TWI604194B - Resistive environmental sensor and resistive environmental sensor array - Google Patents

Resistive environmental sensor and resistive environmental sensor array Download PDF

Info

Publication number
TWI604194B
TWI604194B TW105133634A TW105133634A TWI604194B TW I604194 B TWI604194 B TW I604194B TW 105133634 A TW105133634 A TW 105133634A TW 105133634 A TW105133634 A TW 105133634A TW I604194 B TWI604194 B TW I604194B
Authority
TW
Taiwan
Prior art keywords
layer
electrode
sensing
resistive
layers
Prior art date
Application number
TW105133634A
Other languages
Chinese (zh)
Other versions
TW201816394A (en
Inventor
何羽軒
蔡明志
Original Assignee
華邦電子股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 華邦電子股份有限公司 filed Critical 華邦電子股份有限公司
Priority to TW105133634A priority Critical patent/TWI604194B/en
Application granted granted Critical
Publication of TWI604194B publication Critical patent/TWI604194B/en
Publication of TW201816394A publication Critical patent/TW201816394A/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)
  • Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)

Description

電阻式環境感測器及電阻式環境感測器陣列Resistive environmental sensor and resistive environmental sensor array

本發明是有關於一種感測器,且特別是有關於一種電阻式環境感測器。This invention relates to a sensor and, more particularly, to a resistive environmental sensor.

近年來隨著工業發展,由於人們對於自身健康以及環境保護的重視逐年增加,因此相關感測技術(如氣體感測技術、紫外光感測技術、溫度感測技術、濕度感測技術等)便逐漸發展中。為了降低感測器的面積與提高感測靈敏度,現行的感測器經常採用指叉電極,然而,以具有一百對指叉電極的感測器為例,感測器的阻值仍然過高(約數百MΩ等級),進而導致感測器的感測靈敏度不佳。再者,配置指叉電極仍需要一定的面積,而不利於應用在微型化的感測器上。因此,如何有效降低感測器的阻值、提升感測器的靈敏度與微型化感測器,實為目前研發人員亟待解決的議題之一。In recent years, with the development of industry, people's attention to their own health and environmental protection has increased year by year, so relevant sensing technologies (such as gas sensing technology, ultraviolet light sensing technology, temperature sensing technology, humidity sensing technology, etc.) will be Gradually developing. In order to reduce the area of the sensor and improve the sensing sensitivity, the current sensor often uses the finger electrode, however, taking the sensor with one hundred pairs of the finger electrode as an example, the resistance of the sensor is still too high. (About hundreds of MΩ levels), which in turn leads to poor sensing sensitivity of the sensor. Furthermore, the configuration of the finger electrode still requires a certain area, which is disadvantageous for application on a miniaturized sensor. Therefore, how to effectively reduce the resistance of the sensor, improve the sensitivity of the sensor and miniaturize the sensor is one of the issues that the current research and development personnel need to solve.

本發明提供一種電阻式環境感測器,其具有低阻值、良好的感測靈敏度及易於微型化的優點。The present invention provides a resistive environmental sensor that has the advantages of low resistance, good sensing sensitivity, and ease of miniaturization.

本發明提供一種電阻式環境感測器,其包括一電極堆疊結構以及一感測層。電極堆疊結構包括一第一電極層、一第二電極層以及分隔第一電極層與第二電極層的一介電層,其中電極堆疊結構具有一側面,第一電極層與第二電極層暴露於電極堆疊結構的側面上。感測層配置於電極堆疊結構的側面上,且感測層與第一電極層以及第二電極層接觸。藉由感測第一電極層與第二電極層之間的感測層的電阻變化來感測一環境變化。The invention provides a resistive environment sensor comprising an electrode stack structure and a sensing layer. The electrode stack structure includes a first electrode layer, a second electrode layer, and a dielectric layer separating the first electrode layer and the second electrode layer, wherein the electrode stack structure has a side surface, and the first electrode layer and the second electrode layer are exposed On the side of the electrode stack structure. The sensing layer is disposed on a side of the electrode stack structure, and the sensing layer is in contact with the first electrode layer and the second electrode layer. An environmental change is sensed by sensing a change in resistance of the sensing layer between the first electrode layer and the second electrode layer.

本發明另提供一種電阻式環境感測器陣列,其包括一線路載板以及多個感測層。線路載板包括一第一導電圖案、一第二導電圖案以及分隔第一導電圖案與第二導電圖案的一介電層,第一導電圖案包括多個相互分離的第一電極層,第二導電圖案包括多個相互分離的第二電極層,其中線路載板具有多個凹槽以將第一電極層與第二電極層暴露。感測層位於凹槽內,且感測層與第一電極層以及第二電極層接觸。藉由感測第一電極層該第二電極層之間的感測層的電阻變化來感測一環境變化。The invention further provides a resistive environmental sensor array comprising a line carrier and a plurality of sensing layers. The circuit carrier includes a first conductive pattern, a second conductive pattern, and a dielectric layer separating the first conductive pattern and the second conductive pattern, the first conductive pattern includes a plurality of first electrode layers separated from each other, and the second conductive layer The pattern includes a plurality of second electrode layers separated from each other, wherein the line carrier has a plurality of grooves to expose the first electrode layer and the second electrode layer. The sensing layer is located within the recess and the sensing layer is in contact with the first electrode layer and the second electrode layer. An environmental change is sensed by sensing a change in resistance of the sensing layer between the second electrode layers of the first electrode layer.

在本發明的一實施例中,前述的介電層的厚度介於0.01微米至100微米之間。In an embodiment of the invention, the dielectric layer has a thickness between 0.01 microns and 100 microns.

在本發明的一實施例中,前述的感測層與介電層接觸。In an embodiment of the invention, the aforementioned sensing layer is in contact with the dielectric layer.

在本發明的一實施例中,前述的感測層與介電層之間具有一空氣間隙。In an embodiment of the invention, the sensing layer and the dielectric layer have an air gap therebetween.

在本發明的一實施例中,前述的電極堆疊結構的側面與電極堆疊結構的厚度方向夾一角度,且此角度介於30度至60度之間。In an embodiment of the invention, the side surface of the electrode stack structure is at an angle to the thickness direction of the electrode stack structure, and the angle is between 30 degrees and 60 degrees.

在本發明的一實施例中,前述的感測層藉由三維列印製程形成於電極堆疊結構的側面上,且感測層包括矽層、碳奈米管層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層、銦氧化物(InO x, x>0)層、三氧化鎢層、氧化鎂層、二氧化鈦層、三氧化二鐵層、鎳層、銅層或金簇層(Au cluster layer)。 In an embodiment of the invention, the sensing layer is formed on a side of the electrode stack structure by a three-dimensional printing process, and the sensing layer comprises a germanium layer, a carbon nanotube layer, a graphene layer, and a graphene layer. An oxide layer, a zinc oxide layer, a tin dioxide layer, an indium oxide (InO x , x>0 layer), a tungsten trioxide layer, a magnesium oxide layer, a titanium dioxide layer, a ferric oxide layer, a nickel layer, a copper layer or Au cluster layer.

在本發明的一實施例中,前述的電阻式環境感測器可進一步包括至少一凹槽,此至少一凹槽的表面為電極堆疊結構的側面。In an embodiment of the invention, the resistive environment sensor may further include at least one groove, and the surface of the at least one groove is a side surface of the electrode stack structure.

基於上述,由於第一電極層與第二電極層之間是藉由介電層所分隔,且第一電極層與第二電極層之間的距離(或間距)取決於介電層的厚度,因此藉由妥善控制介電層的厚度即可輕易達成微米等級的電極間距。在電極間距可被有效地縮短的情況下,本發明的電阻式環境感測器或電阻式環境感測器陣列具有低阻值、良好的感測靈敏度及易於微型化的優點。Based on the above, since the first electrode layer and the second electrode layer are separated by a dielectric layer, and the distance (or spacing) between the first electrode layer and the second electrode layer depends on the thickness of the dielectric layer, Therefore, the micrometer-scale electrode pitch can be easily achieved by properly controlling the thickness of the dielectric layer. The resistive environmental sensor or the resistive environmental sensor array of the present invention has the advantages of low resistance value, good sensing sensitivity, and easy miniaturization in the case where the electrode pitch can be effectively shortened.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

第一實施例First embodiment

圖1與圖3為依據本發明的第一實施例的電阻式環境感測器的剖面示意圖,而圖2為圖1中第一電極層、第二電極層、介電層以及感測層的上視示意圖。1 and FIG. 3 are schematic cross-sectional views of a resistive environment sensor according to a first embodiment of the present invention, and FIG. 2 is a first electrode layer, a second electrode layer, a dielectric layer, and a sensing layer of FIG. The top view is schematic.

請參照圖1與圖2,本實施例的電阻式環境感測器100包括一電極堆疊結構110以及一感測層120。電極堆疊結構110包括至少一第一電極層112、至少一第二電極層114以及分隔第一電極層112與第二電極層114的至少一介電層116,其中電極堆疊結構110具有一側面110a,且第一電極層112與第二電極層114暴露於電極堆疊結構110的側面110a上。感測層120配置於電極堆疊結構110的側面110a上,且感測層120與第一電極層112以及第二電極層114接觸。Referring to FIG. 1 and FIG. 2 , the resistive environment sensor 100 of the present embodiment includes an electrode stack structure 110 and a sensing layer 120 . The electrode stack structure 110 includes at least one first electrode layer 112, at least one second electrode layer 114, and at least one dielectric layer 116 separating the first electrode layer 112 and the second electrode layer 114, wherein the electrode stack structure 110 has a side surface 110a And the first electrode layer 112 and the second electrode layer 114 are exposed on the side surface 110a of the electrode stack structure 110. The sensing layer 120 is disposed on the side surface 110a of the electrode stack structure 110, and the sensing layer 120 is in contact with the first electrode layer 112 and the second electrode layer 114.

如圖1與圖2所示,電極堆疊結構110例如是堆疊於一基板SUB上,且電極堆疊結構110包括多個介電層116以及交替堆疊的多個第一電極層112與多個第二電極層114,其中介電層116設置於任二相鄰的第一電極層112與第二電極層114之間,以分隔相鄰的第一電極層112與第二電極層114。在本實施例中,第一電極層112、第二電極層114與介電層116的數量可依據實際設計需求而更動。As shown in FIG. 1 and FIG. 2, the electrode stack structure 110 is stacked on a substrate SUB, for example, and the electrode stack structure 110 includes a plurality of dielectric layers 116 and a plurality of first electrode layers 112 and a plurality of second stacked alternately. The electrode layer 114 is disposed between any two adjacent first electrode layers 112 and second electrode layers 114 to separate adjacent first electrode layers 112 and second electrode layers 114. In this embodiment, the number of the first electrode layer 112, the second electrode layer 114, and the dielectric layer 116 can be changed according to actual design requirements.

前述的電極堆疊結構110以及基板SUB可藉由增層式多層印刷電路板製程或者是半導體製程進行製作,而感測層120可藉由三維列印(3D-printing)製程形成於電極堆疊結構110的側面110a上。在一些實施例中,可透過非接觸式噴印方式將墨水(ink)型態或霧狀(aerosol)的感測材料噴印或沈積於電極堆疊結構110的側面110a上,以形成與側面110a共形的感測層(conformal sensing layer)120。由於第一電極層112與第二電極層114之間的電極間距已透過介電層116的厚度而獲得相當精準的控制,因此感測層120的噴印無須極為精準的控制。換言之,感測層120在製作上具有很大的製程裕度(process window)。據此,電阻式環境感測器100的製造良率(yield rate)與產能(throughput)能夠獲得有效的提升。The foregoing electrode stack structure 110 and the substrate SUB may be fabricated by a build-up multilayer printed circuit board process or a semiconductor process, and the sensing layer 120 may be formed on the electrode stack structure 110 by a three-dimensional printing (3D-printing) process. On the side 110a. In some embodiments, an ink type or aerosol sensing material may be printed or deposited on the side 110a of the electrode stack 110 by a non-contact printing method to form the side 110a. A conformal sensing layer 120. Since the electrode spacing between the first electrode layer 112 and the second electrode layer 114 has been fairly accurately controlled by the thickness of the dielectric layer 116, the printing of the sensing layer 120 does not require extremely precise control. In other words, the sensing layer 120 has a large process window in fabrication. Accordingly, the manufacturing yield and throughput of the resistive environmental sensor 100 can be effectively improved.

在本實施例中,前述的感測層120可為氣體感測層、光感測層、濕度感測層或溫度感測層。舉例而言,感測層120包括矽層、碳奈米管層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層、銦氧化物(InO x, x>0)層、三氧化鎢層、氧化鎂層、二氧化鈦層、三氧化二鐵層、鎳層、銅層或金簇層(Au cluster layer)。值得注意的是,矽層、碳奈米管層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層、銦氧化物(InO x, x>0)層、三氧化鎢層、氧化鎂層、二氧化鈦層、三氧化二鐵層以及金簇層可用以做為氣體感測層;氧化鋅層、二氧化錫層、銦氧化物(InO x, x>0)層、氧化鎂層以及二氧化鈦層可用以做為紫外光感測層;矽層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層以及二氧化鈦層可以用以作為濕度感測層;而矽層、鎳層以及銅層可以用以作為溫度感測層。 In the embodiment, the sensing layer 120 may be a gas sensing layer, a light sensing layer, a humidity sensing layer or a temperature sensing layer. For example, the sensing layer 120 includes a germanium layer, a carbon nanotube layer, a graphene layer, a graphene oxide layer, a zinc oxide layer, a tin dioxide layer, and an indium oxide (InO x , x>0 layer). , a tungsten trioxide layer, a magnesium oxide layer, a titanium dioxide layer, a ferric oxide layer, a nickel layer, a copper layer or an Au cluster layer. It is worth noting that the ruthenium layer, carbon nanotube layer, graphene layer, graphene layer oxide layer, zinc oxide layer, tin dioxide layer, indium oxide (InO x , x>0) layer, tungsten trioxide Layer, magnesium oxide layer, titanium dioxide layer, ferric oxide layer and gold cluster layer can be used as gas sensing layer; zinc oxide layer, tin dioxide layer, indium oxide (InO x , x>0) layer, oxidation The magnesium layer and the titanium dioxide layer can be used as the ultraviolet light sensing layer; the germanium layer, the graphene layer, the graphene layer oxide layer, the zinc oxide layer, the tin dioxide layer, and the titanium dioxide layer can be used as the humidity sensing layer; A tantalum layer, a nickel layer, and a copper layer can be used as the temperature sensing layer.

在本實施例中,電極堆疊結構110的側面110a可為一與電極堆疊結構110的厚度方向夾一角度θ1的傾斜側面,如圖1所示。在其他可行的實施例中,電極堆疊結構110的側面110a可為一與電極堆疊結構110的厚度方向實質上一致的垂直側面。當電極堆疊結構110的側面110a為傾斜側面時,例如角度θ1可介於30度至60度之間,感測層120十分容易透過非接觸式噴印方式形成於電極堆疊結構110的側面110a上;當電極堆疊結構110的側面110a為垂直側面時,可透過改變噴印的角度(例如改變噴嘴角度及/或電極堆疊結構110的設置方位)將感測層120噴印於電極堆疊結構110的側面110a上。In this embodiment, the side surface 110a of the electrode stack structure 110 may be an inclined side surface which is at an angle θ1 with the thickness direction of the electrode stack structure 110, as shown in FIG. In other possible embodiments, the side surface 110a of the electrode stack structure 110 may be a vertical side surface that substantially coincides with the thickness direction of the electrode stack structure 110. When the side surface 110a of the electrode stack structure 110 is an inclined side surface, for example, the angle θ1 may be between 30 degrees and 60 degrees, the sensing layer 120 is easily formed on the side surface 110a of the electrode stack structure 110 by non-contact printing. When the side surface 110a of the electrode stack structure 110 is a vertical side, the sensing layer 120 can be printed on the electrode stack structure 110 by changing the angle of the printing (for example, changing the nozzle angle and/or the orientation of the electrode stack structure 110). On the side 110a.

在本實施例的電極堆疊結構110中,第一電極層112與第二電極層114的數量皆為多個。於感測期間,至少一對的第一電極層112與第二電極層114被選定以量測這對第一電極層112與第二電極層114之間的感測層120的電阻變化。舉例來說,這些第一電極層112可被施加一第一電壓,而這些第二電極層114則可被施加第二電壓,使各個第一電極層112與相鄰的第二電極層114之間產生所需的電壓差。當電阻式環境感測器100感測到環境中的特定目標(例如溫度)時,上述電壓差會發生變化。根據本實施例,依據各個第一電極層112與相鄰的第二電極層114,感測層120被分割為沿著側面110a分佈的多個感測區塊122。換句話說,被選定的這對第一電極層112與第二電極層114為相鄰的第一電極層112與第二電極層114,且感測區塊122的長度由第一電極層112與第二電極層114沿側面110a的距離(即電極間距)來決定。而第一電極層112與第二電極層114的電極間距與介電層116的厚度相關。由於介電層116的厚度可以輕易地被控制在0.01約微米至100約微米之間,因此第一電極層112與第二電極層114的電極間距亦可輕易地被控制在0.01微米至200微米之間。於一較佳實施例中,第一電極層112與第二電極層114的電極間距不大於1微米。藉此,可有效降低電阻式環境感測器100的電阻值與面積,以提高感測靈敏度與達到微型化的需求。In the electrode stack structure 110 of the present embodiment, the number of the first electrode layer 112 and the second electrode layer 114 is plural. During sensing, at least one pair of first electrode layer 112 and second electrode layer 114 are selected to measure a change in resistance of the pair of sensing layers 120 between the first electrode layer 112 and the second electrode layer 114. For example, the first electrode layer 112 can be applied with a first voltage, and the second electrode layers 114 can be applied with a second voltage, such that each of the first electrode layers 112 and the adjacent second electrode layer 114 The required voltage difference is generated. The above voltage difference changes when the resistive environmental sensor 100 senses a particular target (eg, temperature) in the environment. According to the present embodiment, the sensing layer 120 is divided into a plurality of sensing blocks 122 distributed along the side surface 110a according to the respective first electrode layers 112 and the adjacent second electrode layers 114. In other words, the selected pair of first electrode layer 112 and second electrode layer 114 are adjacent first electrode layer 112 and second electrode layer 114, and the length of the sensing block 122 is determined by the first electrode layer 112. The distance from the second electrode layer 114 along the side surface 110a (i.e., the electrode pitch) is determined. The electrode spacing of the first electrode layer 112 and the second electrode layer 114 is related to the thickness of the dielectric layer 116. Since the thickness of the dielectric layer 116 can be easily controlled between 0.01 micrometers and 100 micrometers, the electrode spacing of the first electrode layer 112 and the second electrode layer 114 can be easily controlled to be 0.01 micrometers to 200 micrometers. between. In a preferred embodiment, the electrode spacing between the first electrode layer 112 and the second electrode layer 114 is no more than 1 micron. Thereby, the resistance value and area of the resistive environment sensor 100 can be effectively reduced to improve the sensing sensitivity and the need for miniaturization.

在其他可行的實施例中,電極堆疊結構110可由單一第一電極層112、單一第二電極層114以及夾於第一電極層112與第二電極層114之間的單一介電層116所構成。換言之,感測層120僅包含單一感測區塊122。In other possible embodiments, the electrode stack structure 110 may be composed of a single first electrode layer 112, a single second electrode layer 114, and a single dielectric layer 116 sandwiched between the first electrode layer 112 and the second electrode layer 114. . In other words, the sensing layer 120 includes only a single sensing block 122.

如圖1所示,本實施例之感測層120與介電層116直接接觸,且感測層120可覆蓋住電極堆疊結構110的部分頂面、電極堆疊結構110的側面110a以及部分的基板SUB。As shown in FIG. 1, the sensing layer 120 of the present embodiment is in direct contact with the dielectric layer 116, and the sensing layer 120 can cover a portion of the top surface of the electrode stack structure 110, the side surface 110a of the electrode stack structure 110, and a portion of the substrate. SUB.

值得注意的是,本實施例中的電極堆疊結構110可進一步包括一保護層118,其中保護層118覆蓋於第一電極層112、第二電極層114以及介電層116上,且感測層120可局部覆蓋住前述的保護層118。如圖1所示,保護層118可保護位於其下方第一電極層112、第二電極層114以及介電層116進而提升電阻式環境感測器100的元件信賴性。It should be noted that the electrode stack structure 110 in this embodiment may further include a protective layer 118, wherein the protective layer 118 covers the first electrode layer 112, the second electrode layer 114, and the dielectric layer 116, and the sensing layer 120 may partially cover the aforementioned protective layer 118. As shown in FIG. 1, the protective layer 118 can protect the first electrode layer 112, the second electrode layer 114, and the dielectric layer 116 underneath to enhance the component reliability of the resistive environment sensor 100.

接著請參照圖1與圖3,圖3中的電阻式環境感測器100b與圖1中的電阻式環境感測器100類似,惟主要差異之處在於:電阻式環境感測器100b中的感測層120與介電層116b之間具有空氣間隙G2,且電阻式環境感測器100b中的感測層120不會與保護層118接觸。前述的空氣間隙G2是在介電層116b的圖案化製程中形成,舉例而言,在對介電層116b進行溼式蝕刻時,發生於介電層116b側壁上的底切現象可形成電阻式環境感測器100b中的空氣間隙G2。相較於圖1的電阻式環境感測器100,圖3的電阻式環境感測器100b中的感測層120與第一電極層112、第二電極層114的接觸面積增加,而可提供更高的感測靈敏度。Referring to FIG. 1 and FIG. 3, the resistive environment sensor 100b of FIG. 3 is similar to the resistive environment sensor 100 of FIG. 1, except that the main difference is: in the resistive environment sensor 100b. There is an air gap G2 between the sensing layer 120 and the dielectric layer 116b, and the sensing layer 120 in the resistive environment sensor 100b is not in contact with the protective layer 118. The foregoing air gap G2 is formed in the patterning process of the dielectric layer 116b. For example, when the dielectric layer 116b is wet etched, the undercut phenomenon occurring on the sidewall of the dielectric layer 116b can form a resistive type. The air gap G2 in the environmental sensor 100b. Compared with the resistive environment sensor 100 of FIG. 1 , the contact area of the sensing layer 120 in the resistive environment sensor 100 b of FIG. 3 with the first electrode layer 112 and the second electrode layer 114 is increased, and Higher sensing sensitivity.

第二實施例Second embodiment

圖4與圖6為依據本發明的第二實施例的電阻式環境感測器的剖面示意圖,而圖5為圖4中第一電極層、第二電極層、介電層以及感測層的上視示意圖。4 and FIG. 6 are schematic cross-sectional views of a resistive environment sensor according to a second embodiment of the present invention, and FIG. 5 is a view of the first electrode layer, the second electrode layer, the dielectric layer, and the sensing layer of FIG. The top view is schematic.

請參照圖4與圖5,本實施例的電阻式環境感測器200包括一線路載板210以及一感測層220。線路載板210包括至少一第一電極層212、至少一第二電極層214以及分隔第一電極層212與第二電極層214的至少一介電層216,其中線路載板210具有至少一凹槽210a以將第一電極層212與第二電極層214暴露。感測層220配置於凹槽210a內,且感測層220與第一電極層212以及第二電極層214接觸。本實施例中,感測層220與第一實施例中的感測層120類似,故於此不再重述。線路載板210的第一電極層212、第二電極層214以及介電層216分別與電極堆疊結構110的第一電極層112、第二電極層114以及介電層116類似,故於此不再重述。Referring to FIG. 4 and FIG. 5 , the resistive environment sensor 200 of the present embodiment includes a line carrier 210 and a sensing layer 220 . The line carrier 210 includes at least one first electrode layer 212, at least one second electrode layer 214, and at least one dielectric layer 216 separating the first electrode layer 212 and the second electrode layer 214, wherein the line carrier 210 has at least one recess The groove 210a exposes the first electrode layer 212 and the second electrode layer 214. The sensing layer 220 is disposed in the recess 210a, and the sensing layer 220 is in contact with the first electrode layer 212 and the second electrode layer 214. In this embodiment, the sensing layer 220 is similar to the sensing layer 120 in the first embodiment, and thus will not be repeated herein. The first electrode layer 212, the second electrode layer 214, and the dielectric layer 216 of the line carrier 210 are similar to the first electrode layer 112, the second electrode layer 114, and the dielectric layer 116 of the electrode stack structure 110, respectively. Repeat again.

在本實施例中,凹槽210a例如具有正方形、矩形、多邊形、圓形、橢圓形等形狀的底面,且凹槽210a以能夠容納足夠體積之感測層220為原則,本實施例不限定凹槽210a的容積。In this embodiment, the groove 210a has a bottom surface having a shape of a square, a rectangle, a polygon, a circle, an ellipse or the like, and the groove 210a is based on the sensing layer 220 capable of accommodating a sufficient volume. The embodiment does not limit the concave shape. The volume of the tank 210a.

如圖4與圖5所示,製作於線路載板210中的第一電極層212、第二電極層214以及介電層216例如是堆疊於一基板SUB上,基板SUB的上表面可藉由凹槽210a而暴露。在本實施例中,線路載板210包括多個介電層216以及交替堆疊的多個第一電極層212與多個第二電極層214,其中介電層216設置於任二相鄰的第一電極層212與第二電極層214之間,以分隔相鄰的第一電極層212與第二電極層214。在本實施例中,第一電極層212、第二電極層214與介電層216的數量可依據實際設計需求而更動。As shown in FIG. 4 and FIG. 5, the first electrode layer 212, the second electrode layer 214, and the dielectric layer 216 are formed on the substrate SUB, and the upper surface of the substrate SUB can be The groove 210a is exposed. In this embodiment, the line carrier 210 includes a plurality of dielectric layers 216 and a plurality of first electrode layers 212 and a plurality of second electrode layers 214 that are alternately stacked, wherein the dielectric layer 216 is disposed adjacent to any two adjacent layers An electrode layer 212 and the second electrode layer 214 are spaced apart to separate the adjacent first electrode layer 212 and the second electrode layer 214. In this embodiment, the number of the first electrode layer 212, the second electrode layer 214, and the dielectric layer 216 can be changed according to actual design requirements.

前述的線路載板210可藉由增層式多層印刷電路板製程或者是半導體製程進行製作,而感測層220可藉由三維列印(3D-printing)製程形成於線路載板210的凹槽210a中。在一些實施例中,可透過非接觸式噴印方式將墨水型態或霧狀的感測材料噴印或沈積於線路載板210的凹槽210a中以形成與凹槽210a輪廓共形的感測層220。與第一實施例相同,由於第一電極層212與第二電極層214之間的電極間距已透過介電層216的厚度而獲得相當精準的控制,因此感測層220的噴印無須極為精準的控制。換言之,感測層220在製作上具有很大的製程裕度。據此,可有效提升電阻式環境感測器200的製造良率與產能。The foregoing line carrier 210 can be fabricated by a multi-layer multilayer printed circuit board process or a semiconductor process, and the sensing layer 220 can be formed on the line carrier 210 by a three-dimensional printing (3D-printing) process. 210a. In some embodiments, the ink-type or mist-like sensing material can be printed or deposited in the recess 210a of the line carrier 210 by a non-contact printing method to form a contour conforming to the contour of the recess 210a. The layer 220 is measured. As in the first embodiment, since the electrode spacing between the first electrode layer 212 and the second electrode layer 214 has been relatively accurately controlled by the thickness of the dielectric layer 216, the sensing layer 220 does not need to be printed accurately. control. In other words, the sensing layer 220 has a large process margin in fabrication. Accordingly, the manufacturing yield and productivity of the resistive environmental sensor 200 can be effectively improved.

在本實施例中,凹槽210a的側壁可為一與基板SUB的厚度方向夾一角度θ2的傾斜側壁,如圖4所示。在其他可行的實施例中,凹槽210a的側壁可為一與基板SUB的厚度方向實質上一致的垂直側壁。當凹槽210a的側壁為傾斜側壁時,例如角度θ2介於30度至60度之間,感測層220十分容易透過非接觸式噴印方式形成於凹槽210a的側壁上;當凹槽210a的側壁為垂直側壁時,可透過改變噴印的角度(例如改變噴嘴角度及/或線路載板210的設置方位)將感測層220噴印於凹槽210a的側壁上。In this embodiment, the sidewall of the recess 210a may be an inclined sidewall that is at an angle θ2 to the thickness direction of the substrate SUB, as shown in FIG. In other possible embodiments, the sidewall of the recess 210a may be a vertical sidewall that substantially coincides with the thickness direction of the substrate SUB. When the sidewall of the recess 210a is an inclined sidewall, for example, the angle θ2 is between 30 degrees and 60 degrees, the sensing layer 220 is easily formed on the sidewall of the recess 210a by non-contact printing; when the recess 210a When the sidewalls are vertical sidewalls, the sensing layer 220 can be printed on the sidewalls of the recess 210a by changing the angle of the printing (eg, changing the nozzle angle and/or the orientation of the line carrier 210).

電阻式環境感測器200與電阻式環境感測器100的工作原理相似,故不再重述。由於介電層216的厚度可以輕易地被控制在0.01約微米至100約微米之間,因此第一電極層212與第二電極層214的電極間距亦可輕易地被控制在0.01約微米至200約微米之間。於一較佳實施例中,第一電極層212與第二電極層214的電極間距不大於1微米。藉此,可有效降低電阻式環境感測器200的電阻值與面積,以提高感測靈敏度與達到微型化的需求。The resistive environment sensor 200 is similar to the working principle of the resistive environment sensor 100 and will not be described again. Since the thickness of the dielectric layer 216 can be easily controlled between 0.01 micrometers and 100 micrometers, the electrode spacing of the first electrode layer 212 and the second electrode layer 214 can also be easily controlled to be between about 0.01 micrometers and 200 nanometers. Between about micrometers. In a preferred embodiment, the electrode spacing between the first electrode layer 212 and the second electrode layer 214 is no more than 1 micron. Thereby, the resistance value and area of the resistive environment sensor 200 can be effectively reduced to improve the sensing sensitivity and the demand for miniaturization.

在其他可行的實施例中,感測層220僅包含單一感測區塊222。In other possible embodiments, the sensing layer 220 includes only a single sensing block 222.

如圖4所示,本實施例之感測層220與介電層216直接接觸,且感測層220可覆蓋住線路載板210的部分頂面、凹槽210a的側壁以及部分的基板SUB。As shown in FIG. 4, the sensing layer 220 of the present embodiment is in direct contact with the dielectric layer 216, and the sensing layer 220 can cover a portion of the top surface of the line carrier 210, a sidewall of the recess 210a, and a portion of the substrate SUB.

值得注意的是,本實施例中的線路載板210可進一步包括一保護層218,其中保護層218覆蓋於第一電極層212、第二電極層214以及介電層216上,且感測層220可局部覆蓋住前述的保護層218。如圖4所示,保護層218可保護位於其下方第一電極層212、第二電極層214以及介電層216進而提升電阻式環境感測器200的元件信賴性。It should be noted that the circuit carrier 210 in this embodiment may further include a protection layer 218, wherein the protection layer 218 covers the first electrode layer 212, the second electrode layer 214, and the dielectric layer 216, and the sensing layer 220 may partially cover the aforementioned protective layer 218. As shown in FIG. 4, the protective layer 218 can protect the first electrode layer 212, the second electrode layer 214, and the dielectric layer 216 underneath to enhance the component reliability of the resistive environmental sensor 200.

接著請參照圖4與圖6,圖6中的電阻式環境感測器200b與圖4中的電阻式環境感測器200類似,惟主要差異之處在於:電阻式環境感測器200b中的感測層220與介電層216b之間具有空氣間隙G4,且電阻式環境感測器200b中的感測層220不會與保護層218接觸。相較於圖4的電阻式環境感測器200,圖6的電阻式環境感測器200b中的感測層220與第一電極層212、第二電極層214的接觸面積增加,而可提供更高的感測靈敏度。Referring to FIG. 4 and FIG. 6, the resistive environment sensor 200b of FIG. 6 is similar to the resistive environment sensor 200 of FIG. 4, except that the main difference is: in the resistive environment sensor 200b. There is an air gap G4 between the sensing layer 220 and the dielectric layer 216b, and the sensing layer 220 in the resistive environment sensor 200b is not in contact with the protective layer 218. Compared with the resistive environment sensor 200 of FIG. 4, the contact area of the sensing layer 220 in the resistive environment sensor 200b of FIG. 6 with the first electrode layer 212 and the second electrode layer 214 is increased, and is provided. Higher sensing sensitivity.

第三實施例Third embodiment

圖7與圖9為依據本發明的第三實施例的電阻式環境感測器的剖面示意圖,而圖8為圖7中第一電極層、第二電極層、介電層以及感測層的上視示意圖。7 and FIG. 9 are schematic cross-sectional views of a resistive environment sensor according to a third embodiment of the present invention, and FIG. 8 is a first electrode layer, a second electrode layer, a dielectric layer, and a sensing layer of FIG. The top view is schematic.

請同時參照圖1以及圖7至圖9,本實施例的電阻式環境感測器300以及300b分別與第一實施例的電阻式環境感測器100以及100b類似,惟主要差異之處在於:電阻式環境感測器300以及300b中的電極堆疊結構110為突出於基板SUB的島狀結構,且感測層120a覆蓋於電極堆疊結構110的頂面110b以及所有側面110a上。Referring to FIG. 1 and FIG. 7 to FIG. 9, the resistive environmental sensors 300 and 300b of the present embodiment are similar to the resistive environmental sensors 100 and 100b of the first embodiment, respectively, except that: The electrode stack structure 110 in the resistive environment sensors 300 and 300b is an island-like structure protruding from the substrate SUB, and the sensing layer 120a covers the top surface 110b of the electrode stack structure 110 and all the side faces 110a.

在本實施例中,電極堆疊結構110例如具有正方形、矩形、多邊形、圓形、橢圓形等形狀的底面或頂面,且電極堆疊結構110以能夠承載足夠的感測層120a為原則,本實施例不限定電極堆疊結構110的體積。In this embodiment, the electrode stack structure 110 has a bottom surface or a top surface having a shape of a square, a rectangle, a polygon, a circle, an ellipse, or the like, and the electrode stack structure 110 is based on the principle of being capable of carrying a sufficient sensing layer 120a. The volume of the electrode stack structure 110 is not limited by way of example.

值得注意的是,本實施例中的電極堆疊結構110的數量不限定一個,多個相互分離並且以陣列方式排列於基板SUB上的電極堆疊結構110亦屬於本實施例涵蓋的範疇。當多個以陣列方式排列於基板SUB上的電極堆疊結構110包括不同型態的感測層120a(例如氣體感測層、光感測層、濕度感測層以及溫度感測層中的至少二者)時,這些電極堆疊結構110便可構成具有複合感測功能的電阻式環境感測器陣列。It is to be noted that the number of the electrode stack structures 110 in the present embodiment is not limited to one, and the plurality of electrode stack structures 110 which are separated from each other and arranged in an array on the substrate SUB are also covered by the present embodiment. The plurality of electrode stack structures 110 arranged in an array on the substrate SUB include different types of sensing layers 120a (eg, at least two of a gas sensing layer, a light sensing layer, a humidity sensing layer, and a temperature sensing layer) The electrode stack structure 110 can form a resistive environmental sensor array with a composite sensing function.

第四實施例Fourth embodiment

圖10與圖12為依據本發明的第四實施例的電阻式環境感測器陣列的剖面示意圖,而圖11為圖10中電阻式環境感測器陣列的上視示意圖。10 and FIG. 12 are schematic cross-sectional views of a resistive environmental sensor array in accordance with a fourth embodiment of the present invention, and FIG. 11 is a top plan view of the resistive environmental sensor array of FIG.

請參照圖10至圖12,本實施例的電阻式環境感測器陣列400、400b包括一線路載板410以及多個感測層420。線路載板410包括一第一導電圖案P1、一第二導電圖案P2以及分隔第一導電圖案P1與第二導電圖案P2的一介電層416,第一導電圖案P1包括多個相互分離的第一電極層412,第二導電圖案P2包括多個相互分離的第二電極層414,其中線路載板410具有多個凹槽410a以將第一電極層412與第二電極層414暴露。感測層420位於凹槽410a內,且感測層420與第一電極層412以及第二電極層414接觸。Referring to FIG. 10 to FIG. 12 , the resistive environment sensor array 400 , 400 b of the present embodiment includes a line carrier 410 and a plurality of sensing layers 420 . The circuit carrier 410 includes a first conductive pattern P1, a second conductive pattern P2, and a dielectric layer 416 separating the first conductive pattern P1 and the second conductive pattern P2. The first conductive pattern P1 includes a plurality of separated layers. An electrode layer 412, the second conductive pattern P2 includes a plurality of second electrode layers 414 separated from each other, wherein the line carrier 410 has a plurality of grooves 410a to expose the first electrode layer 412 and the second electrode layer 414. The sensing layer 420 is located within the recess 410a, and the sensing layer 420 is in contact with the first electrode layer 412 and the second electrode layer 414.

在本實施例中,前述的凹槽410a例如是以陣列方式排列於線路載板410中,而位於不同凹槽410a中的各個感測層420可為氣體感測層、光感測層、濕度感測層以及溫度感測層中的至少二者。當凹槽410a中的各個感測層420包括不同型態的感測層420時,電阻式環境感測器陣列400便具有複合感測功能。在其他可行的實施例中,位於不同凹槽410a中的感測層420的材質可以相同。In the present embodiment, the aforementioned grooves 410a are arranged in an array, for example, in the line carrier 410, and each of the sensing layers 420 located in the different grooves 410a may be a gas sensing layer, a light sensing layer, and a humidity. At least two of the sensing layer and the temperature sensing layer. When each of the sensing layers 420 in the recess 410a includes different types of sensing layers 420, the resistive environmental sensor array 400 has a composite sensing function. In other possible embodiments, the material of the sensing layer 420 located in the different recesses 410a may be the same.

綜上所述,在上述電阻式環境感測器或電阻式環境感測器陣列中,由於第一電極層與第二電極層之間是藉由介電層所分隔,且第一電極層與第二電極層之間的距離(即電極間距)取決於介電層的厚度,因此藉由妥善控制介電層的厚度便可輕易達成微米等級的電極間距。在電極間距可被有效地縮短的情況下,電阻式環境感測器或電阻式環境感測器陣列具有低阻值以及良好感測靈敏度。In summary, in the resistive environment sensor or the resistive environment sensor array, the first electrode layer and the second electrode layer are separated by a dielectric layer, and the first electrode layer is The distance between the second electrode layers (i.e., the electrode pitch) depends on the thickness of the dielectric layer, so that the micron-scale electrode pitch can be easily achieved by properly controlling the thickness of the dielectric layer. In the case where the electrode pitch can be effectively shortened, the resistive environmental sensor or the resistive environmental sensor array has a low resistance value and good sensing sensitivity.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、100b、200、300、300b‧‧‧電阻式環境感測器
110‧‧‧電極堆疊結構
110a‧‧‧側面
110b‧‧‧頂面
112、212、412‧‧‧第一電極層
114、214、414‧‧‧第二電極層
116、116b、216、216b、416‧‧‧介電層
118、218‧‧‧保護層
120、120a、220、420‧‧‧感測層
122、222‧‧‧感測區塊
210、410‧‧‧線路載板
210a、410a‧‧‧凹槽
400、400b‧‧‧電阻式環境感測器陣列
G2、G4‧‧‧空氣間隙
P1‧‧‧第一導電圖案
P2‧‧‧第二導電圖案
SUB‧‧‧基板
θ1、θ2‧‧‧角度
100, 100b, 200, 300, 300b‧‧‧Resistive environmental sensors
110‧‧‧electrode stack structure
110a‧‧‧ side
110b‧‧‧ top surface
112, 212, 412‧‧‧ first electrode layer
114, 214, 414‧‧‧ second electrode layer
116, 116b, 216, 216b, 416‧‧‧ dielectric layer
118, 218‧‧ ‧ protective layer
120, 120a, 220, 420‧‧ ‧ sensing layer
122, 222‧‧‧ Sensing blocks
210, 410‧‧‧Line carrier
210a, 410a‧‧‧ grooves
400, 400b‧‧‧Resistive Environmental Sensor Array
G2, G4‧‧‧ air gap
P1‧‧‧First conductive pattern
P2‧‧‧Second conductive pattern
SUB‧‧‧ substrate θ1, θ2‧‧‧ angle

圖1與圖3為依據本發明的第一實施例的電阻式環境感測器的剖面示意圖。 圖2為圖1中第一電極層、第二電極層、介電層以及感測層的上視示意圖。 圖4與圖6為依據本發明的第二實施例的電阻式環境感測器的剖面示意圖。 圖5為圖4中第一電極層、第二電極層、介電層以及感測層的上視示意圖。 圖7與圖9為依據本發明的第三實施例的電阻式環境感測器的剖面示意圖。 圖8為圖7中第一電極層、第二電極層、介電層以及感測層的上視示意圖。 圖10與圖12為依據本發明的第四實施例的電阻式環境感測器陣列的剖面示意圖。 圖11為圖10中電阻式環境感測器陣列的上視示意圖。1 and 3 are schematic cross-sectional views of a resistive environmental sensor in accordance with a first embodiment of the present invention. 2 is a top plan view of the first electrode layer, the second electrode layer, the dielectric layer, and the sensing layer of FIG. 1. 4 and 6 are schematic cross-sectional views of a resistive environmental sensor in accordance with a second embodiment of the present invention. 5 is a top plan view of the first electrode layer, the second electrode layer, the dielectric layer, and the sensing layer of FIG. 4. 7 and 9 are schematic cross-sectional views of a resistive environmental sensor in accordance with a third embodiment of the present invention. 8 is a top plan view of the first electrode layer, the second electrode layer, the dielectric layer, and the sensing layer of FIG. 7. 10 and 12 are cross-sectional views of a resistive environmental sensor array in accordance with a fourth embodiment of the present invention. 11 is a top plan view of the resistive environmental sensor array of FIG.

100‧‧‧電阻式環境感測器 100‧‧‧Resistive environmental sensor

110‧‧‧電極堆疊結構 110‧‧‧electrode stack structure

110a‧‧‧側面 110a‧‧‧ side

112‧‧‧第一電極層 112‧‧‧First electrode layer

114‧‧‧第二電極層 114‧‧‧Second electrode layer

116‧‧‧介電層 116‧‧‧Dielectric layer

118‧‧‧保護層 118‧‧‧Protective layer

120‧‧‧感測層 120‧‧‧Sensor layer

122‧‧‧感測區塊 122‧‧‧Sensing block

SUB‧‧‧基板 SUB‧‧‧ substrate

θ1‧‧‧角度 Θ1‧‧‧ angle

Claims (13)

一種電阻式環境感測器,包括: 一電極堆疊結構,包括一第一電極層、一第二電極層以及分隔該第一電極層與該第二電極層的一介電層,其中該電極堆疊結構具有一側面,該第一電極層與該第二電極層暴露於該電極堆疊結構的該側面上;以及 一感測層,配置於該電極堆疊結構的該側面上,且該感測層與該第一電極層以及該第二電極層接觸; 其中,藉由感測該第一電極層與該第二電極層之間的該感測層的電阻變化來感測一環境變化。A resistive environment sensor includes: an electrode stack structure including a first electrode layer, a second electrode layer, and a dielectric layer separating the first electrode layer and the second electrode layer, wherein the electrode stack The structure has a side, the first electrode layer and the second electrode layer are exposed on the side of the electrode stack structure; and a sensing layer is disposed on the side of the electrode stack structure, and the sensing layer is The first electrode layer and the second electrode layer are in contact; wherein an environmental change is sensed by sensing a change in resistance of the sensing layer between the first electrode layer and the second electrode layer. 如申請專利範圍第1項所述的電阻式環境感測器,其中該介電層的厚度介於0.01微米至100微米之間。The resistive environmental sensor of claim 1, wherein the dielectric layer has a thickness of between 0.01 micrometers and 100 micrometers. 如申請專利範圍第1項所述的電阻式環境感測器,其中該感測層與該介電層接觸。The resistive environmental sensor of claim 1, wherein the sensing layer is in contact with the dielectric layer. 如申請專利範圍第1項所述的電阻式環境感測器,其中該感測層與該介電層之間具有一空氣間隙。The resistive environmental sensor of claim 1, wherein the sensing layer and the dielectric layer have an air gap. 如申請專利範圍第1項所述的電阻式環境感測器,其中該電極堆疊結構的該側面與該電極堆疊結構的厚度方向夾一角度,且該角度介於30度至60度之間。The resistive environmental sensor of claim 1, wherein the side of the electrode stack structure is at an angle to a thickness direction of the electrode stack structure, and the angle is between 30 degrees and 60 degrees. 如申請專利範圍第1項所述的電阻式環境感測器,其中該感測層藉由三維列印製程形成於該電極堆疊結構的該側面上,且該感測層包括矽層、碳奈米管層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層、銦氧化物層、三氧化鎢層、氧化鎂層、二氧化鈦層、三氧化二鐵層、鎳層、銅層或金簇層。The resistive environment sensor according to claim 1, wherein the sensing layer is formed on the side of the electrode stack by a three-dimensional printing process, and the sensing layer comprises a layer of tantalum and carbon Rice tube layer, graphene layer, graphene layer oxide layer, zinc oxide layer, tin dioxide layer, indium oxide layer, tungsten trioxide layer, magnesium oxide layer, titanium dioxide layer, ferric oxide layer, nickel layer, Copper layer or gold cluster layer. 如申請專利範圍第1項所述的電阻式環境感測器,更包括至少一凹槽,該至少一凹槽的表面為該電極堆疊結構的該側面。The resistive environmental sensor of claim 1, further comprising at least one groove, the surface of the at least one groove being the side of the electrode stack structure. 一種電阻式環境感測器陣列,包括: 一線路載板,包括一第一導電圖案、一第二導電圖案以及分隔該第一導電圖案與該第二導電圖案的一介電層,該第一導電圖案包括多個相互分離的第一電極層,該第二導電圖案包括多個相互分離的第二電極層,其中該線路載板具有多個凹槽以將該些第一電極層與該些第二電極層暴露;以及 多個感測層,位於該些凹槽內,且該些感測層與該些第一電極層以及該些第二電極層接觸; 其中,藉由感測該第一電極層與該第二電極層之間的該感測層的電阻變化來感測一環境變化。An array of resistive environmental sensors, comprising: a line carrier, comprising a first conductive pattern, a second conductive pattern, and a dielectric layer separating the first conductive pattern and the second conductive pattern, the first The conductive pattern includes a plurality of first electrode layers separated from each other, the second conductive pattern includes a plurality of second electrode layers separated from each other, wherein the circuit carrier has a plurality of grooves to form the first electrode layers The second electrode layer is exposed; and the plurality of sensing layers are located in the recesses, and the sensing layers are in contact with the first electrode layers and the second electrode layers; wherein, by sensing the A change in electrical resistance of the sensing layer between an electrode layer and the second electrode layer senses an environmental change. 如申請專利範圍第8項所述的電阻式環境感測器陣列,其中各該介電層的厚度介於0.01微米至100微米之間。The resistive environmental sensor array of claim 8, wherein each of the dielectric layers has a thickness of between 0.01 micrometers and 100 micrometers. 如申請專利範圍第8項所述的電阻式環境感測器陣列,其中該些感測層與該介電層接觸。The resistive environmental sensor array of claim 8, wherein the sensing layers are in contact with the dielectric layer. 如申請專利範圍第8項所述的電阻式環境感測器陣列,其中各該感測層與該介電層之間具有一空氣間隙。The resistive environmental sensor array of claim 8, wherein each of the sensing layer and the dielectric layer has an air gap. 如申請專利範圍第8項所述的電阻式環境感測器陣列,其中各該感測層藉由三維列印製程形成於該些凹槽內,且各該感測層包括矽層、碳奈米管層、石墨烯層、石墨烯層氧化物層、氧化鋅層、二氧化錫層、銦氧化物層、三氧化鎢層、氧化鎂層、二氧化鈦層、三氧化二鐵層、鎳層、銅層或金簇層。The resistive environmental sensor array of claim 8, wherein each of the sensing layers is formed in the grooves by a three-dimensional printing process, and each of the sensing layers comprises a layer of tantalum and carbon Rice tube layer, graphene layer, graphene layer oxide layer, zinc oxide layer, tin dioxide layer, indium oxide layer, tungsten trioxide layer, magnesium oxide layer, titanium dioxide layer, ferric oxide layer, nickel layer, Copper layer or gold cluster layer. 如申請專利範圍第8項所述的電阻式環境感測器陣列,其中該些感測層包括氣體感測層、光感測層、濕度感測層以及溫度感測層中的至少二者。The resistive environmental sensor array of claim 8, wherein the sensing layers comprise at least two of a gas sensing layer, a light sensing layer, a humidity sensing layer, and a temperature sensing layer.
TW105133634A 2016-10-19 2016-10-19 Resistive environmental sensor and resistive environmental sensor array TWI604194B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105133634A TWI604194B (en) 2016-10-19 2016-10-19 Resistive environmental sensor and resistive environmental sensor array

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105133634A TWI604194B (en) 2016-10-19 2016-10-19 Resistive environmental sensor and resistive environmental sensor array

Publications (2)

Publication Number Publication Date
TWI604194B true TWI604194B (en) 2017-11-01
TW201816394A TW201816394A (en) 2018-05-01

Family

ID=61023045

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105133634A TWI604194B (en) 2016-10-19 2016-10-19 Resistive environmental sensor and resistive environmental sensor array

Country Status (1)

Country Link
TW (1) TWI604194B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689665A (en) * 2020-12-28 2022-07-01 新唐科技股份有限公司 Semiconductor structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802552A (en) * 2003-06-06 2006-07-12 M.B.T.L.有限公司 Environmental sensor
US20110120866A1 (en) * 2009-11-23 2011-05-26 Electronics And Telecommunications Research Institute Environmental gas sensor and method of manufacturing the same
TW201222856A (en) * 2010-11-19 2012-06-01 Univ Nat Cheng Kung Photodetector

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1802552A (en) * 2003-06-06 2006-07-12 M.B.T.L.有限公司 Environmental sensor
US20110120866A1 (en) * 2009-11-23 2011-05-26 Electronics And Telecommunications Research Institute Environmental gas sensor and method of manufacturing the same
TW201222856A (en) * 2010-11-19 2012-06-01 Univ Nat Cheng Kung Photodetector

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114689665A (en) * 2020-12-28 2022-07-01 新唐科技股份有限公司 Semiconductor structure

Also Published As

Publication number Publication date
TW201816394A (en) 2018-05-01

Similar Documents

Publication Publication Date Title
US10788521B2 (en) Resistive environmental sensor and resistive environmental sensor array
TWI492124B (en) Touch panel and manufacturing method thereof
TWI585873B (en) Fingerprint identification device and method for manufacturing the same
US9018535B2 (en) Touch panel and method for manufacturing a touch sensor layer of the touch panel
US20170031490A1 (en) Touch sensor electrode, touch panel and display device
US10042487B2 (en) Touch panels and methods of manufacturing touch panels
WO2010013679A1 (en) Planar element, and touch switch
US20170229522A1 (en) Organic light emitting display panel and method for manufacturing the same
JP6535185B2 (en) Humidity sensor
CN108426602B (en) Multifunctional sensor
TWI604194B (en) Resistive environmental sensor and resistive environmental sensor array
KR20200054103A (en) Electrode Pad and Touch Sensor therewith
JP6979365B2 (en) Touch panel
JP2011112391A (en) Acceleration sensor
TWI602279B (en) Multifunctional sensor
US10503333B2 (en) Touch panel
CN106449576A (en) Semiconductor device package and method of manufacturing the same
KR20160123449A (en) Touch Screen Panel and Method for Manufacturing the Same
US10593684B2 (en) Printed electronic devices exhibiting improved yield
JP2006278439A (en) Method for manufacturing magnetic sensor
TWM590242U (en) Solution sensor
US20240201815A1 (en) Conductive sheet, touch sensor, and method for manufacturing touch sensor
JP7493080B2 (en) Light-emitting device
JP2010135386A (en) Semiconductor device
KR20220097123A (en) Stack structure and touch sensor