TWI605898B - Surface modification method of metallic workpiece - Google Patents

Surface modification method of metallic workpiece Download PDF

Info

Publication number
TWI605898B
TWI605898B TW105135620A TW105135620A TWI605898B TW I605898 B TWI605898 B TW I605898B TW 105135620 A TW105135620 A TW 105135620A TW 105135620 A TW105135620 A TW 105135620A TW I605898 B TWI605898 B TW I605898B
Authority
TW
Taiwan
Prior art keywords
metal workpiece
layer
grain structure
oxide layer
nano
Prior art date
Application number
TW105135620A
Other languages
Chinese (zh)
Other versions
TW201817531A (en
Inventor
鍾育霖
王致鵬
黃家宏
Original Assignee
財團法人金屬工業研究發展中心
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人金屬工業研究發展中心 filed Critical 財團法人金屬工業研究發展中心
Priority to TW105135620A priority Critical patent/TWI605898B/en
Application granted granted Critical
Publication of TWI605898B publication Critical patent/TWI605898B/en
Publication of TW201817531A publication Critical patent/TW201817531A/en

Links

Landscapes

  • Solid-Phase Diffusion Into Metallic Material Surfaces (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)

Description

金屬工件表面改質方法Metal workpiece surface modification method

本發明是關於一種工件表面改質方法,特別是一種金屬工件表面改質方法。The invention relates to a method for modifying a surface of a workpiece, in particular to a method for modifying a surface of a metal workpiece.

一般而言,金屬工件經表面改質後係可顯現較佳材料性質,使得該金屬工件得以適用於不同應用領域,特別係針對表面易產生氧化反應而生成氧化膜之金屬工件,表面改質技術更有存在之必要。其中,又以表面易氧化且廣為不同領域運用之不銹鋼的表面改質技術較廣為業界關注。In general, the metal workpiece can be modified to improve the material properties, so that the metal workpiece can be applied to different application fields, especially for metal workpieces whose surface is easy to generate oxidation reaction and generate oxide film. Surface modification technology More necessary to exist. Among them, the surface modification technology of stainless steel which is easy to oxidize and widely used in various fields is widely concerned by the industry.

目前市面上,多使用表面改質來強化不銹鋼本身的材料性質,然多遇到技術上難以克服之瓶頸。舉例而言,通常為增加一不鏽鋼表面硬度,會選擇進行一滲氮製程,然由於該不鏽鋼的一表面會因氧化而形成有一氧化層,當以一含氮氣體進行滲氮製程時,該含氮氣體必須先滲透該氧化層,才能進一步地滲透至一基底層,因此造成該滲氮製程時間冗長,並不利於大量生產。At present, the surface modification is used to strengthen the material properties of stainless steel itself, but many technically difficult to overcome bottlenecks. For example, in order to increase the hardness of a stainless steel surface, a nitriding process is selected, and since one surface of the stainless steel forms an oxide layer due to oxidation, when a nitriding process is performed with a nitrogen-containing gas, the inclusion The nitrogen gas must first penetrate the oxide layer to further penetrate into a substrate layer, thus causing the nitriding process to be lengthy and not conducive to mass production.

鑑於此,確實有必要發展一種金屬工件的表面改質方法,來解決前述問題。In view of this, it is indeed necessary to develop a surface modification method of a metal workpiece to solve the aforementioned problems.

本發明之一種金屬工件表面改質方法,其可降低改質氣體滲入該金屬工件時間,且可增加該金屬工件表面的硬度。The metal workpiece surface modification method of the invention can reduce the time for the modified gas to infiltrate into the metal workpiece, and can increase the hardness of the surface of the metal workpiece.

本發明之主要目的在於提供一種金屬工件表面改質方法,其包含衝擊一表面具一氧化層之一金屬工件,使該金屬工件的一受衝擊處形成一奈米晶粒結構,移除該金屬工件之該氧化層,以顯露出該奈米晶粒結構,以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件,使該金屬工件的該表面形成含有該奈米晶粒結構的一硬化層。The main object of the present invention is to provide a method for modifying a surface of a metal workpiece, comprising: impinging a metal workpiece having an oxide layer on a surface thereof, forming a nano grain structure at an impact portion of the metal workpiece, and removing the metal The oxide layer of the workpiece is exposed to reveal the nano-grain structure, and a modified gas penetrates the nano-grain structure and penetrates into the metal workpiece, so that the surface of the metal workpiece forms the nano-grain structure a hardened layer.

本發明藉由該金屬工件的該奈米晶粒結構,使該改質氣體可快速地滲透該金屬工件,以降低該改質氣體滲透時間。According to the nano grain structure of the metal workpiece, the modified gas can quickly penetrate the metal workpiece to reduce the infiltration time of the modified gas.

請參閱第1圖,本發明之一種金屬工件表面改質方法包含「衝擊一表面具一氧化層之一金屬工件」10、「移除該金屬工件之該氧化層」20及「以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件」30。Referring to FIG. 1 , a method for modifying a surface of a metal workpiece according to the present invention includes “impacting a metal workpiece having an oxide layer on a surface” 10 , “removing the oxide layer of the metal workpiece” 20 and “modifying The gas penetrates the nanograin structure and penetrates into the metal workpiece "30".

請參閱第1及2圖,首先,在該「衝擊一表面具一氧化層之一金屬工件」10的步驟中,是以一衝擊裝置100衝擊一金屬工件200,使該金屬工件200的一受衝擊處形成一奈米晶粒結構,該金屬工件200可選自於沃斯田體系不鏽鋼或其他金屬,在本實施例中,該衝擊裝置100包含一第一腔室110、一震盪器120及複數個微細顆粒130,該震盪器120係以可產生超音波速度並驅動微細顆粒130反覆震動為佳,其類型不加以設限。在本實施例中,該震盪器120的振動頻率為20至50kHz,該些微細顆粒130可以配合使用狀況選擇如磁珠等材料,且其較佳粒徑選自於0.8至4.5mm,該震盪器120用以震盪該些微細顆粒130,以使該些微細顆粒130在該第一腔室110中不規則彈跳。 Referring to Figures 1 and 2, first, in the step of "impacting a metal workpiece having an oxide layer on one surface" 10, a metal workpiece 200 is impacted by an impact device 100 to cause a metal workpiece 200 to be subjected to Forming a nano-grain structure at the impact, the metal workpiece 200 may be selected from a stainless steel or other metal of the Vostian system. In the embodiment, the impact device 100 includes a first chamber 110, an oscillator 120, and The plurality of fine particles 130 are preferably generated so as to generate ultrasonic waves and drive the fine particles 130 to vibrate, and the type thereof is not limited. In this embodiment, the vibration frequency of the oscillator 120 is 20 to 50 kHz, and the fine particles 130 may be selected according to the use condition, such as a magnetic bead, and the preferred particle diameter is selected from 0.8 to 4.5 mm. The device 120 is configured to oscillate the fine particles 130 to cause the fine particles 130 to bounce irregularly in the first chamber 110.

請參閱第1、2及4圖,在該「衝擊一表面具一氧化層之一金屬工件」10的步驟中,是將該金屬工件200置入於該第一腔室110中,並以該震盪器120振動該些微細顆粒130衝擊該金屬工件200,請參閱第4及5圖,在本實施例中,該金屬工件200的一表面210具有一氧化層220,該些微細顆粒130衝擊該金屬工件200,以使該金屬工件200被衝擊處形成有一奈米晶粒結構240。 Referring to Figures 1, 2 and 4, in the step of "impacting a metal workpiece having an oxide layer on one surface" 10, the metal workpiece 200 is placed in the first chamber 110, and The vibrator 120 vibrates the fine particles 130 to impact the metal workpiece 200. Referring to FIGS. 4 and 5, in the embodiment, a surface 210 of the metal workpiece 200 has an oxide layer 220, and the fine particles 130 impact the The metal workpiece 200 is such that the metal workpiece 200 is formed with a nano-grain structure 240 at the impact.

請參閱第4及5圖,在本實施例中,該金屬工件200具有與該氧化層220相接的一基底層230,該氧化層220形成於該基底層230上,被該些微細顆粒130珠擊的該氧化層220及該基底層230即為該金屬工件200的該受衝擊處,該受衝擊處所形成的該奈米晶粒結構240係自該氧化層220表面深入該基底層230,以改變該基底層230與該氧化層220相接處的該基底層230表面晶粒結構。 Referring to FIGS. 4 and 5, in the present embodiment, the metal workpiece 200 has a base layer 230 that is in contact with the oxide layer 220. The oxide layer 220 is formed on the base layer 230 by the fine particles 130. The oxide layer 220 and the base layer 230 of the bead strike are the impacted portion of the metal workpiece 200. The nano-grain structure 240 formed by the impact portion penetrates the base layer 230 from the surface of the oxide layer 220. To change the surface grain structure of the base layer 230 where the base layer 230 and the oxide layer 220 meet.

請參閱第2及5圖,在本實施例中,該些微細顆粒130珠擊該金屬工件200的速度為5至15m/s,使該金屬工件200的受衝擊處可以自其氧化層220深入與該基底層210交界之基底層210,且受衝擊的深度較佳係介於0.1至1μm之間,特別於該受衝擊處形成有20nm的該奈米晶粒結構240,該奈米晶粒結構240係指 材料晶粒尺寸小於100nm者。 Referring to FIGS. 2 and 5, in the embodiment, the fine particles 130 strike the metal workpiece 200 at a speed of 5 to 15 m/s, so that the impact of the metal workpiece 200 can be deepened from the oxide layer 220. a base layer 210 that interfaces with the base layer 210, and preferably has a depth of impact between 0.1 and 1 μm, and particularly 20 nm of the nano-grain structure 240 is formed at the impact, the nano-grain Structure 240 Those whose material grain size is less than 100 nm.

請參閱第1、3及6圖,在「移除該金屬工件之該氧化層」20的步驟中,是移除該金屬工件200之該氧化層220,以顯露出位在該基底層210的該奈米晶粒結構240。在本實施粒中,該奈米晶粒結構240特別係指該基底層210與該氧化層220相接處的該基底層210表面晶粒結構受衝擊改變所形成。 Referring to Figures 1, 3 and 6, in the step of "removing the oxide layer of the metal workpiece" 20, the oxide layer 220 of the metal workpiece 200 is removed to expose the substrate layer 210. The nanograin structure 240. In the present embodiment, the nano-grain structure 240 particularly refers to the surface grain structure of the base layer 210 where the base layer 210 and the oxide layer 220 meet, which are formed by impact changes.

請參閱第1、3及6圖,在「移除該金屬工件之該氧化層」20的步驟中,是將該金屬工件200置入於一反應腔體300的一第二腔室310中,並以一去氧化層流體A1去除該金屬工件200的該氧化層220,以顯露出位在該基底層210的該奈米晶粒結構240,該奈米晶粒結構240自該基底層210表面深入之深度趨近20nm。在本實施例中,該去氧化層流體A1選自於一鹵素流體,該去氧化層流體A1可選自於氯化氫、三氟化氮,以該去氧化層流體A1去除該氧化層220的時間為0.5至5小時。 Referring to Figures 1, 3 and 6, in the step of "removing the oxide layer of the metal workpiece" 20, the metal workpiece 200 is placed in a second chamber 310 of a reaction chamber 300. The oxide layer 220 of the metal workpiece 200 is removed by a de-oxidation layer fluid A1 to expose the nano-grain structure 240 located on the base layer 210. The nano-grain structure 240 is from the surface of the substrate layer 210. The depth of penetration is close to 20nm. In this embodiment, the deoxidizing layer fluid A1 is selected from a halogen fluid, and the deoxidizing layer fluid A1 may be selected from the group consisting of hydrogen chloride and nitrogen trifluoride, and the oxide layer 220 is removed by the deoxidizing layer fluid A1. It is 0.5 to 5 hours.

請參閱第1、3及7圖,在「以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件」30的步驟中,是在去除該金屬工件200的該氧化層220的步驟後,以一改質氣體A2穿透位在該基底層210的該奈米晶粒結構240,且該改質氣體A2滲入該金屬工件200,使該金屬工件200的該表面210形成含有該奈米晶粒結構240的一硬化層250,在本實施例中,該基底層230具有一被該改質氣體A2滲入的被滲透層230A,該被滲透層230A及該奈米晶粒結構240構成該硬化層250,較佳地,該硬化層250的厚度為5至30μm之間。 Referring to Figures 1, 3 and 7, in the step of "passing the nano-grain structure and infiltrating the metal workpiece with a modified gas", the step of removing the oxide layer 220 of the metal workpiece 200 is performed. Thereafter, the modified grain gas A2 penetrates the nano-grain structure 240 located in the base layer 210, and the modified gas A2 penetrates into the metal workpiece 200, so that the surface 210 of the metal workpiece 200 forms the surface. A hardened layer 250 of the rice grain structure 240. In the present embodiment, the base layer 230 has a permeable layer 230A infiltrated by the reforming gas A2. The permeable layer 230A and the nano-grain structure 240 constitute The hardened layer 250, preferably, has a thickness of 5 to 30 μm.

請參閱第1、3及7圖,在本實施例中,將該改質氣體A2輸送至該反應腔體300的該第二腔室310,該改質氣體選自於含氮氣體、含碳氣體或含碳氮混合氣體,其中該第二腔室310中的工作溫度是維持在攝氏350度至550度之間,以使該改質氣體A2穿透該奈米晶粒結構240並滲入該金屬工件200,並使該金屬工件200形成有該硬化層250,該改質氣體A2穿透該奈米晶粒結構240並滲入該金屬工件的時間為2至36小時之間。Referring to Figures 1, 3 and 7, in the present embodiment, the modified gas A2 is delivered to the second chamber 310 of the reaction chamber 300, the modified gas is selected from the group consisting of nitrogen-containing gas and carbon. a gas or a mixed gas containing carbon and nitrogen, wherein an operating temperature in the second chamber 310 is maintained between 350 and 550 degrees Celsius, so that the reforming gas A2 penetrates the nanograin structure 240 and penetrates into the The metal workpiece 200 is formed with the hardened layer 250, and the modified gas A2 penetrates the nanograin structure 240 and infiltrates into the metal workpiece for a period of 2 to 36 hours.

請參閱第1、4至6圖,由於在以該改質氣體A2對該金屬工件200進行改質前,已去除該氧化層220並顯露出位在該基底層210的該奈米晶粒結構240,因此在該改質氣體A2滲透至該金屬工件200時,該改質氣體A2可快速地穿透該奈米晶粒結構2並滲入該金屬工件220的該基底層210而形成包含有該被滲透層230A及該奈米晶粒結構240的該硬化層250,其降低了以該改質氣體A2對該金屬工件200進行改質的製程時間。Please refer to FIGS. 1, 4 to 6, since the oxide layer 220 has been removed and the nanograin structure located in the base layer 210 is exposed before the metal workpiece 200 is modified with the reformed gas A2. 240, so when the modified gas A2 penetrates into the metal workpiece 200, the modified gas A2 can quickly penetrate the nano-grain structure 2 and infiltrate into the base layer 210 of the metal workpiece 220 to form the modified The permeable layer 230A and the hardened layer 250 of the nano-grain structure 240 reduce the processing time for modifying the metal workpiece 200 with the reformed gas A2.

綜上所述,本發明利用衝擊能量改變該金屬工件200的晶粒結構,使得受衝擊後的該金屬工件200因其基底層210表面的奈米晶粒結構240生成,可以提升約3倍(相較於未經處理之金屬工件,如第4圖)的表面硬度。並且,因應該金屬工件200表面的晶粒結構改變,更可進一步利用滲碳、氮化或碳氮共滲等化學熱處理法,使該金屬工件200最終因氣體元素與該奈米晶粒結構240共同形成厚度達5至30μm的該硬化層250,特別可提高該硬化層250厚度達20至30μm。In summary, the present invention utilizes the impact energy to change the grain structure of the metal workpiece 200, so that the impacted metal workpiece 200 can be increased by about 3 times due to the formation of the nano-grain structure 240 on the surface of the base layer 210. Surface hardness as compared to untreated metal workpieces, as shown in Figure 4. Moreover, due to the change of the grain structure on the surface of the metal workpiece 200, a chemical heat treatment such as carburizing, nitriding or carbonitriding may be further utilized, so that the metal workpiece 200 is ultimately caused by the gas element and the nanograin structure 240. The hardened layer 250 having a thickness of 5 to 30 μm is collectively formed, and in particular, the hardened layer 250 can be increased to a thickness of 20 to 30 μm.

如此,本發明除了可透過晶粒結構的改變來提高硬度外,其亦可有效減少化學熱處理時間,進而透過元素滲透與奈米晶粒結構共同形成較佳厚度的該硬化層250,使金屬工件本身硬度及磨耗性皆得以提升,藉此延長該金屬工件200的使用裕度及其壽命。In this way, in addition to improving the hardness through the change of the grain structure, the present invention can also effectively reduce the chemical heat treatment time, and further form the hardened layer 250 with a better thickness through the elemental infiltration and the nano grain structure to make the metal workpiece. Both the hardness and the wear resistance are improved, thereby prolonging the use margin and the life of the metal workpiece 200.

本發明之保護範圍當視後附之申請專利範圍所界定者為準,任何熟知此項技藝者,在不脫離本發明之精神和範圍內所作之任何變化與修改,均屬於本發明之保護範圍。The scope of the present invention is defined by the scope of the appended claims, and any changes and modifications made by those skilled in the art without departing from the spirit and scope of the invention are within the scope of the present invention. .

> >

10‧‧‧衝擊一表面具一氧化層之一金屬工件10‧‧‧A metal workpiece with one oxide layer on one surface

> >

20‧‧‧移除該金屬工件之該氧化層20‧‧‧Remove the oxide layer of the metal workpiece

> >

30‧‧‧以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件30‧‧‧ penetrates the nano-grain structure with a modified gas and infiltrates the metal workpiece

> >

100‧‧‧衝擊裝置100‧‧‧ impact device

> >

110‧‧‧第一腔室110‧‧‧ first chamber

> >

120‧‧‧震盪器120‧‧‧ oscillator

> >

130‧‧‧微細顆粒130‧‧‧fine particles

> >

200‧‧‧金屬工件200‧‧‧Metal workpiece

> >

210‧‧‧表面210‧‧‧ surface

> >

220‧‧‧氧化層220‧‧‧Oxide layer

> >

230‧‧‧基底層230‧‧‧ basal layer

> >

230A‧‧‧被滲透層230A‧‧‧ permeable layer

> >

240‧‧‧奈米晶粒結構240‧‧‧Nano grain structure

> >

250‧‧‧硬化層250‧‧‧ hardened layer

> >

300‧‧‧反應腔體300‧‧‧Reaction chamber

> >

310‧‧‧第二腔室310‧‧‧Second chamber

> >

A1‧‧‧去氧化層流體 A1‧‧‧Deoxidized layer fluid

> >

A2‧‧‧改質氣體A2‧‧‧Modified gas

第1圖:本發明「金屬工件表面改質方法」的流程圖。 第2圖:本發明「金屬工件表面改質方法」的衝擊裝置示意圖。 第3圖:本發明「金屬工件表面改質方法」的反應腔體示意圖。 第4至7圖:本發明「金屬工件表面改質方法」的示意圖。Fig. 1 is a flow chart showing the "method of modifying the surface of a metal workpiece" of the present invention. Fig. 2 is a schematic view showing an impact device of the "metal workpiece surface modification method" of the present invention. Fig. 3 is a schematic view showing the reaction chamber of the "metal workpiece surface modification method" of the present invention. Figures 4 to 7 are schematic views of the "method of modifying the surface of a metal workpiece" of the present invention.

10‧‧‧衝擊一表面具一氧化層之一金屬工件 10‧‧‧A metal workpiece with one oxide layer on one surface

20‧‧‧移除該金屬工件之該氧化層 20‧‧‧Remove the oxide layer of the metal workpiece

30‧‧‧以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件 30‧‧‧ penetrates the nano-grain structure with a modified gas and infiltrates the metal workpiece

Claims (10)

一種金屬工件表面改質方法,其包含:衝擊一表面具一氧化層之一金屬工件,使該金屬工件的一受衝擊處形成一奈米晶粒結構;移除該金屬工件之該氧化層,以顯露出該奈米晶粒結構;以及以一改質氣體穿透該奈米晶粒結構並滲入該金屬工件,使該金屬工件的該表面形成含有該奈米晶粒結構的一硬化層。 A method for modifying a surface of a metal workpiece, comprising: impinging a metal workpiece having an oxide layer on a surface thereof to form a nano grain structure at an impact portion of the metal workpiece; removing the oxide layer of the metal workpiece, And exposing the nano-grain structure; and penetrating the nano-grain structure with a modified gas and infiltrating the metal workpiece, so that the surface of the metal workpiece forms a hardened layer containing the nano-grain structure. 如申請專利範圍第1項所述之金屬工件表面改質方法,其中該金屬工件另具有與該氧化層相接的一基底層,該受衝擊處所形成的該奈米晶粒結構係自該氧化層表面深入該基底層,以改變該基底層與該氧化層相接處的該基底層表面晶粒結構。 The metal workpiece surface modification method according to claim 1, wherein the metal workpiece further has a base layer connected to the oxide layer, and the nano grain structure formed by the impact portion is from the oxidation The surface of the layer penetrates the substrate layer to change the surface grain structure of the substrate layer where the substrate layer meets the oxide layer. 如申請專利範圍第2項所述之金屬工件表面改質方法,其中該受衝擊處係自該氧化層深入該基底層,且其深度介於0.1至1μm之間。 The metal workpiece surface modification method according to claim 2, wherein the impact portion penetrates from the oxide layer into the base layer and has a depth of between 0.1 and 1 μm. 如申請專利範圍第1項所述之金屬工件表面改質方法,其中是以複數個微細顆粒衝擊該金屬工件,該微細顆粒的粒徑選自於0.8至4.5mm之間。 The metal workpiece surface modification method according to claim 1, wherein the metal workpiece is impacted by a plurality of fine particles having a particle diameter selected from 0.8 to 4.5 mm. 如申請專利範圍第4項所述之金屬工件表面改質方法,其中該些微細顆粒衝擊該金屬工件的速度為5至15m/s之間。 The metal workpiece surface modification method according to claim 4, wherein the fine particles impact the metal workpiece at a speed of between 5 and 15 m/s. 如申請專利範圍第1項所述之金屬工件表面改質方法,其中在該移除該金屬工件之該氧化層的步驟中,是以一去氧化層流體去除該氧化層,該去氧化層流體選自於氯化氫、三氟化氮。 The metal workpiece surface modification method according to claim 1, wherein in the step of removing the oxide layer of the metal workpiece, the oxide layer is removed by a deoxidation layer fluid, the deoxidation layer fluid It is selected from hydrogen chloride and nitrogen trifluoride. 如申請專利範圍第6項所述之金屬工件表面改質方法,其中以該去氧化層流體去除該氧化層的時間為0.5至5小時。 The metal workpiece surface modification method according to claim 6, wherein the time for removing the oxide layer by the deoxidation layer fluid is 0.5 to 5 hours. 如申請專利範圍第1項所述之金屬工件表面改質方法,其中該改質氣體選自於含氮氣體、含碳氣體或含碳氮混合氣體。 The method for modifying a surface of a metal workpiece according to claim 1, wherein the modified gas is selected from the group consisting of a nitrogen-containing gas, a carbon-containing gas, or a mixed gas containing carbon and nitrogen. 如申請專利範圍第7項所述之金屬工件表面改質方法,其中該改質氣體穿透該奈米晶粒結構並滲入該金屬工件的時間為2至36小時之間。 The metal workpiece surface modification method according to claim 7, wherein the modified gas penetrates the nano grain structure and infiltrates into the metal workpiece for a period of 2 to 36 hours. 如申請專利範圍第1項所述之金屬工件表面改質方法,其中該硬化層的厚度為5至30μm之間。 The metal workpiece surface modification method according to claim 1, wherein the hardened layer has a thickness of between 5 and 30 μm.
TW105135620A 2016-11-02 2016-11-02 Surface modification method of metallic workpiece TWI605898B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105135620A TWI605898B (en) 2016-11-02 2016-11-02 Surface modification method of metallic workpiece

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105135620A TWI605898B (en) 2016-11-02 2016-11-02 Surface modification method of metallic workpiece

Publications (2)

Publication Number Publication Date
TWI605898B true TWI605898B (en) 2017-11-21
TW201817531A TW201817531A (en) 2018-05-16

Family

ID=61023212

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135620A TWI605898B (en) 2016-11-02 2016-11-02 Surface modification method of metallic workpiece

Country Status (1)

Country Link
TW (1) TWI605898B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222585A (en) * 1997-11-14 1999-07-14 游天来 Metal surface treating method
CN101787528A (en) * 2010-02-09 2010-07-28 江苏大学 Nano coating preparation method and device based on ultrafast ultrahigh pressure photodynamics effect
CN103374685A (en) * 2012-04-23 2013-10-30 钢铁研究总院 Stainless steel material and manufacturing method thereof
TW201412442A (en) * 2012-09-20 2014-04-01 Univ Far East Method for metal surface modification
CN103695628A (en) * 2013-12-11 2014-04-02 江苏大学 Treatment method of metal material laser peening nano composite surface
CN103849756A (en) * 2012-12-03 2014-06-11 北京有色金属研究总院 Metal material surface treatment method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1222585A (en) * 1997-11-14 1999-07-14 游天来 Metal surface treating method
CN101787528A (en) * 2010-02-09 2010-07-28 江苏大学 Nano coating preparation method and device based on ultrafast ultrahigh pressure photodynamics effect
CN103374685A (en) * 2012-04-23 2013-10-30 钢铁研究总院 Stainless steel material and manufacturing method thereof
TW201412442A (en) * 2012-09-20 2014-04-01 Univ Far East Method for metal surface modification
CN103849756A (en) * 2012-12-03 2014-06-11 北京有色金属研究总院 Metal material surface treatment method
CN103695628A (en) * 2013-12-11 2014-04-02 江苏大学 Treatment method of metal material laser peening nano composite surface

Also Published As

Publication number Publication date
TW201817531A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
SG10201803412XA (en) Methods and apparatus for depositing silicon oxide on metal layers
JP2017523353A (en) Brake disc for automobile
JP2015526903A5 (en)
JP2009253268A (en) Substrate structure and method of forming the same
TW201223660A (en) Method for surface treatment of die-casting die
TWI605898B (en) Surface modification method of metallic workpiece
JP4947932B2 (en) Metal gas nitriding method
TWI500779B (en) Carbon material manufacturing method and carbon material
JPWO2007023936A1 (en) Shot peening method
JP2006342409A (en) Iron-based parts and manufacturing method therefor
RU2562185C1 (en) Modification method of surface of items from titanium alloys in vacuum
JP2011052313A (en) Nitriding treatment device and nitriding treatment method
JP2006336056A (en) Wear resistant steel component and its manufacturing method
JP2007077422A (en) Carburizing method and carburized component produced by the same
Zhao et al. Active screen plasma nitriding of AISI 316L austenitic stainless steel at different potentials
JPWO2012032630A1 (en) gear
JP5835129B2 (en) Surface treatment method
WO2018038151A1 (en) Multilayer structure and machine component having multilayer structure
WO2020133731A1 (en) Coarsened bare diamond wire saw and method for coarsening diamond
JPWO2018088532A1 (en) Etching apparatus and etching method
JP2004346353A (en) Method of forming amorphous carbon film
JP4217564B2 (en) Manufacturing method of mask for near-field exposure
RU2562187C1 (en) Method of modification of surface of products from titanic alloys in glow discharge
CN100523270C (en) Superficial lamella carburizing technique for steel workpiece
JPWO2012169163A1 (en) Surface treatment method for metal parts