination with the solar cell area, requires only one thousandth of the flat-type crystal solar cell. However, since the focus of the condenser lens must fall on the solar cell, it can be aggregated. The light-emitting solar module uses a concentrating function, so it must be paired with a Sun Tracker to position the module toward the sun.
此外,聚光型太陽能模組組裝過程中,須搭配精密光學對位,使太陽光聚焦於太陽電池上,確保發電效能。因考量光線通過聚光透鏡時將產生偏折,習知技術於聚光透鏡上設置一光學無效區,意即預留一處不具有聚光透鏡之區域,光線通過該光學無效區時不會產生偏折而垂直照射於電路板上,再藉由移動電路板使雷射光點對準光學對位點而完成模組之光學對位,雖可有效進行光學對位,同時亦表示由該光學無效區入射之太陽光無法偏折至太陽電池上進行發電,造成日照能量浪費。 In addition, the concentrating solar module must be matched with precision optical alignment during the assembly process to ensure that the sunlight is focused on the solar cell to ensure power generation efficiency. In view of the fact that the light is deflected when passing through the collecting lens, the conventional technique provides an optical ineffective area on the collecting lens, which means that a region having no collecting lens is reserved, and the light does not pass through the optical ineffective area. A deflection is generated and vertically irradiated on the circuit board, and the optical alignment of the module is completed by aligning the laser spot with the optical alignment plate, which can effectively perform optical alignment, and also represents the optical The incident sunlight in the ineffective area cannot be deflected to the solar cell for power generation, resulting in wasted solar energy.
為能擴大聚光型太陽能模組接收太陽光之面積,有效利用太陽能源並提高太陽能模組輸出電力效能,建立新式光學對位方法及裝置以取代該光學無效區實屬必要。 In order to expand the area of sunlight received by the concentrating solar module, effectively utilize the solar energy source and improve the output power efficiency of the solar module, it is necessary to establish a new optical alignment method and device to replace the optical ineffective area.
本發明之主要目的,係提供一種聚光型太陽能模組之對位裝置,其將一雷射光源以一傾斜角度設置於一頂面上,利用該裝置組裝聚光型太陽能模組時,不須設置光學無效區,如此可避免入射日光浪費。 The main purpose of the present invention is to provide a concentrating solar module alignment device, which is disposed on a top surface of a laser light source at an oblique angle, and when the concentrating solar module is assembled by the device, An optically ineffective zone must be provided to avoid wasting incident sunlight.
本發明之另一目的,係提供一種聚光型太陽能模組之對位方法,其利用具有一傾斜角度之一雷射光源,分別照射於一電路板及一聚光透鏡,藉由觀察該雷射光源之光點正確落在一第一光學對位點及一第二光學對位點,以執行該電路板及該聚光透鏡之對位。 Another object of the present invention is to provide a concentrating solar module alignment method using a laser light source having a tilt angle, respectively irradiating a circuit board and a concentrating lens, by observing the ray The spot of the light source is correctly placed at a first optical pair and a second optical pair to perform alignment of the circuit board and the concentrating lens.
本發明之另一目的,係提供一種聚光型太陽能模組之對位方法,其利用具有一傾斜角度之一雷射光源,分別照射於一電路板及一聚光透 鏡,並利用一第一雷射光接收器及一第二雷射光接收器接收訊號,以執行該電路板及該聚光透鏡之對位。 Another object of the present invention is to provide a method for aligning a concentrating solar module, which uses a laser light source having a tilt angle to respectively illuminate a circuit board and condense light The mirror receives a signal by using a first laser light receiver and a second laser light receiver to perform alignment of the circuit board and the collecting lens.
本發明之再一目的,係提供一種聚光型太陽能模組,其中,一聚光透鏡之長度與一太陽電池模組框架頂部之長度相同,如此入射至聚光型太陽能模組之光線,均可藉由該聚光透鏡匯聚至太陽電池上,提高太陽光使用率。 A further object of the present invention is to provide a concentrating solar module, wherein the length of a concentrating lens is the same as the length of the top of a solar cell module frame, so that the light incident on the concentrating solar module is The concentrating lens can be concentrated on the solar cell to increase the solar light utilization rate.
為了達到上述之目的,本發明揭示了一種聚光型太陽能模組之對位裝置,其係包括一基座、一支撐件及一雷射光源,其中,該支撐件係設置於該基座之上,並於該支撐件內形成一容置空間,且該雷射光源係以一傾斜角度設置於該支撐件之一頂面上。 In order to achieve the above object, the present invention discloses a aligning device for a concentrating solar module, which comprises a pedestal, a supporting member and a laser light source, wherein the supporting member is disposed on the pedestal And forming an accommodating space in the support member, and the laser light source is disposed on a top surface of the support member at an oblique angle.
而利用上述之對位裝置所執行之聚光型太陽能模組之對位方法,係包含步驟:設置一太陽電池模組框架於該對位裝置之該容置空間內;設置一電路板於該太陽電池模組框架之底部;於該對位裝置上設置一雷射光源,且其具有一傾斜角度,並以該雷射光源照射該電路板,接著調整該電路板位置,使該雷射光源之光點落在該第一光學對位點上;設置一聚光透鏡於該模組框架頂部;及再利用該雷射光源照射該聚光透鏡,並調整該聚光透鏡位置,使該傾斜雷射光源之光點落在該第二光學對位點上;即完成組裝該聚光型太陽能模組。 The aligning method of the concentrating solar module performed by the above-mentioned aligning device includes the steps of: providing a solar cell module frame in the accommodating space of the aligning device; and setting a circuit board thereon a bottom of the solar cell module frame; a laser light source is disposed on the alignment device, and has an oblique angle, and the laser light source is used to illuminate the circuit board, and then the circuit board position is adjusted to enable the laser light source a light spot falls on the first optical pairing point; a collecting lens is disposed on the top of the module frame; and the laser light source is used to illuminate the collecting lens, and the position of the collecting lens is adjusted to make the tilt The spot of the laser source falls on the second optical pair; that is, the concentrating solar module is assembled.
其中,可進一步設置一第一雷射光接收器及一第二雷射光接收器於該電路板上,使該雷射光源之光點分別落在該第一雷射光接收器及該第二雷射光接收器上以確認接收訊號,即完成組裝該聚光型太陽能模組。 The first laser light receiver and the second laser light receiver are further disposed on the circuit board, so that the light spot of the laser light source falls on the first laser light receiver and the second laser light, respectively. The concentrating solar module is assembled by confirming the receiving signal on the receiver.
本發明之一實施例中,其亦揭露該傾斜角度係根據該聚光透鏡之曲率及光學理論所計算。 In an embodiment of the invention, it is also disclosed that the tilt angle is calculated according to the curvature and optical theory of the collecting lens.
本發明之一實施例中,其亦揭露於設置該太陽電池模組框架之步驟前,係先依據該聚光透鏡之曲率及該太陽電池之位置,運算一第一對位座標及一第二對位座標,並依據該第一對位座標及該第二對位座標,分別設置一第一光學對位點及一第二光學對位點。 In an embodiment of the present invention, before the step of disposing the solar cell module frame, the first alignment coordinate and the second operation are calculated according to the curvature of the collecting lens and the position of the solar cell. The first coordinate pair and the second optical pair point are respectively disposed according to the first coordinate and the second alignment coordinate.
本發明之一實施例中,其亦揭露於設置該太陽電池模組框架之步驟前,係依據該第一對位座標及該第二對位座標設置一第一雷射光接收器及一第二雷射光接收器於該電路板上。 In an embodiment of the present invention, the first laser light receiver and the second The laser receiver is on the circuit board.
本發明之一實施例中,其亦揭露該聚光透鏡係平凸透鏡、雙凸透鏡、拋物面鏡或菲涅爾透鏡(Fresnel Lens)。 In an embodiment of the invention, the concentrating lens is also used as a plano-convex lens, a lenticular lens, a parabolic mirror or a Fresnel lens.
本發明之一實施例中,其亦揭露該聚光透鏡之聚光區域長度與該太陽能模組框架頂部之長度相同。 In an embodiment of the invention, it is also disclosed that the length of the concentrating area of the concentrating lens is the same as the length of the top of the solar module frame.
S10~S20‧‧‧步驟 S10~S20‧‧‧Steps
10‧‧‧對位裝置 10‧‧‧ alignment device
100‧‧‧基座 100‧‧‧Base
110‧‧‧支撐件 110‧‧‧Support
112‧‧‧頂面 112‧‧‧ top surface
120‧‧‧容置空間 120‧‧‧ accommodating space
130‧‧‧雷射光源 130‧‧‧Laser light source
132‧‧‧傾斜角度 132‧‧‧ tilt angle
20‧‧‧太陽電池模組框架 20‧‧‧Solar battery module frame
200‧‧‧電路板 200‧‧‧ boards
202‧‧‧第一光學對位點 202‧‧‧First optical counterpoint
2022‧‧‧第一雷射光接收器 2022‧‧‧First laser light receiver
204‧‧‧第二光學對位點 204‧‧‧Second optical optic point
2042‧‧‧第二雷射光接收器 2042‧‧‧Second laser light receiver
210‧‧‧頂部 210‧‧‧ top
220‧‧‧聚光透鏡 220‧‧‧ Concentrating lens
230‧‧‧太陽能接收器 230‧‧‧Solar Receiver
30‧‧‧對位裝置 30‧‧‧ alignment device
300‧‧‧基座 300‧‧‧Base
310‧‧‧支撐件 310‧‧‧Support
312‧‧‧頂面 312‧‧‧ top surface
320‧‧‧容置空間 320‧‧‧ accommodating space
330‧‧‧第一雷射光源 330‧‧‧First laser source
332‧‧‧第二雷射光源 332‧‧‧second laser source
334‧‧‧傾斜角度 334‧‧‧ tilt angle
40‧‧‧模組框架 40‧‧‧Modular Framework
400‧‧‧電路板 400‧‧‧ circuit board
402‧‧‧第一光學對位點 402‧‧‧First optical counterpoint
404‧‧‧第一光學對位點 404‧‧‧First optical counterpoint
406‧‧‧第二光學對位點 406‧‧‧Second optical optic point
408‧‧‧第二光學對位點 408‧‧‧Second optical optic point
410‧‧‧頂部 410‧‧‧ top
420‧‧‧陣列式聚光透鏡 420‧‧‧Array concentrating lens
430‧‧‧太陽能接收器 430‧‧‧Solar Receiver
第一圖:其係本發明之流程示意圖;第二圖:其係本發明之第一實施例裝置示意圖;第三圖:其係本發明之第二實施例裝置示意圖;以及第四圖:其係本發明之第三實施例裝置示意圖。 1 is a schematic diagram of a flow of the present invention; a second diagram: a schematic diagram of a device according to a first embodiment of the present invention; a third diagram: a schematic diagram of a second embodiment of the present invention; and a fourth diagram: A schematic view of a device of a third embodiment of the present invention.
為使 貴審查委員對本發明之特徵及所達成之功效有更進一步之瞭解與認識,謹佐以較佳之實施例及配合詳細之說明,說明如後:聚光型太陽能模組,係由聚光透鏡及III-V族太陽電池組合而成,常見為菲涅爾透鏡搭配砷化鎵(GaAs)使用;聚光型太陽能模組之作用原 理,係透過聚光透鏡將太陽光匯聚至小面積III-V族太陽電池上,因而提高太陽能源的利用率,由於所使用之III-V族太陽電池面積較矽晶太陽電池小,亦可降低製造成本。 In order to enable the reviewing committee to have a better understanding and understanding of the features and functions of the present invention, the preferred embodiment and the detailed description will be followed by a description of the following: concentrating solar modules are collected by light. Lens and III-V solar cells are combined, commonly used for Fresnel lens with gallium arsenide (GaAs); the role of concentrating solar modules The solar light is concentrated on a small area III-V solar cell through a concentrating lens, thereby improving the utilization of the solar energy source. Since the III-V solar cell used is smaller than the twin crystal solar cell, Reduce manufacturing costs.
聚光型太陽能模組結構中,係由一太陽電池及一電路板組成一太陽能接收器,由於聚光型太陽能模組之能量來源,需仰賴聚光透鏡精確地將太陽光聚焦於太陽能接收器上,因此在組裝過程中,需透過精密的光學對位系統,調整聚光透鏡與太陽能接收器相對位置。 In the concentrating solar module structure, a solar cell and a circuit board form a solar receiver. Due to the energy source of the concentrating solar module, the concentrating lens is required to accurately focus the sunlight on the solar receiver. Therefore, in the assembly process, the relative position of the concentrating lens and the solar receiver needs to be adjusted through a precise optical alignment system.
習知光學對位方法及裝置,係於太陽能模組聚光透鏡上預留一不具光學曲率區域,該區域係垂直對應於光學對位點,如此,太陽光透過該區域直射到光學對位點上,完成光學對位;由於該區域不具光學曲率,從該區域入射至太陽能模組之光線,無法偏折至太陽能接收器,因此該區域稱為一光學無效區。 The conventional optical alignment method and device are provided on the solar module concentrating lens to reserve a region having no optical curvature, and the region vertically corresponds to the optical aligning point, so that the sunlight passes through the region to the optical aligning point. On the top, the optical alignment is completed; since the region has no optical curvature, the light incident from the region to the solar module cannot be deflected to the solar receiver, so the region is called an optical ineffective region.
本實施案例提供一種聚光型太陽能模組之對位裝置及其方法,其毋需設置該光學無效區,解決習知因該光學無效區造成入射日光浪費,因而提高太陽能源使用效率。 The present embodiment provides a aligning device for a concentrating solar module and a method thereof, which need to provide the optical ineffective region to solve the conventional waste of sunlight caused by the optical ineffective region, thereby improving the efficiency of use of the solar energy source.
請參閱第一圖,其係本發明之流程示意圖,本發明之聚光型太陽能模組對位方法係包含步驟如下:步驟S10:設置一太陽電池模組框架於一對位裝置之一容置空間內;步驟S12:設置一電路板於該太陽電池模組框架之底部;步驟S14:於該對位裝置上設置一雷射光源,並使其具有一傾斜角度照射該電路板,接著調整該電路板位置,觀察並確認該雷射光源之光點落在一第一光學對位點上;步驟S16:設置一聚光透鏡於該太陽電池模組框架之一頂部; 步驟S18:再使用該雷射光源照射該聚光透鏡,並調整該聚光透鏡位置,觀察並確認該傾斜雷射光源之光點落在一第二光學對位點上;及步驟S20:完成組裝該聚光型太陽能模組。 Please refer to the first figure, which is a schematic flowchart of the present invention. The concentrating solar module aligning method of the present invention comprises the following steps: Step S10: arranging a solar cell module frame to be accommodated in one of the pair of bit devices Step S12: setting a circuit board at the bottom of the solar cell module frame; step S14: disposing a laser light source on the alignment device, and illuminating the circuit board with an oblique angle, and then adjusting the Positioning the board, observing and confirming that the spot of the laser source falls on a first optical pair position; step S16: providing a collecting lens on top of one of the solar cell module frames; Step S18: illuminating the concentrating lens with the laser light source, adjusting the position of the condensing lens, observing and confirming that the spot of the oblique laser source falls on a second optical pair position; and step S20: completing The concentrating solar module is assembled.
請參閱第二圖,其係本發明之第一實施例裝置示意圖,如圖所示,一對位裝置10係包括一基座100、一支撐件110、一頂面112及一雷射光源130,其中,該支稱件110設置於該基座100之上,並於該支撐件110內形成一容置空間120;且該雷射光源130,係以一傾斜角度132設置於該支撐件之一頂面112上。 Please refer to the second figure, which is a schematic diagram of a device according to a first embodiment of the present invention. As shown, the pair of position devices 10 includes a base 100, a support member 110, a top surface 112, and a laser light source 130. The arranging member 110 is disposed on the pedestal 100, and an accommodating space 120 is formed in the supporting member 110. The laser light source 130 is disposed at the slanting angle 132 at the supporting member. A top surface 112.
在組裝一聚光型太陽能模組過程中,係分別將一太陽電池模組框架20、一電路板200及一聚光透鏡220放置於該容置空間120內,其中,該電路板200進一步包含一第一光學對位點202、一第二光學對位點204及一太陽能接收器230。 In the process of assembling a concentrating solar module, a solar cell module frame 20, a circuit board 200 and a concentrating lens 220 are respectively disposed in the accommodating space 120, wherein the circuit board 200 further includes A first optical pair 202, a second optical pair 204, and a solar receiver 230.
請搭配參閱第一圖及第二圖,於組裝聚光型太陽能模組的過程中,係搭配本發明之聚光型太陽能模組之對位方法進行組裝,其係包含步驟:步驟S10:設置該太陽電池模組框架20於該對位裝置10之該容置空間120內;步驟S12:設置該電路板200於該太陽電池模組框架20之底部;步驟S14:於該對位裝置10上設置一雷射光源130,並使其具有一傾斜角度132照射該電路板200,接著調整該電路板200位置,觀察並確認該雷射光源130之光點落在該第一光學對位點202上;其中,該雷射光源130之該傾斜角度132,係根據光學理論及該聚光透鏡220之曲率計算,而獲得光源經過該聚光透鏡220後之偏折角度所決定;步驟S16:設置該聚光透鏡220於該太陽電池模組框架20之一頂部210; 步驟S18:再使用該雷射光源130照射該聚光透鏡220,並調整該聚光透鏡220位置,觀察並確認該雷射光源130之光點落在該第二光學對位點204上;及步驟S20:完成組裝該聚光型太陽能模組。 Please refer to the first figure and the second figure. In the process of assembling the concentrating solar module, the aligning method of the concentrating solar module of the present invention is assembled, and the steps include the following steps: Step S10: setting The solar cell module frame 20 is disposed in the accommodating space 120 of the aligning device 10; step S12: disposing the circuit board 200 at the bottom of the solar cell module frame 20; step S14: on the aligning device 10 A laser light source 130 is disposed and has an oblique angle 132 to illuminate the circuit board 200, and then the position of the circuit board 200 is adjusted to observe and confirm that the spot of the laser light source 130 falls on the first optical pair 202. The inclination angle 132 of the laser light source 130 is determined according to the optical theory and the curvature of the condensing lens 220, and is determined by the deflection angle of the light source after passing through the condensing lens 220; Step S16: setting The collecting lens 220 is on the top 210 of one of the solar cell module frames 20; Step S18: illuminating the concentrating lens 220 with the laser light source 130, adjusting the position of the condensing lens 220, and observing and confirming that the spot of the laser source 130 falls on the second optical pair 204; Step S20: completing assembling the concentrating solar module.
上述之聚光型太陽能模組對位方法於執行之前,係先依據光學理論及該聚光透鏡220之曲率計算一第一對位座標及一第二對位座標,並且將該第一光學對位點202對應於該第一對位座標設置於該電路板200上,且將該第二光學對位點204對應於該第二對位座標設置於該電路板200上。 Before the concentrating solar module aligning method is performed, a first aligning coordinate and a second aligning coordinate are calculated according to the optical theory and the curvature of the concentrating lens 220, and the first optical pair is The bit 202 is disposed on the circuit board 200 corresponding to the first alignment coordinate, and the second optical alignment site 204 is disposed on the circuit board 200 corresponding to the second alignment coordinate.
接著,將說明本發明之聚光型太陽能模組之第二實施例,請參閱第二圖,其係本發明之第二實施例之裝置示意圖,如圖所示,一對位裝置10係包括一基座100、一支撐件110、一頂面112及一雷射光源130,其中,該支稱件110設置於該基座100之上,並於該支撐件110內形成一容置空間120;且該雷射光源130,係以一傾斜角度132設置於該支撐件之一頂面112上。 Next, a second embodiment of the concentrating solar module of the present invention will be described. Please refer to the second drawing, which is a schematic view of the apparatus of the second embodiment of the present invention. As shown, the pair of positioning devices 10 includes A susceptor 100, a support member 110, a top surface 112, and a laser light source 130, wherein the support member 110 is disposed on the pedestal 100, and an accommodating space 120 is formed in the support member 110. And the laser light source 130 is disposed on a top surface 112 of the support member at an oblique angle 132.
在組裝一聚光型太陽能模組過程中,係分別將一太陽電池模組框架20、一電路板200及一聚光透鏡220放置於該容置空間120內,其中,該電路板200進一步包含一第一雷射光接收器2022、一第二雷射光接收器2042及一太陽能接收器230。 In the process of assembling a concentrating solar module, a solar cell module frame 20, a circuit board 200 and a concentrating lens 220 are respectively disposed in the accommodating space 120, wherein the circuit board 200 further includes A first laser light receiver 2022, a second laser light receiver 2042 and a solar receiver 230.
利用本發明之對位方法搭配該第二實施例之裝置進行對位時,與上述第一實施例差異如下所述:步驟S14:於該對位裝置10上設置一雷射光源130,並使其具有一傾斜角度132照射該電路板200,接著調整該電路板200位置,使該雷射光源130之光點落在該第一雷射光接收器2022上,由該第一雷射光接收器2022接收訊號以確認該電路板200之對位;及 步驟S18:再使用該雷射光源130照射該聚光透鏡220,並調整該聚光透鏡220位置,使該雷射光源130之光點落在該第二雷射光接收器2042上,由該第二雷射光接收器2042接收訊號以確認該聚光透鏡220之對位。其餘步驟與前述第一實施例相同,如此不再贅述。 When the alignment method of the present invention is used in conjunction with the apparatus of the second embodiment, the difference from the first embodiment is as follows: Step S14: a laser light source 130 is disposed on the alignment device 10, and It has an oblique angle 132 to illuminate the circuit board 200, and then adjusts the position of the circuit board 200 so that the spot of the laser light source 130 falls on the first laser light receiver 2022. The first laser light receiver 2022 is used by the first laser light receiver 2022. Receiving a signal to confirm the alignment of the circuit board 200; and Step S18: the laser light source 130 is used to illuminate the condensing lens 220, and the position of the condensing lens 220 is adjusted, so that the spot of the laser light source 130 falls on the second laser light receiver 2042. The two laser receivers 2042 receive signals to confirm the alignment of the condenser lens 220. The remaining steps are the same as those of the first embodiment described above, and thus will not be described again.
本發明之聚光型太陽能模組對位方法,亦可應用於陣列式聚光型太陽能模組,請參閱第三圖,如圖所示,其係本發明之第二實施例裝置示意圖,一對位裝置30係包括一基座300、一支撐件310及一頂面312,該支撐件310設置於該基座300之上,並於該支撐件310內形成一容置空間320;以及一第一雷射光源330及一第二雷射光源332,以一傾斜角度334設置於該頂面312之上。 The concentrating solar module aligning method of the present invention can also be applied to an array concentrating solar module. Referring to the third figure, as shown in the figure, it is a schematic diagram of a second embodiment of the present invention. The aligning device 30 includes a pedestal 300, a support member 310, and a top surface 312. The support member 310 is disposed on the pedestal 300, and an accommodating space 320 is formed in the support member 310. The first laser source 330 and a second laser source 332 are disposed on the top surface 312 at an oblique angle 334.
在組裝一聚光型太陽能模組過程中,係依序將一太陽電池模組框架20、一電路板300及一陣列式聚光透鏡420放置於該容置空間320內,其中,該電路板400進一步包含一第一光學對位點402、一第一光學對位點404、一第二光學對位點406、一第二光學對位點408及複數個太陽能接收器430。 In the process of assembling a concentrating solar module, a solar cell module frame 20, a circuit board 300 and an array concentrating lens 420 are sequentially placed in the accommodating space 320, wherein the circuit board The 400 further includes a first optical pair site 402, a first optical pair site 404, a second optical pair site 406, a second optical pair site 408, and a plurality of solar receivers 430.
請搭配參閱第一圖及第三圖,組裝陣列式聚光型太陽能模組之步驟,與第一實施例差異在於下述之步驟14及步驟18:步驟14:以該第一雷射光源330及該第二雷射光源332照射該電路板400,在調整該電路板400位置後,觀察並確認來自該第一雷射光源330之光點落在該第一光學對位點402上,同時觀察並確認來自該第二雷射光源332之光點落在該光學對位點404上,,完成該電路板400之對位;以及步驟S18:以該第一雷射光源330及該第二雷射光源332照射該陣列式聚光透鏡420,並調整該陣列式聚光透鏡420位置,使該第一雷射光源330之光點落在該第二光學對位點406上,且該第二雷射光源332光點落在該第二光學對位點408上,完成該聚光透鏡420之對位。 Referring to the first and third figures, the steps of assembling the array type concentrating solar module are different from the first embodiment in the following steps 14 and 18: Step 14: using the first laser light source 330 And the second laser light source 332 illuminates the circuit board 400. After adjusting the position of the circuit board 400, it is observed and confirmed that the light spot from the first laser light source 330 falls on the first optical pair position 402. Observing and confirming that the light spot from the second laser light source 332 falls on the optical pair site 404 to complete the alignment of the circuit board 400; and step S18: using the first laser light source 330 and the second The laser light source 332 illuminates the array concentrating lens 420, and adjusts the position of the array concentrating lens 420 so that the spot of the first laser source 330 falls on the second optical pair 406, and the The two laser source 332 spots fall on the second optical pair 408 to complete the alignment of the collecting lens 420.
透過上述之聚光型太陽能模組對位方法,將聚光型太陽能模組組裝完成後,太陽光照射時,即可透過該陣列式聚光透鏡420將光線折射並聚焦至該些太陽能接收器430上而產生電流,且該陣列式聚光透鏡420不需預留光學無效區,可將所有入射至聚光型太陽能模組之光線匯聚到該些太陽能接收器430上,如此,相較習知技術而言,增加聚光型太陽能模組吸收太陽光的面積。 After the concentrating solar module is assembled by the above concentrating solar module aligning method, after the sunlight is irradiated, the illuminating light can be refracted and focused to the solar receivers through the array concentrating lens 420. A current is generated on the 430, and the array concentrating lens 420 does not need to reserve an optical ineffective area, and all the light incident on the concentrating solar module can be concentrated on the solar receivers 430, so that In terms of technology, the area where the concentrating solar module absorbs sunlight is increased.
綜合上述內容可以得知,本發明揭示一種聚光型太陽能模組及其對位裝置及對位方法,其根據預先運算之該傾斜角度,將該雷射光源傾斜設置於該對位裝置之該頂面上,並且依據預先運算之該第一對位座標及該第二對位座標,設置該第一光學對位點及該第二光學對位點於該電路板上,此外,亦可進一步設置該第一雷射光接收器及該第二雷射光接收器於該電路板上,並利用傾斜的雷射光源及偏折的雷射光線,直接進行該電路板及該聚光透鏡之光學對位,如此,聚光型太陽能模組毋需設置光學無效區,提升太陽光使用率,相對增加電力輸出效能,對於優化聚光型太陽能模組具實質效應。 In summary, the present invention discloses a concentrating solar module, a aligning device thereof, and a aligning method, wherein the laser light source is obliquely disposed on the aligning device according to the pre-calculated tilt angle. Forming the first optical alignment site and the second optical alignment site on the circuit board according to the pre-computed first alignment coordinate and the second alignment coordinate, and further Setting the first laser light receiver and the second laser light receiver on the circuit board, and directly performing the optical pair of the circuit board and the collecting lens by using the oblique laser light source and the deflected laser light Therefore, the concentrating solar module needs to set an optical ineffective area, enhance the solar light utilization rate, and relatively increase the power output efficiency, and has a substantial effect on optimizing the concentrating solar module.
惟以上所述者,僅為本發明之較佳實施例而已,並非用來限定本發明實施之範圍,舉凡依本發明申請專利範圍所述之形狀、構造、特徵及精神所為之均等變化與修飾,均應包括於本發明之申請專利範圍內。 The above is only the preferred embodiment of the present invention, and is not intended to limit the scope of the present invention, and the variations, modifications, and modifications of the shapes, structures, features, and spirits described in the claims of the present invention. All should be included in the scope of the patent application of the present invention.
S10~S20‧‧‧步驟 S10~S20‧‧‧Steps
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105127936A TWI606687B (en) | 2016-08-30 | 2016-08-30 | Concentrator photovoltaic module and the alignment device and method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105127936A TWI606687B (en) | 2016-08-30 | 2016-08-30 | Concentrator photovoltaic module and the alignment device and method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI606687B true TWI606687B (en) | 2017-11-21 |
TW201807949A TW201807949A (en) | 2018-03-01 |
Family
ID=61023020
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105127936A TWI606687B (en) | 2016-08-30 | 2016-08-30 | Concentrator photovoltaic module and the alignment device and method thereof |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI606687B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040022071A1 (en) * | 2002-08-02 | 2004-02-05 | Delta Electronic, Inc. | Optical energy collection system to provide economical light source |
TWM350812U (en) * | 2008-07-10 | 2009-02-11 | Prodisc Technology Inc | Chip structure of solar energy |
TWM373004U (en) * | 2009-02-05 | 2010-01-21 | Blue Light Entpr Co Ltd | Structure of raising photoelectric conversion efficiency |
TWI464896B (en) * | 2011-05-13 | 2014-12-11 | Atomic Energy Council | Device for aligning a concentration photovoltaic module |
-
2016
- 2016-08-30 TW TW105127936A patent/TWI606687B/en not_active IP Right Cessation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040022071A1 (en) * | 2002-08-02 | 2004-02-05 | Delta Electronic, Inc. | Optical energy collection system to provide economical light source |
TWM350812U (en) * | 2008-07-10 | 2009-02-11 | Prodisc Technology Inc | Chip structure of solar energy |
TWM373004U (en) * | 2009-02-05 | 2010-01-21 | Blue Light Entpr Co Ltd | Structure of raising photoelectric conversion efficiency |
TWI464896B (en) * | 2011-05-13 | 2014-12-11 | Atomic Energy Council | Device for aligning a concentration photovoltaic module |
Also Published As
Publication number | Publication date |
---|---|
TW201807949A (en) | 2018-03-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20080149162A1 (en) | Spectral Splitting-Based Radiation Concentration Photovoltaic System | |
US20090308431A1 (en) | Concentrator photovoltaic device; photovoltaic unit for use therein and manufacturing method for this | |
US20140150865A1 (en) | Concentrating solar cell | |
CN102386266A (en) | Line-style condensing lens solar cell module | |
WO2007057894A3 (en) | Multiple heliostats concentrator | |
CN211209653U (en) | Multi-focus free-form surface solar light condensing system | |
TW201214732A (en) | Light concentrator and solar cell apparatus | |
TWI606687B (en) | Concentrator photovoltaic module and the alignment device and method thereof | |
Menard et al. | Optics development for micro-cell based CPV modules | |
US10090804B2 (en) | Concentrator photovoltaic module and the alignment device and method thereof | |
KR101412533B1 (en) | Concentrating Photovoltaics Apparatus Having Non-Powered Solar Light Tracking Function | |
CN102237426A (en) | High-power compound-eye type concentrator solar cell module | |
Coffey | Solar concentrators: using optics to boost photovoltaics | |
KR20170111271A (en) | Solar power modules and generator possible high output and high concentrative photovoltaic | |
KR200419531Y1 (en) | Sunbeams concentration lens and apparatus for solar photovoltaic generator using concept of superposition | |
Ritou et al. | Mechanical tolerances study through simulations and experimental characterization for a 1000X micro-concentrator CPV module | |
US20100089450A1 (en) | Near-field diffraction superposition of light beams for concentrating solar systems | |
US20150194554A1 (en) | Structure of concentrating solar cell module with reduced height | |
CN104354458A (en) | Array type high power concentrating solar energy battery printing steel mesh with positioning function | |
JP2005217171A (en) | Method for adjusting angle of reflector in condensation type photovoltaic power generation apparatus | |
CN201278350Y (en) | High power concentration type solar photovoltaic component | |
CN104333315B (en) | Fresnel Lenses and the installation method of secondary optics in solar components | |
Khonkar et al. | Optical element design for the retrofit of the world’s first concentrator photovoltaic (CPV) power plant | |
CN216565076U (en) | High-concentration photovoltaic module debugging equipment | |
CN219303607U (en) | Laser doping equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |