CN109666620A - A kind of engineered strain producing Tagatose, construction method and application - Google Patents

A kind of engineered strain producing Tagatose, construction method and application Download PDF

Info

Publication number
CN109666620A
CN109666620A CN201910126820.8A CN201910126820A CN109666620A CN 109666620 A CN109666620 A CN 109666620A CN 201910126820 A CN201910126820 A CN 201910126820A CN 109666620 A CN109666620 A CN 109666620A
Authority
CN
China
Prior art keywords
tagatose
bacterial strain
phosphoric acid
fructose
recombinant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201910126820.8A
Other languages
Chinese (zh)
Other versions
CN109666620B (en
Inventor
马延和
孙媛霞
杨建刚
李运杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Yihe Biotechnology Co ltd
Original Assignee
Tianjin Institute of Industrial Biotechnology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Institute of Industrial Biotechnology of CAS filed Critical Tianjin Institute of Industrial Biotechnology of CAS
Publication of CN109666620A publication Critical patent/CN109666620A/en
Application granted granted Critical
Publication of CN109666620B publication Critical patent/CN109666620B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/02Monosaccharides
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • C12N15/77Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Corynebacterium; for Brevibacterium
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/12Transferases (2.) transferring phosphorus containing groups, e.g. kinases (2.7)
    • C12N9/1205Phosphotransferases with an alcohol group as acceptor (2.7.1), e.g. protein kinases
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/90Isomerases (5.)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y207/00Transferases transferring phosphorus-containing groups (2.7)
    • C12Y207/01Phosphotransferases with an alcohol group as acceptor (2.7.1)
    • C12Y207/01144Tagatose-6-phosphate kinase (2.7.1.144)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y501/00Racemaces and epimerases (5.1)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

The invention discloses a kind of construction method for producing Tagatose engineered strain and applications.The construction method passes through regulation glucose metabolism intracellular, reduce the enzymatic activity of fructose 6- phosphokinase in cell, enhancing glucokinase and Glucose-6-phosphate isomerase enzymatic activity are to improve the content of fructose 6- phosphoric acid intracellular, the Tagatose route of synthesis being made of 6- phosphoric acid tagatose 3-epimerase and 6- phosphoric acid Tagatose phosphorylase is constructed, the fructose metabolism pathway that enzyme and fructokinase form is penetrated by fructose;Obtain one plant of Corynebacterium glutamicum recombinant bacterial strain; the bacterial strain can be with metabolizable glucose, fructose or Sucrose synthesis Tagatose; compared with the bioconversion fructose reported at present synthesizes Tagatose method, have many advantages, such as it is easy to operate, convenient for separation, suitable large-scale production Tagatose.

Description

A kind of engineered strain producing Tagatose, construction method and application
Technical field
The invention belongs to field of biotechnology, and in particular to a kind of production Tagatose engineering bacteria, the preparation side of the engineering bacteria Method and the application being used in fermenting and producing Tagatose.
Background technique
Tagatose (D-Tag) is a kind of naturally occurring rare monosaccharide, is the ketose form of galactolipin, and the difference of fructose is to different Structure body.Sweet taste characteristic is similar to sucrose, and the heat generated is only the one third of sucrose, so being referred to as sweet taste low in calories Agent.Tagatose have lower calorific value, zero glycemic index, blood glucose passivation, without saprodontia, prebiotic function and anti-oxidant The excellent nutritive peculiarity such as activity, Tagatose has four big functions: low energy, hypoglycemic, improves intestinal flora and anti-caries tooth.The U.S. D-Tag is just classified as safety food (GRAS) additive within Food and Drug Administration (FDA) 2003.The safety of Tagatose Property and its in food application ratified by Japanese health ministry,
Production Tagatose mainly passes through two methods of chemical synthesis and bioconversion at present, and chemical synthesis needs multistep to protect And deprotection steps, cause energy consumption height, yield low, high production cost.Biotransformation method is using galactolipin as raw material, through L- Arab Sugared isomery Enzyme catalyzed synthesis D-Tag, it is higher that this method catalyzes and synthesizes efficiency, however galactolipin is expensive, while the reaction Conversion ratio only has 50%, causes product separation costs to rise, Tagatose high production cost, causes the biotransformation method extensive Using.Catalysed in vitro system conversion fructose synthesis Tagatose is established in related patents proposition, by phosphorylation and dephosphorylation steps Conversion ratio is improved, but needs expensive ATP as coenzyme, will cause the rising of Tagatose production cost, is not suitable for extensive Production, so a kind of low cost is urgently developed, low pollution, the Tagatose new synthetic method of high yield.The present invention proposes to use base Because engineering technology and micro-biological process construct microorganism recombinant bacterial strain, then it is raw as fermenting substrate using cheap glucose, fructose The new approaches for producing Tagatose, compared with above method, this method is enriched with environmental-friendly, substrate source and cheap, conversion ratio Height does not depend on the advantages that coacetylase TP, is suitble to large-scale production Tagatose.
Summary of the invention
The purpose of the present invention one is to provide a kind of construction method for producing Tagatose engineered strain.The construction method includes Following steps:
(1) enhance the enzymatic activity of glucokinase and Glucose-6-phosphate isomerase, it is characterized in that by introducing strong starting Son perhaps improves the expression intensity of glucokinase and Glucose-6-phosphate isomerase gene using plasmid expression form or adopts The higher glucokinase of enzymatic activity and Glucose-6-phosphate isomerase for integrating other source of species with chromosomal integration mode Gene.
(2) enzymatic activity of fructose 6- phosphokinase is reduced, it is characterized in that using gene knockout or introducing weak promoter side Formula reduces the expression of cell fructose 6- phosphokinase gene.
(3) enhance the enzymatic activity of 6- phosphoric acid tagatose 3-epimerase and 6- phosphoric acid Tagatose phosphorylase, feature To use chromosomal integration or plasmid expression form, to introducing 6- phosphoric acid tagatose 3-epimerase intracellular and 6- phosphoric acid tower Lattice Sugar phosphorylation enzyme gene.
(4) enhancing fructose penetrate enzyme and fructokinase enzymatic activity, it is characterized in that using strong promoter, chromosomal integration or Person's plasmid expression form, enhancing fructose penetrate the expression of enzyme and fructokinase gene.
The enzymatic activity and reduction fructose 6- phosphokinase of the enhancing glucokinase and Glucose-6-phosphate isomerase The purpose of enzymatic activity is, improves the content of fructose 6- phosphoric acid intracellular;The enhancing 6- phosphoric acid tagatose epimerase and 6- phosphoric acid The purpose of the enzymatic activity of Tagatose phosphorylase is fructose 6- phposphate intracellular to be Tagatose 6- phosphoric acid;The enhancing fruit Sugar is that improving engineered strain utilizes the fructose converting ability for fructose 6- phosphoric acid through the purpose of enzyme and fructokinase.
The construction method of the Tagatose engineered strain is suitable for Corynebacterium glutamicum, Escherichia coli, bacillus subtilis The bacterial strains such as bacterium, lactic acid bacteria, saccharomyces cerevisiae are that host strain carries out genetic modification, and obtained engineered strain is used for fermentation method synthetic tower lattice Sugar.
The purpose of the present invention two is to provide the construction method of recombinant bacterial strain Tag, comprising the following steps:
(1) amplification from Agrobacterium tumefaciems Agrobacterium tumefaciens 6- phosphoric acid Tagatose 4- difference to Isomerase gene (SEQ ID NO:1) and the 6- phosphoric acid ailulose phosphate from Escherichia coli Escherichia coli Enzyme gene (SEQ ID NO:2), and constructed into expression vector pEC-XK99E, obtain recombinant expression carrier pEC-T6PE- T6PP1;Amplification derives from the 6- phosphoric acid Tagatose 4- epimerase of thermophilic tennis bacterium Dictyoglomus thermophilum Gene (SEQ ID NO:3) and 6- phosphoric acid Tagatose phosphorylation from ancient green-ball Pseudomonas Archaeoglobus fulgidus Enzyme gene (SEQ ID NO:4), and constructed into expression vector pEC-XK99E, obtain recombinant expression carrier pEC-T6PE- T6PP2 constructs recombinant expression carrier pEC-T6PE-T6PP1 and pEC-T6PE-T6PP2 respectively to wild type glutamic acid rod In bacterium 13032, recombinant bacterial strain Tag1 and Tag2 are obtained.
(2) in Corynebacterium glutamicum 13032, the fructose 6- phosphorus in Corynebacterium glutamicum is reduced by molecular genetic manipulation Acid kinase (SEQ ID NO:5) expression, obtains recombinant bacterial strain Tag3.
(3) recombinant expression of 6- phosphoric acid Tagatose 4- epimerase and 6- phosphoric acid Tagatose phosphorylase gene will be carried Carrier pEC-T6PE-T6PP1 is constructed into recombinant bacterial strain Tag3, obtains recombinant bacterial strain Tag4.
(4) amplification derives from the glucokinase gene (SEQ ID NO:6) and glucose 6- phosphoric acid of Corynebacterium glutamicum Isomerase gene (SEQ ID NO:7), is constructed in expression vector pXMJ19, obtains recombinant plasmid pXMJ19-GlK- Recombinant plasmid pXMJ19-GlK-PGI and pEC-T6PE-T6PP1 are converted into recombinant bacterial strain Tag3, obtain recombinant bacterial strain by PGI Tag5。
(5) amplification penetrates enzyme gene (SEQ ID NO:8) from movement pseudomonad Zymomonas mobilis fructose With the fructokinase gene (SEQ ID NO:9) of enterococcus faecalis Enterococcus faecalis, and constructed to expression carry Recombinant vector pEC-T6PE-P6PP-Frk-GlF is obtained in body pEC-T6PE-P6PP, by recombinant plasmid pXMJ19-GlK-PGI and PEC-T6PE-P6PP-Frk-GlF is constructed into recombinant bacterial strain Tag3, obtains recombinant bacterial strain Tag6.
The purpose of the present invention three is to provide described Corynebacterium glutamicum engineered strain Tag1, Tag2, Tag4, Tag5 and Tag6 Application in Tagatose production.It is characterized in that being synthesized using recombinant bacterial strain Tag1, Tag2, Tag4 and Tag5 glucose fermentation Tagatose;Recombinant bacterial strain Tag6 can produce tower lattice with glucose fermentation, fructose, sucrose or the mixed liquor of the above three such as molasses Sugar.
Tagatose is prepared with this method, has many advantages, such as that cost of material is low, yield is high, is suitble to large-scale production Tagatose.
Detailed description of the invention
Fig. 1 fermentation method prepares the technology path of Tagatose.
The high-efficient liquid phase chromatogram that Fig. 2 recombinant bacterial strain Tag5 glucose fermentation synthesizes Tagatose analyzes result.
The high-efficient liquid phase chromatogram of Fig. 3 recombinant bacterial strain Tag6 fermentation fructose synthesis Tagatose analyzes result.
Specific embodiment
The present invention is described in further detail with reference to embodiments.
The percent concentration mentioned in of the invention and embodiment is mass/mass (W/W, unit g/ unless otherwise instructed 100g) percent concentration, mass/volume (W/V, unit g/100mL) percent concentration or volume/volume (V/V, Unit/mL/ 100mL) percent concentration.
Method therefor is conventional method unless otherwise instructed in following embodiments, and specific steps can be found in: " Molecular Cloning:A Laboratory Manual " (Sambrook, J., Russell, David W., Molecular Cloning:A Laboratory Manual, 3rd edition, 2001, NY, Cold Spring Harbor)。
The material or reagent of same names used are as identical unless otherwise instructed in each embodiment.It is described in embodiment To various biomaterials acquirement approach be only to provide it is a kind of experiment obtain approach to reach specifically disclosed purpose, do not answer As limitation when implementing of the invention to biological material source.In fact, the source of used biomaterial is widely, to appoint Why not the biomaterial that contrary to law and moral ethics can obtain can be replaced according to the prompt in embodiment.
The primer is synthesized by Jiangsu Jin Weizhi Bioisystech Co., Ltd in the present invention.
Embodiment is implemented under the premise of the technical scheme of the present invention, gives detailed embodiment and specific Operating process, embodiment will be helpful to understand the present invention, but protection scope of the present invention is not limited to following embodiments.Ability Field technique personnel should be understood that without departing from the spirit and scope of the invention can be to the details of technical solution of the present invention It modifies or replaces with form, but these modifications or substitutions each fall within protection scope of the present invention.
The building of embodiment 1 Corynebacterium glutamicum recombinant bacterial strain Tag1 and Tag2
1. constructing recombinant expression carrier pEC-T6PE-T6PP1
According to the 6- phosphoric acid tower lattice for deriving from Agrobacterium tumefaciems Agrobacterium tumefaciens in KEGG database Sugared 4- epimerase T6PE gene (SEQ ID NO:1) and from Escherichia coli Escherichia coli 6- phosphoric acid Ah Lip river ketose phosphorylase T6PP gene (SEQ ID NO:2), design primer 1, primer 2, primer 3 and primer 4, and expanded by PCR Increase and obtain corresponding sequence, with restriction enzyme SacI and SmaI simultaneously to gene T6PE1 and expression vector pEC-XK99E (Kirchner O and Tauch A.2003,Tools for genetic engineering in the amino acid- Producing bacterium Corynebacterium glutamicum.J.Biotechnol.104:287-299) it carries out Digestion, connection obtain recombinant plasmid pEC-T6PE1;Further using Restriction enzyme Sma I and XbaI simultaneously to gene T6PP1 and expression vector pEC-T6PE1 carries out digestion, connection obtains recombinant expression carrier pEC-T6PE-T6PP1.Primer sequence It is as follows:
Primer 1:CAGTCGAGCTCATGACCGCCATTTTGGAAAATC
Primer 2: GATCCCCCGGGTCAGTGGCGGCCTTCGCCCGT
Primer 3:GATCCCCCGGGAAAGGAGGACAACCAtgtcaaccccgcgtcagattcttgctgc a
Primer 4:CTAGCTCTAGATTAACCGAGAAGGTCTTTTGCGGT
2. constructing recombinant expression carrier pEC-T6PE-T6PP2
According to the thermophilic tennis bacterium 6- phosphoric acid tower lattice for deriving from Dictyoglomus thermophilum in ncbi database Sugared 4- epimerase T6PE gene (SEQ ID NO:3) and from ancient green-ball Pseudomonas Archaeoglobus fulgidus's 6- phosphoric acid Tagatose phosphorylase T6PP gene (SEQ ID NO:4), design primer 5, primer 6, primer 7 and primer 8, and pass through PCR amplification obtains corresponding sequence, with restriction enzyme SacI and SmaI simultaneously to gene T6PE2 and expression vector pEC- XK99E carries out digestion, and connection obtains recombinant plasmid pEC-T6PE2;Further simultaneously using Restriction enzyme Sma I and XbaI Digestion is carried out to gene T6PP2 and expression vector pEC-T6PE2, connection obtains recombinant expression carrier pEC-T6PE-T6PP2.Draw Object sequence is as follows:
Primer 5:CAGTCGAGCTCatgtggcttagtaaagattatttg
Primer 6:GATCCCCCGGGTTATAAGTTTACAGCATAGTGATAG
Primer 7:GATCCCCCGGGAAAGGAGGACAACCATGTTCAAACCAAAGGCCATCG
Primer 8:CTAGCTCTAGATCACCGCAACAATCCCAGAAACT
2. obtaining Corynebacterium glutamicum recombinant bacterial strain Tag1
By recombinant expression carrier pEC-T6PE-T6PP1 electrotransformation into wild type glutamic acid bar bacterium 13032, weighed Group bacterial strain Tag1 is obtained by recombinant expression carrier pEC-T6PE-T6PP2 electrotransformation into wild type glutamic acid bar bacterium 13032 Recombinant bacterial strain Tag2.
The building of 2 Corynebacterium glutamicum recombinant bacterial strain Tag4 of embodiment
1. constructing integration vector pK18mobsacB-pfk'
According to the fructose 6- for deriving from Corynebacterium glutamicum Corynebacterium glutamicum in KEGG database The upstream sequence (SEQ ID NO:10) and downstream sequence (SEQ ID NO:11) of phosphokinase gene, design primer 9, primer 10, primer 11 and primer 12, primer 9 and primer 10 obtain corresponding pfk' gene upstream sequence, primer 9 and primer through PCR amplification 10 obtain corresponding pfk " downstream of gene sequence through PCR amplification;It obtains being made of upstream and downstream sequence using fusion DNA vaccine method Fusion DNA vaccine segment pfk'-pfk ", further using restriction enzyme EcoRI and HindIII fusion segment pfk'-pfk " and Carrier pK18mobsacB (A,Tauch A,Jager W,Kal inowski J,Thierbach G,Puhler A.1994.SmTag mobil izable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19:selection of defined deletions in the Chromosome of Corynebacterium glutamicum.Gene 145:69-73) digestion is carried out, connection is obtained Recombinant plasmid pK18mobsacB-pfk, specific primer sequence are as follows:
Primer 9:ACCGGAATTCATGATTTTGGTTTCCTTCTGCGA
Primer 10:TTCGAATGGAACTTCCTTCAAGCTGGCTGTGCGGACGATTCCT
Primer 11:AGGAATCGTCCGCACAGCCAGCTTGAAGGAAGTTCCATTCGAACG
Primer 12:ACTCAAGCTTGTTAAGACGCAGCTGACCAGTG
2. obtaining the recombinant bacterial strain Tag3 of fructose 6- phosphokinase gene knockout
2.1 preparation 13032 electricity of Corynebacterium glutamicum ATCC turn competent cell, by gene knockout carrier PK18mobsacB-pfk electrotransformation enters 13032 electricity of Corynebacterium glutamicum ATCC and turns in competent cell.
The positive bacterium colony that 2.2 pickings are grown in that resistant panel of card is lined on the LB plate containing 10% sucrose, is put It sets in 30 DEG C of incubators and cultivates for 24 hours, the purpose of this step is to be by sucrose lethal, and screening blocks that deletion clone.
2.3 from LB sucrose plate several bacterium colonies of picking, bacterium colony PCR verifying is carried out again with primer 5 and primer 8, through PCR It is positive colony that amplification, which obtains 1822DNA segment,.
2.4 preservations verify correct bacterial strain, i.e. the recombination glutamic acid rod without fructose 6- phosphokinase gene activity through PCR Bacterium is named as Tag3.
3. obtaining Corynebacterium glutamicum recombinant bacterial strain Tag4
The recombinant expression for carrying 6- phosphoric acid tagatose 3-epimerase and 6- phosphoric acid Tagatose phosphorylase gene is carried Body pEC-T6PE-T6PP1 electrotransformation obtains recombinant bacterial strain Tag4 into recombinant bacterial strain Tag3.
The building of 3 Corynebacterium glutamicum recombinant bacterial strain Tag5 of embodiment
1. constructing recombinant expression carrier pXMJ19-GlK-PGI
According in KEGG database derive from Corynebacterium glutamicum glucokinase GlK gene (SEQ ID NO:4) and Glucose-6-phosphate isomerase pgi gene (SEQ ID NO:5), design primer 13, primer 14, primer 15 and primer 16, and with Corynebacterium glutamicum gene group is the gene of template PCR amplifications glucokinase gene glk and Glucose-6-phosphate isomerase Pgi carries out digestion to gene pgi and expression vector pXMJ19 simultaneously with restriction enzyme HindIII and PstI, and is connected with T4 It connects enzyme to be attached, obtains expression vector pXMJ19-PGI;Further using restriction enzyme PstI and XbaI simultaneously to base Because glk and expression vector pXMJ19-PGI carries out digestion, recombinant expression carrier pXMJ19-GlK-PGI is obtained.Specific primer sequence It is as follows:
Primer 13:CACTCAAGCTTATGGGATCCATGGCGGACATTTCGACCAC
Primer 14:GACAACTGCAGCTACCTATTTGCGCGGTACCACT
Primer 15:GACAACTGCAGAAAGGAGGACAACCatgccacaaaaaccggccagtt
Primer 16:GATGGTCTAGATTAGTTGGCTTCCACTACAGAGC
2. obtaining Corynebacterium glutamicum recombinant bacterial strain Tag5
By recombinant expression carrier pXMJ19-GlK-PGI and pEC-T6PE-T6PP1 electrotransformation into recombinant bacterial strain Tag3, obtain Obtain recombinant bacterial strain Tag5.
The building of 4 Corynebacterium glutamicum recombinant bacterial strain Tag6 of embodiment
1. constructing recombinant expression carrier pEC-T6PE-T6PP-Frk-GlF
It is false from movement according to the tuf promoter nucleotide sequence for deriving from Corynebacterium glutamicum in ncbi database Monad Zymomonas mobilis fructose penetrates enzyme Glf gene order (SEQ ID NO:6), derives from Escherichia coli Fructokinase Frk gene (SEQ ID NO:7) sequence of Enterococcus faecalis, design primer 17, primer 18 draw Object 19, primer 20, primer 21 and primer 22, and tuf promoter is obtained using PCR amplification, fructose penetrates enzyme gene glf and fructose Kinase gene frk segment, using above three segment as template, is obtained tuf-glf-frk and merges segment using fusion DNA vaccine strategy, And constructed by digestion connection type into recombinant expression plasmid pEC-T6PE-T6PP1, obtain recombinant expression plasmid pEC- T6PE-T6PP1-FK-GlF。
Primer 17:GATGGTCTAGATGGCCGTTACCCTGCGAATGT
Primer 18:agtacccagatttttccattcaTTGTATGTCCTCCTGGACTTCGTG
Primer 19:CACGAAGTCCAGGAGGACATACAAtgaatggaaaaatctgggtact
Primer 2 0:ACCCTGACTACTTTCAGAACTCATtcacagcgagcgctgaagatcgt
Primer 21:
acgatcttcagcgctcgctgtgaAAAGGAGGACAACCATGAGTTCTGAAAGTAGTCAGGGT
Primer 2 2:CTACTTCTGGGAGCGCCACATCTCCT
2. obtaining Corynebacterium glutamicum recombinant bacterial strain Tag6
By recombinant expression carrier pXMJ19-GlK-PGI and pEC-T6PE-T6PP-Frk-GlF electrotransformation to fructose 6- phosphoric acid In the recombinant bacterial strain Tag3 that kinase gene knocks out, recombinant bacterial strain Tag6 is obtained.
Application of 5 Corynebacterium glutamicum recombinant bacterial strain Tag1, Tag2, Tag4 and the Tag5 of embodiment in Tagatose production
1, Corynebacterium glutamicum recombinant bacterial strain Tag1 glucose fermentation synthesizes Tagatose
100mL BHI culture medium (the brain heart soaks powder 37g/L, kanamycins 25ng/mL) is selected, final concentration of 2% (matter is added Amount/volume (W/V, unit g/100mL) percent concentration) glucose, to Corynebacterium glutamicum under the conditions of 30 DEG C, 200rmp Recombinant bacterial strain Tag1 carries out culture 24-48h, after fermentation, carries out 14000rmp to sample and is centrifuged 20min, and with 0.22 μm Filtering with microporous membrane, filtrate does high-efficient liquid phase analysis.Efficient liquid phase chromatographic analysis is carried out as follows: instrument is Agilent High performance liquid chromatograph 1200, analytical column: Sugar-Pak, mobile phase: ultrapure water, flow velocity: 0.4mL/min, column temperature: 80 DEG C, inspection Device: differential refraction detector is surveyed, applied sample amount is 10 μ l.
2, Corynebacterium glutamicum recombinant bacterial strain Tag2 glucose fermentation synthesizes Tagatose
The cultural method of recombinant bacterial strain Tag2 is identical with 1, add final concentration of 2% in culture medium (mass/volume (W/V, Unit g/100mL) percent concentration) glucose, cultivate 24-48h, fermentation final sample carry out liquid chromatographic detection.
3, the cultural method of Corynebacterium glutamicum recombinant bacterial strain Tag4 glucose fermentation synthesis Tagatose recombinant bacterial strain Tag4 It is identical with 1, the grape of final concentration of 2% (mass/volume (W/V, unit g/100mL) percent concentration) is added in culture medium Sugar, cultivates 24-48h, and fermentation final sample carries out liquid chromatographic detection.
3, Corynebacterium glutamicum recombinant bacterial strain Tag5 glucose fermentation synthesizes Tagatose
The cultural method of recombinant bacterial strain Tag5 is identical with 1, add final concentration of 2% in culture medium (mass/volume (W/V, Unit g/100mL) percent concentration) glucose, cultivate 24-48h, fermentation final sample carry out liquid chromatographic detection.
Fermentation results show that, by 48 hours, recombinant bacterial strain Tag1 can synthesize 1.2g/L Tagatose, weight with glucose fermentation Group bacterial strain Tag2 can synthesize 0.8g/L Tagatose with glucose fermentation, and recombinant bacterial strain Tag4 can synthesize 4.6g/L with glucose fermentation Tagatose, compared with recombinant bacterial strain Tag1, tagatose yield improves nearly 3.8 times;Recombinant bacterial strain Tag5 can be closed with glucose fermentation At 6.4g/L Tagatose, compared with recombinant bacterial strain Tag1, tagatose yield improves 5.3 times.As a result as ((a) indicates fermentation liquid to Fig. 2 0h;(b) fermentation liquid 48h is indicated;(c) Tagatose sterling is indicated).
Application of the 6 Corynebacterium glutamicum recombinant bacterial strain Tag6 of embodiment in Tagatose production
1, Corynebacterium glutamicum recombinant bacterial strain Tag6 glucose fermentation synthesizes Tagatose
The cultural method of recombinant bacterial strain Tag6 is identical with the cultural method of recombinant bacterial strain Tag1 in embodiment 5, in culture medium The glucose of final concentration of 2% (mass/volume (W/V, unit g/100mL) percent concentration) is added, 24-48h, fermentation are cultivated Final sample carries out liquid chromatographic detection.
2, Corynebacterium glutamicum recombinant bacterial strain Tag6 fermentation fructose synthesizes Tagatose
The cultural method of recombinant bacterial strain Tag6 is identical with the cultural method of recombinant bacterial strain Tag1 in embodiment 5, in culture medium The fructose of final concentration of 2% (mass/volume (W/V, unit g/100mL) percent concentration) is added, cultivates 24-48h, fermentation is most Whole sample carries out liquid chromatographic detection.
3, Corynebacterium glutamicum recombinant bacterial strain Tag6 fermentation Sucrose synthesis Tagatose
The cultural method of recombinant bacterial strain Tag6 is identical with the cultural method of recombinant bacterial strain Tag1 in embodiment 5, in culture medium Add the sucrose of final concentration of 2% (mass/volume (W/V, unit g/100mL) percent concentration), culture culture 24-48h, hair Ferment final sample carries out liquid chromatographic detection.
Fermentation results show that, by 48 hours, recombinant bacterial strain Tag6 can synthesize 6.8g/L Tagatose, hair with glucose fermentation Ferment fructose generates 8.6g/L Tagatose, and fermentation sucrose generates 7.9g/L Tagatose.As a result as ((a) indicates fermentation liquid 0h to Fig. 3;(b) Indicate fermentation liquid 48h;(c) Tagatose sterling is indicated).
Sequence table
<110>Tianjin Institute of Industrial Biotechnology, Chinese Accademy of Sciences
<120>a kind of engineered strain for producing Tagatose, its construction method and application
<130> 2018.12.10
<160> 11
<170> SIPOSequenceListing 1.0
<210> 1
<211> 1278
<212> DNA
<213> Agrobacterium tumefaciens
<400> 1
atgaccgcca ttttggaaaa tctcgccgcc gcgcgccgcg ccggcaaacc tgcgggcatc 60
acttcggtct gctcggccca ccccgttgtc ctgcgcgccg caatccgccg cgccgccgcc 120
agtcaaacgg ccgtactgat cgaggccacc tgcaatcagg tcaatcatct cggtggttat 180
accggcatga caccgcgtga cttcgttgcc ttcgtcaaca gcatcgccgc ggaagaagga 240
ctgcccgccg aactgctgat ctttggcggc gatcatctcg gccccaatcc ctggcgcagg 300
gagaaggccg aggacgcgct gacaaaagcc gccgccatgg tcgacgccta tgtcacagct 360
ggttttcgca agatccacct tgatgcatcg atgggctgcg ccggtgagcc ggcagccctg 420
gatgacgtca ccatcgccca ccgcgccgcg aaactcacag ccgttgccga aaaggcagcc 480
actgaggctg gcctgccaaa accgctttat attctgggca ccgaagtgcc ggtgcccggc 540
ggtgccgacc atgtgcttga gaccgtcgca ccgaccgaac cgcaggcggc gcgcaacacc 600
atcgatcttc atcgcgaaat ctttgcgcag cacggtcttt ccgatgcgtt cgaacgggtc 660
atcgcctttg tcgtgcagcc gggtgtggaa ttcggcagcg acaatgtcgt cgcttatgat 720
ccgcaggcag cgcagagcct gagcgccgtg ctggatggcg aaccgcgact ggtcttcgaa 780
gcccattcga ccgattacca gaccgagcct gcccttgcgg cactggtacg cgacggatat 840
ccgatcctca aagttggacc gggcctcacc ttcgcttacc gggaagcgct ttatgcactc 900
gacatgatcg cctccgaaat ggtcggcacc tatggcgacc gaccgctggc gcggactatg 960
gaaaaattga tgttaagcgc gccgggcgac tggcagggcc attaccatgg cgacgacatc 1020
acgctccgat tgcaacgcca ttacagctac agcgaccgca tccgttacta ctggacgcga 1080
ccggaagcgc tcgcggccgt ttccaccttg cataaggcac tggatgggaa gacaattccc 1140
gaaaccctgc tgcgccaata tctcggcgaa ttgccgctcg cggcggttgc gggaaaggaa 1200
ccggaggagg ttctggtcgc ggcggtggat caggtgctgg cgacctatca cgcggcgacg 1260
ggcgaaggcc gccactga 1278
<210> 2
<211> 669
<212> DNA
<213> Escherichia coli
<400> 2
atgtcaaccc cgcgtcagat tcttgctgca atttttgata tggatggatt acttatcgac 60
tcagaacctt tatgggatcg agccgaactg gatgtgatgg caagcctggg ggtggatatc 120
tcccgtcgta acgagctgcc ggacacctta ggtttacgca tcgatatggt ggtcgatctt 180
tggtacgccc ggcaaccgtg gaatgggcca agccgtcagg aagtagtaga acgggttatt 240
gcccgtgcca tttcactggt tgaagagaca cgtccattat taccaggcgt gcgcgaagcc 300
gttgcgttat gcaaagaaca aggtttattg gtgggactgg cctccgcgtc accactacat 360
atgctggaaa aagtgttgac catgtttgac ttacgcgaca gtttcgatgc cctcgcctcg 420
gccgaaaaac tgccttacag caagccgcat ccgcaagtat atctcgactg cgcagcaaaa 480
ctgggcgttg accctctgac ctgcgtagcg ctggaagatt cggtaaatgg catgatcgcc 540
tctaaagcag cccgcatgcg ttccatcgtc gttcctgcgc cagaagcgca aaatgatcca 600
cgttttgtat tagcagacgt caaactttca tcgctgacag aactcaccgc aaaagacctt 660
ctcggttaa 669
<210> 3
<211> 1227
<212> DNA
<213> Dictyoglomus thermophilum
<400> 3
atgtggctta gtaaagatta tttgagaaaa aagggagttt attctatatg tagctctaat 60
ccatatgtga ttgaggcaag tgttgaattt gctaaggaga agaatgatta tattttaatt 120
gaggcgacac ctcatcagat aaaccagttt ggtggatatt caggtatgac tcccgaagat 180
tttaaaaact ttgtaatggg aataataaaa gaaaagggaa tagaagagga tagggtgatt 240
cttggagggg accatttagg ccctctccct tggcaagatg aaccttcttc ttctgcaatg 300
aaaaaggcaa aagaccttat aagggccttt gtggagagtg gttataagaa gatacacctt 360
gattgtagta tgtctctttc tgatgatcct gtagtgctct ctcccgagaa gatagcagaa 420
agggagaggg aacttcttga ggttgcagaa gagactgcta gaaagtacaa ttttcagcct 480
gtgtatgtgg tgggaactga tgtaccggta gctggaggag gcgaagagga aggtattacc 540
tcagtggagg attttagagt agcaatctcc tctttaaaaa aatattttga ggatgttcca 600
aggatatggg ataggataat tggttttgta ataatgcttg gtataggttt taattatgaa 660
aaagtgtttg agtatgacag gattaaggtg agaaaaattt tagaggaggt aaagaaagag 720
aatctttttg ttgaaggtca ctctactgac tatcagacaa aacgtgcatt gagagatatg 780
gtagaggatg gagtaagaat tcttaaggtt ggtcctgctt taacagcaag ttttagaagg 840
ggagtatttt tattaagtag cattgaggat gagcttatat cggaagataa aaggtctaat 900
attaagaaag ttgtgcttga gactatgtta aaagatgata aatattggag aaagtattat 960
aaggattcag aaagattaga attagatatt tggtacaact tacttgatag gattagatat 1020
tattgggaat ataaagagat aaaaatagct ttaaataggc tttttgaaaa tttttcggaa 1080
ggggttgata ttagatacat ctatcaatat ttttatgatt cgtattttaa agtaagagaa 1140
ggaaaaataa gaaatgatcc aagggagcta ataaagaatg aaataaagaa ggtcttggag 1200
gactatcact atgctgtaaa cttataa 1227
<210> 4
<211> 672
<212> DNA
<213> Archaeoglobus fulgidus
<400> 4
atgttcaaac caaaggccat cgcagttgac atagatggca ccctcaccga cagaaagagg 60
gctctgaact gcagggctgt tgaagctctc cgcaaggtaa aaattcccgt gattttggcc 120
actggtaaca tatcttgttt tgcgagggct gcagcaaagc tgattggagt ctcagacgtg 180
gtaatctgcg agaatggggg cgtggtgagg ttcgagtacg atggggagga tattgtttta 240
ggagataaag agaaatgcgt tgaggctgtg agggtgcttg agaaacacta tgaggttgag 300
ctgctggact tcgaatacag gaagtcggaa gtgtgcatga ggaggagctt tgacatcaac 360
gaggcgagaa agctcattga ggggatgggg gttaagcttg tggattcagg ctttgcctac 420
cacattatgg atgctgatgt tagcaaggga aaagctttga agttcgttgc cgagaggctt 480
ggtatcagtt cagcggagtt tgcagttatc ggcgactcag agaacgacat agacatgttc 540
agagttgctg gattcggaat tgctgttgcc aatgccgatg agaggctgaa ggagtatgct 600
gatttagtta cgccatcacc agacggcgag ggggttgttg aggctttgca gtttctggga 660
ttgttgcggt ga 672
<210> 5
<211> 1041
<212> DNA
<213> Corynebacterium glutamicum
<400> 5
atggaagaca tgcgaattgc tactctcacg tcaggcggcg actgccccgg actaaacgcc 60
gtcatccgag gaatcgtccg cacagccagc aatgaatttg gctccaccgt cgttggttat 120
caagacggtt gggaaggact gttaggcgat cgtcgcgtac agctgtatga cgatgaagat 180
attgaccgaa tcctccttcg aggcggcacc attttgggca ctggtcgcct ccatccggac 240
aagtttaagg ccggaattga tcagattaag gccaacttag aagacgccgg catcgatgcc 300
cttatcccaa tcggtggcga aggaaccctg aagggtgcca agtggctgtc tgataacggt 360
atccctgttg tcggtgtccc aaagaccatt gacaatgacg tgaatggcac tgacttcacc 420
ttcggtttcg atactgctgt ggcagtggct accgacgctg ttgaccgcct gcacaccacc 480
gctgaatctc acaaccgtgt gatgatcgtg gaggtcatgg gccgccacgt gggttggatt 540
gctctgcacg caggtatggc cggcggtgct cactacaccg ttattccaga agtacctttc 600
gatattgcag agatctgcaa ggcgatggaa cgtcgcttcc agatgggcga gaagtacggc 660
attatcgtcg ttgcggaagg tgcgttgcca cgcgaaggca ccatggagct tcgtgaaggc 720
cacattgacc agttcggtca caagaccttc acgggaattg gacagcagat cgctgatgag 780
atccacgtgc gcctcggcca cgatgttcgt acgaccgttc ttggccacat tcaacgtggt 840
ggaaccccaa ctgctttcga ccgtgttctg gccactcgtt atggtgttcg tgcagctcgt 900
gcgtgccatg agggaagctt tgacaaggtt gttgctttga agggtgagag cattgagatg 960
atcacctttg aagaagcagt cggaaccttg aaggaagttc cattcgaacg ctgggttact 1020
gcccaggcaa tgtttggata g 1041
<210> 6
<211> 972
<212> DNA
<213> Corynebacterium glutamicum
<400> 6
atgccacaaa aaccggccag tttcgcggtg ggctttgaca tcggcggcac caacatgcga 60
gccgggcttg tcgacgaatc cgggcgcatc gtgaccagtt tgtcggcgcc gtcgccgcgc 120
acgacgcagg caatggaaca ggggattttt gatctagtcg aacagctcaa ggccgaatac 180
ccggttggtg ctgtgggact tgccgtcgcg ggatttttgg atcctgagtg cgaggttgtt 240
cgatttgccc cgcaccttcc ttggcgcgat gagccagtgc gtgaaaagtt ggaaaacctt 300
ttgggcctgc ctgttcgttt ggaacatgat gccaactcag cagcgtgggg tgagcatcgt 360
tttggtgcag ctcaaggcgc tgacaactgg gttttgttgg cactcggcac tggaattggt 420
gcagcgctga ttgaaaaagg cgaaatttac cgtggtgcat atggcacggc accagaattt 480
ggtcatttgc gtgttgttcg tggcggacgc gcatgtgcgt gtggcaaaga aggctgcctg 540
gagcgttact gttccggtac tgccttggtt tacactgcgc gtgaattggc ttcgcatggc 600
tcattccgca acagcgggct gtttgacaag atcaaagccg atccgaattc catcaatgga 660
aaaacgatca ctgcggcagc gcgccaagaa gacccacttg ctctcgccgt tctggaagat 720
ttcagcgagt ggctgggcga aactttggcg atcattgctg atgtccttga cccaggcatg 780
atcatcattg gtggcggact gtccaatgct gccgaccttt atttggatcg ctcggtcaac 840
cactattcca cccgcatcgt cggcgcagga tatcgccctt tggcacgcgt tgccacagct 900
cagttgggtg cggatgctgg catgatcggt gtcgctgatc tagctcgacg ctctgtagtg 960
gaagccaact ag 972
<210> 7
<211> 1623
<212> DNA
<213> Corynebacterium glutamicum
<400> 7
atggcggaca tttcgaccac ccaggtttgg caagacctga ccgatcatta ctcaaacttc 60
caggcaacca ctctgcgtga acttttcaag gaagaaaacc gcgccgagaa gtacaccttc 120
tccgcggctg gcctccacgt cgacctgtcg aagaatctgc ttgacgacgc caccctcacc 180
aagctccttg cactgaccga agaatctggc cttcgcgaac gcattgacgc gatgtttgcc 240
ggtgaacacc tcaacaacac cgaagaccgc gctgtcctcc acaccgcgct gcgccttcct 300
gccgaagctg atctgtcagt agatggccaa gatgttgctg ctgatgtcca cgaagttttg 360
ggacgcatgc gtgacttcgc tactgcgctg cgctcaggca actggttggg acacaccggc 420
cacacgatca agaagatcgt caacattggt atcggtggct ctgacctcgg accagccatg 480
gctacgaagg ctctgcgtgc atacgcgacc gctggtatct cagcagaatt cgtctccaac 540
gtcgacccag cagacctcgt ttctgtgttg gaagacctcg atgcagaatc cacattgttc 600
gtgatcgctt cgaaaacttt caccacccag gagacgctgt ccaacgctcg tgcagctcgt 660
gcttggctgg tagagaagct cggtgaagag gctgtcgcga agcacttcgt cgcagtgtcc 720
accaatgctg aaaaggtcgc agagttcggt atcgacacgg acaacatgtt cggcttctgg 780
gactgggtcg gaggtcgtta ctccgtggac tccgcagttg gtctttccct catggcagtg 840
atcggccctc gcgacttcat gcgtttcctc ggtggattcc acgcgatgga tgaacacttc 900
cgcaccacca agttcgaaga gaacgttcca atcttgatgg ctctgctcgg tgtctggtac 960
tccgatttct atggtgcaga aacccacgct gtcctacctt attccgagga tctcagccgt 1020
tttgctgctt acctccagca gctgaccatg gaatcaaatg gcaagtcagt ccaccgcgac 1080
ggctcccctg tttccactgg cactggcgaa atttactggg gtgagcctgg cacaaatggc 1140
cagcacgctt tcttccagct gatccaccag ggcactcgcc ttgttccagc tgatttcatt 1200
ggtttcgctc gtccaaagca ggatcttcct gccggtgagc gcaccatgca tgaccttttg 1260
atgagcaact tcttcgcaca gaccaaggtt ttggctttcg gtaagaacgc tgaagagatc 1320
gctgcggaag gtgtcgcacc tgagctggtc aaccacaagg tcatgccagg taatcgccca 1380
accaccacca ttttggcgga ggaacttacc ccttctattc tcggtgcgtt gatcgctttg 1440
tacgaacaca tcgtgatggt tcagggcgtg atttgggaca tcaactcctt cgaccaatgg 1500
ggtgttgaac tgggcaaaca gcaggcaaat gacctcgctc cggctgtctc tggtgaagag 1560
gatgttgact cgggagattc ttccactgat tcactgatta agtggtaccg cgcaaatagg 1620
tag 1623
<210> 8
<211> 1427
<212> DNA
<213> Zymomonas mobilis
<400> 8
atggcggaca tttcgaccac ccaggtttgg caagacctga ccgatcatta ctcgctgcta 60
taggcggctt gcttttcggt tacgattcag cggttatcgc tgcaatcggt acaccggttg 120
atatccattt tattgcccct cgtcacctgt ctgctacggc tgcggcttcc ctttctggga 180
tggtcgttgt tgctgttttg gtcggttgtg ttaccggttc tttgctgtct ggctggattg 240
gtattcgctt cggtcgtcgc ggcggattgt tgatgagttc catttgtttc gtcgccgccg 300
gttttggtgc tgcgttaacc gaaaaattat ttggaaccgg tggttcggct ttacaaattt 360
tttgcttttt ccggtttctt gccggtttag gtatcggtgt cgtttcaacc ttgaccccaa 420
cctatattgc tgaaattcgt ccgccagaca aacgtggtca gatggtttct ggtcagcaga 480
tggccattgt gacgggtgct ttaaccggtt atatctttac ctggttactg gctcatttcg 540
gttctatcga ttgggttaat gccagtggtt ggtgctggtc tccggcttca gaaggcctga 600
tcggtattgc cttcttattg ctgctgttaa ccgcaccgga tacgccgcat tggttggtga 660
tgaagggacg tcattccgag gctagcaaaa tccttgctcg tctggaaccg caagccgatc 720
ctaatctgac gattcaaaag attaaagctg gctttgataa agccatggac aaaagcagcg 780
caggtttgtt tgcttttggt atcaccgttg tttttgccgg tgtatccgtt gctgccttcc 840
agcagttagt cggtattaac gccgtgctgt attatgcacc gcagatgttc cagaatttag 900
gttttggagc tgatacggca ttattgcaga ccatctctat cggtgttgtg aacttcatct 960
tcaccatgat tgcttcccgt gttgttgacc gcttcggccg taaacctctg cttatttggg 1020
gtgctctcgg tatggctgca atgatggctg ttttaggctg ctgtttctgg ttcaaagtcg 1080
gtggtgtttt gcctttggct tctgtgcttc tttatattgc agtctttggt atgtcatggg 1140
gccctgtctg ctgggttgtt ctgtcagaaa tgttcccgag ttccatcaag ggcgcagcta 1200
tgcctatcgc tgttaccgga caatggttag ctaatatctt ggttaacttc ctgtttaagg 1260
ttgccgatgg ttctccagca ttgaatcaga ctttcaacca cggtttctcc tatctcgttt 1320
tcgcagcatt aagtatctta ggtggcttga ttgttgctcg cttcgtgccg gaaaccaaag 1380
gtcggagcct ggatgaaatc gaggagatgt ggcgctccca gaagtag 1427
<210> 9
<211> 879
<212> DNA
<213> Enterococcus faecalis
<400> 9
atgacagaaa aacttttagg aagtatcgaa gccggtggca caaaatttgt atgtggcgtt 60
gggacagatg atttgaccat cgtagaacgt gtcagttttc ccacaacaac cccagaagaa 120
acaatgaaaa aagtaataga atttttccaa caatatcctt taaaagcgat tgggattggt 180
tcatttggtc cgattgatat tcacgttgat tctcctacgt atggttatat cacttctaca 240
ccaaaattag cttggcgtaa ctttgacttg ttaggaacta tgaaacaaca ttttgatgtg 300
ccaatggctt ggacaacgga tgtgaatgct gcggcatatg gtgagtatgt tgctggaaat 360
gggcaacata catctagttg tgtatattat acaattggaa ctggtgttgg cgctggagcg 420
attcaaaacg gtgagtttat tgaaggcttt agccacccag aaatggggca tgcgttagtt 480
cgtcgtcatc ctgaagatac gtatgcagga aattgtcctt atcatggaga ttgtttagaa 540
gggattgcag caggaccagc agttgaaggt cgttctggta aaaaaggaca tttattggaa 600
gaggatcata aaacttggga attagaagct tattatttag cgcaagcggc gtacaatacg 660
actttattat tagcgccaga agtgatcatt ttaggtggcg gcgtcatgaa acaacgtcat 720
ttgatgccga aagttcgtga aaaatttgct gaattagtca atggatatgt ggaaacaccg 780
cctttagaaa aatacttggt gacgcctctt ttagaagata atccaggaac aatcggttgc 840
tttgccttgg caaaaaaagc tttaatggct caaaaataa 879
<210> 10
<211> 809
<212> DNA
<213> Corynebacterium glutamicum
<400> 10
aatgattttg gtttccttct gcgagttcgc catgtgactg cggtaaaact gccccggaac 60
cggaatatct cgacgccaca gaacgccatt tgcgggcctt aacaccccgt gggcatacct 120
tttacccatt ccagatattc ggtcgcttaa attgcctagt gtgattccaa acagaaatct 180
ggggcgacct ctaataagag tcgccccgat aagttttttt accgtaatta ttactgggag 240
tcagatactg cgtaagcaat cgcagcagcg ccagcggtca cagtaagaac tgcaggccac 300
gcgccaatct tcttggcaag tgggtgggac aggccaaatg caccaacgta ggttgccagc 360
aggccagtag ctactgcagg acccttcttt tcattccagc ttcgtgcagc aagcgctccg 420
gatgctgcca atggaatggt gcccagtggg cgaatgccgg attcacgggc agtcaaccaa 480
ccgccgatca aacctgctgc gacgacggtg gcagtgctga cctgggatgc ctttttcaat 540
ttcatttcca tggtgagcca gtctagagac aaaatttttc cgcgggggtt ttcttgatct 600
gatccgacaa cccaatgggg gcaaaaatgt gtccgaccaa aaattgtgca gcacaccaca 660
tgcccgctcg gacaatgtcg atttgttaat gaaactgcag ctctggcgat taaataagat 720
ggtcagagac agttttttgg cctgtcaacc cctgtgattc tcttattttt gggtgattgt 780
tccggcgcgg gtgttgtgat gggtttaat 809
<210> 11
<211> 869
<212> DNA
<213> Corynebacterium glutamicum
<400> 11
tttttcgggc ttttatcaac agccaataac agctctttcg cccattgagg tggaggggct 60
gttttttcat gccgtaagga aagtgcaagt aagtgaaatc aagtggccta gatccattga 120
cacttagact gtgacctagg cttgactttc gtgggggagt ggggataagt tcatcttaaa 180
cacaatgcaa tcgattgcat ttacgttcct tatcccacaa taggggtacc ttccagaaag 240
ttggtgagga gatggcttcc gaaacctcca gcccgaagaa gcgggccacc acgctcaaag 300
acatcgcgca agcaacacag ctttcagtca gcacggtgtc ccgggcattg gccaacaacg 360
cgagcattcc ggaatccaca cgcatccgag tggttgaagc cgctcaaaag ctgaactacc 420
gtcccaatgc ccaagctcgt gcattgcgga agtcgaggac agacaccatc ggtgtcatca 480
ttccaaacat tgagaaccca tatttctcct cactagcagc atcgattcaa aaagctgctc 540
gtgaagctgg ggtgtccacc attttgtcca actctgaaga aaacccagag ctgcttggtc 600
agactttggc gatcatggat gaccaacgcc tcgatggaat catcgtggtg ccacacattc 660
agtcagagga acaagtcact gacttggtta acaggggagt gccagtagtg ctggcagacc 720
gtagttttgt taactcgtct attccttcgg ttacctcaga tccagttccg ggcatgactg 780
aagctgtgga cttactcctg gcagctgacg tgcaattggg ctaccttgcc ggcccgcagg 840
atacttccac tggtcagctg cgtcttaac 869

Claims (7)

1. a kind of construction method for producing Tagatose engineered strain, which is characterized in that reduce fructose 6- phosphoric acid in starting strain and swash The enzymatic activity of enzyme, the enzymatic activity of enhancing 6- phosphoric acid tagatose 3-epimerase, 6- phosphoric acid Tagatose phosphorylase.
2. construction method as described in claim 1, which is characterized in that further include further enhancing glucokinase, glucose The enzymatic activity of 6- phosphoric acid isomerase.
3. construction method as described in claim 1, which is characterized in that further include further enhancing fructose to swash through enzyme and fructose The enzymatic activity of enzyme.
4. construction method a method according to any one of claims 1-3, which is characterized in that the starting strain is Corynebacterium glutamicum, Escherichia coli, bacillus subtilis, lactic acid bacteria, saccharomyces cerevisiae.
5. a kind of construction method of Corynebacterium glutamicum engineered strain Tag, comprising the following steps:
(1) amplification derives from the 6- phosphoric acid Tagatose 4- epimerism of Agrobacterium tumefaciems Agrobacterium tumefaciens Enzyme gene and 6- phosphoric acid ailulose phosphate enzyme gene from Escherichia coli Escherichia coli, and constructed Into expression vector pEC-XK99E, recombinant expression carrier pEC-T6PE-T6PP1 is obtained, by recombinant expression carrier pEC-T6PE- T6PP1 is constructed respectively into wild type glutamic acid bar bacterium 13032, obtains recombinant bacterial strain Tag1;Amplification derives from thermophilic tennis The 6- phosphoric acid Tagatose 4- epimerism enzyme gene of bacterium Dictyoglomus thermophilum and from ancient green-ball Pseudomonas The 6- phosphoric acid Tagatose phosphorylase gene of Archaeoglobus fulgidus, and constructed to expression vector pEC- In XK99E, obtain recombinant expression carrier pEC-T6PE-T6PP2, by recombinant expression carrier pEC-T6PE-T6PP2 construct respectively to In wild type glutamic acid bar bacterium 13032, recombinant bacterial strain Tag2 is obtained.
(2) in Corynebacterium glutamicum 13032, the fructose 6- phosphoric acid in Corynebacterium glutamicum is reduced by molecular genetic manipulation and is swashed Enzyme gene expression is horizontal, obtains recombinant bacterial strain Tag3;
(3) recombinant expression carrier of 6- phosphoric acid tagatose 3-epimerase and 6- phosphoric acid Tagatose phosphorylase gene will be carried PEC-T6PE-T6PP1 is constructed into recombinant bacterial strain Tag3, obtains recombinant bacterial strain Tag4;
(4) amplification derives from the glucokinase and Glucose-6-phosphate isomerase gene of Corynebacterium glutamicum, is constructed In expression vector pXMJ19, recombinant plasmid pXMJ19-GlK-PGI is obtained, by recombinant plasmid pXMJ19-GlK-PGI and pEC- T6PE-T6PP1, which is converted into recombinant bacterial strain Tag3, obtains recombinant bacterial strain Tag5;
(5) amplification penetrates enzyme gene and enterococcus faecalis from movement pseudomonad Zymomonas mobilis fructose The fructokinase gene of Enterococcus faecalis, and constructed into expression vector pEC-T6PE-T6PP1 and obtained Recombinant vector pEC-T6PE-T6PP1-Frk-GlF, by recombinant vector pXMJ19-GlK-PGI and pEC-T6PE-T6PP1-Frk- GlF is constructed into recombinant bacterial strain Tag3, obtains recombinant bacterial strain Tag6.
6. recombinant bacterial strain Tag1 described in claim 5, Tag2, Tag4 and Tag5 answering in glucose fermentation synthesis Tagatose With.
7. application of recombinant bacterial strain Tag6 described in claim 5 in Tagatose synthesis, which is characterized in that recombinant bacterial strain Tag6 Fermentation substrate be one or more of glucose, fructose, sucrose.
CN201910126820.8A 2018-05-29 2019-02-20 Engineering strain for producing tagatose, construction method and application thereof Active CN109666620B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810535397 2018-05-29
CN2018105353972 2018-05-29

Publications (2)

Publication Number Publication Date
CN109666620A true CN109666620A (en) 2019-04-23
CN109666620B CN109666620B (en) 2022-05-10

Family

ID=66151990

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910126820.8A Active CN109666620B (en) 2018-05-29 2019-02-20 Engineering strain for producing tagatose, construction method and application thereof

Country Status (1)

Country Link
CN (1) CN109666620B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112342178A (en) * 2020-11-05 2021-02-09 中国科学院天津工业生物技术研究所 Recombinant microorganism, preparation method thereof and application thereof in producing tagatose
CN112575041A (en) * 2019-09-30 2021-03-30 江南大学 Engineering bacterium for producing PHB (polyhydroxybutyrate) by high-efficiency fermentation of mixed carbon source and application of engineering bacterium
CN112708616A (en) * 2021-03-29 2021-04-27 中国科学院天津工业生物技术研究所 Method for producing tagatose by immobilized multienzyme system
WO2022148008A1 (en) * 2021-01-05 2022-07-14 中国科学院天津工业生物技术研究所 Bacillus subtilis genetically engineered bacterium for producing tagatose and method for preparing tagatose
WO2022213721A1 (en) 2021-04-07 2022-10-13 中国科学院天津工业生物技术研究所 Method for producing tagatose by immobilizing multiple enzymes by using artificial oil body
WO2022213720A1 (en) 2021-04-07 2022-10-13 中国科学院天津工业生物技术研究所 Method for producing tagatose from biomimetic silicon mineralized microcapsule immobilized multi-enzyme

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631856A (en) * 2006-11-27 2010-01-20 Cj第一制糖株式会社 Arabinose isomerase expressed from corynebacterium genus and tagatose manufacturing method by using it
KR101700346B1 (en) * 2015-12-22 2017-01-26 대상 주식회사 Method of improving cytopermeability of substrate of endoenzyme and method of manufacturing products of endoenzyme reaction from substrate
CN107746856A (en) * 2017-10-19 2018-03-02 中国科学院天津工业生物技术研究所 Produce construction method and the application of the Corynebacterium glutamicum recombinant bacterial strain of the rare sugar of L

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101631856A (en) * 2006-11-27 2010-01-20 Cj第一制糖株式会社 Arabinose isomerase expressed from corynebacterium genus and tagatose manufacturing method by using it
KR101700346B1 (en) * 2015-12-22 2017-01-26 대상 주식회사 Method of improving cytopermeability of substrate of endoenzyme and method of manufacturing products of endoenzyme reaction from substrate
CN107746856A (en) * 2017-10-19 2018-03-02 中国科学院天津工业生物技术研究所 Produce construction method and the application of the Corynebacterium glutamicum recombinant bacterial strain of the rare sugar of L

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YANG, JG等: "Pathway Construction in Corynebacterium glutamicum and Strain Engineering To Produce Rare Sugars from Glycerol", 《JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY》 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112575041A (en) * 2019-09-30 2021-03-30 江南大学 Engineering bacterium for producing PHB (polyhydroxybutyrate) by high-efficiency fermentation of mixed carbon source and application of engineering bacterium
CN112342178A (en) * 2020-11-05 2021-02-09 中国科学院天津工业生物技术研究所 Recombinant microorganism, preparation method thereof and application thereof in producing tagatose
WO2022095684A1 (en) * 2020-11-05 2022-05-12 中国科学院天津工业生物技术研究所 Recombinant microorganism, preparation method therefor, and application of recombinant microorganism in production of tagatose
WO2022148008A1 (en) * 2021-01-05 2022-07-14 中国科学院天津工业生物技术研究所 Bacillus subtilis genetically engineered bacterium for producing tagatose and method for preparing tagatose
CN112708616A (en) * 2021-03-29 2021-04-27 中国科学院天津工业生物技术研究所 Method for producing tagatose by immobilized multienzyme system
WO2022206189A1 (en) 2021-03-29 2022-10-06 中国科学院天津工业生物技术研究所 Method for producing tagatose by immobilized multi-enzyme system
WO2022213721A1 (en) 2021-04-07 2022-10-13 中国科学院天津工业生物技术研究所 Method for producing tagatose by immobilizing multiple enzymes by using artificial oil body
WO2022213720A1 (en) 2021-04-07 2022-10-13 中国科学院天津工业生物技术研究所 Method for producing tagatose from biomimetic silicon mineralized microcapsule immobilized multi-enzyme

Also Published As

Publication number Publication date
CN109666620B (en) 2022-05-10

Similar Documents

Publication Publication Date Title
CN109666620A (en) A kind of engineered strain producing Tagatose, construction method and application
CN110079488A (en) A kind of engineered strain producing psicose, construction method and application
CN107723307A (en) A kind of method and its application for efficiently preparing the epimerase of D psicoses 3
CN108060114B (en) A kind of Escherichia coli of fermenting and producing l-Alanine and its application
KR20130097174A (en) Novel bacteria and methods of use thereof
CN107488641A (en) A kind of malt oligosaccharide based mycose synthetase mutant and its application
Wang et al. Efficient L-lactic acid production from sweet sorghum bagasse by open simultaneous saccharification and fermentation
CN105143447B (en) Protein and application thereof with xylose isomerase activity
CN106566823B (en) Cloning and application of glutamate decarboxylase gene
CN102373230A (en) Nucleotide sequence of Clostridium D-tagatose 3-epimerase and application thereof
US20080085536A1 (en) Production of Cellulose in Halophilic Photosynthetic Prokaryotes (Cyanobacteria)
CN108467860A (en) A kind of method of highly producing gamma-aminobutyric acid
CN104046586B (en) One strain gene engineering bacterium and the application in producing (2R, 3R)-2,3-butanediol thereof
CN109536549A (en) A kind of method of D-Tag co-producing ethanol
CN111518710B (en) Enterobacter strain and application thereof in preparation of microbial polysaccharide
CN114480465A (en) Bacillus subtilis for producing 2&#39; -fucosyllactose and application thereof
CN101864381A (en) Breeding of microbial strain for producing 3-hydroxy-2-butanone by fermenting substrate glucose
CN109777788A (en) A kind of leucine dehydrogenase mutant and its application
WO2014133668A1 (en) A butyrate producing clostridium species, clostridium pharus
CN111826308B (en) Marine sediment-derived chitin efficient degrading bacterium and application thereof
CN115948314B (en) Bacillus licheniformis engineering strain for efficiently producing 2&#39; -fucosyllactose
CN103805551A (en) Genetically engineered bacterium for producing meso-2, 3-butanediol and application of genetically engineered bacterium
CN111411066A (en) Double-way composite neuraminic acid-producing bacillus subtilis and construction method thereof
CN111172128A (en) application of sucrose phosphorylase in preparation of 2-O- α -D-glucosyl-L-ascorbic acid
CN111518711A (en) Enterobacter strain and application thereof in coproduction of microbial exopolysaccharide and 2,3-butanediol

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230804

Address after: Building 1-201-A218, Building 8, Huiying Industrial Park, No. 86 Zhonghuan West Road, Tianjin Binhai New Area Pilot Free Trade Zone (Airport Economic Zone), 300000

Patentee after: Tiangong Biotechnology (Tianjin) Co.,Ltd.

Address before: No.32, Xiqi Road, Tianjin Airport Economic Zone, Binhai New Area, Tianjin, 300308

Patentee before: TIANJIN INSTITUTE OF INDUSTRIAL BIOTECHNOLOGY, CHINESE ACADEMY OF SCIENCES

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230908

Address after: Building 1-201-4, Building 8, Huiying Industrial Park, No. 86 Zhonghuan West Road, Tianjin Binhai New Area Pilot Free Trade Zone (Airport Economic Zone), 300000

Patentee after: Tianjin Yihe Biotechnology Co.,Ltd.

Address before: Building 1-201-A218, Building 8, Huiying Industrial Park, No. 86 Zhonghuan West Road, Tianjin Binhai New Area Pilot Free Trade Zone (Airport Economic Zone), 300000

Patentee before: Tiangong Biotechnology (Tianjin) Co.,Ltd.

TR01 Transfer of patent right