TWI605572B - Non-volatile memory and manufacturing method thereof - Google Patents

Non-volatile memory and manufacturing method thereof Download PDF

Info

Publication number
TWI605572B
TWI605572B TW104119099A TW104119099A TWI605572B TW I605572 B TWI605572 B TW I605572B TW 104119099 A TW104119099 A TW 104119099A TW 104119099 A TW104119099 A TW 104119099A TW I605572 B TWI605572 B TW I605572B
Authority
TW
Taiwan
Prior art keywords
gate
dielectric layer
memory cell
substrate
volatile memory
Prior art date
Application number
TW104119099A
Other languages
Chinese (zh)
Other versions
TW201644037A (en
Inventor
鄭宗文
鄭育明
Original Assignee
物聯記憶體科技股份有限公司
鄭宗文
鄭育明
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 物聯記憶體科技股份有限公司, 鄭宗文, 鄭育明 filed Critical 物聯記憶體科技股份有限公司
Priority to TW104119099A priority Critical patent/TWI605572B/en
Publication of TW201644037A publication Critical patent/TW201644037A/en
Application granted granted Critical
Publication of TWI605572B publication Critical patent/TWI605572B/en

Links

Description

非揮發性記憶體及其製造方法 Non-volatile memory and method of manufacturing same

本發明是有關於一種半導體元件及其製造方法,且特別是有關於一種非揮發性記憶體及其製造方法。 The present invention relates to a semiconductor device and a method of fabricating the same, and more particularly to a non-volatile memory and a method of fabricating the same.

非揮發性記憶體由於具有可多次進行資料的存入、讀取、抹除等動作,且存入的資料在斷電後也不會消失的優點,已廣泛採用在個人電腦和電子設備。 Non-volatile memory has been widely used in personal computers and electronic devices because it has the advantages of allowing data to be stored, read, erased, etc., and the stored data does not disappear after power-off.

典型的一種非揮發性記憶體設計成具有堆疊式閘極(Stack-Gate)結構,其中包括依序設置於基底上的穿隧氧化層、浮置閘極(Floating gate)、閘間介電層以及控制閘極(Control Gate)。對此快閃記憶體元件進行程式化或抹除操作時,係分別於源極區、汲極區與控制閘極上施加適當電壓,以使電子注入多晶矽浮置閘極中,或將電子從多晶矽浮置閘極中拉出。 A typical non-volatile memory is designed to have a stacked gate-Gate structure including a tunneling oxide layer, a floating gate, and a gate dielectric layer sequentially disposed on the substrate. And control gate (Control Gate). When programming or erasing the flash memory device, apply appropriate voltages to the source region, the drain region, and the control gate to inject electrons into the polysilicon floating gate or to remove electrons from the polysilicon. Pull out in the floating gate.

在非揮發性記憶體的操作上,通常浮置閘極與控制閘極之間的閘極耦合率(Gate-Coupling Ratio,GCR)越大,其操作所需之工作電壓將越低,而快閃記憶體的操作速度與效率就會大大的提升。其中增加閘極耦合率的方法,包括了增加浮置閘極與控制 閘極間之重疊面積(Overlap Area)、降低浮置閘極與控制閘極間之介電層的厚度、以及增加浮置閘極與控制閘極之間的閘間介電層的介電常數(Dielectric Constant;k)等。 In the operation of non-volatile memory, the larger the Gate-Coupling Ratio (GCR) between the floating gate and the control gate, the lower the operating voltage required for its operation will be. The operating speed and efficiency of flash memory will be greatly improved. The method of increasing the gate coupling ratio includes increasing the floating gate and controlling The overlap area between the gates, the thickness of the dielectric layer between the floating gate and the control gate, and the dielectric constant of the dielectric layer between the floating gate and the control gate (Dielectric Constant; k) and so on.

然而,隨著積體電路正以更高的集積度朝向小型化的元件發展,所以必須縮小非揮發性記憶體之記憶胞尺寸以增進其集積度。其中,縮小記憶胞之尺寸可藉由減小記憶胞的閘極長度與位元線的間隔等方法來達成。但是,閘極長度變小會縮短了穿隧氧化層下方的通道長度(Channel Length),容易造成汲極與源極間發生不正常的電性貫通(Punch Through),如此將嚴重影響此記憶胞的電性表現。而且,在程式化及或抹除記憶胞時,電子重複穿越過穿隧氧化層,將耗損穿隧氧化層,導致記憶體元件可靠度降低。 However, as integrated circuits are moving toward miniaturized components with higher degree of accumulation, it is necessary to reduce the memory cell size of non-volatile memory to increase its accumulation. Wherein, reducing the size of the memory cell can be achieved by reducing the gate length of the memory cell and the spacing of the bit lines. However, the smaller the gate length shortens the channel length under the tunneling oxide layer, which is likely to cause abnormal electrical penetration between the drain and the source, which will seriously affect the memory cell. Electrical performance. Moreover, when the memory cells are programmed and erased, the electrons repeatedly traverse the tunnel oxide layer, which will wear out the tunnel oxide layer, resulting in a decrease in the reliability of the memory device.

本發明提供一種非揮發性記憶體及其製造方法,可以低操作電壓操作,進而增加半導體元件的可靠度。 The present invention provides a non-volatile memory and a method of fabricating the same that can operate at a low operating voltage, thereby increasing the reliability of the semiconductor component.

本發明提供一種非揮發性記憶體及其製造方法,可以提高元件的積集度。 The present invention provides a non-volatile memory and a method of manufacturing the same, which can improve the degree of integration of components.

本發明提出一種非揮發性記憶體,具有第一記憶胞,設置於基底上。此第一記憶胞具有堆疊閘極結構、浮置閘極、穿隧介電層、抹除閘介電層、輔助閘介電層、源極區、汲極區、控制閘極以及閘間介電層,其中堆疊閘極結構具有依序設置於基底上的閘介電層、輔助閘極、絕緣層以及抹除閘極。浮置閘極設置於 堆疊閘極結構的第一側的側壁,且浮置閘極的頂部具有轉角部,且抹除閘極包覆轉角部。穿隧介電層設置於浮置閘極與基底之間。抹除閘介電層設置於抹除閘極與浮置閘極之間。輔助閘介電層設置於輔助閘極與浮置閘極之間。源極區與汲極區分別設置於堆疊閘極結構與浮置閘極兩側的基底中,其中源極區鄰接浮置閘極,汲極區鄰接堆疊閘極結構的第二側,第一側與第二側相對。控制閘極設置於源極區與浮置閘極上。閘間介電層設置於控制閘極與浮置閘極之間以及所述控制閘極與所述抹除閘極之間。 The invention provides a non-volatile memory having a first memory cell disposed on a substrate. The first memory cell has a stacked gate structure, a floating gate, a tunneling dielectric layer, an erase gate dielectric layer, an auxiliary gate dielectric layer, a source region, a drain region, a control gate, and a gate dielectric The electrical layer, wherein the stacked gate structure has a gate dielectric layer, an auxiliary gate, an insulating layer, and an erase gate sequentially disposed on the substrate. Floating gate is set at The sidewalls of the first side of the gate structure are stacked, and the top of the floating gate has a corner portion, and the erase gate covers the corner portion. A tunneling dielectric layer is disposed between the floating gate and the substrate. The erase gate dielectric layer is disposed between the erase gate and the floating gate. The auxiliary gate dielectric layer is disposed between the auxiliary gate and the floating gate. The source region and the drain region are respectively disposed in the substrate on both sides of the stacked gate structure and the floating gate, wherein the source region is adjacent to the floating gate, and the drain region is adjacent to the second side of the stacked gate structure, first The side is opposite the second side. The control gate is disposed on the source region and the floating gate. The inter-gate dielectric layer is disposed between the control gate and the floating gate and between the control gate and the erase gate.

在本發明的一實施例中,上述非揮發性記憶體更具有第二記憶胞。第二記憶胞設置於基底上,且第二記憶胞的結構與第一記憶胞的結構相同,第二記憶胞與第一記憶胞成鏡像配置,共用源極區或汲極區。 In an embodiment of the invention, the non-volatile memory further has a second memory cell. The second memory cell is disposed on the substrate, and the structure of the second memory cell is the same as the structure of the first memory cell, and the second memory cell is mirrored with the first memory cell to share the source region or the drain region.

在本發明的一實施例中,上述第一記憶胞與上述的第二記憶胞共用控制閘極,且控制閘極填滿第一記憶胞與第二記憶胞之間的開口。 In an embodiment of the invention, the first memory cell shares a control gate with the second memory cell, and the control gate fills an opening between the first memory cell and the second memory cell.

在本發明的一實施例中,上述非揮發性記憶體更具有第三記憶胞。第三記憶胞設置於基底上,且第三記憶胞的結構與第一記憶胞的結構相同,共用源極區、輔助閘極、抹除閘極以及控制閘極,且控制閘極填滿第一記憶胞與第三記憶胞之間。 In an embodiment of the invention, the non-volatile memory further has a third memory cell. The third memory cell is disposed on the substrate, and the structure of the third memory cell is the same as that of the first memory cell, sharing the source region, the auxiliary gate, the erase gate, and the control gate, and the control gate is filled Between a memory cell and a third memory cell.

在本發明的一實施例中,上述穿隧介電層更設置於控制閘極與源極區之間。 In an embodiment of the invention, the tunneling dielectric layer is further disposed between the control gate and the source region.

在本發明的一實施例中,上述輔助閘介電層的材質包括 氧化矽/氮化矽、氧化矽/氮化矽/氧化矽或氧化矽。 In an embodiment of the invention, the material of the auxiliary gate dielectric layer includes Cerium oxide / tantalum nitride, tantalum oxide / tantalum nitride / tantalum oxide or tantalum oxide.

在本發明的一實施例中,上述絕緣層的材質包括氧化矽。上述閘間介電層的材質包括氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質(介電常數k>4)。 In an embodiment of the invention, the material of the insulating layer comprises yttrium oxide. The material of the inter-gate dielectric layer includes yttria/tantalum nitride/yttria or tantalum nitride/yttria or other high dielectric constant materials (dielectric constant k>4).

在本發明的一實施例中,上述穿隧介電層的材質包括氧化矽,穿隧介電層的厚度介於60埃至200埃之間。 In an embodiment of the invention, the material of the tunneling dielectric layer comprises yttrium oxide, and the thickness of the tunneling dielectric layer is between 60 angstroms and 200 angstroms.

在本發明的一實施例中,上述閘介電層的材質包括氧化矽,閘介電層的厚度小於或等於穿隧介電層的厚度。上述抹除閘介電層的材質包括氧化矽,抹除閘介電層的厚度介於100埃至180埃之間。 In an embodiment of the invention, the material of the gate dielectric layer comprises yttrium oxide, and the thickness of the thyristor layer is less than or equal to the thickness of the tunneling dielectric layer. The material of the eraser dielectric layer includes yttrium oxide, and the thickness of the eraser dielectric layer is between 100 angstroms and 180 angstroms.

在本發明的一實施例中,上述浮置閘極的轉角部角度小於或等於90度。 In an embodiment of the invention, the angle of the corner portion of the floating gate is less than or equal to 90 degrees.

本發明提供一種非揮發性記憶體的製造方法,包括下列步驟。首先,提供基底。接著,於基底上形成至少二堆疊結構,各堆疊結構由基底起依序包括閘介電層、輔助閘極、絕緣層以及犧牲層。然後,於堆疊結構側壁形成輔助閘介電層,於堆疊結構之間的基底上形成穿隧介電層。於堆疊結構的第一側的側壁形成浮置閘極,其中浮置閘極的頂部具有轉角部,轉角部鄰近犧牲層。於基底上形成材料層,填滿堆疊結構之間的間隙。移除犧牲層後,移除部分的材料層、部分的絕緣層以及部分的輔助閘介電層,以形成至少暴露出浮置閘極的轉角部的開口。至少於浮置閘極的轉角部上形成抹除閘介電層。於基底上形成填滿開口的抹除閘極, 其中抹除閘極包覆浮置閘極的轉角部。移除材料層,於浮置閘極及抹除閘極上形成閘間介電層。於浮置閘極上形成控制閘極。 The present invention provides a method of producing a non-volatile memory comprising the following steps. First, a substrate is provided. Next, at least two stacked structures are formed on the substrate, and each stacked structure sequentially includes a gate dielectric layer, an auxiliary gate, an insulating layer, and a sacrificial layer from the substrate. Then, an auxiliary gate dielectric layer is formed on sidewalls of the stacked structure to form a tunneling dielectric layer on the substrate between the stacked structures. A floating gate is formed on a sidewall of the first side of the stacked structure, wherein a top of the floating gate has a corner portion adjacent to the sacrificial layer. A layer of material is formed on the substrate to fill the gap between the stacked structures. After removing the sacrificial layer, a portion of the material layer, a portion of the insulating layer, and a portion of the auxiliary gate dielectric layer are removed to form an opening that exposes at least the corner portion of the floating gate. An eraser dielectric layer is formed on at least a corner portion of the floating gate. Forming an erase gate filling the opening on the substrate, The corner portion of the gate covered floating gate is erased. The material layer is removed, and a dielectric layer between the gates is formed on the floating gate and the erase gate. A control gate is formed on the floating gate.

在本發明的一實施例中,於堆疊結構的第一側的側壁形成浮置閘極的步驟包括:於堆疊結構的第一側的側壁形成導體間隙壁;以及圖案化導體間隙壁,以形成浮置閘極。在本發明的一實施例中,於堆疊結構的第一側的側壁形成導體間隙壁的步驟包括:於基底上形成導體層;以及對導體層進行非等向性蝕刻製程。 In an embodiment of the invention, the step of forming a floating gate on a sidewall of the first side of the stacked structure includes: forming a conductor spacer on a sidewall of the first side of the stacked structure; and patterning the conductor spacer to form Floating gate. In an embodiment of the invention, the step of forming a conductor spacer on the sidewall of the first side of the stacked structure includes: forming a conductor layer on the substrate; and performing an anisotropic etching process on the conductor layer.

在本發明的一實施例中,上述非揮發性記憶體的製造方法,更包括:於導體間隙壁之間的基底中形成源極區;以及於堆疊結構的第二側的基底中形成汲極區,第一側與第二側相對。 In an embodiment of the invention, the method for fabricating the non-volatile memory further includes: forming a source region in a substrate between the conductor spacers; and forming a drain in the substrate on the second side of the stacked structure The first side is opposite to the second side.

本發明的非揮發性記憶體及其製造方法中,在X方向(行方向)相鄰的兩記憶胞結構相同且例如是成鏡像配置,共用源極區或汲極區,以及共用控制閘極。而在Y方向(列方向)相鄰的兩記憶胞結構相同,共用源極區、輔助閘極(字元線)、抹除閘極以及控制閘極。因此能提高元件的積集度。 In the non-volatile memory of the present invention and the method of manufacturing the same, the two memory cells adjacent in the X direction (row direction) have the same structure and are, for example, mirrored, share the source region or the drain region, and share the control gate. . The two memory cells adjacent in the Y direction (column direction) have the same structure, sharing the source region, the auxiliary gate (word line), the erase gate, and the control gate. Therefore, the degree of integration of components can be improved.

本發明的非揮發性記憶體及其製造方法中,輔助閘極與抹除閘極平行設置,因此能提高元件的積集度。 In the non-volatile memory of the present invention and the method of manufacturing the same, the auxiliary gate is disposed in parallel with the erase gate, so that the degree of integration of the elements can be improved.

本發明的非揮發性記憶體中,輔助閘極下方的閘介電層的厚度較薄,在操作記憶胞時,可以使用較小的電壓打開/關閉輔助閘極下方的通道區,亦即可以降低操作電壓。 In the non-volatile memory of the present invention, the thickness of the gate dielectric layer under the auxiliary gate is relatively thin, and when operating the memory cell, a smaller voltage can be used to turn on/off the channel region under the auxiliary gate, that is, Reduce the operating voltage.

本發明的非揮發性記憶體及其製造方法中,控制閘極包覆浮置閘極,能夠增加控制閘極與浮置閘極之間所夾的面積,而 提高了記憶體元件的耦合率。 In the non-volatile memory of the present invention and the method of manufacturing the same, the control gate covers the floating gate, and the area between the control gate and the floating gate can be increased, and Increased coupling ratio of memory components.

本發明的非揮發性記憶體及其製造方法中,由於浮置閘極設置有轉角部,抹除閘極包覆此轉角部。轉角部的角度小於或等於90度,藉由轉角部使電場集中,可降低抹除電壓,有效率的將電子從浮置閘極拉出,提高抹除資料的速度。 In the non-volatile memory of the present invention and the method of manufacturing the same, since the floating gate is provided with a corner portion, the erase gate covers the corner portion. The angle of the corner portion is less than or equal to 90 degrees, and the electric field is concentrated by the corner portion, the erase voltage can be lowered, and the electrons can be efficiently pulled out from the floating gate to increase the speed of erasing the data.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、200‧‧‧基底 100, 200‧‧‧ base

102‧‧‧隔離結構 102‧‧‧Isolation structure

104‧‧‧主動區 104‧‧‧Active Area

110、112、114、116、MC‧‧‧記 憶胞 110, 112, 114, 116, MC‧‧‧ Recall

120‧‧‧堆疊閘極結構 120‧‧‧Stack gate structure

122‧‧‧閘介電層 122‧‧‧gate dielectric layer

124‧‧‧輔助閘極 124‧‧‧Auxiliary gate

126‧‧‧絕緣層 126‧‧‧Insulation

128、236‧‧‧抹除閘極 128, 236‧‧‧ erasing the gate

130‧‧‧輔助閘介電層 130‧‧‧Auxiliary gate dielectric layer

132、234‧‧‧抹除閘介電層 132, 234‧‧‧ Wipe the gate dielectric layer

140、224、FG0、FG1‧‧‧浮置閘極 140, 224, FG0, FG1‧‧‧ floating gate

141、226‧‧‧轉角部 141, 226‧‧‧ corner

142、218‧‧‧穿隧介電層 142, 218‧‧‧ tunneling dielectric layer

146、222‧‧‧源極區 146, 222‧‧‧ source area

148、242‧‧‧汲極區 148, 242‧‧ ‧ bungee area

150、240‧‧‧控制閘極 150, 240‧‧‧Control gate

152、238‧‧‧閘間介電層 152, 238‧‧‧ Inter-gate dielectric layer

160、244‧‧‧層間絕緣層 160, 244‧‧ ‧ interlayer insulation

162、246‧‧‧插塞 162, 246‧‧ ‧ plug

164、248‧‧‧位元線 164, 248‧‧‧ bit line

202、214、216‧‧‧介電層 202, 214, 216‧‧ dielectric layers

204‧‧‧導體層 204‧‧‧Conductor layer

206‧‧‧絕緣層 206‧‧‧Insulation

208‧‧‧犧牲層 208‧‧‧sacrificial layer

210‧‧‧堆疊結構 210‧‧‧Stack structure

212‧‧‧隔離材料層 212‧‧‧Separation material layer

220‧‧‧導體間隙壁 220‧‧‧ conductor spacer

228‧‧‧材料層 228‧‧‧Material layer

230、232‧‧‧開口 230, 232‧‧‧ openings

圖1A為依照本發明之實施例所繪示的一種非揮發性記憶體的上視圖。 1A is a top view of a non-volatile memory in accordance with an embodiment of the present invention.

圖1B為依照本發明之實施例所繪示的一種非揮發性記憶體的剖面示意圖。 FIG. 1B is a schematic cross-sectional view of a non-volatile memory according to an embodiment of the invention.

圖2A到圖2I為依照本發明之一實施例所繪示的一種非揮發性記憶體的製作流程的剖面示意圖。 2A to FIG. 2I are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to an embodiment of the invention.

圖3A為對記憶胞進行程式化操作之一實例的示意圖。 Fig. 3A is a schematic diagram showing an example of a program operation of a memory cell.

圖3B為對記憶胞進行抹除操作之一實例的示意圖。 Fig. 3B is a schematic diagram showing an example of an erase operation on a memory cell.

圖3C為對記憶胞進行讀取操作之一實例的示意圖。 Fig. 3C is a schematic diagram showing an example of a reading operation on a memory cell.

圖1A為依照本發明之實施例所繪示的一種非揮發性記憶體的上視圖。圖1B為依照本發明之實施例所繪示的一種非揮發 性記憶體的剖面示意圖。圖1B所繪示為沿著圖1A中A-A'線的剖面圖。 1A is a top view of a non-volatile memory in accordance with an embodiment of the present invention. FIG. 1B is a non-volatile according to an embodiment of the invention. Schematic diagram of the profile of sexual memory. FIG. 1B is a cross-sectional view taken along line AA' of FIG. 1A.

請參照圖1A及圖1B,非揮發性記憶體包括多個記憶胞MC。這些記憶胞MC排列成行/列陣列。 Referring to FIG. 1A and FIG. 1B, the non-volatile memory includes a plurality of memory cells MC. These memory cells MC are arranged in a row/column array.

非揮發性記憶體設置於基底100上。在基底100中例如設置有規則排列的多個隔離結構102,以定義出具有格狀的主動區104。隔離結構102例如是淺溝渠隔離結構。 The non-volatile memory is disposed on the substrate 100. A plurality of isolation structures 102 regularly arranged in the substrate 100 are provided, for example, to define an active region 104 having a lattice shape. The isolation structure 102 is, for example, a shallow trench isolation structure.

各記憶胞MC包括堆疊閘極結構120、輔助閘介電層130、抹除閘介電層132、浮置閘極140、穿隧介電層142、源極區146、汲極區148、控制閘極150以及閘間介電層152。此外,基底100上更具有層間絕緣層160、插塞162與位元線164。 Each memory cell MC includes a stacked gate structure 120, an auxiliary gate dielectric layer 130, an erase gate dielectric layer 132, a floating gate 140, a tunneling dielectric layer 142, a source region 146, a drain region 148, and control. Gate 150 and gate dielectric layer 152. In addition, the substrate 100 further has an interlayer insulating layer 160, a plug 162 and a bit line 164.

堆疊閘極結構120從基底100起依序由閘介電層122、輔助閘極(字元線)124、絕緣層126以及抹除閘極128構成。閘介電層122例如是設置於輔助閘極124與基底100之間。閘介電層122的材質例如是氧化矽。閘介電層122的厚度例如小於或等於穿隧介電層142的厚度。 The stacked gate structure 120 is sequentially formed from the substrate 100 by a gate dielectric layer 122, an auxiliary gate (word line) 124, an insulating layer 126, and an erase gate 128. The gate dielectric layer 122 is disposed, for example, between the auxiliary gate 124 and the substrate 100. The material of the gate dielectric layer 122 is, for example, hafnium oxide. The thickness of the gate dielectric layer 122 is, for example, less than or equal to the thickness of the tunnel dielectric layer 142.

輔助閘極124例如是設置於閘介電層122與絕緣層126之間。抹除閘極128例如是設置於絕緣層126上。輔助閘極124、抹除閘極128例如是在Y方向延伸。輔助閘極124、抹除閘極128的材質例如是摻雜多晶矽等導體材料。絕緣層126例如是設置於輔助閘極124與抹除閘極128之間。絕緣層126的材質例如是氧化矽。 The auxiliary gate 124 is disposed between the gate dielectric layer 122 and the insulating layer 126, for example. The erase gate 128 is, for example, disposed on the insulating layer 126. The auxiliary gate 124 and the erase gate 128 extend, for example, in the Y direction. The material of the auxiliary gate 124 and the erase gate 128 is, for example, a conductor material such as doped polysilicon. The insulating layer 126 is disposed, for example, between the auxiliary gate 124 and the erase gate 128. The material of the insulating layer 126 is, for example, cerium oxide.

輔助閘介電層130例如是設置於浮置閘極140與輔助閘極124之間。輔助閘介電層130的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽。輔助閘介電層130的厚度例如大於或等於抹除閘介電層132的厚度。抹除閘介電層132例如是設置於抹除閘極128與浮置閘極140之間。抹除閘介電層132的材質例如是氧化矽。抹除閘介電層132的厚度例如介於100埃至180埃之間。抹除閘介電層132例如是更設置於抹除閘極128與輔助閘極124之間。 The auxiliary gate dielectric layer 130 is disposed, for example, between the floating gate 140 and the auxiliary gate 124. The material of the auxiliary gate dielectric layer 130 is, for example, hafnium oxide/tantalum nitride/yttria or tantalum nitride/yttria. The thickness of the auxiliary gate dielectric layer 130 is, for example, greater than or equal to the thickness of the erase gate dielectric layer 132. The erase gate dielectric layer 132 is disposed, for example, between the erase gate 128 and the floating gate 140. The material of the erase gate dielectric layer 132 is, for example, ruthenium oxide. The thickness of the erase gate dielectric layer 132 is, for example, between 100 angstroms and 180 angstroms. The erase gate dielectric layer 132 is, for example, disposed between the erase gate 128 and the auxiliary gate 124.

浮置閘極140例如是設置於堆疊閘極結構120之第一側的側壁,且此浮置閘極140的頂部具有轉角部141。抹除閘極128包覆浮置閘極140的轉角部141。此轉角部141角度小於或等於90度。浮置閘極140的材質例如是摻雜多晶矽等導體材料。浮置閘極140可由一層或多層導體層構成。 The floating gate 140 is, for example, a sidewall disposed on a first side of the stacked gate structure 120, and the top of the floating gate 140 has a corner portion 141. The erase gate 128 covers the corner portion 141 of the floating gate 140. The angle of the corner portion 141 is less than or equal to 90 degrees. The material of the floating gate 140 is, for example, a conductor material such as doped polysilicon. The floating gate 140 may be composed of one or more conductor layers.

穿隧介電層142例如是設置於浮置閘極140與基底100之間。此穿隧介電層142例如是更設置於控制閘極150與源極區146之間。穿隧介電層142的材質例如是氧化矽。穿隧介電層142的厚度介於60埃至200埃之間。 The tunneling dielectric layer 142 is disposed, for example, between the floating gate 140 and the substrate 100. The tunneling dielectric layer 142 is disposed, for example, between the control gate 150 and the source region 146. The material of the tunneling dielectric layer 142 is, for example, yttrium oxide. The thickness of the tunneling dielectric layer 142 is between 60 angstroms and 200 angstroms.

源極區146例如是設置於浮置閘極140旁的基底100中。汲極區148例如是設置於堆疊閘極結構120第二側的基底100中,其中第一側與第二側相對。源極區146、汲極區148例如是含有N型或P型摻質的摻雜區,端視元件的設計而定。 The source region 146 is, for example, disposed in the substrate 100 beside the floating gate 140. The drain region 148 is, for example, disposed in the substrate 100 on the second side of the stacked gate structure 120, with the first side being opposite the second side. The source region 146 and the drain region 148 are, for example, doped regions containing N-type or P-type dopants, depending on the design of the terminal elements.

控制閘極150例如是設置於源極區146與浮置閘極140 上。控制閘極150例如是在Y方向(列方向)延伸。控制閘極150的材質例如是摻雜多晶矽等導體材料。閘間介電層152例如是設置於控制閘極150與浮置閘極140之間。閘間介電層152的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質(k>4)。 The control gate 150 is, for example, disposed in the source region 146 and the floating gate 140 on. The control gate 150 extends, for example, in the Y direction (column direction). The material of the control gate 150 is, for example, a conductor material such as doped polysilicon. The inter-gate dielectric layer 152 is disposed, for example, between the control gate 150 and the floating gate 140. The material of the inter-gate dielectric layer 152 is, for example, tantalum oxide/tantalum nitride/yttria or tantalum nitride/yttria or other high dielectric constant material (k>4).

層間絕緣層160例如是設置於基底100上,並且覆蓋第一記憶胞110與第二記憶胞112。層間絕緣層160的材質例如是氧化矽、磷矽玻璃、硼磷矽玻璃或其他適合之介電材料。插塞162例如是設置於層間絕緣層160中,插塞162與汲極區148電性連接。插塞162的材質例如是鋁、鎢等導體材料。位元線164例如是設置於層間絕緣層160上,位元線164藉由插塞162與汲極區148電性連接。位元線164的材質例如是鋁、鎢、銅等導體材料。 The interlayer insulating layer 160 is disposed on the substrate 100 and covers the first memory cell 110 and the second memory cell 112, for example. The material of the interlayer insulating layer 160 is, for example, ruthenium oxide, phosphorous glass, borophosphon glass or other suitable dielectric material. The plug 162 is disposed, for example, in the interlayer insulating layer 160, and the plug 162 is electrically connected to the drain region 148. The material of the plug 162 is, for example, a conductor material such as aluminum or tungsten. The bit line 164 is disposed, for example, on the interlayer insulating layer 160, and the bit line 164 is electrically connected to the drain region 148 by the plug 162. The material of the bit line 164 is, for example, a conductor material such as aluminum, tungsten or copper.

在X方向(行方向)上,多個記憶胞MC藉由源極區146或汲極區148串接在一起。舉例來說,記憶胞110的結構與記憶胞112的結構相同,且記憶胞110與記憶胞112成鏡像配置,共用源極區146或汲極區148;記憶胞114的結構與記憶胞116的結構相同,且記憶胞114與記憶胞116成鏡像配置,共用源極區146或汲極區148。同時,記憶胞110與記憶胞112共用控制閘極150,且控制閘極150填滿記憶胞110與記憶胞112之間;記憶胞114與記憶胞116共用控制閘極150,且控制閘極150填滿記憶胞114與記憶胞116之間。 In the X direction (row direction), a plurality of memory cells MC are connected in series by a source region 146 or a drain region 148. For example, the structure of the memory cell 110 is the same as that of the memory cell 112, and the memory cell 110 is mirrored with the memory cell 112, sharing the source region 146 or the drain region 148; the structure of the memory cell 114 and the memory cell 116 The structure is the same, and the memory cell 114 is mirrored with the memory cell 116, sharing the source region 146 or the drain region 148. At the same time, the memory cell 110 and the memory cell 112 share the control gate 150, and the control gate 150 fills the memory cell 110 and the memory cell 112; the memory cell 114 shares the control gate 150 with the memory cell 116, and controls the gate 150. Fill between memory cell 114 and memory cell 116.

在Y方向(列方向)上,多個記憶胞MC由源極區146、輔 助閘極(字元線)124、抹除閘極128以及控制閘極150串接在一起。亦即,在列方向上,多個記憶胞MC共用同一個源極區146、輔助閘極(字元線)124、抹除閘極128以及控制閘極150。舉例來說,記憶胞110的結構與記憶胞114的結構相同,記憶胞112的結構與記憶胞116的結構相同,控制閘極150填滿記憶胞110與記憶胞114以及記憶胞112的結構與記憶胞116之間。同一列的記憶胞114與第一記憶胞110共用同一源極區146、輔助閘極(字元線)124、抹除閘極128以及控制閘極150。 In the Y direction (column direction), a plurality of memory cells MC are sourced by the source region 146, The helper gate (word line) 124, the erase gate 128, and the control gate 150 are connected in series. That is, in the column direction, the plurality of memory cells MC share the same source region 146, the auxiliary gate (word line) 124, the erase gate 128, and the control gate 150. For example, the structure of the memory cell 110 is the same as that of the memory cell 114. The structure of the memory cell 112 is the same as that of the memory cell 116. The control gate 150 fills the structure of the memory cell 110 and the memory cell 114 and the memory cell 112. Between memory cells 116. The memory cells 114 of the same column share the same source region 146, the auxiliary gate (word line) 124, the erase gate 128, and the control gate 150 with the first memory cell 110.

在上述的非揮發性記憶體中,在X方向(行方向)相鄰的兩記憶胞MC結構相同且例如是成鏡像配置,共用源極區146或汲極區148,以及共用控制閘極150。而在Y方向(列方向)相鄰的兩記憶胞MC結構相同,共用源極區146、輔助閘極(字元線)124(124a)、抹除閘極128以及控制閘極150。因此能提高元件的積集度。 In the above non-volatile memory, the two memory cells MC adjacent in the X direction (row direction) have the same structure and are, for example, mirrored, share the source region 146 or the drain region 148, and share the control gate 150. . The two memory cells MC adjacent in the Y direction (column direction) have the same structure, and share the source region 146, the auxiliary gate (word line) 124 (124a), the erase gate 128, and the control gate 150. Therefore, the degree of integration of components can be improved.

在上述的非揮發性記憶體中,輔助閘極與抹除閘極配置成堆疊閘極結構,因此能提高元件的積集度。 In the above non-volatile memory, the auxiliary gate and the erase gate are arranged in a stacked gate structure, so that the degree of integration of components can be improved.

在上述的非揮發性記憶體中,閘介電層122的厚度較薄,在操作記憶胞時,可以使用較小的電壓打開/關閉輔助閘極124下方的通道區,亦即可以降低操作電壓。控制閘極150包覆浮置閘極140,能夠增加控制閘極150與浮置閘極140之間所夾的面積,而提高了記憶體元件的的耦合率。由於浮置閘極140具有轉角部141。抹除閘極128包覆轉角部141,且此轉角部141的角度小於 或等於90度,藉由轉角部141使電場集中,可降低抹除電壓有效率的將電子從浮置閘極140拉出,提高抹除資料的速度。 In the above non-volatile memory, the thickness of the gate dielectric layer 122 is relatively thin, and when operating the memory cell, a smaller voltage can be used to turn on/off the channel region under the auxiliary gate 124, that is, the operating voltage can be lowered. . The control gate 150 covers the floating gate 140, which can increase the area sandwiched between the control gate 150 and the floating gate 140, and improve the coupling ratio of the memory element. Since the floating gate 140 has the corner portion 141. The gate 128 is wiped to cover the corner portion 141, and the angle of the corner portion 141 is smaller than Or equal to 90 degrees, the electric field is concentrated by the corner portion 141, and the erasing voltage can be reduced to efficiently pull the electrons out of the floating gate 140, thereby increasing the speed at which the data is erased.

圖2A到圖2H為依照本發明之一實施例所繪示的一種非揮發性記憶體的製作流程的剖面示意圖。 2A-2H are schematic cross-sectional views showing a process of fabricating a non-volatile memory according to an embodiment of the invention.

請參照圖2A,首先提供基底200。接著,於基底200上依序形成介電層202、導體層204、絕緣層206以及犧牲層208。介電層202的材質例如是氧化矽,其形成方法例如是熱氧化法。導體層204的材質例如是摻雜多晶矽或多晶矽化金屬等。當導體層204的材質為摻雜多晶矽時,其形成方法例如是利用化學氣相沈積法形成一層未摻雜多晶矽層後,進行離子植入步驟以形成;或者也可採用臨場(in-situ)植入摻質的方法,利用化學氣相沈積法形成。絕緣層206的材質例如是氧化矽,其形成方法例如是化學氣相沈積法。犧牲層208的材質包括與絕緣層206的材質具有不同蝕刻選擇性者,例如是氮化矽,其形成方法例如是化學氣相沈積法。 Referring to Figure 2A, a substrate 200 is first provided. Next, a dielectric layer 202, a conductor layer 204, an insulating layer 206, and a sacrificial layer 208 are sequentially formed on the substrate 200. The material of the dielectric layer 202 is, for example, ruthenium oxide, and the formation method thereof is, for example, a thermal oxidation method. The material of the conductor layer 204 is, for example, doped polysilicon or polycrystalline metal. When the material of the conductor layer 204 is doped polysilicon, the formation method is, for example, forming an undoped polysilicon layer by chemical vapor deposition, and performing an ion implantation step to form; or in-situ A method of implanting a dopant is formed by chemical vapor deposition. The material of the insulating layer 206 is, for example, cerium oxide, and the forming method thereof is, for example, a chemical vapor deposition method. The material of the sacrificial layer 208 includes a different etching selectivity from the material of the insulating layer 206, such as tantalum nitride, and the forming method thereof is, for example, chemical vapor deposition.

接著,圖案化犧牲層208、絕緣層206、導體層204以及介電層202,以形成至少二堆疊結構210。形成至少二堆疊結構210的方法例如是先於基底200上形成一層圖案化光阻層(未繪示),圖案化光阻層的形成方法例如是先於整個基底200上形成一層光阻材料層,然後進行曝光、顯影而形成之。然後,以圖案化光阻層為罩幕,移除部份犧牲層208、絕緣層206、導體層204以及介電層202,以形成至少二堆疊結構210。接著,移除圖案化光阻層。 移除圖案化光阻層的方法例如是濕式去光阻法或乾式去光阻法。其中,介電層202作為閘介電層。導體層204作為輔助閘極(字元線)。 Next, the sacrificial layer 208, the insulating layer 206, the conductor layer 204, and the dielectric layer 202 are patterned to form at least two stacked structures 210. The method for forming the at least two stacked structures 210 is, for example, forming a patterned photoresist layer (not shown) on the substrate 200. The method for forming the patterned photoresist layer is, for example, forming a layer of photoresist material on the entire substrate 200. Then, it is formed by exposure and development. Then, a portion of the sacrificial layer 208, the insulating layer 206, the conductor layer 204, and the dielectric layer 202 are removed by using the patterned photoresist layer as a mask to form at least two stacked structures 210. Next, the patterned photoresist layer is removed. The method of removing the patterned photoresist layer is, for example, a wet de-resisting method or a dry de-resisting method. The dielectric layer 202 serves as a gate dielectric layer. The conductor layer 204 serves as an auxiliary gate (word line).

請參照圖2B,於此堆疊結構210的側壁形成隔離材料層212。隔離材料層212的材質例如是氧化矽/氮化矽/氧化矽或氮化矽/氧化矽。隔離材料層212的形成方法例如是先於基底200上依序形成覆蓋各堆疊結構210的介電層214與介電層216,然後移除部分介電層214與介電層216而於堆疊結構210的側壁形成隔離材料層212。介電層214的材質例如是氮化矽,介電層216的材質例如是氧化矽。介電層214與介電層216的形成方法例如是化學氣相沈積法。移除部分介電層214與介電層216的方法例如是非等向性蝕刻法。 Referring to FIG. 2B, the sidewall of the stacked structure 210 forms a layer of isolation material 212. The material of the isolating material layer 212 is, for example, hafnium oxide/tantalum nitride/yttria or tantalum nitride/yttria. The method for forming the isolation material layer 212 is, for example, sequentially forming a dielectric layer 214 and a dielectric layer 216 covering the stacked structures 210 on the substrate 200, and then removing a portion of the dielectric layer 214 and the dielectric layer 216 to form a stacked structure. The sidewalls of 210 form a layer of isolation material 212. The material of the dielectric layer 214 is, for example, tantalum nitride, and the material of the dielectric layer 216 is, for example, tantalum oxide. The method of forming the dielectric layer 214 and the dielectric layer 216 is, for example, a chemical vapor deposition method. A method of removing a portion of the dielectric layer 214 and the dielectric layer 216 is, for example, an anisotropic etching method.

接著,於各堆疊結構210之間的基底200上形成穿隧介電層218。穿隧介電層218的材質例如是氧化矽,其形成方法例如是熱氧化法。 Next, a tunneling dielectric layer 218 is formed on the substrate 200 between the stacked structures 210. The material of the tunneling dielectric layer 218 is, for example, ruthenium oxide, and the formation method thereof is, for example, a thermal oxidation method.

請參照圖2C,於堆疊結構210的側壁形成導體間隙壁220。導體間隙壁220的形成方法包括下列步驟。先於基底200上形成一層導體層(未繪示)。導體層的材質例如是摻雜多晶矽或多晶矽化金屬等。當導體層的材質為摻雜多晶矽時,其形成方法例如是利用化學氣相沈積法形成一層未摻雜多晶矽層後,進行離子植入步驟以形成;或者也可採用臨場(in-situ)植入摻質的方法,利用化學氣相沈積法形成。然後,移除部份導體層。移除部份導體層 的方法例如是非等向性蝕刻法或回蝕法。 Referring to FIG. 2C, a conductor spacer 220 is formed on a sidewall of the stacked structure 210. The method of forming the conductor spacer 220 includes the following steps. A layer of conductor (not shown) is formed on the substrate 200. The material of the conductor layer is, for example, doped polysilicon or polycrystalline metal. When the material of the conductor layer is doped polysilicon, the formation method is, for example, formation of an undoped polysilicon layer by chemical vapor deposition, followed by ion implantation step; or in-situ implantation The method of doping is formed by chemical vapor deposition. Then, part of the conductor layer is removed. Remove part of the conductor layer The method is, for example, an anisotropic etching method or an etch back method.

接著,於導體間隙壁220之間的基底200中形成源極區222。亦即,於堆疊結構210第一側的導體間隙壁220旁的基底200中形成源極區222。源極區222的形成方法例如是以第一側的導體間隙壁2220為罩幕,進行離子植入製程。植入的摻質可以是N型或P型摻質,其端視元件的設計而定。 Next, a source region 222 is formed in the substrate 200 between the conductor spacers 220. That is, the source region 222 is formed in the substrate 200 beside the conductor spacer 220 on the first side of the stacked structure 210. The method of forming the source region 222 is performed by, for example, using the conductor spacer 2220 on the first side as a mask to perform an ion implantation process. The implanted dopant can be either an N-type or a P-type dopant depending on the design of the component.

請參照圖2D,圖案化導體間隙壁220,而形成浮置閘極224。圖案化導體間隙壁220的方法如下。於基底200上形成一層圖案化光阻層(未繪示)。圖案化光阻層的形成方法例如是先於整個基底200上形成一層光阻材料層,然後進行曝光、顯影而形成之。以圖案化光阻層為罩幕,移除部分第一側的導體間隙壁220,使其成塊狀,並移除各堆疊結構210第二側的導體間隙壁220,其中第二側與第一側相對。之後,移除圖案化光阻層。此浮置閘極224的頂部具有轉角部226。接著,移除部分浮置閘極224,使轉角部226鄰近犧牲層208。亦即,轉角部226高度落於犧牲層208高度間。 Referring to FIG. 2D, the conductor spacers 220 are patterned to form the floating gates 224. The method of patterning the conductor spacers 220 is as follows. A patterned photoresist layer (not shown) is formed on the substrate 200. The method of forming the patterned photoresist layer is formed, for example, by forming a layer of a photoresist material on the entire substrate 200, followed by exposure and development. With the patterned photoresist layer as a mask, a portion of the first side conductor spacer 220 is removed to form a block, and the conductor spacer 220 on the second side of each stacked structure 210 is removed, wherein the second side and the second side One side is opposite. Thereafter, the patterned photoresist layer is removed. The top of this floating gate 224 has a corner portion 226. Next, a portion of the floating gate 224 is removed such that the corner portion 226 is adjacent to the sacrificial layer 208. That is, the corner portion 226 is highly dropped between the heights of the sacrificial layers 208.

然後,於基底200上形成一層材料層228,以填滿堆疊結構210之間的間隙。材料層228的材料例如是氧化矽,其形成方法例如是化學氣相沈積法。 A layer of material 228 is then formed over the substrate 200 to fill the gap between the stacked structures 210. The material of the material layer 228 is, for example, ruthenium oxide, and the formation method thereof is, for example, a chemical vapor deposition method.

請參照圖2E,移除犧牲層208,並且移除部分介電層214而形成開口230。移除犧牲層208以及部分介電層214的方法例如是濕式蝕刻法或乾式蝕刻法。 Referring to FIG. 2E, the sacrificial layer 208 is removed, and a portion of the dielectric layer 214 is removed to form the opening 230. The method of removing the sacrificial layer 208 and the portion of the dielectric layer 214 is, for example, a wet etching method or a dry etching method.

請參照圖2F,移除部分的材料層228、部分的絕緣層206以及部分的介電層216而形成開口232。開口232至少暴露出浮置閘極224的轉角部226。移除部分的材料層228、部分的絕緣層206以及部分的介電層216的方法例如是濕式蝕刻法或乾式蝕刻法。此時,在浮置閘極224與導體層204之間的隔離材料層212是作為輔助閘介電層。 Referring to FIG. 2F, a portion of the material layer 228, a portion of the insulating layer 206, and a portion of the dielectric layer 216 are removed to form an opening 232. The opening 232 exposes at least the corner portion 226 of the floating gate 224. A method of removing a portion of the material layer 228, a portion of the insulating layer 206, and a portion of the dielectric layer 216 is, for example, a wet etching method or a dry etching method. At this time, the isolation material layer 212 between the floating gate 224 and the conductor layer 204 serves as an auxiliary gate dielectric layer.

請參照圖2G,於基底200上形成抹除閘介電層234。抹除閘介電層234的材質例如是氧化矽。抹除閘介電層234的形成方法例如是化學氣相沈積法。於基底200上形成填滿開口232的抹除閘極236。抹除閘極236的形成方法如下:先於基底200上形成填滿開口232的一層導體層(未繪示),然後移除開口232外的部分導體層。此導體層的材質例如是摻雜多晶矽或多晶矽化金屬等。當導體層的材質為摻雜多晶矽時,其形成方法例如是利用化學氣相沈積法形成一層未摻雜多晶矽層後,進行離子植入步驟以形成;或者也可採用臨場(in-situ)植入摻質的方法,利用化學氣相沈積法形成。移除開口232外的部分導體層的方法例如是回蝕刻法或化學機械研磨法。 Referring to FIG. 2G, an erase gate dielectric layer 234 is formed on the substrate 200. The material of the erase gate dielectric layer 234 is, for example, hafnium oxide. The method of forming the gate dielectric layer 234 is, for example, a chemical vapor deposition method. An erase gate 236 filling the opening 232 is formed on the substrate 200. The erase gate 236 is formed by forming a conductor layer (not shown) filling the opening 232 on the substrate 200, and then removing a portion of the conductor layer outside the opening 232. The material of the conductor layer is, for example, doped polysilicon or polycrystalline metal. When the material of the conductor layer is doped polysilicon, the formation method is, for example, formation of an undoped polysilicon layer by chemical vapor deposition, followed by ion implantation step; or in-situ implantation The method of doping is formed by chemical vapor deposition. A method of removing a portion of the conductor layer outside the opening 232 is, for example, an etch back method or a chemical mechanical polishing method.

請參照圖2H,移除部分的抹除閘介電層234,並移除材料層228。移除部分的抹除閘介電層234以及材料層228的方法例如是濕式蝕刻法或乾式蝕刻法。 Referring to FIG. 2H, a portion of the erase gate dielectric layer 234 is removed and the material layer 228 is removed. A method of removing a portion of the erase gate dielectric layer 234 and the material layer 228 is, for example, a wet etching method or a dry etching method.

然後,於基底200上形成閘間介電層238,此閘間介電層238覆蓋浮置閘極224以及抹除閘極236。閘間介電層238的材質 包括氧化矽/氮化矽/氧化矽。閘間介電層238的形成方法例如是利用化學氣相沉積法依序形成氧化矽層、氮化矽層與另一層氧化矽層。閘間介電層238的材質也可以是氮化矽/氧化矽或其他高介電常數的材質(k>4)。 Then, an inter-gate dielectric layer 238 is formed on the substrate 200, and the inter-gate dielectric layer 238 covers the floating gate 224 and the erase gate 236. Material of the dielectric layer 238 of the gate Including cerium oxide / tantalum nitride / cerium oxide. The method of forming the inter-gate dielectric layer 238 is, for example, sequentially forming a hafnium oxide layer, a tantalum nitride layer, and another layer of hafnium oxide by chemical vapor deposition. The material of the inter-gate dielectric layer 238 may also be tantalum nitride/yttria or other high dielectric constant material (k>4).

然後,於浮置閘極224上形成控制閘極240。控制閘極240的材質例如是摻雜多晶矽或多晶矽化金屬等。控制閘極240的形成方法例如是先於基底上形成導體層(未繪示),然後圖案化導體層而形成控制閘極240。導體層的形成方法例如是化學氣相沈積法。 Then, a control gate 240 is formed on the floating gate 224. The material of the control gate 240 is, for example, doped polysilicon or polycrystalline metal. The control gate 240 is formed by, for example, forming a conductor layer (not shown) on the substrate, and then patterning the conductor layer to form the control gate 240. The method of forming the conductor layer is, for example, a chemical vapor deposition method.

接著,於堆疊結構210第二側旁的基底200中形成汲極區242。汲極區242的形成方法例如是進行離子植入製程。植入的摻質可以是N型或P型摻質,其端視元件的設計而定。源極區222以及汲極區242的摻雜摻質以及摻雜濃度可相同亦可不同。 Next, a drain region 242 is formed in the substrate 200 next to the second side of the stacked structure 210. The method of forming the drain region 242 is, for example, an ion implantation process. The implanted dopant can be either an N-type or a P-type dopant depending on the design of the component. The doping dopant and the doping concentration of the source region 222 and the drain region 242 may be the same or different.

請參照圖2I,於基底200上形成一層層間絕緣層244。層間絕緣層244的材質例如是氧化矽、磷矽玻璃、硼磷矽玻璃或其他適合之介電材料,其形成方法例如是化學氣相沈積法。然後,於此層間絕緣層244中形成分別電性連接汲極區242的多個插塞246。插塞246的材質例如是鋁、鎢等導體材料。 Referring to FIG. 2I, an interlayer insulating layer 244 is formed on the substrate 200. The material of the interlayer insulating layer 244 is, for example, cerium oxide, phosphoric glass, borophosphon glass or other suitable dielectric material, and the forming method thereof is, for example, a chemical vapor deposition method. Then, a plurality of plugs 246 electrically connected to the drain regions 242 are formed in the interlayer insulating layer 244. The material of the plug 246 is, for example, a conductor material such as aluminum or tungsten.

於層間絕緣層244中形成插塞246的步驟如下。首先移除部分層間絕緣層244以形成暴露汲極區242的開口。接著,於基底200上形成一層填滿開口之導體材料層(未繪示)。之後,利用化學機械研磨法或回蝕刻法移除部分導體材料層,直到暴露出層 間絕緣層244。其中開口的形成方法例如是微影蝕刻技術。 The step of forming the plug 246 in the interlayer insulating layer 244 is as follows. A portion of the interlayer insulating layer 244 is first removed to form an opening that exposes the drain region 242. Next, a layer of conductive material (not shown) filled with openings is formed on the substrate 200. Thereafter, a portion of the conductor material layer is removed by chemical mechanical polishing or etch back until the layer is exposed Inter-insulating layer 244. The method of forming the opening is, for example, a lithography technique.

接著,於層間絕緣層244上形成位元線248。位元線248藉由插塞246與汲極區242電性連接。位元線248的材質例如是鋁、鎢、銅等導體材料。位元線248的形成方法例如是在基底200上形成導體層(未繪示),然後圖案化導體層而形成位元線248。導體層的形成方法例如是物理氣相沈積法或化學氣相沈積法。 Next, a bit line 248 is formed on the interlayer insulating layer 244. Bit line 248 is electrically coupled to drain region 242 by plug 246. The material of the bit line 248 is, for example, a conductor material such as aluminum, tungsten or copper. The bit line 248 is formed by, for example, forming a conductor layer (not shown) on the substrate 200, and then patterning the conductor layer to form the bit line 248. The method of forming the conductor layer is, for example, a physical vapor deposition method or a chemical vapor deposition method.

在本發明的非揮發性記憶體的製造方法中,在X方向(行方向)相鄰的兩記憶胞結構相同且例如是成鏡像配置,共用源極區或汲極區,以及共用控制閘極。而在Y方向(列方向)相鄰的兩記憶胞結構相同,共用源極區、閘介電層、輔助閘極(字元線)、絕緣層、抹除閘極以及控制閘極。因此能提高元件的積集度。 In the method of manufacturing a non-volatile memory of the present invention, two memory cells adjacent in the X direction (row direction) have the same structure and are, for example, mirrored, share a source region or a drain region, and share a control gate. . The two memory cells adjacent in the Y direction (column direction) have the same structure, sharing the source region, the gate dielectric layer, the auxiliary gate (word line), the insulating layer, the erase gate, and the control gate. Therefore, the degree of integration of components can be improved.

本發明的非揮發性記憶體的製造方法中,所形成的輔助閘極與抹除閘極構成堆疊結構,因此能提高元件的積集度。 In the method of manufacturing a non-volatile memory of the present invention, the formed auxiliary gate and the erase gate constitute a stacked structure, so that the degree of integration of the elements can be improved.

在上述的非揮發性記憶體的製造方法中,所形成的輔助閘極下的閘介電層的厚度較薄,在操作記憶胞時,可以使用較小的電壓打開/關閉輔助閘極下方的通道區,亦即可以降低操作電壓。所形成的控制閘極包覆浮置閘極,能夠增加控制閘極與浮置閘極之間所夾的面積,而提高了記憶體元件的耦合率。由於浮置閘極具有轉角部。抹除閘極包覆轉角部,且此轉角部的角度小於或等於90度,藉由轉角部使電場集中,可降低抹除電壓有效率的將電子從浮置閘極拉出,提高抹除資料的速度。 In the above method for manufacturing a non-volatile memory, the gate dielectric layer under the auxiliary gate is formed to have a thin thickness, and when the memory cell is operated, a smaller voltage can be used to turn on/off the auxiliary gate under the gate. In the channel area, the operating voltage can be reduced. The formed control gate covers the floating gate, which can increase the area sandwiched between the control gate and the floating gate, and improve the coupling ratio of the memory component. Since the floating gate has a corner portion. Wiping the gate to cover the corner portion, and the angle of the corner portion is less than or equal to 90 degrees, and the electric field is concentrated by the corner portion, thereby reducing the erasing voltage and efficiently pulling the electrons from the floating gate to improve the erasing The speed of the data.

接著,說明本發明的非揮發性記憶體的操作模式,包括 程式化、抹除與資料讀取等操作模式。圖3A為對記憶胞進行程式化操作之一實例的示意圖。圖3B為對記憶胞進行抹除操作之一實例的示意圖。圖3C為對記憶胞進行讀取操作之一實例的示意圖。 Next, the operation mode of the non-volatile memory of the present invention will be described, including Stylized, erased, and read data modes. Fig. 3A is a schematic diagram showing an example of a program operation of a memory cell. Fig. 3B is a schematic diagram showing an example of an erase operation on a memory cell. Fig. 3C is a schematic diagram showing an example of a reading operation on a memory cell.

請參照圖3A,在進行程式化操作時,於選定記憶胞的輔助閘極WL0施加電壓Vwlp,以於輔助閘極下方的基底中形成通道,電壓Vwlp例如是0.6~1.2伏特。非選定記憶胞的輔助閘極WL1施加0伏特之電壓。於源極區S施加電壓Vsp;於控制閘極CG施加電壓Vcgp;選定記憶胞的抹除閘極EP0以及非選定記憶胞的抹除閘極EP1施加電壓Vegp。電壓Vsp例如是3~7伏特;電壓Vcgp例如是5~9伏特;電壓Vegp例如是3~7伏特。在此種偏壓下,使電子由汲極往源極移動,以源極側熱電子注入的模式,注入選定記憶胞的浮置閘極FG0。由於非選定記憶胞的輔助閘極WL1施加0伏特之電壓,無法形成通道區,電子無法注入非選定記憶胞的浮置閘極FG1,因此非選定記憶胞不會被程式化。 Referring to FIG. 3A, during the stylization operation, a voltage Vwlp is applied to the auxiliary gate WL0 of the selected memory cell to form a channel in the substrate under the auxiliary gate, and the voltage Vwlp is, for example, 0.6 to 1.2 volts. The auxiliary gate WL1 of the unselected memory cell applies a voltage of 0 volts. The voltage Vsp is applied to the source region S; the voltage Vcgp is applied to the control gate CG; the erase gate EP0 of the selected memory cell and the erase gate EP1 of the unselected memory cell are applied with the voltage Vegp. The voltage Vsp is, for example, 3 to 7 volts; the voltage Vcgp is, for example, 5 to 9 volts; and the voltage Vegp is, for example, 3 to 7 volts. Under such a bias voltage, the electrons are moved from the drain to the source, and the floating gate FG0 of the selected memory cell is injected in the source-side hot electron injection mode. Since the auxiliary gate WL1 of the unselected memory cell applies a voltage of 0 volts, the channel region cannot be formed, and electrons cannot be injected into the floating gate FG1 of the unselected memory cell, so the unselected memory cells are not programmed.

請參照圖3B,在進行抹除操作時,於控制閘極CG施加電壓Vcge;於選定記憶胞的抹除閘極EP0施加電壓Vege;於非選定記憶胞的抹除閘極EP1施加0伏特之電壓。電壓Vege例如是6~12伏特;電壓Vcge例如是-8~0伏特。利用控制閘極CG與抹除閘極EP0的電壓差,引發FN穿隧效應,將儲存於記憶胞的浮置閘極FG0電子拉出並移除。 Referring to FIG. 3B, when the erase operation is performed, the voltage Vcge is applied to the control gate CG; the voltage Vege is applied to the erase gate EP0 of the selected memory cell; and the erase gate EP1 of the unselected memory cell is applied with 0 volts. Voltage. The voltage Vege is, for example, 6 to 12 volts; the voltage Vcge is, for example, -8 to 0 volts. By using the voltage difference between the control gate CG and the erase gate EP0, the FN tunneling effect is induced, and the floating gate FG0 stored in the memory cell is electronically pulled out and removed.

請參照圖3C,在進行讀取操作時,於選定記憶胞的輔助閘極WL0施加電壓Vcc;於控制閘極CG施加電壓0-Vcc;於選 定記憶胞的抹除閘極EP0施加電壓0-Vcc;於非選定記憶胞的抹除閘極EP1施加電壓0-Vcc。其中,電壓Vcc例如是電源電壓。在上述偏壓的情況下,可藉由偵測記憶胞之通道電流大小,來判斷儲存於記憶胞中的數位資訊。 Referring to FIG. 3C, when the read operation is performed, a voltage Vcc is applied to the auxiliary gate WL0 of the selected memory cell; a voltage of 0-Vcc is applied to the control gate CG; The erase gate EP0 of the fixed memory cell applies a voltage of 0-Vcc; the erase gate EP1 of the unselected memory cell applies a voltage of 0-Vcc. Among them, the voltage Vcc is, for example, a power supply voltage. In the case of the above bias voltage, the digital information stored in the memory cell can be judged by detecting the channel current of the memory cell.

在本發明的非揮發性記憶體的操作方法中,在進行程式化操作時,對輔助閘極施加低電壓,即可於輔助閘極下方的基底中形成通道,以源極側熱電子注入的模式,將電子寫入浮置閘極。在進行抹除操作時,利用抹除閘極來抹除資料,使電子經由抹除閘介電層移除,可減少電子經過穿隧介電層的次數,進而提高可靠度。此外,由於浮置閘極具有轉角部。抹除閘極包覆轉角部,且此轉角部的角度小於或等於90度,藉由轉角部使電場集中,可有效率的將電子從浮置閘極拉出,提高抹除資料的速度。 In the method of operating the non-volatile memory of the present invention, when a stylizing operation is performed, a low voltage is applied to the auxiliary gate, so that a channel can be formed in the substrate under the auxiliary gate, and the source side is injected with hot electrons. Mode, writing electrons to the floating gate. When erasing is performed, the erase electrode is used to erase the data, and the electrons are removed through the eraser dielectric layer, thereby reducing the number of times the electrons pass through the tunnel dielectric layer, thereby improving reliability. In addition, since the floating gate has a corner portion. Wiping the gate to cover the corner portion, and the angle of the corner portion is less than or equal to 90 degrees, and the electric field is concentrated by the corner portion, and the electrons can be efficiently pulled out from the floating gate to increase the speed of erasing the data.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100‧‧‧基底 100‧‧‧Base

120‧‧‧堆疊閘極結構 120‧‧‧Stack gate structure

122‧‧‧閘介電層 122‧‧‧gate dielectric layer

124‧‧‧輔助閘極 124‧‧‧Auxiliary gate

126‧‧‧絕緣層 126‧‧‧Insulation

128‧‧‧抹除閘極 128‧‧‧Erase the gate

130‧‧‧輔助閘介電層 130‧‧‧Auxiliary gate dielectric layer

132‧‧‧抹除閘介電層 132‧‧‧Erase the gate dielectric layer

140‧‧‧浮置閘極 140‧‧‧Floating gate

141‧‧‧轉角部 141‧‧‧ Corner

142‧‧‧穿隧介電層 142‧‧‧Tunnel dielectric layer

146‧‧‧源極區 146‧‧‧ source area

148‧‧‧汲極區 148‧‧‧Bungee Area

150‧‧‧控制閘極 150‧‧‧Control gate

152‧‧‧閘間介電層 152‧‧‧Interruptor dielectric layer

160‧‧‧層間絕緣層 160‧‧‧Interlayer insulation

162‧‧‧插塞 162‧‧‧ plug

164‧‧‧位元線 164‧‧‧ bit line

MC‧‧‧記憶胞 MC‧‧‧ memory cell

Claims (18)

一種非揮發性記憶體,包括:第一記憶胞,設置於基底上,所述第一記憶胞,包括:堆疊閘極結構,包括依序設置於所述基底上的閘介電層、輔助閘極、絕緣層以及抹除閘極;浮置閘極,設置於所述堆疊閘極結構的第一側的側壁,且所述浮置閘極的頂部具有轉角部,所述抹除閘極包覆所述轉角部;穿隧介電層,設置於所述浮置閘極與所述基底之間;抹除閘介電層,設置於所述抹除閘極與所述浮置閘極之間;輔助閘介電層,設置於所述輔助閘極與所述浮置閘極之間;源極區與汲極區,分別設置於所述堆疊閘極結構與所述浮置閘極兩側的所述基底中,其中所述源極區鄰接所述浮置閘極,所述汲極區鄰接所述堆疊閘極結構的第二側,所述第一側與所述第二側相對;控制閘極,設置於所述源極區與所述浮置閘極上;以及閘間介電層,設置於所述控制閘極與所述浮置閘極之間以及所述控制閘極與所述抹除閘極之間。 A non-volatile memory comprising: a first memory cell disposed on a substrate, the first memory cell comprising: a stacked gate structure comprising a gate dielectric layer and an auxiliary gate sequentially disposed on the substrate a pole, an insulating layer, and an erase gate; a floating gate disposed on a sidewall of the first side of the stacked gate structure, and a top portion of the floating gate has a corner portion, the erase gate package And covering the corner portion; the tunneling dielectric layer is disposed between the floating gate and the substrate; the erase gate dielectric layer is disposed on the erase gate and the floating gate An auxiliary gate dielectric layer is disposed between the auxiliary gate and the floating gate; a source region and a drain region are respectively disposed on the stacked gate structure and the floating gate In the substrate of the side, wherein the source region abuts the floating gate, the drain region abuts a second side of the stacked gate structure, the first side being opposite the second side a control gate disposed on the source region and the floating gate; and a gate dielectric layer disposed on the control gate Between said floating gate and said control gate electrode and the erase gate. 如申請專利範圍第1項所述的非揮發性記憶體,更包括: 第二記憶胞,設置於所述基底上,所述第二記憶胞的結構與所述第一記憶胞的結構相同,且所述第二記憶胞與所述第一記憶胞成鏡像配置,共用所述源極區或所述汲極區。 The non-volatile memory as described in claim 1 of the patent scope further includes: a second memory cell disposed on the substrate, the structure of the second memory cell is the same as the structure of the first memory cell, and the second memory cell is mirrored and configured to be shared with the first memory cell The source region or the drain region. 如申請專利範圍第2項所述的非揮發性記憶體,其中所述第一記憶胞與所述第二記憶胞共用所述控制閘極,且所述控制閘極填滿所述第一記憶胞與所述第二記憶胞之間的開口。 The non-volatile memory of claim 2, wherein the first memory cell shares the control gate with the second memory cell, and the control gate fills the first memory An opening between the cell and the second memory cell. 如申請專利範圍第1項所述的非揮發性記憶體,更包括:第三記憶胞,設置於所述基底上,所述第三記憶胞的結構與所述第一記憶胞的結構相同,共用所述源極區、所述輔助閘極、所述抹除閘極以及所述控制閘極,且所述控制閘極填滿所述第一記憶胞與所述第三記憶胞之間。 The non-volatile memory according to claim 1, further comprising: a third memory cell disposed on the substrate, the structure of the third memory cell being the same as the structure of the first memory cell, The source region, the auxiliary gate, the erase gate, and the control gate are shared, and the control gate fills between the first memory cell and the third memory cell. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述穿隧介電層更設置於所述控制閘極與所述源極區之間。 The non-volatile memory of claim 1, wherein the tunneling dielectric layer is further disposed between the control gate and the source region. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述輔助閘介電層的厚度大於或等於所述抹除閘介電層的厚度。 The non-volatile memory of claim 1, wherein the thickness of the auxiliary gate dielectric layer is greater than or equal to the thickness of the eraser gate dielectric layer. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述輔助閘介電層的材質包括氧化矽/氮化矽、氧化矽/氮化矽/氧化矽或氧化矽。 The non-volatile memory according to claim 1, wherein the material of the auxiliary gate dielectric layer comprises yttrium oxide/yttria, yttrium oxide/yttria/yttria or yttrium oxide. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述絕緣層的材質包括氧化矽。 The non-volatile memory of claim 1, wherein the material of the insulating layer comprises cerium oxide. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述閘間介電層的材質包括氧化矽/氮化矽/氧化矽或氮化矽/氧化矽或其他高介電常數的材質(k>4)。 The non-volatile memory according to claim 1, wherein the material of the inter-gate dielectric layer comprises yttrium oxide/yttria/yttria or tantalum nitride/yttria or other high dielectric constant. Material (k>4). 如申請專利範圍第1項所述的非揮發性記憶體,其中所述穿隧介電層的材質包括氧化矽,所述穿隧介電層的厚度介於60埃至200埃之間。 The non-volatile memory of claim 1, wherein the material of the tunneling dielectric layer comprises yttrium oxide, and the thickness of the tunneling dielectric layer is between 60 angstroms and 200 angstroms. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述閘介電層的材質包括氧化矽,所述閘介電層的厚度小於或等於所述穿隧介電層的厚度。 The non-volatile memory of claim 1, wherein the material of the gate dielectric layer comprises ruthenium oxide, and the thickness of the gate dielectric layer is less than or equal to the thickness of the tunnel dielectric layer. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述抹除閘介電層的材質包括氧化矽,所述抹除閘介電層的厚度介於100埃至180埃之間。 The non-volatile memory of claim 1, wherein the material of the eraser dielectric layer comprises ruthenium oxide, and the thickness of the eraser dielectric layer is between 100 angstroms and 180 angstroms. . 如申請專利範圍第1項所述的非揮發性記憶體,其中所述轉角部角度小於或等於90度。 The non-volatile memory of claim 1, wherein the corner portion angle is less than or equal to 90 degrees. 如申請專利範圍第1項所述的非揮發性記憶體,其中所述抹除閘介電層更設置於所述抹除閘極與所述輔助閘極之間。 The non-volatile memory of claim 1, wherein the eraser dielectric layer is disposed between the erase gate and the auxiliary gate. 一種非揮發性記憶體的製造方法,包括:提供基底;於所述基底上形成至少二堆疊結構,各所述堆疊結構由所述基底起依序包括閘介電層、輔助閘極、絕緣層以及犧牲層;於所述堆疊結構側壁形成輔助閘介電層;於所述堆疊結構之間的所述基底上形成穿隧介電層; 於所述堆疊結構的第一側的側壁形成浮置閘極,其中所述浮置閘極的頂部具有轉角部,所述轉角部鄰近所述犧牲層;於所述基底上形成材料層,填滿所述堆疊結構之間的間隙;移除所述犧牲層後,移除部分的所述材料層、部分的所述絕緣層以及部分的所述輔助閘介電層,以形成至少暴露出所述浮置閘極的所述轉角部的開口;至少於所述浮置閘極的所述轉角部上形成抹除閘介電層;於所述基底上形成填滿所述開口的抹除閘極,其中所述抹除閘極包覆所述浮置閘極的所述轉角部;移除所述材料層;於所述浮置閘極及所述抹除閘極上形成閘間介電層;以及於所述浮置閘極上形成控制閘極。 A method for manufacturing a non-volatile memory, comprising: providing a substrate; forming at least two stacked structures on the substrate, each of the stacked structures sequentially including a gate dielectric layer, an auxiliary gate, and an insulating layer from the substrate And a sacrificial layer; forming an auxiliary gate dielectric layer on the sidewall of the stacked structure; forming a tunneling dielectric layer on the substrate between the stacked structures; Forming a floating gate on a sidewall of the first side of the stacked structure, wherein a top of the floating gate has a corner portion adjacent to the sacrificial layer; forming a material layer on the substrate, filling Filling a gap between the stacked structures; after removing the sacrificial layer, removing a portion of the material layer, a portion of the insulating layer, and a portion of the auxiliary gate dielectric layer to form at least an exposed portion An opening of the corner portion of the floating gate; forming a wiper dielectric layer on at least the corner portion of the floating gate; forming a erase gate filling the opening on the substrate a pole, wherein the erase gate covers the corner portion of the floating gate; removing the material layer; forming a gate dielectric layer on the floating gate and the erase gate And forming a control gate on the floating gate. 如申請專利範圍第15項所述的非揮發性記憶體的製造方法,其中於所述堆疊結構第一側的側壁形成所述浮置閘極的步驟包括:於所述堆疊結構的所述第一側的側壁形成導體間隙壁;以及圖案化所述導體間隙壁,以形成所述浮置閘極。 The method of manufacturing a non-volatile memory according to claim 15, wherein the step of forming the floating gate on a sidewall of the first side of the stacked structure comprises: the A sidewall of one side forms a conductor spacer; and the conductor spacer is patterned to form the floating gate. 如申請專利範圍第16項所述的非揮發性記憶體的製造方法,其中於所述堆疊結構的所述第一側的側壁形成所述導體間隙壁的步驟包括:於所述基底上形成導體層;以及對所述導體層進行非等向性蝕刻製程。 The method of manufacturing a non-volatile memory according to claim 16, wherein the step of forming the conductor spacer on a sidewall of the first side of the stacked structure comprises: forming a conductor on the substrate a layer; and performing an anisotropic etching process on the conductor layer. 如申請專利範圍第16項所述的非揮發性記憶體的製造方法,更包括:於所述導體間隙壁之間的基底中形成源極區;以及於所述堆疊結構的第二側的所述基底中形成汲極區,所述第一側與所述第二側相對。 The method of manufacturing the non-volatile memory of claim 16, further comprising: forming a source region in the substrate between the conductor spacers; and on the second side of the stacked structure A drain region is formed in the substrate, the first side being opposite to the second side.
TW104119099A 2015-06-12 2015-06-12 Non-volatile memory and manufacturing method thereof TWI605572B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104119099A TWI605572B (en) 2015-06-12 2015-06-12 Non-volatile memory and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104119099A TWI605572B (en) 2015-06-12 2015-06-12 Non-volatile memory and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TW201644037A TW201644037A (en) 2016-12-16
TWI605572B true TWI605572B (en) 2017-11-11

Family

ID=58056000

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104119099A TWI605572B (en) 2015-06-12 2015-06-12 Non-volatile memory and manufacturing method thereof

Country Status (1)

Country Link
TW (1) TWI605572B (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10269815B2 (en) * 2017-04-27 2019-04-23 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor device and manufacturing method thereof
TWI696273B (en) 2019-05-15 2020-06-11 力晶積成電子製造股份有限公司 Flash memory with assistant gate and method of fabricating the same
US20230320088A1 (en) * 2022-03-30 2023-10-05 Iotmemory Technology Inc. Non-volatile memory device

Also Published As

Publication number Publication date
TW201644037A (en) 2016-12-16

Similar Documents

Publication Publication Date Title
US9159843B2 (en) Semiconductor device and method of manufacturing the same
US10644011B1 (en) Non-volatile memory
KR101731202B1 (en) Non-volatile memory cell with self aligned floating and erase gates, and method of making same
US9859291B2 (en) Non-volatile memory and manufacturing method thereof
US9761596B2 (en) Non-volatile memory and manufacturing method thereof
JP5521555B2 (en) Nonvolatile memory device and manufacturing method thereof
KR101996745B1 (en) High Density Isolated Gate Memory Cell
JP2008251825A (en) Mehtod for manufacturing semiconductor memory device
JP2005223340A (en) Self aligned split gate-type nonvolatile semiconductor memory element, and manufacturing method of the same
CN106328653B (en) Nonvolatile memory and method of manufacturing the same
JP2008527747A (en) Memory device having trapezoidal bit line and manufacturing method thereof
TWI605572B (en) Non-volatile memory and manufacturing method thereof
JP6786440B2 (en) Semiconductor devices and their manufacturing methods
US7408219B2 (en) Nonvolatile semiconductor memory device
US20080242073A1 (en) Method for fabricating a nonvolatile memory device
TWI700819B (en) Non-volatile memory and manufacturing method thereof
KR100654359B1 (en) Method for fabricating nonvolatible memory device
TW201635558A (en) Non-volatile memory
US10504913B2 (en) Method for manufacturing embedded non-volatile memory
TWM513458U (en) Non-volatile memory
TW201630163A (en) Non-volatile memory and manufacturing method thereof
JP2007506275A (en) Method of manufacturing non-volatile memory device and memory device obtained thereby
TWI487094B (en) Memory device and method of fabricating the same
TWI423398B (en) Memory cell and manufacturing method thereof and memory structure
KR100253582B1 (en) Manufacture of semiconductor device