TWI604055B - Process for producing butanol - Google Patents

Process for producing butanol Download PDF

Info

Publication number
TWI604055B
TWI604055B TW105126030A TW105126030A TWI604055B TW I604055 B TWI604055 B TW I604055B TW 105126030 A TW105126030 A TW 105126030A TW 105126030 A TW105126030 A TW 105126030A TW I604055 B TWI604055 B TW I604055B
Authority
TW
Taiwan
Prior art keywords
butanol
fermentation
clostridium
carrier
strain
Prior art date
Application number
TW105126030A
Other languages
Chinese (zh)
Other versions
TW201807195A (en
Inventor
陳勁中
李思禹
蔡承佳
Original Assignee
台灣中油股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣中油股份有限公司 filed Critical 台灣中油股份有限公司
Priority to TW105126030A priority Critical patent/TWI604055B/en
Application granted granted Critical
Publication of TWI604055B publication Critical patent/TWI604055B/en
Publication of TW201807195A publication Critical patent/TW201807195A/en

Links

Description

用於生產丁醇的方法Method for producing butanol

本發明是有關於一種用於生產丁醇的方法,其包括:將一梭菌屬物種的菌株(a strain of Clostridiumspp.)固定於一固定化載體(immobilization carrier)上;以及令該經固定之梭菌屬物種的菌株進行連續發酵,而使得丁醇被生成,其中,丁醇是在連續發酵的期間藉由使用一載體氣體(carrier gas)的原位氣提( in situgas stripping)而被回收。 The present invention relates to a method for producing butanol, which comprises: immobilizing a strain of Clostridium spp. on an immobilization carrier; and fixing the strain The strain of the Clostridium species is subjected to continuous fermentation to cause butanol to be produced, wherein butanol is used during in-situ gas stripping by using a carrier gas during continuous fermentation. Be recycled.

丁醇(butanol)具有高能量密度(high energy density)、低蒸汽壓(low vapour pressure)、低極性以及與汽油的互溶性(miscibility),因而被用來作為燃料增效劑(fuel extender),並且被認為是未來的重要能源之一。Butanol has high energy density, low vapour pressure, low polarity, and miscibility with gasoline, and is therefore used as a fuel extender. And is considered to be one of the important energy sources in the future.

丁醇可藉由在一厭氧條件下使用梭菌屬物種( Clostridiumspp.)[例如,丙酮丁醇梭菌( Clostridium acetobutylicum)、拜氏梭菌( Clostridium beijerinckii)以及糖乙酸多丁醇梭菌( Clostridium saccharoperbutylacetonicum)]之菌株來進行發酵反應而被生產。然而,丁醇具有細胞毒性,當在發酵反應中所生成的丁醇累積較多時,菌株的生長會受到抑制,進而導致丁醇產率的減低。 Butanol can be used by Clostridium spp. under an anaerobic condition [eg, Clostridium acetobutylicum , Clostridium beijerinckii , and Clostridium acetoacetate ) A strain of ( Clostridium saccharoperbutylacetonicum )] is produced by performing a fermentation reaction. However, butanol is cytotoxic, and when the butanol formed in the fermentation reaction is accumulated more, the growth of the strain is inhibited, which in turn leads to a decrease in the yield of butanol.

為了降低丁醇的累積所造成的不利影響,已有研究是利用固定化連續發酵(immobilized continuous fermentation)或氣提(gas stripping)來持續地移除丁醇。例如,在Qureshi N. et al. (2004), Appl. Biochem. Biotechnol., 114:713-721中,Qureshi N.等人將作為固定化載體(immobilization carrier)之經滅菌的黏土磚顆粒(clay brick particle)置於一反應器中,接著將經活化的拜氏梭菌接種至該反應器中,繼而將該反應器充填以P2培養基。在培養歷時4小時後,新鮮的P2培養基被持續進料至該反應器中,而該反應器中的培養物被持續地排出,俾以在一為0.32 h -1的稀釋速率(dilution rate)下進行連續發酵。而實驗結果發現:固定化連續發酵所得到的丁醇產率是顯著地優於批次發酵(batch fermentation)所具者。 In order to reduce the adverse effects caused by the accumulation of butanol, it has been studied to continuously remove butanol by immobilized continuous fermentation or gas stripping. For example, in Qureshi N. et al . (2004), Appl. Biochem. Biotechnol ., 114:713-721, Qureshi N. et al. will use sterilized clay brick particles (clay) as an immobilization carrier. The brick particles were placed in a reactor, followed by inoculation of activated C. beijerinckii into the reactor, which was then filled with P2 medium. After 4 hours of culture, fresh P2 medium was continuously fed to the reactor, and the culture in the reactor was continuously discharged, at a dilution rate of 0.32 h -1 . Continuous fermentation is carried out. The experimental results show that the yield of butanol obtained by immobilized continuous fermentation is significantly better than that of batch fermentation.

在Ezeji T.C. et al. (2003), World J. Microbiol. Biotechnol., 19:595-603中,Ezeji T.C.等人將拜氏梭菌接種至一含有P2培養基的發酵槽中進行批次發酵。在開始進行批次發酵的第15小時起,以在發酵過程中所生成的CO 2以及H 2作為載體氣體(carrier gas)並且在一為3 LPM的流速下對在該發酵槽中的發酵培養物進行原位氣提( in situgas stripping),被提取出的丁醇是藉由一冷凝器而被收集。而實驗結果發現:氣提能夠提升批次發酵的丁醇產率與葡萄糖利用率(glucose utilization)。 In Ezeji TC et al . (2003), World J. Microbiol. Biotechnol ., 19:595-603, Ezeji TC et al . inoculated C. beijerinckii into a fermentation tank containing P2 medium for batch fermentation. At the 15th hour from the start of the batch fermentation, the CO 2 and H 2 generated during the fermentation were used as a carrier gas and the fermentation culture in the fermentation tank was carried out at a flow rate of 3 LPM. The in situ gas stripping is performed, and the extracted butanol is collected by a condenser. The experimental results show that stripping can improve the butanol yield and glucose utilization of batch fermentation.

另外,為了進一步提高氣提的效率,已有研究將發酵培養物中的菌體移除,繼而對所得到之不含菌體的流體部分進行氣提。例如,CN 103555560 B揭示一種丙酮丁醇發酵偶聯分離純化製備丁醇的裝置以及利用該裝置來製備丁醇的方法,該方法包括:將一丁醇生產菌接種至一攪拌式生物反應器中進行發酵,並且利用一固定化裝置以及一菌液分離裝置將菌體從發酵培養物中分離出,繼而對所得到之不含菌體的流體部分進行氣提。在此件大陸專利案的實施例中,該方法的氣提效率被證明是顯著地優於不使用菌液分離裝置的方法所具者。In addition, in order to further improve the efficiency of stripping, it has been studied to remove the cells in the fermentation culture, and then to strip the obtained fluid-free portion. For example, CN 103555560 B discloses an apparatus for preparing butanol by acetone butanol fermentation coupling separation and purification, and a method for preparing butanol by using the apparatus, the method comprising: inoculating a butanol producing bacterium into a stirring bioreactor The fermentation is carried out, and the cells are separated from the fermentation culture by an immobilization device and a bacterial liquid separation device, and then the obtained fluid portion containing no cells is stripped. In the embodiment of this Continental patent, the stripping efficiency of the method proved to be significantly superior to the method without using the bacterial liquid separation device.

在國立中興大學化學工程研究所的王胤融所著碩士論文{名稱:“直接於固定化床體進行原位丁醇移除之連續式固定化丙酮丁醇乙醇發酵[Direct in situ butanol removal on the packed bed during continuous and immobilized Acetone-Butanol-Ethanol (ABE) fermentation]”}中,王胤融使用經固定的丙酮丁醇梭菌來進行連續發酵,並且以油醇(oleyl alcohol)作為萃取溶劑來對所得到的發酵培養物進行萃取,以得到含有丁醇的油醇萃取物,接著該油醇萃取物是在一萃取槽中藉由氮氣而被氣提。Master's thesis by Wang Yurong, Institute of Chemical Engineering, National Chung Hsing University {Name: "Continuously immobilized acetone butanol ethanol fermentation for in situ butanol removal directly from immobilized beds [Direct in situ butanol removal on In the packed bed during continuous and immobilized Acetone-Butanol-Ethanol (ABE) fermentation]"}, Wang Yurong uses fixed immobilized Clostridium acetobutylicum for continuous fermentation, and uses oleyl alcohol as an extraction solvent. The obtained fermentation culture was subjected to extraction to obtain an oleyl alcohol extract containing butanol, which was then stripped by nitrogen in an extraction tank.

然而,這些先前研究需使用額外的分離步驟與設備而提高了所需的成本,不敷產業上的實際應用。因此,若能發展出一種具有高丁醇產率、簡易操作程序以及低成本之製程,會是吾人所企望達成的。However, these prior studies required additional separation steps and equipment to increase the cost required, without the practical application of the industry. Therefore, if we can develop a process with high butanol yield, simple operating procedures and low cost, it will be what we hope to achieve.

發明概要Summary of invention

於是,本發明提供一種用於生產丁醇的方法,其包括: 將一梭菌屬物種的菌株固定於一固定化載體上;以及 令該經固定之梭菌屬物種的菌株進行連續發酵,而使得丁醇被生成,其中,丁醇是在連續發酵的期間藉由使用一載體氣體的原位氣提而被回收。Accordingly, the present invention provides a method for producing butanol, comprising: immobilizing a strain of a Clostridium species on an immobilized carrier; and subjecting the strain of the immobilized Clostridium species to continuous fermentation, Butanol is produced, wherein butanol is recovered during the continuous fermentation by in-situ stripping using a carrier gas.

本發明的上述以及其它目的、特徵與優點,在參照以下的詳細說明與較佳實施例和隨文檢附的圖式後,將變得明顯。The above and other objects, features and advantages of the present invention will become apparent from

發明的詳細說明Detailed description of the invention

為了這本說明書之目的,將被清楚地瞭解的是:文字“包含有(comprising)”意指“包含但不限於”,以及文字“包括(comprises)”具有一對應的意義。For the purposes of this specification, it will be clearly understood that the words "comprising" means "including but not limited to" and the words "comprises" have a corresponding meaning.

要被瞭解的是:若有任何一件前案刊物在此被引述,該前案刊物不構成一個下述承認:在台灣或任何其他國家之中,該前案刊物形成本技藝中的常見一般知識之一部分。It is to be understood that if any of the previous publications is quoted here, the prior publication does not constitute an acknowledgement that in Taiwan or any other country, the former publication forms a common general in the art. Part of the knowledge.

除非另外有所定義,在本文中所使用的所有技術性與科學術語具有熟悉本發明所屬技藝的人士所共同瞭解的意義。一熟悉本技藝者會認知到許多與那些被描述於本文中者相似或等效的方法和材料,它們可被用於實施本發明。當然,本發明決不受到所描述的方法和材料之限制。All technical and scientific terms used herein have the same meaning as commonly understood by those skilled in the art to which the invention pertains, unless otherwise defined. A person skilled in the art will recognize many methods and materials similar or equivalent to those described herein, which can be used to practice the invention. Of course, the invention is in no way limited by the methods and materials described.

為了簡化使用梭菌屬物種的菌株所進行的丁醇發酵製程並且提高製程效率,申請人經戮力研究結果發現,以經固定的菌株進行連續發酵並且在連續發酵的期間以原位氣提來回收丁醇,可以有效地提高葡萄糖利用率以及丁醇產率。In order to simplify the butanol fermentation process carried out by strains using Clostridium species and to improve the efficiency of the process, the Applicant has found through continuous research on the continuous fermentation with fixed strains and in situ stripping during continuous fermentation. Recovery of butanol can effectively improve glucose utilization and butanol yield.

於是,本發明提供一種用於生產丁醇的方法,其包括: 將一梭菌屬物種的菌株固定於一固定化載體上;以及 令該經固定之梭菌屬物種的菌株進行連續發酵,而使得丁醇被生成,其中,丁醇是在連續發酵的期間藉由使用一載體氣體的原位氣提而被回收。Accordingly, the present invention provides a method for producing butanol, comprising: immobilizing a strain of a Clostridium species on an immobilized carrier; and subjecting the strain of the immobilized Clostridium species to continuous fermentation, Butanol is produced, wherein butanol is recovered during the continuous fermentation by in-situ stripping using a carrier gas.

如本文中所用的,術語“梭菌屬物種的菌株(strain of Clostridiumspp.)”意欲涵蓋所有能夠生產丁醇之屬於梭菌屬物種的菌株,適用於本發明的梭菌屬物種的菌株包括,但不限於:丙酮丁醇梭菌( Clostridium acetobutylicum)、糖乙酸多丁醇梭菌( Clostridium saccharoperbutylacetonicum)、拜氏梭菌( Clostridium beijerinckii)、酪丁酸梭菌( Clostridium tyrobutyricum)、酪酸梭菌( Clostridium butyricum),以及它們的組合。在本發明的一個較佳具體例中,該梭菌屬物種的菌株是丙酮丁醇梭菌。 As used herein, the term "strain of Clostridium spp." is intended to encompass all strains belonging to the Clostridium species capable of producing butanol, and strains suitable for use in the Clostridium species of the present invention include , but not limited to: Clostridium acetobutylicum , Clostridium saccharoperbutylacetonicum , Clostridium beijerinckii , Clostridium tyrobutyricum , Clostridium butyricum Clostridium butyricum ), and combinations of them. In a preferred embodiment of the invention, the strain of the Clostridium species is Clostridium acetobutylicum.

如本文中所用的,術語“固定(immobilizing)”或“固定化(immobilization)”意指將一活的微生物侷限在一特定的空間區域或載體中,藉此使該微生物所展現出的流體動力學特徵(hydrodynamic characteristic)是不同於周圍環境所具者,並且能保持該微生物的活性而使其可以被重複地使用。As used herein, the term "immobilizing" or "immobilization" means confining a living microorganism to a particular spatial region or carrier, thereby causing the fluid dynamics exhibited by the microorganism. The hydrodynamic characteristic is different from the surrounding environment and can maintain the activity of the microorganism so that it can be used repeatedly.

依據本發明,梭菌屬物種的菌株的固定化可以採用熟習此項技藝者所詳知且慣用的技術來進行。在此方面,可以參考,例如,Qureshi N. et al. (2004)(同上述)以及國立中興大學化學工程研究所的王胤融所著碩士論文(同上述)。 According to the present invention, immobilization of strains of Clostridium species can be carried out by techniques well known and customary to those skilled in the art. In this regard, reference may be made, for example, to Qureshi N. et al . (2004) (same as above) and to Wang Yurong of the National Institute of Chemical Engineering of National Chung Hsing University for master's thesis (same as above).

可瞭解到的是,有關固定化的操作條件會進一步隨著所使用的梭菌屬物種的菌株以及固定化載體的種類、粒徑以及載體填充率等因素而被變動,以便達致最佳的固定化效果。而這些操作條件的選擇是熟習此項技藝者能例行性地自行決定的。It can be understood that the operating conditions for immobilization are further changed depending on the strain of the Clostridium species used, the type of the immobilized carrier, the particle size, and the carrier filling rate, etc., in order to achieve the best. Immobilization effect. The choice of these operating conditions is routinely determined by those skilled in the art.

較佳地,該固定化載體是選自於下列所構成的群組:黏土磚(clay brick)、沸石(zeolite)、陶瓷(ceramic)、骨炭(bone char)、樹脂(resin)、木屑(wood chip)、焦炭(coke)、稻殼(rice husk)、棉(cotton)、玉米稈(corn stalk)、褐藻酸鈣(calcium alginate)、矽膠(silica gel),以及它們的組合。在本發明的一個較佳具體例中,該固定化載體是黏土磚。Preferably, the immobilization carrier is selected from the group consisting of: clay brick, zeolite, ceramic, bone char, resin, wood (wood) Chip), coke, rice husk, cotton, corn stalk, calcium alginate, silica gel, and combinations thereof. In a preferred embodiment of the invention, the immobilization carrier is a clay brick.

依據本發明,該固定化載體的粒徑是落在0.15 mm至5 mm的範圍內。在本發明的一個較佳具體例中,該固定化載體的粒徑是落在0.84 mm至2.38 mm的範圍內。According to the invention, the particle size of the immobilized carrier falls within the range of 0.15 mm to 5 mm. In a preferred embodiment of the invention, the particle size of the immobilized support falls within the range of 0.84 mm to 2.38 mm.

如本文中所用的,術語“載體填充率(carrier filling rate)”意指固定化載體的重量相對於在發酵槽中的培養基之體積的比率。依據本發明,該固定化載體的載體填充率是落在20% (w/v, g/L)至40% (w/v, g/L)的範圍內。在本發明的一個較佳具體例中,該固定化載體的載體填充率是20% (w/v, g/L)。As used herein, the term "carrier filling rate" means the ratio of the weight of the immobilized carrier to the volume of the medium in the fermentation tank. According to the present invention, the carrier filling ratio of the immobilized carrier falls within the range of 20% (w/v, g/L) to 40% (w/v, g/L). In a preferred embodiment of the invention, the carrier filling rate of the immobilized carrier is 20% (w/v, g/L).

依據本發明,該梭菌屬物種的菌株的固定化是在一厭氧條件下以及一範圍落在30℃至40℃內的溫度下培養歷時30分鐘至120分鐘而被進行。在本發明的一個較佳具體例中,該梭菌屬物種的菌株的固定化是在一厭氧條件下以及37℃下培養歷時30分鐘而被進行。According to the present invention, the immobilization of the strain of the Clostridium species is carried out under an anaerobic condition and a culture at a temperature ranging from 30 ° C to 40 ° C for 30 minutes to 120 minutes. In a preferred embodiment of the invention, the immobilization of the strain of the Clostridium species is carried out under an anaerobic condition and at 37 ° C for 30 minutes.

依據本發明,在進行連續發酵之前可先令該經固定之梭菌屬物種的菌株進行批次發酵,以提高該經固定之梭菌屬物種的菌株的菌數。According to the present invention, the strain of the immobilized Clostridium species can be first subjected to batch fermentation before continuous fermentation to increase the number of strains of the immobilized Clostridium species.

依據本發明,該連續發酵可以採用熟習此項技藝者所詳知且慣用的技術來進行。在此方面,可以參考,例如,Qureshi N. et al. (2004)(同上述)以及國立中興大學化學工程研究所的王胤融所著碩士論文(同上述)。 In accordance with the present invention, the continuous fermentation can be carried out using techniques well known and customary to those skilled in the art. In this regard, reference may be made, for example, to Qureshi N. et al . (2004) (same as above) and to Wang Yurong of the National Institute of Chemical Engineering of National Chung Hsing University for master's thesis (same as above).

可瞭解到的是,有關連續發酵的操作條件會進一步隨著所使用的梭菌屬物種的菌株以及培養基的配方等因素而被變動,以便達致最佳的發酵效果。而這些操作條件的選擇是熟習此項技藝者能例行性地自行決定的。It can be appreciated that the operating conditions for continuous fermentation are further varied with factors such as the strain of Clostridium species used and the formulation of the medium to achieve optimal fermentation results. The choice of these operating conditions is routinely determined by those skilled in the art.

依據本發明,該連續發酵所使用的培養基包含有適於梭菌屬物種的菌株生長的碳源(carbon source)、氮源(nitrogen source)以及無機鹽等物質。有關這些碳源、氮源以及無機鹽的選用是落在熟習此項技術人士的專業素養與例行技術範疇內。According to the present invention, the medium used for the continuous fermentation contains a carbon source, a nitrogen source, and an inorganic salt suitable for growth of a strain of Clostridium species. The selection of these carbon sources, nitrogen sources and inorganic salts falls within the professional literacy and routine technology of those skilled in the art.

依據本發明,該連續發酵是在一範圍落在0.05 h -1至0.2 h -1的稀釋速率下而被進行。在本發明的一個較佳具體例中,該連續發酵是在0.1 h -1的稀釋速率下而被進行。 According to the present invention, the continuous fermentation is carried out at a dilution rate ranging from 0.05 h -1 to 0.2 h -1 . In a preferred embodiment of the invention, the continuous fermentation is carried out at a dilution rate of 0.1 h -1 .

如本文中所用的,術語“稀釋速率(dilution rate)”意指進料速率(feed rate)相對於在發酵槽中的發酵培養物之體積的比率。As used herein, the term "dilution rate" means the ratio of the feed rate to the volume of the fermentation culture in the fermentation tank.

依據本發明,該連續發酵是在一厭氧條件下被進行。According to the invention, the continuous fermentation is carried out under anaerobic conditions.

依據本發明,該原位氣提( in situgas stripping)可直接將在發酵槽中的梭菌屬物種的菌株所生成之丁醇自發酵培養物中移除,而不需要先將發酵培養物移至一額外的單元。該原位氣提可以採用熟習此項技藝者所詳知且慣用的技術來進行。在此方面,可以參考,例如,Ezeji T.C. et al. (2003)(同上述)。 According to the present invention, the in situ gas stripping can directly remove the butanol produced by the strain of Clostridium species in the fermentation tank from the fermentation culture without first fermenting the culture Move to an extra unit. This in-situ stripping can be carried out using techniques well known and customary to those skilled in the art. In this regard, reference is made, for example, to Ezeji TC et al . (2003) (same as above).

可瞭解到的是,有關原位氣提的操作條件會進一步隨著所使用載體氣體的種類以及丁醇含量等因素而被變動,以便達致最佳的提取效果。而這些操作條件的選擇是熟習此項技藝者能例行性地自行決定的。It can be understood that the operating conditions for in-situ stripping are further varied with factors such as the type of carrier gas used and the butanol content to achieve the best extraction. The choice of these operating conditions is routinely determined by those skilled in the art.

較佳地,該載體氣體是選自於下列所構成的群組:氮氣、二氧化碳、氫氣,以及它們的組合。在本發明的一個較佳具體例中,該載體氣體是氮氣。Preferably, the carrier gas is selected from the group consisting of nitrogen, carbon dioxide, hydrogen, and combinations thereof. In a preferred embodiment of the invention, the carrier gas is nitrogen.

依據本發明,該原位氣提是在一範圍落在1 LPM至4 LPM的載體氣體流速下而被進行。在本發明的一個較佳具體例中,該原位氣提是在1 LPM的載體氣體流速下而被進行。在本發明的一個更佳具體例中,該原位氣提是在2 LPM的載體氣體流速下而被進行。According to the invention, the in-situ stripping is carried out at a carrier gas flow rate ranging from 1 LPM to 4 LPM. In a preferred embodiment of the invention, the in-situ stripping is carried out at a carrier gas flow rate of 1 LPM. In a more preferred embodiment of the invention, the in-situ stripping is carried out at a carrier gas flow rate of 2 LPM.

較佳實施例之詳細說明Detailed description of the preferred embodiment

本發明將就下面的實施例來做進一步說明,但應瞭解的是,該等實施例僅是供例示說明用,而不應被解釋為本發明的實施上的限制。 實施例 一般實驗方法: 1. 氣相層析(gas chromatography, GC)分析: The invention is further described in the following examples, but it should be understood that these examples are for illustrative purposes only and are not to be construed as limiting. EXAMPLES General Experimental Methods: 1. Gas chromatography (GC) analysis:

在下面的實施例中,各個待測樣品中所含有的丁醇的濃度是使用一氣相層析儀(gas chromatograph, GC)(Hewlett Packard HP 5890 Series II)來進行測定。有關該氣相層析儀的各項操作條件被顯示於下面表1中。 表1. 氣相層析儀的操作條件 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 操作參數 </td><td> 條件 </td></tr><tr><td> 分離管柱 </td><td> DP-FFAP毛細管管柱,它具有一為30 m的長度以及一為0.32 mm的內徑(inside diameter),並且使用一具有一為0.25 µm之厚度的薄膜(film)。 </td></tr><tr><td> 管柱烘箱(column oven)的升溫程序 </td><td> 在一為50℃的起始溫度下維持歷時4分鐘;接著,將溫度上升至100℃ (20℃/分鐘),並在100℃下維持歷時1分鐘,然後再將溫度上升至170℃ (30℃/分鐘),並在170℃下維持歷時2.5分鐘。 </td></tr><tr><td> 載體氣體 (carrier gas) </td><td> 氮氣(N<sub>2</sub>) </td></tr><tr><td> 注射口溫度 (injector temperature) </td><td> 225℃ </td></tr><tr><td> 偵測器(detector) </td><td> 火焰游離偵檢器 (flame ionization detector, FID) </td></tr><tr><td> 偵測器溫度 (detector temperature) </td><td> 225℃ </td></tr></TBODY></TABLE>In the following examples, the concentration of butanol contained in each sample to be tested was measured using a gas chromatograph (GC) (Hewlett Packard HP 5890 Series II). The various operating conditions for the gas chromatograph are shown in Table 1 below. Table 1. Operating conditions of the gas chromatograph         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Operational Parameters</td><td> Conditions</td></tr><tr> <td> Separation column </td><td> DP-FFAP capillary column having a length of 30 m and an inside diameter of 0.32 mm, and using one with a 0.25 μm Film of thickness. </td></tr><tr><td> The temperature rise procedure of the column oven</td><td> is maintained at a starting temperature of 50 ° C for 4 minutes; then, the temperature is maintained It was raised to 100 ° C (20 ° C / min) and maintained at 100 ° C for 1 minute, then the temperature was raised to 170 ° C (30 ° C / min), and maintained at 170 ° C for 2.5 minutes. </td></tr><tr><td> carrier gas </td><td> nitrogen (N<sub>2</sub>) </td></tr><tr> <td> Injector temperature </td><td> 225°C </td></tr><tr><td> Detector </td><td> Flame Discharge Detection Flame ionization detector (FID) </td></tr><tr><td> detector temperature </td><td> 225°C </td></tr></TBODY ></TABLE>

此外,為供比對,使用不同濃度之丁醇(購自於Alfa Aesar)(2-30 g/L)來作為校正標準品(control standard)並進行相同的分析。 2. 二硝基水楊酸(dinitrosalicylic acid, DNS)分析:In addition, for comparison, different concentrations of butanol (purchased from Alfa Aesar) (2-30 g/L) were used as the control standard and the same analysis was performed. 2. Dinitrosalicylic acid (DNS) analysis:

首先,將1 g的3,5-二硝基水楊酸(3,5-dinitrosalicylic acid)、30 g的酒石酸鉀鈉四水合物(potassium sodium tartrate tetrahydrate)以及1.6 g的氫氧化鈉(sodium hydroxide)配於100 mL的去離子水,而得到一DNS試劑備用。接著,取1 mL的待測樣品,然後予以加入1 mL的DNS試劑並予以混合均勻,繼而將所形成的混合物置於100℃的水浴中進行避光作用歷時10分鐘。之後,將該混合物置於冰上進行冷卻,然後於550 nm的波長下以一分光光度計(spectrophotometer)(SpectraMax M3, Molecular Devices)來測量吸光值(OD 550)。將所得到的OD 550吸光值根據預先以具有不同已知濃度的葡萄糖相對於它們自身的OD 550吸光值所作出的一標準曲線而被換算成葡萄糖含量(g/L)。 實施例1. 以固定化的丙酮丁醇梭菌( Clostridium acetobutylicum) 以及原位氣提( in situgas stripping) 來連續生成丁醇: 實驗材料 1. 在本實施例中所使用的強化梭菌培養基(reinforced clostridial medium, RCM)是購自於Merck (Cat. No. 1.05411.0500)。 2. 在本實施例中所使用的發酵培養基具有一如下面表2所示的配方。 表2. 發酵培養基的配方 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 成分 </td><td> 濃度(g/L) </td></tr><tr><td> 胰化腖(tryptone) </td><td> 10 </td></tr><tr><td> NaCl </td><td> 10 </td></tr><tr><td> 酵母萃取物 </td><td> 5 </td></tr><tr><td> FeSO<sub>4</sub>・7H<sub>2</sub>O </td><td> 0.11 </td></tr><tr><td> MgSO<sub>4</sub>・7H<sub>2</sub>O </td><td> 0.6 </td></tr><tr><td> CaCl<sub>2</sub></td><td> 0.008 </td></tr><tr><td> 葡萄糖 </td><td> 60 </td></tr><tr><td> 餘量為去離子水 </td></tr></TBODY></TABLE>3. 製備丙酮丁醇梭菌( Clostridium acetobutylicum)的接種源(inoculum): First, 1 g of 3,5-dinitrosalicylic acid, 30 g of potassium sodium tartrate tetrahydrate, and 1.6 g of sodium hydroxide (sodium hydroxide) ) with 100 mL of deionized water to get a DNS reagent for use. Next, 1 mL of the sample to be tested was taken, and then 1 mL of the DNS reagent was added and mixed uniformly, and then the resulting mixture was placed in a water bath at 100 ° C for 10 minutes in the dark. Thereafter, the mixture was placed on ice for cooling, and then the absorbance (OD 550 ) was measured with a spectrophotometer (SpectraMax M3, Molecular Devices) at a wavelength of 550 nm. The resulting OD 550 absorbance value was converted to glucose content (g/L) based on a standard curve previously prepared with glucose having different known concentrations relative to their own OD 550 absorbance values. Example 1. Continuous production of butanol with immobilized Clostridium acetobutylicum and in situ gas stripping : Experimental material : 1. Clostridium reinforced strain used in this example The reinforced clostridial medium (RCM) was purchased from Merck (Cat. No. 1.05411.0500). 2. The fermentation medium used in this example has a formulation as shown in Table 2 below. Table 2. Formulation of Fermentation Medium <TABLE border="1"borderColor="#000000"width="85%"><TBODY><tr><td>Ingredient</td><td> Concentration (g/L) </td></tr><tr><td> tryptone </td><td> 10 </td></tr><tr><td> NaCl </td><td> 10 </td></tr><tr><td> Yeast Extract</td><td> 5 </td></tr><tr><td>FeSO<sub>4</sub>・7H<sub>2</sub>O</td><td> 0.11 </td></tr><tr><td>MgSO<sub>4</sub>・7H<sub>2</sub>O</td><td> 0.6 </td></tr><tr><td>CaCl<sub>2</sub></td><td> 0.008 </td></tr><Tr><td>glucose</td><td> 60 </td></tr><tr><td> balance is deionized water</td></tr></TBODY></TABLE> 3. Preparation of inoculum of Clostridium acetobutylicum :

首先,將購自於台灣的食品工業發展研究所(Food Industry Research and Development Institute, FIRDI)的生物資源保存及研究中心(Biosource Collection and Research Center, BCRC)的丙酮丁醇梭菌BCRC 10639 (對應於ATCC 824)以一為5% (v/v)的接種量接種至RCM培養基中,並於一厭氧條件下以及80℃的水浴中進行熱休克反應(heat shock reaction)歷時2分鐘。接著,在冷卻至室溫之後,於一厭氧條件下以及一恆溫培養箱(37℃、150 rpm)中進行培養歷時24小時,俾以活化菌株,而由此所得到的培養物被使用作為本實施例中的丙酮丁醇梭菌的接種源。 4. 製備固定化載體(immobilization carrier):First, Clostridium acetobutylicum BCRC 10639, which is purchased from the Biosource Collection and Research Center (BCRC) of the Food Industry Research and Development Institute (FIDI) in Taiwan (corresponding to ATCC 824) was inoculated into RCM medium at a 5% (v/v) inoculum and subjected to a heat shock reaction for 2 minutes under an anaerobic condition and a water bath at 80 °C. Then, after cooling to room temperature, the culture was carried out under an anaerobic condition and in a constant temperature incubator (37 ° C, 150 rpm) for 24 hours to activate the strain, and the culture thus obtained was used as The inoculation source of Clostridium acetobutylicum in this example. 4. Prepare an immobilization carrier:

首先,使用一鐵鎚來將一購自於建材行的黏土磚(clay brick)敲碎,繼而依序地以孔徑為2.38 mm以及0.84 mm的篩網予以篩選,藉此而得到具有一範圍落在0.84 mm至2.38 mm內的粒徑之黏土磚顆粒(clay brick particle)。之後,將該等黏土磚顆粒以去離子水予以清洗數次,繼而以殺菌釜(HVE-50 Autoclave, Hirayama)於121℃以及1.2大氣壓力下進行滅菌歷時30分鐘。由此所得到的經滅菌的黏土磚顆粒被使用作為本實施例中的固定化載體。 5. 連續發酵反應器(continuous fermentation reactor):First, a hammer is used to break a clay brick purchased from a building material row, and then sequentially screened with a sieve having a diameter of 2.38 mm and 0.84 mm, thereby obtaining a range. Clay brick particles of particle size in the range of 0.84 mm to 2.38 mm. Thereafter, the clay brick granules were washed several times with deionized water, and then sterilized by a sterilizer (HVE-50 Autoclave, Hirayama) at 121 ° C and 1.2 atmospheres for 30 minutes. The sterilized clay brick particles thus obtained were used as the immobilization carrier in this example. 5. Continuous fermentation reactor:

在本實施例中所使用的連續發酵反應器的結構被顯示於圖1中。該連續發酵反應器包含一發酵槽1 (fermenter 1)、分別與該發酵槽1連通的一進料口2 (feed port 2)、一出料口3 (discharge port 3)、一氣體入口4 (gas inlet 4)以及一氣體出口5 (gas outlet 5),以及一連通於該氣體出口5的冷凝裝置6 (condensation device 6)。新鮮的發酵培養基可以一固定的流速經由該進料口2而被進料至該發酵槽1中以供丁醇發酵,而在該發酵槽1中的發酵培養物會以相同的流速經由該出料口3而被排出至該發酵槽1外,而使得在該發酵槽1中的發酵培養物會以一固定的速率[亦即稀釋速率(dilution rate)]而被持續地替換為新鮮的發酵培養基,並且在該發酵槽1中的內容物會被維持在一固定的體積。用於氣提的載體氣體(carrier gas)可以一固定的流速經由該氣體入口4而被通入該發酵槽1中以自發酵培養物中提取出丁醇。被提取出的丁醇會經由該氣體出口5而進入該冷凝裝置6中,並且藉由該冷凝裝置6的冷凝作用而被收集。 實驗方法: The structure of the continuous fermentation reactor used in this example is shown in Fig. 1. The continuous fermentation reactor comprises a fermenter 1 (feeder 2), a feed port 2 connected to the fermenter 1, a discharge port 3, and a gas inlet 4 ( A gas inlet 4) and a gas outlet 5, and a condensing device 6 connected to the gas outlet 5. Fresh fermentation medium can be fed to the fermentation tank 1 via a feed port 2 for a butanol fermentation at a fixed flow rate, while the fermentation culture in the fermentation tank 1 will pass through the outlet at the same flow rate. The feed port 3 is discharged to the outside of the fermentation tank 1, so that the fermentation culture in the fermentation tank 1 is continuously replaced with fresh fermentation at a fixed rate [i.e., dilution rate]. The medium, and the contents in the fermentation tank 1, will be maintained at a fixed volume. A carrier gas for stripping can be introduced into the fermentation tank 1 via the gas inlet 4 at a fixed flow rate to extract butanol from the fermentation culture. The extracted butanol enters the condensing device 6 via the gas outlet 5 and is collected by the condensation of the condensing device 6. experimental method:

首先,將420 g之依據上面“實驗材料”的第4項「製備固定化載體」所得到之經滅菌的黏土磚顆粒填充至連續發酵反應器的發酵槽1中。接著,將63 mL之依據上面“實驗材料”的第3項「製備丙酮丁醇梭菌的接種源」所得到的丙酮丁醇梭菌的接種源接種至發酵槽1中,並於一厭氧條件下以及37℃下培養歷時30分鐘以進行細胞固定化作用。之後,將2.1 L之如上面表2中所示的發酵培養基加入至發酵槽1中,以使得在發酵槽1中的黏土磚顆粒具有一為20% (w/v, g/L)的填充率(filling rate),繼而使發酵槽1在一厭氧條件、一為37℃的溫度以及一為50 rpm的攪拌速率下進行批次發酵。在開始進行發酵反應的第24小時起,將攪拌速率調整至0 rpm。在開始進行發酵反應的第48小時起,以一為0.1 h -1的稀釋速率(dilution rate)來將發酵培養物替換為新鮮的發酵培養基,俾以進行連續發酵,直到開始進行發酵反應之後的第288小時結束。 First, 420 g of sterilized clay brick particles obtained according to the fourth item "Preparation of immobilized carrier" of the above "Experimental Materials" were filled into the fermentation tank 1 of the continuous fermentation reactor. Next, 63 mL of the inoculation source of Clostridium acetobutylicum obtained according to the third item "Inoculation source of Clostridium acetobutylicum" in the above "Experimental Materials" was inoculated into the fermentation tank 1, and an anaerobic gas was used. The cells were cultured at 37 ° C for 30 minutes for cell immobilization. Thereafter, 2.1 L of the fermentation medium as shown in Table 2 above was added to the fermentation tank 1 so that the clay brick particles in the fermentation tank 1 had a filling of 20% (w/v, g/L). The filling rate was followed by batch fermentation of the fermentation tank 1 under an anaerobic condition, a temperature of 37 ° C, and a stirring rate of 50 rpm. The stirring rate was adjusted to 0 rpm from the 24th hour when the fermentation reaction was started. At the 48th hour from the start of the fermentation reaction, the fermentation culture was replaced with a fresh fermentation medium at a dilution rate of 0.1 h -1 , and the fermentation was continued until the fermentation reaction was started. The 288th hour is over.

在連續發酵的期間,依據下列條件來對發酵槽1中的發酵培養物進行原位氣提,以持續自發酵培養物中移除丁醇:在開始進行發酵反應的第48至167小時(下稱階段1)的期間,沒有進行氣提;在開始進行發酵反應的第168至215小時(下稱階段2)的期間,使用具有1 LPM的流速(flow rate)之氮氣來進行氣提;以及在開始進行發酵反應的第216至288小時(下稱階段3)的期間,使用具有2 LPM的流速之氮氣來進行氣提。During the continuous fermentation, the fermentation culture in the fermentation tank 1 is subjected to in-situ stripping according to the following conditions to continuously remove butanol from the fermentation culture: at the 48th to the 167th hour after the start of the fermentation reaction (under During the period of Phase 1), no stripping is performed; during the first 168 to 215 hours (hereinafter referred to as Stage 2) in which the fermentation reaction is started, stripping is performed using nitrogen gas having a flow rate of 1 LPM; During the first 216 to 288 hours (hereinafter referred to as stage 3) in which the fermentation reaction was started, stripping was carried out using nitrogen gas having a flow rate of 2 LPM.

在連續發酵的期間,取樣是藉由自出料口3收集10 mL的發酵培養物而被進行,在階段1、2以及3的期間內的取樣次數分別為16、7以及9次,大約每7至8小時取樣1次。將每次取樣所收集的發酵培養物於13,300 rpm下予以離心歷時5分鐘,而所得到的上清液是依據上面“一般實驗方法”的第2項「二硝基水楊酸分析」當中所述的方法來進行葡萄糖含量的測量。有關葡萄糖利用率(glucose utilization rate)是以所測得之發酵培養物中所含有的葡萄糖含量代入下列公式(1)而被計算出: 公式 ( 1 ) A [( B -C) / B] ×100其中:A=葡萄糖利用率(%) B=發酵前發酵培養基的葡萄糖含量(g/L) C=各個取樣時間點所分別測得之發酵培養物的葡萄糖含量(g/L) During the continuous fermentation, sampling was carried out by collecting 10 mL of the fermentation culture from the discharge port 3, and the number of samplings during the stages 1, 2 and 3 was 16, 7 and 9 times, respectively. Sampling once every 7 to 8 hours. The fermentation culture collected by each sampling was centrifuged at 13,300 rpm for 5 minutes, and the obtained supernatant was subjected to the second item "Dinitrosalicylic acid analysis" according to the "general experimental method" above. The method described is used to measure the glucose content. The glucose utilization rate is calculated by substituting the glucose content contained in the measured fermentation culture into the following formula (1): Formula ( 1 ) : A = [( B - C) / B ] ×100 where: A = glucose utilization (%) B = glucose content of fermentation medium before fermentation (g / L) C = glucose content of fermentation culture (g / L) measured at each sampling time point

接著,進一步計算出各個階段的平均葡萄糖利用率(%)。所得到的實驗數據是以平均值±標準偏差(Standard Deviation, S.D.)來表示。Next, the average glucose utilization rate (%) at each stage was further calculated. The experimental data obtained are expressed as mean ± standard deviation (Standard Deviation, S. D.).

另外,將上面所得到的上清液以孔徑為0.2 μm的針頭式過濾器(購自於Merck Millipore)予以過濾,而所得到的濾液是依據上面“一般實驗方法”的第1項「氣相層析分析」當中所述的方法來進行丁醇的含量分析。有關丁醇產率(butanol productivity)是以所測得之發酵培養物中所含有的丁醇含量代入下列公式(2)而被計算出: 公式 ( 2 ) D E ×F其中:D=丁醇產率(g/Lh) E=各個取樣時間點所分別測得之發酵培養物的丁醇含量(g/L) F=稀釋速率(h -1) Further, the supernatant obtained above was filtered with a needle filter having a pore size of 0.2 μm (purchased from Merck Millipore), and the obtained filtrate was subjected to the first item "gas phase according to the above "general experimental method". The method described in the chromatographic analysis was carried out to analyze the content of butanol. The butanol productivity is calculated by substituting the butanol content contained in the measured fermentation culture into the following formula (2): Formula ( 2 ) : D = E × F wherein: D = Butanol yield (g/Lh) E = butanol content of the fermentation culture (g/L) measured at each sampling time point F = dilution rate (h -1 )

接著,進一步計算出各個階段的平均丁醇產率(g/Lh)。所得到的實驗數據是以平均值±標準偏差來表示。Next, the average butanol yield (g/Lh) at each stage was further calculated. The experimental data obtained are expressed as mean ± standard deviation.

此外,分別在階段2的最後12小時(亦即在開始進行發酵反應的第204至215小時)以及階段3的最後12小時(亦即在開始進行發酵反應的第277至288小時)的期間,使用冷凝裝置6來收集冷凝液,在紀錄12個小時所收集到的冷凝液的體積後收取10 mL的冷凝液。另外,分別在階段2以及階段3結束之時自發酵槽1收集10 mL的發酵培養物。接著,將冷凝液以及發酵培養物分別於13,300 rpm下予以離心歷時5分鐘,繼而將所得到的上清液以孔徑為0.2 μm的針頭式過濾器予以過濾。而所得到的濾液是依據上面“一般實驗方法”的第1項「氣相層析分析」當中所述的方法來進行丁醇的含量分析。有關丁醇移除速率(butanol removal rate)是以所測得之冷凝液中所含有的丁醇含量代入下列公式(3)而被計算出: 公式 ( 3 ) G (H × I)/J其中:G=丁醇移除速率(g/h) H=冷凝液的丁醇含量(g/L) I=冷凝液的體積(L) J=12(h) In addition, during the last 12 hours of Phase 2 (i.e., at the beginning of the 204th to 215th hours of the fermentation reaction) and during the last 12 hours of Phase 3 (i.e., during the 277th to 288th hours of the start of the fermentation reaction), Condensate 6 was used to collect the condensate, and 10 mL of condensate was collected after recording the volume of condensate collected for 12 hours. In addition, 10 mL of the fermentation culture was collected from the fermentation tank 1 at the end of Stage 2 and Stage 3, respectively. Next, the condensate and the fermentation culture were centrifuged at 13,300 rpm for 5 minutes, respectively, and the resulting supernatant was then filtered through a needle filter having a pore size of 0.2 μm. The filtrate obtained was analyzed for the content of butanol according to the method described in the first item "Gas Chromatography Analysis" of the "General Experimental Method" above. The butanol removal rate is calculated by substituting the butanol content contained in the measured condensate into the following formula (3): Formula ( 3 ) : G = (H × I) / J where: G = butanol removal rate (g / h) H = butanol content of condensate (g / L) I = volume of condensate (L) J = 12 (h)

而有關丁醇選擇率(butanol selectivity)是將所測得之冷凝液與發酵培養物中所含有的丁醇含量換算成重量百分比並且代入下列公式(4)而被計算出: 公式 ( 4 ) K [ L / ( 1- L )]/[ M / ( 1- M )]其中:K=丁醇選擇率 L=冷凝液中的丁醇重量百分比(wt%) M=發酵培養物中的丁醇重量百分比(wt%) 實驗結果: The butanol selectivity is calculated by converting the measured condensate and the butanol content contained in the fermentation culture into a weight percentage and substituting the following formula (4): Formula ( 4 ) : K = [ L / ( 1- L )] / [ M / ( 1- M )] where: K = butanol selectivity L = weight percentage of butanol in the condensate (wt%) M = in the fermentation culture Butanol weight percentage (wt%) experimental results:

本實驗所測得的結果被顯示於下面表3中。 表3. 各個階段的平均葡萄糖利用率、平均丁醇產率、丁醇移除速率以及丁醇選擇率 <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 階段 </td><td> 1 </td><td> 2 </td><td> 3 </td></tr><tr><td> 平均葡萄糖利用率(%) </td><td> 68.8±5.0 </td><td> 93.7±3.4 </td><td> 96.8±0.4 </td></tr><tr><td> 平均丁醇產率(g/Lh) </td><td> 0.73±0.09 </td><td> 0.95±0.03 </td><td> 0.96±0.06 </td></tr><tr><td> 丁醇移除速率(g/h) </td><td> - </td><td> 0.525 </td><td> 0.696 </td></tr><tr><td> 丁醇選擇率 </td><td> - </td><td> 21.8 </td><td> 24.1 </td></tr></TBODY></TABLE>The results measured in this experiment are shown in Table 3 below. Table 3. Average Glucose Utilization, Average Butanol Yield, Butanol Removal Rate, and Butanol Selection Rate at Each Stage         <TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> stage</td><td> 1 </td><td> 2 </td> <td> 3 </td></tr><tr><td> Average glucose utilization (%) </td><td> 68.8±5.0 </td><td> 93.7±3.4 </td>< Td> 96.8±0.4 </td></tr><tr><td> average butanol yield (g/Lh) </td><td> 0.73±0.09 </td><td> 0.95±0.03 < /td><td> 0.96±0.06 </td></tr><tr><td> Butanol removal rate (g/h) </td><td> - </td><td> 0.525 < /td><td> 0.696 </td></tr><tr><td> Butanol selectivity </td><td> - </td><td> 21.8 </td><td> 24.1 < /td></tr></TBODY></TABLE>

從表3可見,在階段2與3的平均葡萄糖利用率以及平均丁醇產率皆顯著地高於階段1所具者。這個實驗結果顯示:在連續發酵的過程中,使用氮氣來進行原位氣提可以顯著地提升葡萄糖的利用,進而提升丁醇產率。As can be seen from Table 3, the average glucose utilization rates and average butanol yields in stages 2 and 3 were significantly higher than those in stage 1. The results of this experiment show that in the process of continuous fermentation, the use of nitrogen for in-situ stripping can significantly improve the utilization of glucose, thereby increasing the yield of butanol.

此外,階段3的丁醇移除速率以及丁醇選擇率皆明顯地高於階段2所具者。這個實驗結果顯示:以具有一為2 LPM的流速的氮氣來進行原位氣提具有一較佳的丁醇回收效用。In addition, the butanol removal rate and the butanol selectivity of Stage 3 were significantly higher than those of Stage 2. The results of this experiment show that in-situ stripping with nitrogen at a flow rate of 2 LPM has a better butanol recovery utility.

於本說明書中被引述之所有專利和文獻以其整體被併入本案作為參考資料。若有所衝突時,本案詳細說明(包含界定在內)將佔上風。All of the patents and documents cited in this specification are hereby incorporated by reference in their entirety. In the event of a conflict, the detailed description of the case (including definitions) will prevail.

雖然本發明已參考上述特定的具體例被描述,明顯地在不背離本發明之範圍和精神之下可作出很多的修改和變化。因此意欲的是,本發明僅受如隨文檢附之申請專利範圍所示者之限制。While the invention has been described with respect to the specific embodiments of the invention, it will be understood that many modifications and changes can be made without departing from the scope and spirit of the invention. It is therefore intended that the invention be limited only by the scope of the appended claims.

本發明之其他的特徵及功效,將於參照圖式的實施方式中清楚地呈現,其中: 圖1是一連續發酵反應器的示意圖。Other features and advantages of the present invention will be apparent from the description of the drawings, wherein: Figure 1 is a schematic diagram of a continuous fermentation reactor.

1‧‧‧發酵槽 1‧‧‧fermentation tank

2‧‧‧進料口 2‧‧‧ Feed inlet

3‧‧‧出料口 3‧‧‧Outlet

4‧‧‧氣體入口 4‧‧‧ gas inlet

5‧‧‧氣體出口 5‧‧‧ gas export

6‧‧‧冷凝裝置 6‧‧‧Condensing device

Claims (8)

一種用於生產丁醇的方法,其包括: 將一梭菌屬物種的菌株固定於一固定化載體上;以及 令該經固定之梭菌屬物種的菌株進行連續發酵,而使得丁醇被生成, 其中,丁醇是在連續發酵的期間藉由使用一載體氣體的原位氣提而被回收。A method for producing butanol, comprising: immobilizing a strain of a Clostridium species on an immobilized carrier; and subjecting the strain of the immobilized Clostridium species to continuous fermentation to cause butanol to be produced Wherein butanol is recovered during the continuous fermentation by in-situ stripping using a carrier gas. 如請求項1的方法,其中該固定化載體是選自於下列所構成的群組:黏土磚、沸石、陶瓷、骨炭、樹脂、木屑、焦炭、稻殼、棉、玉米稈、褐藻酸鈣、矽膠,以及它們的組合。The method of claim 1, wherein the immobilization carrier is selected from the group consisting of clay bricks, zeolites, ceramics, bone charcoal, resin, wood chips, coke, rice husks, cotton, corn stover, calcium alginate, Silicone, and combinations thereof. 如請求項1的方法,其中該固定化載體的載體填充率是落在20% (w/v, g/L)至40% (w/v, g/L)的範圍內。The method of claim 1, wherein the carrier filling rate of the immobilized carrier falls within a range of 20% (w/v, g/L) to 40% (w/v, g/L). 如請求項1的方法,其中該載體氣體是選自於下列所構成的群組:氮氣、二氧化碳、氫氣,以及它們的組合。The method of claim 1, wherein the carrier gas is selected from the group consisting of nitrogen, carbon dioxide, hydrogen, and combinations thereof. 如請求項1的方法,其中該原位氣提是在一範圍落在1 LPM至4 LPM的載體氣體流速下而被進行。The method of claim 1, wherein the in-situ stripping is performed at a carrier gas flow rate ranging from 1 LPM to 4 LPM. 如請求項1的方法,其中該梭菌屬物種的菌株是選自於下列所構成的群組:丙酮丁醇梭菌( Clostridium acetobutylicum)、糖乙酸多丁醇梭菌( Clostridium saccharoperbutylacetonicum)、拜氏梭菌( Clostridium beijerinckii)、酪丁酸梭菌( Clostridium tyrobutyricum)、酪酸梭菌( Clostridium butyricum),以及它們的組合。 The method of claim 1, wherein the strain of the Clostridium species is selected from the group consisting of Clostridium acetobutylicum , Clostridium saccharoperbutylacetonicum , and Bayesian Clostridium beijerinckii , Clostridium tyrobutyricum , Clostridium butyricum , and combinations thereof. 如請求項1的方法,其中該連續發酵是在一範圍落在0.05 h -1至0.2 h -1的稀釋速率下而被進行。 The method of claim 1, wherein the continuous fermentation is carried out at a dilution rate ranging from 0.05 h -1 to 0.2 h -1 . 如請求項1的方法,其中該連續發酵是在一厭氧條件下被進行。The method of claim 1, wherein the continuous fermentation is carried out under an anaerobic condition.
TW105126030A 2016-08-16 2016-08-16 Process for producing butanol TWI604055B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105126030A TWI604055B (en) 2016-08-16 2016-08-16 Process for producing butanol

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105126030A TWI604055B (en) 2016-08-16 2016-08-16 Process for producing butanol

Publications (2)

Publication Number Publication Date
TWI604055B true TWI604055B (en) 2017-11-01
TW201807195A TW201807195A (en) 2018-03-01

Family

ID=61023040

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105126030A TWI604055B (en) 2016-08-16 2016-08-16 Process for producing butanol

Country Status (1)

Country Link
TW (1) TWI604055B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676589B (en) * 2012-05-09 2014-04-09 大连理工大学 Method for producing, separating and purifying butanol by coupling fermenting with gas stripping

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102676589B (en) * 2012-05-09 2014-04-09 大连理工大学 Method for producing, separating and purifying butanol by coupling fermenting with gas stripping

Also Published As

Publication number Publication date
TW201807195A (en) 2018-03-01

Similar Documents

Publication Publication Date Title
TWI509073B (en) Improved fermentation of waste gases
Kumar et al. Increased H 2 production by immobilized microorganisms
CA2703622C (en) Clostridium autoethanogenum strain and methods of use thereof to produce ethanol and acetate
Ezeji et al. Butanol fermentation research: upstream and downstream manipulations
TW201224151A (en) A process
Amin et al. Determination of by-products formed during the ethanolic fermentation, using batch and immobilized cell systems of Zymomonas mobilis and Saccharomyces bayanus
CN101565685A (en) Gene recombination bacterium and application thereof in preparing chiral pure acetoin and 2,3-butanediol
Ren et al. Hydrogen production from the monomeric sugars hydrolyzed from hemicellulose by Enterobacter aerogenes
KR101418638B1 (en) Apparatus and method for refining product produced through microbial fermentation by using adsorbent
JP2022502053A (en) How to produce alcohol by Clostridium on a solid support
CN109666620A (en) A kind of engineered strain producing Tagatose, construction method and application
RU2381270C1 (en) STRAIN OF BACTERIA Clostridium acetobutylicum-PRODUCER OF BUTANOL, ACETONE AND ETHANOL
WO2012035420A1 (en) Clostridium beijerinckii dsm 23638 and its use in the production of butanol
TWI604055B (en) Process for producing butanol
TW201518254A (en) Method for producing 1,3-butadiene and/or 3-buten-2-ol
CN105820988B (en) One bacillus and its application in hot fermentation production 3-hydroxy-2-butanone and 2,3- butanediol
CN107964553A (en) Method for producing butanol
CN108148760A (en) A kind of method that butanol bacterium is screened from kitchen garbage
JP2010119321A (en) Method for producing sugar alcohol
CN110904160B (en) Fermentation method for increasing beta-phenethyl alcohol unit yield
Afolabi et al. Production of lactic acid from cassava starch hydrolysate using immobilized Lactobacillus Casei in a fibrous bed bioreactor
CN110055184A (en) Saccharomyces cerevisiae, comprising its microorganism formulation and using its produce ethyl alcohol method
Sae-hun et al. Carbonized biomass as an immobilization carrier in acetone-butanol-ethanol (ABE) fermentation by Clostridium beijerinckii JCM 8026
Ahmad et al. Effect of fermentation time, moisture content, and temperature on sorbitol production via solid state fermentation process
TWI665299B (en) Method of preparing fermentation products in large amount