TWI601374B - Power amplifier with feedback impedance for stable output - Google Patents

Power amplifier with feedback impedance for stable output Download PDF

Info

Publication number
TWI601374B
TWI601374B TW102127344A TW102127344A TWI601374B TW I601374 B TWI601374 B TW I601374B TW 102127344 A TW102127344 A TW 102127344A TW 102127344 A TW102127344 A TW 102127344A TW I601374 B TWI601374 B TW I601374B
Authority
TW
Taiwan
Prior art keywords
circuit
feedback
amplifier
feedforward
impedance
Prior art date
Application number
TW102127344A
Other languages
Chinese (zh)
Other versions
TW201434263A (en
Inventor
塞哈 史達佳
李侃
梁波文
Original Assignee
馬維爾國際貿易有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from PCT/US2013/051403 external-priority patent/WO2014130075A1/en
Priority claimed from US13/946,912 external-priority patent/US9041467B2/en
Application filed by 馬維爾國際貿易有限公司 filed Critical 馬維爾國際貿易有限公司
Publication of TW201434263A publication Critical patent/TW201434263A/en
Application granted granted Critical
Publication of TWI601374B publication Critical patent/TWI601374B/en

Links

Landscapes

  • Amplifiers (AREA)

Description

具有回饋阻抗以穩定輸出之功率放大器 Power amplifier with feedback impedance to stabilize the output 【相關申請案之交叉參考】[Cross-Reference to Related Applications]

本申請案主張2013年2月20日申請之美國臨時專利申請案第61/767,125號、2013年7月19日申請之美國專利申請案第13/946,912號以及2013年7月19日申請之國際申請案第PCT/US13/51403號之優先權,該等案之每一者的全文以引用的方式併入本文。 This application claims the benefit of U.S. Provisional Patent Application No. 61/767,125, filed on Feb. 20, 2013, and U.S. Patent Application Serial No. 13/946,912, filed on Jul. 19, 2013, and filed on July 19, 2013 Priority is claimed in PCT/US13/51403, the entire contents of each of which are hereby incorporated by reference.

本揭示內容大致係關於功率放大系統及方法,且更特定言之係關於具有回饋阻抗以穩定輸出的功率放大系統及方法。 The present disclosure is generally directed to power amplification systems and methods, and more particularly to power amplification systems and methods having feedback impedance to stabilize the output.

本文提供的先前技術描述係出於大致展示本揭示之內文之目的。發明者於此的工作(就描述於本技術背景章節中的工作而言)以及在申請時可能原本不適合作為先前技術之本描述的態樣既不明指亦不暗指承認作為針對本揭示之先前技術。本揭示大致係關於功率放大且更特定而言係關於具有回饋阻抗以在無線通信系統中穩定輸出的功率放大。 The prior art descriptions provided herein are for the purpose of illustrating the context of the disclosure. The work of the inventors herein (as for the work described in this Background section) and the manner in which it may not be suitable as a prior art description of the prior art is neither express nor implied as prior to the disclosure. technology. The present disclosure relates generally to power amplification and more particularly to power amplification with feedback impedance for stable output in a wireless communication system.

圖1描繪功率放大器(PA)100的實例。功率放大器(PA)100被耦合至包含變壓器102及負載104的寬頻變壓器101。功率放大器100可作為無線傳輸器之部分。在一個實例中,來自功率放大器100之信號係透過變壓器102耦合且透過天線傳輸。 FIG. 1 depicts an example of a power amplifier (PA) 100. A power amplifier (PA) 100 is coupled to a wideband transformer 101 that includes a transformer 102 and a load 104. Power amplifier 100 can be used as part of a wireless transmitter. In one example, the signal from power amplifier 100 is coupled through transformer 102 and transmitted through the antenna.

功率放大器100在回饋迴路中包含第一放大器 108a、電感器-電容器(LC)諧振槽110、第二放大器108b及電阻器R1。功率放大器100可變得不穩定。輸入電路106將輸入信號提供至功率放大器100。 Power amplifier 100 includes a first amplifier in a feedback loop 108a, an inductor-capacitor (LC) resonant tank 110, a second amplifier 108b, and a resistor R1. The power amplifier 100 can become unstable. Input circuit 106 provides an input signal to power amplifier 100.

主導極點由放大器108a及LC諧振槽110引入。此在由功率放大器100輸出的信號上引入約90°相移(以單位增益點)。又,由放大器108b及變壓器102引入的相移可較小,諸如30°。為了具有穩定的功率放大器,功率放大器100之總相移應小於180°。因此,由該回饋迴路引入的相移應小於60°。 The dominant pole is introduced by amplifier 108a and LC resonant tank 110. This introduces a phase shift of approximately 90[deg.] (in unity gain points) on the signal output by power amplifier 100. Again, the phase shift introduced by amplifier 108b and transformer 102 can be small, such as 30°. In order to have a stable power amplifier, the total phase shift of the power amplifier 100 should be less than 180°. Therefore, the phase shift introduced by the feedback loop should be less than 60°.

輸入阻抗被示出為阻抗Z_輸入且在此情況下係放大器108a中的電晶體的寄生電容。寄生電容被模型化為寄生電容器Cp。由於回饋阻抗Z_回饋係電阻,故電阻器-電容器組合可引入大於60°之相移。此可導致功率放大器100不穩定且信號可能振盪。又,電阻器-電容器組合可產生處在無線傳輸器之工作頻寬內的極點。此可能改變功率放大器100之增益特性。 The input impedance is shown as the impedance Z_ input and in this case is the parasitic capacitance of the transistor in amplifier 108a. The parasitic capacitance is modeled as a parasitic capacitor Cp. Since the feedback impedance Z_ feedback system resistance, the resistor-capacitor combination can introduce a phase shift greater than 60°. This can cause the power amplifier 100 to be unstable and the signal to oscillate. Again, the resistor-capacitor combination can create a pole that is within the operating bandwidth of the wireless transmitter. This may change the gain characteristics of the power amplifier 100.

在特定實施例中,設備包含放大器電路。第一回饋電路可被耦合至放大器電路。第一回饋電路可包含電容器。可基於回饋因數選擇第一回饋電路的組件。放大器電路的輸入阻抗可具有與第一回饋電路的回饋電路阻抗相同的阻抗特性。 In a particular embodiment, the device includes an amplifier circuit. The first feedback circuit can be coupled to the amplifier circuit. The first feedback circuit can include a capacitor. The components of the first feedback circuit can be selected based on the feedback factor. The input impedance of the amplifier circuit can have the same impedance characteristics as the feedback circuit impedance of the first feedback circuit.

在特定實施方案中,設備可包含連接至放大器電路的第二回饋電路。在特定實施方案中,第二回饋電路可包含電容器。在特定實施方案中,可基於回饋因數選擇第二回饋電路的組件。在特定實施方案中,放大器電路的輸入阻抗可具有與第二回饋電路的回饋電路阻抗相同的阻抗特性。 In a particular embodiment, the device can include a second feedback circuit coupled to the amplifier circuit. In a particular embodiment, the second feedback circuit can include a capacitor. In a particular implementation, the components of the second feedback circuit can be selected based on the feedback factor. In a particular embodiment, the input impedance of the amplifier circuit can have the same impedance characteristics as the feedback circuit impedance of the second feedback circuit.

在特定實施方案中,設備可包含連接至放大器之第一前饋電路。在特定實施方案中,第一前饋電路可包括電容器。在特定實施方案中,可基於前饋因數選擇第一前饋電 路之組件。在特定實施方案中,放大器電路之輸入阻抗可具有與第一前饋電路之前饋電路阻抗相同的阻抗特性。 In a particular embodiment, the device can include a first feedforward circuit coupled to the amplifier. In a particular embodiment, the first feedforward circuit can include a capacitor. In a particular embodiment, the first feedforward can be selected based on a feedforward factor The components of the road. In a particular embodiment, the input impedance of the amplifier circuit can have the same impedance characteristics as the feedforward circuit impedance of the first feedforward circuit.

在特定實施例中,放大器電路系統可包含經組態以放大信號的第一放大器級。該系統可包含經組態以從第一放大器級接收信號之電路。該系統可包含經組態以放大來自電路的信號之第二放大器級。該系統可包含耦合至第二放大器級之回饋電路。回饋電路可包括電容器。可基於回饋因數選擇回饋電路之組件。第一放大器級之輸入阻抗可具有與回饋電路之回饋電路阻抗相同之阻抗特性。該系統可包含經組態以從第二放大器級接收信號的變壓器。 In a particular embodiment, the amplifier circuitry can include a first amplifier stage configured to amplify the signal. The system can include circuitry configured to receive signals from a first amplifier stage. The system can include a second amplifier stage configured to amplify signals from the circuit. The system can include a feedback circuit coupled to the second amplifier stage. The feedback circuit can include a capacitor. The components of the feedback circuit can be selected based on the feedback factor. The input impedance of the first amplifier stage can have the same impedance characteristics as the feedback circuit impedance of the feedback circuit. The system can include a transformer configured to receive signals from a second amplifier stage.

在特定實施方案中。該系統可包含耦合至放大器電路之前饋電路。在特定實施方案中,可基於前饋因數選擇前饋電路之組件。在特定實施方案中,放大器電路之輸入阻抗可具有與前饋電路之前饋電路阻抗相同之阻抗特性。在特定實施方案中,前饋電路可包含電容器。 In a particular embodiment. The system can include a feedforward circuit coupled to the amplifier circuit. In a particular implementation, the components of the feedforward circuit can be selected based on a feedforward factor. In a particular embodiment, the input impedance of the amplifier circuit can have the same impedance characteristics as the feedforward circuit impedance of the feedforward circuit. In a particular embodiment, the feedforward circuit can include a capacitor.

下文之詳細描述及附圖提供對本發明的本質及優點的更詳細理解。 The detailed description and the annexed drawings are provided to provide a

[先前技術] [Prior technology]

100‧‧‧功率放大器 100‧‧‧Power Amplifier

101‧‧‧寬頻變壓器 101‧‧‧Broadband transformer

102‧‧‧變壓器 102‧‧‧Transformers

104‧‧‧負載 104‧‧‧load

106‧‧‧輸入電路 106‧‧‧Input circuit

108a‧‧‧第一放大器 108a‧‧‧First amplifier

108b‧‧‧第二放大器 108b‧‧‧second amplifier

110‧‧‧諧振槽 110‧‧‧Resonance tank

C‧‧‧電容器 C‧‧‧ capacitor

Cp‧‧‧電容器 Cp‧‧‧ capacitor

L‧‧‧電感器 L‧‧‧Inductors

R1‧‧‧電阻器 R1‧‧‧Resistors

Z_回饋‧‧‧回饋阻抗 Z_ feedback ‧‧‧ feedback impedance

Z_輸入‧‧‧輸入阻抗 Z_ input ‧‧‧ input impedance

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

[本發明] [this invention]

200‧‧‧功率放大器 200‧‧‧Power Amplifier

201‧‧‧寬頻變壓器 201‧‧‧Broadband transformer

202‧‧‧負載 202‧‧‧load

204‧‧‧變壓器 204‧‧‧Transformers

206‧‧‧放大器電路 206‧‧‧Amplifier circuit

208‧‧‧回饋電路 208‧‧‧ feedback circuit

210‧‧‧輸入電路 210‧‧‧Input circuit

212‧‧‧共同閘極 212‧‧‧ Common Gate

214‧‧‧第二回饋電路 214‧‧‧second feedback circuit

216‧‧‧第三回饋電路 216‧‧‧ Third feedback circuit

218‧‧‧共同閘極 218‧‧‧ Common gate

220‧‧‧前饋電路 220‧‧‧Feedback circuit

222‧‧‧共同閘極 222‧‧‧ Common gate

224‧‧‧前饋電路 224‧‧‧Feedback Circuit

302a‧‧‧第一放大器級 302a‧‧‧First amplifier stage

302b‧‧‧第二放大器級 302b‧‧‧second amplifier stage

302c‧‧‧電流驅動器 302c‧‧‧current drive

302d‧‧‧第三放大器級 302d‧‧‧third amplifier stage

304‧‧‧諧振槽電路 304‧‧‧Resonance tank circuit

600‧‧‧功率放大器 600‧‧‧Power Amplifier

700‧‧‧功率放大器 700‧‧‧Power Amplifier

800‧‧‧功率放大器 800‧‧‧Power Amplifier

900‧‧‧功率放大器 900‧‧‧Power Amplifier

1000‧‧‧功率放大器 1000‧‧‧Power Amplifier

1100‧‧‧功率放大器 1100‧‧‧Power Amplifier

C‧‧‧電容器 C‧‧‧ capacitor

C1‧‧‧電容器 C1‧‧‧ capacitor

Cin‧‧‧電容器 Cin‧‧‧ capacitor

Cfb‧‧‧電容器 Cfb‧‧‧ capacitor

Cp‧‧‧電容器 Cp‧‧‧ capacitor

Gm1‧‧‧電感值 Gm1‧‧‧Inductance

Gm2‧‧‧電感值 Gm2‧‧‧Inductance

Gm3‧‧‧電感值 Gm3‧‧‧Inductance

Gm4‧‧‧電感值 Gm4‧‧‧Inductance

L‧‧‧電感器 L‧‧‧Inductors

L1‧‧‧電感器 L1‧‧‧Inductors

L2‧‧‧電感器 L2‧‧‧Inductors

R1‧‧‧電阻器 R1‧‧‧Resistors

R2‧‧‧電阻器 R2‧‧‧ resistor

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Z_回饋‧‧‧回饋阻抗 Z_ feedback ‧‧‧ feedback impedance

Z_回饋_1‧‧‧回饋阻抗 Z_Feedback_1‧‧‧Feedback impedance

Z_回饋_2‧‧‧回饋阻抗 Z_ feedback_2‧‧‧ feedback impedance

Z_回饋_3‧‧‧回饋阻抗 Z_ feedback _3‧‧‧ feedback impedance

Z_輸入‧‧‧輸入阻抗 Z_ input ‧‧‧ input impedance

圖1示出功率放大器(PA)之實例。 Figure 1 shows an example of a power amplifier (PA).

圖2A示出根據一個實施例之功率放大器之實例。 2A shows an example of a power amplifier in accordance with one embodiment.

圖2B示出根據一個實施例之功率放大器之更詳細實例。 FIG. 2B shows a more detailed example of a power amplifier in accordance with one embodiment.

圖3A示出根據一個實施例之具有電流輸入驅動器之功率放大器的實例。 FIG. 3A illustrates an example of a power amplifier with a current input driver in accordance with one embodiment.

圖3B示出根據一個實施例之圖3A中所示之電流輸入驅動器之更詳細實例。 FIG. 3B illustrates a more detailed example of the current input driver shown in FIG. 3A in accordance with one embodiment.

圖4示出根據一個實施例之使用電壓輸入驅動器的功率放大 器的實例。 4 illustrates power amplification using a voltage input driver in accordance with one embodiment An instance of the device.

圖5示出根據一個實施例之使用串聯配置的電感器-電容器-電阻器電路的功率放大器的實例。 FIG. 5 illustrates an example of a power amplifier using an inductor-capacitor-resistor circuit configured in series, in accordance with one embodiment.

圖6示出根據一個實施例之使用並聯配置的電感器-電容器-電阻器電路的功率放大器的實例。 6 illustrates an example of a power amplifier using an inductor-capacitor-resistor circuit configured in parallel, in accordance with one embodiment.

圖7示出根據一個實施例之使用回饋迴路內的共同閘極的功率放大器的實例。 Figure 7 illustrates an example of a power amplifier using a common gate within a feedback loop, in accordance with one embodiment.

圖8示出根據一個實施例之使用多個回饋電路的功率放大器的實例。 Figure 8 illustrates an example of a power amplifier using multiple feedback circuits, in accordance with one embodiment.

圖9示出根據一個實施例之使用多個回饋電路的功率放大器的額外實例。 Figure 9 illustrates an additional example of a power amplifier using multiple feedback circuits in accordance with one embodiment.

圖10示出根據一個實施例之使用回饋電路及多個前饋電路之功率放大器的實例。 Figure 10 illustrates an example of a power amplifier using a feedback circuit and a plurality of feedforward circuits, in accordance with one embodiment.

圖11示出根據一個實施例使用圖10中所示之回饋電路及多個前饋電路的功率放大器的更詳細實例。 Figure 11 shows a more detailed example of a power amplifier using the feedback circuit shown in Figure 10 and a plurality of feedforward circuits in accordance with one embodiment.

圖12描繪根據一個實施例之用於放大信號的方法之簡化流程圖。 Figure 12 depicts a simplified flow diagram of a method for amplifying a signal, in accordance with one embodiment.

本文描述功率放大器之技術。在下文之描述中,出於說明目的陳述大量實例及特定細節以便提供對本發明之實施例的透徹理解。如由申請專利範圍所定義之特定實施例可包含僅在此等實例中之一些特徵或全部特徵或與下文描述 的其他特徵組合,且可進一步包含本文所述之特徵及概念的修改及等效物。 This article describes the technology of a power amplifier. In the following description, numerous examples and specific details are set forth Particular embodiments as defined by the scope of the claims may include only some or all of the features in the examples or described below Other features are combined, and may include modifications and equivalents of the features and concepts described herein.

圖2A描繪根據一個實施例之功率放大器(PA)200的實例。功率放大器200透過寬頻變壓器201驅動天線(未示出),寬頻變壓器201包含變壓器204及負載202。例如,功率放大器200放大來自輸入電路210的信號以用於透過寬頻無線傳輸器無線傳輸。然而,功率放大器200可為其他系統之部分。 FIG. 2A depicts an example of a power amplifier (PA) 200 in accordance with one embodiment. The power amplifier 200 drives an antenna (not shown) through a wideband transformer 201, which includes a transformer 204 and a load 202. For example, power amplifier 200 amplifies the signal from input circuit 210 for wireless transmission over a broadband wireless transmitter. However, power amplifier 200 can be part of other systems.

功率放大器200包含放大器電路206及回饋電路208。回饋迴路由自放大器電路206的輸出起、通過回饋電路208及進入放大器電路206的輸入而形成。回饋迴路之總相移應小於臨限值,諸如180°。臨限值可被判定,其中高於臨限值的相移可導致功率放大器200變得不穩定。例如,若相移大於180°,則功率放大器200之輸出可振盪。又,回饋電路208在頻寬範圍(諸如傳輸器之工作頻寬)內不應產生極點。工作頻寬內之極點可能改變功率放大器200之增益特性。 Power amplifier 200 includes an amplifier circuit 206 and a feedback circuit 208. The feedback loop is formed from the output of amplifier circuit 206, through feedback circuit 208, and into the input of amplifier circuit 206. The total phase shift of the feedback loop should be less than a threshold, such as 180°. The threshold can be determined, wherein a phase shift above the threshold can cause the power amplifier 200 to become unstable. For example, if the phase shift is greater than 180°, the output of power amplifier 200 can oscillate. Again, the feedback circuit 208 should not generate poles within the bandwidth range, such as the operating bandwidth of the transmitter. The poles within the operating bandwidth may change the gain characteristics of the power amplifier 200.

分析回饋因數β來判定是否已產生極點或是否導致非所要量之相移。回饋因素β被定義為: 其中Z_輸入係察看放大器電路206與輸入電路210之間的輸入節點的輸入阻抗且Z_回饋係回饋電路208之回饋阻抗。如將下文更詳細描述,在特定實施例中,阻抗Z_回饋具有與阻抗Z_輸入相同的阻抗特性。例如,阻抗Z_回饋等效於電容且阻抗Z_輸入等效於電容。藉由具有相同的阻抗特性,可由回饋迴路產生極點。又,由回饋迴路引起的相移小於功率放大器100可能變得不穩定之臨限值。例如,當與放大器電路206的相移組合時,由回饋電路208引起的相移(或無相移)小於例如180度之臨限值。 The feedback factor β is analyzed to determine if a pole has been generated or if a non-desired phase shift is caused. The feedback factor β is defined as: The Z_ input is the input impedance of the input node between the amplifier circuit 206 and the input circuit 210 and the feedback impedance of the Z_feedback feedback circuit 208. As will be described in more detail below, in a particular embodiment, the impedance Z_feedback has the same impedance characteristics as the impedance Z_ input. For example, impedance Z_feedback is equivalent to capacitance and impedance Z_ input is equivalent to capacitance. By having the same impedance characteristics, the poles can be generated by the feedback loop. Again, the phase shift caused by the feedback loop is less than the threshold at which the power amplifier 100 may become unstable. For example, when combined with the phase shift of amplifier circuit 206, the phase shift (or no phase shift) caused by feedback circuit 208 is less than a threshold of, for example, 180 degrees.

圖2B描繪根據一個實施例的功率放大器200的更詳細實例。放大器電路206包含第一放大器302a、諧振槽電路304及第二放大器302b。諧振槽電路304包含電感器L1及電容器C1。亦可使用諧振槽的其他實例。寬頻變壓器201中亦包含變壓器204及負載202。回饋電路208包含電容器Cfb。第一放大器302a的寄生電容由電容器Cp模型化。 FIG. 2B depicts a more detailed example of power amplifier 200 in accordance with one embodiment. The amplifier circuit 206 includes a first amplifier 302a, a resonant tank circuit 304, and a second amplifier 302b. The resonant tank circuit 304 includes an inductor L1 and a capacitor C1. Other examples of resonant tanks can also be used. The transformer 204 and the load 202 are also included in the broadband transformer 201. The feedback circuit 208 includes a capacitor Cfb. The parasitic capacitance of the first amplifier 302a is modeled by the capacitor Cp.

第一放大器302a及諧振槽電路304可具有高品質因數(Q)。例如,品質因數可大於10。第二放大器302b及變壓器204可具有低品質因數。例如,放大器302b及變壓器204之品質因數低於放大器302a及諧振槽電路304之品質因數。放大器302b及變壓器204之較低Q使功率放大器200可具有較高迴路增益,同時迴路仍穩定。又,放大器302a的Q越高意味著可達成越高的迴路增益,同時仍使迴路穩定。又,在一個實施例中,需將低阻抗耦合至變壓器204及天線。放大器302b部分因低品質因數而提供低阻抗。 The first amplifier 302a and the resonant tank circuit 304 can have a high quality factor (Q). For example, the quality factor can be greater than 10. The second amplifier 302b and the transformer 204 can have a low quality factor. For example, the quality factor of amplifier 302b and transformer 204 is lower than the quality factor of amplifier 302a and resonant tank circuit 304. The lower Q of amplifier 302b and transformer 204 allows power amplifier 200 to have a higher loop gain while the loop is still stable. Again, the higher Q of amplifier 302a means that a higher loop gain can be achieved while still stabilizing the loop. Again, in one embodiment, a low impedance coupling to the transformer 204 and the antenna is required. The amplifier 302b portion provides a low impedance due to a low quality factor.

放大器302a及諧振槽電路304在功率放大器200之頻率回應中提供主導極點。放大器302b及變壓器204提供較不占主導地位的另一極點。當在本文中描述時,放大器302a可被描述為引入主導極點且放大器302b被描述為引入另一極點。應理解可藉由放大器302a與諧振槽電路304之組合或放大器302b與變壓器204之電感器之組合而引入極點。其他組合亦可用於放大信號。 Amplifier 302a and resonant tank circuit 304 provide a dominant pole in the frequency response of power amplifier 200. Amplifier 302b and transformer 204 provide another pole that is less dominant. When described herein, amplifier 302a can be described as introducing a dominant pole and amplifier 302b is described as introducing another pole. It will be appreciated that the poles may be introduced by a combination of amplifier 302a and resonant tank circuit 304 or a combination of amplifier 302b and the inductor of transformer 204. Other combinations can also be used to amplify the signal.

放大器302a亦引入比放大器302b所引入之相移大之相移。例如,放大器302a之相移可為約90°。由放大器302b所引入之第二極點可能不係主導的。由於頻率回應不夠明顯,故由放大器302b引入的相移可為約30°。 Amplifier 302a also introduces a larger phase shift than the phase shift introduced by amplifier 302b. For example, the phase shift of amplifier 302a can be about 90°. The second pole introduced by amplifier 302b may not be dominant. Since the frequency response is not sufficiently significant, the phase shift introduced by amplifier 302b can be about 30°.

在一個實施例中,功率放大器200之總相移應小於臨限值以具有具所要增益之穩定放大器。例如,總相移可小於180°。因此,若放大器302a之相移係90°且放大器302b之相移係30°,則回饋電路208可導致小於60°之相移。 In one embodiment, the total phase shift of power amplifier 200 should be less than a threshold to have a stable amplifier with the desired gain. For example, the total phase shift can be less than 180°. Thus, if the phase shift of amplifier 302a is 90° and the phase shift of amplifier 302b is 30°, feedback circuit 208 can result in a phase shift of less than 60°.

可基於回饋因數β判定回饋電路208之相移。回饋因數β可為如下: The phase shift of the feedback circuit 208 can be determined based on the feedback factor β . The feedback factor β can be as follows:

回饋因數不會導致信號中之任何相移。此係因為阻抗Z_回饋及Z_輸入具有相同阻抗特性,且不在回饋電路208中引入電阻器-電容器電路。相反,回饋電路208之阻抗特性係電容器Cfb且Z_輸入的阻抗特性係電容器Cp。此不會藉由回饋因數引入極點及相移。 The feedback factor does not cause any phase shift in the signal. This is because the impedance Z_feedback and the Z_ input have the same impedance characteristics, and the resistor-capacitor circuit is not introduced in the feedback circuit 208. In contrast, the impedance characteristic of the feedback circuit 208 is the capacitor Cfb and the impedance characteristic of the Z_ input is the capacitor Cp. This does not introduce poles and phase shifts by the feedback factor.

閉合迴路增益可基於輸入電路210而不同。下文將描述不同的輸入電路210。 The closed loop gain can be different based on the input circuit 210. Different input circuits 210 will be described below.

圖3A描繪根據一個實施例之具有電流輸入驅動器之功率放大器200之實例。輸入電路210包含第三放大器302c。在一個實施例中,第三放大器302c包含Gm3之跨導。第一放大器302a包含Gm1之跨導且第二放大器302b包含Gm2之跨導。放大器302a-302c可為輸出與輸入電壓成比例之電流的跨導放大器(Gm放大器)。功率放大器200之迴路增益為:迴路_增益=A(jω)* β回饋因數為: 如上所論述,回饋因數β不會引入相移或極點。閉合迴路增益可為如下: FIG. 3A depicts an example of a power amplifier 200 having a current input driver in accordance with one embodiment. Input circuit 210 includes a third amplifier 302c. In one embodiment, the third amplifier 302c includes a transconductance of Gm3. The first amplifier 302a includes the transconductance of Gm1 and the second amplifier 302b includes the transconductance of Gm2. The amplifiers 302a-302c can be transconductance amplifiers (Gm amplifiers) that output current proportional to the input voltage. The loop gain of the power amplifier 200 is: loop_gain=A(jω)* The β feedback factor is: As discussed above, the feedback factor β does not introduce a phase shift or pole. The closed loop gain can be as follows:

圖3B示出根據一個實施例之圖3A中所示之電流輸入驅動器的更詳細實例。如所示,輸入電路210包含電 容器Cin及電晶體T。在一個實例中,電晶體T係雙極接面電晶體(BJT),但是可使用其他類型的電晶體。 FIG. 3B illustrates a more detailed example of the current input driver shown in FIG. 3A, in accordance with one embodiment. As shown, input circuit 210 includes electricity Container Cin and transistor T. In one example, the transistor T is a bipolar junction transistor (BJT), although other types of transistors can be used.

閉合迴路增益係電晶體T之跨導Gm3及頻率之函數。特定實施例使Gm3成為電容Cin之函數。例如,Gm3可為Vin/(Cin之阻抗)。在此情況下,閉合迴路增益可等於: The closed loop gain is a function of the transconductance Gm3 and frequency of the transistor T. A particular embodiment makes Gm3 a function of capacitance Cin. For example, Gm3 can be Vin/(the impedance of Cin). In this case, the closed loop gain can be equal to:

在上述情況下,當電容器Cp之電容改變時,閉合迴路增益可受影響。電壓輸入驅動器可用於最大化迴路增益。 In the above case, when the capacitance of the capacitor Cp is changed, the closed loop gain can be affected. A voltage input driver can be used to maximize loop gain.

圖4描繪根據一個實施例之使用電壓輸入驅動器之功率放大器200之實例。輸入電路210可包含電容器Cin。在此情況下,Cp被保持為足夠小使得電容器Cin大於電容器Cp(例如,Cin>>Cp)。在此情況下,回饋因數β被最大化且達成對於閉合迴路增益的更高迴路增益。 4 depicts an example of a power amplifier 200 that uses a voltage input driver in accordance with one embodiment. Input circuit 210 can include a capacitor Cin. In this case, Cp is kept small enough that the capacitor Cin is larger than the capacitor Cp (for example, Cin>>Cp). In this case, the feedback factor β is maximized and a higher loop gain for the closed loop gain is achieved.

迴路增益為:迴路_增益=A(jω)* β.回饋因數為: 其中Cin>>Cp,閉合迴路增益可為如下: The loop gain is: loop_gain=A(jω)* β. The feedback factor is: Where Cin>>Cp, the closed loop gain can be as follows:

又,在此情況下,回饋因數β亦不會引入相移或極點。 Also, in this case, the feedback factor β does not introduce a phase shift or a pole.

圖5示出根據一個實施方案之使用串聯配置之電感器-電容器-電阻器電路之功率放大器200的額外實例。如所示,回饋電路208包含呈串聯配置之電感器L2、電容器Cfb及電阻器R2。輸入電路210包含呈串聯配置之電阻器R1、電 感器L1及電容器Cin。 FIG. 5 illustrates an additional example of a power amplifier 200 using an inductor-capacitor-resistor circuit configured in series, in accordance with one embodiment. As shown, the feedback circuit 208 includes an inductor L2, a capacitor Cfb, and a resistor R2 arranged in series. Input circuit 210 includes resistors R1, which are arranged in series Sensor L1 and capacitor Cin.

迴路增益為:迴路_增益=A(jω)* β.回饋因數為: 閉合迴路增益可為下: The loop gain is: loop_gain=A(jω)* β. The feedback factor is: The closed loop gain can be as follows:

閉合迴路增益係電阻器R2及R1的因數。此係因為回饋因數β並非頻率之函數,原因在於若Cp較小,則電感器L及電容器C彼此抵消。因此,閉合迴路增益係電阻器R2與電阻器R1的比率的函數。回饋因數亦不會引入相移或極點。 The closed loop gain is the factor of resistors R2 and R1. This is because the feedback factor β is not a function of frequency because the inductor L and the capacitor C cancel each other if Cp is small. Thus, the closed loop gain is a function of the ratio of resistor R2 to resistor R1. The feedback factor also does not introduce phase shifts or poles.

使用習知功率放大器,功率放大器200之線性效能可為約27dB增益。特定實施例提供30dB的迴路增益而得到3dB的改良,此係歸因於回饋電路208未在頻率回應中添加極點。增益亦更為線性,因為增益上的變化導致更大的線性效能變化。 Using a conventional power amplifier, the linear performance of power amplifier 200 can be about 27 dB gain. A particular embodiment provides a 30 dB loop gain resulting in a 3 dB improvement due to the feedback circuit 208 not adding a pole in the frequency response. The gain is also more linear because changes in gain result in greater linear performance variations.

在一個實例中,下文可用於判定最高迴路增益之Gm1及Gm2。品質因數Q1係放大器302a及諧振槽電路304之品質因數。品質因數Q2係放大器302b及變壓器204之品質因數。對於放大器302a,當相移係諧振槽電路304 Q1的唯一函數時,且當品質因數Q1固定時,諧振槽電路304阻抗係L的函數。對於放大器302b,相移係變壓器204的品質因數Q2的函數且阻抗係變壓器204所見之電阻的函數。因此,對於具有60分貝相位裕度的功率放大器200,找到下式:Gm1 * Z1(,Q1,L)* Gm2 * Z2(,Q2,6Ω)* β * α=1相位Z1(,Q1)+相位Z2(,Q2)=120分貝 其中Z1係諧振槽302之阻抗且Z2係變壓器204之阻抗。α亦係基於諧振槽302之電容之變數。亦已知: 此意味著放大器200之阻抗小於6.25Ω。對於60相位裕度最高迴路增益為:迴路增益=Gm1 * Z1(2GHz,Q1,L)* Gm2 * Z2(6.25Ω)* β * α基於上述方程式而選擇Gm1及Gm2。對於特定相位裕度,最高迴路增益係Q1的函數。 In one example, the following can be used to determine Gm1 and Gm2 for the highest loop gain. The quality factor Q1 is the figure of merit of the amplifier 302a and the resonant tank circuit 304. The quality factor Q2 is the quality factor of the amplifier 302b and the transformer 204. For amplifier 302a, resonant phase circuit 304 impedance is a function of L when the phase shift is a unique function of resonant tank circuit 304 Q1, and when quality factor Q1 is fixed. For amplifier 302b, the phase shift is a function of the quality factor Q2 of transformer 204 and the impedance is a function of the resistance seen by transformer 204. Therefore, for a power amplifier 200 having a phase margin of 60 decibels, the following equation is found: Gm 1 * Z 1( , Q 1, L )* Gm 2 * Z 2( , Q 2,6 Ω)* β * α = 1 phase Z 1 ( , Q 1) + phase Z 2 ( , Q 2) = 120 dB where Z1 is the impedance of the resonant tank 302 and Z2 is the impedance of the transformer 204. α is also a variable based on the capacitance of the resonant tank 302. Also known as: This means that the impedance of amplifier 200 is less than 6.25 Ω. The maximum loop gain for the 60 phase margin is: loop gain = Gm 1 * Z 1 (2 GHz , Q 1, L ) * Gm 2 * Z 2 (6.25 Ω) * β * α Select Gm1 and Gm2 based on the above equation. For a particular phase margin, the highest loop gain is a function of Q1.

圖6示出根據一個實施例之使用並聯配置的電感器-電容器-電阻器電路的功率放大器600之額外實例。如所示,回饋迴路208包含並聯配置之電感器L2、電容器Cfb及電阻器R2。輸入電路210亦包含並聯配置的電阻器R1、電感器L1及電容器Cin。將電感器L1、電容器Cin及電阻器R1並聯配置可減少驅動器電路(諸如電流驅動器Gm3)上的負載,且提供改良的效能,以用於射頻實施。如在圖1至圖5中,回饋因數可經計算以用於圖6。回饋因數可用於選擇回饋電路208及輸入電路210之組件使得回饋電路208及輸入電路210具有相同阻抗特性。回饋電路208及輸入電路210之任何組件可經選擇使得回饋電路之阻抗特性與輸入電路之阻抗特性相同。例如,回饋電路及輸入電路可包含電容器。 FIG. 6 illustrates an additional example of a power amplifier 600 that uses an inductor-capacitor-resistor circuit configured in parallel, in accordance with one embodiment. As shown, the feedback loop 208 includes an inductor L2, a capacitor Cfb, and a resistor R2 arranged in parallel. The input circuit 210 also includes a resistor R1, an inductor L1, and a capacitor Cin arranged in parallel. Configuring the inductor L1, capacitor Cin, and resistor R1 in parallel reduces the load on the driver circuit (such as current driver Gm3) and provides improved performance for RF implementation. As in Figures 1 to 5, the feedback factor can be calculated for use in Figure 6. The feedback factor can be used to select the components of the feedback circuit 208 and the input circuit 210 such that the feedback circuit 208 and the input circuit 210 have the same impedance characteristics. Any components of feedback circuit 208 and input circuit 210 can be selected such that the impedance characteristics of the feedback circuit are the same as the impedance characteristics of the input circuit. For example, the feedback circuit and the input circuit can include a capacitor.

圖7示出功率放大器700之實例,其包含輸入電路210、回饋電路208、放大器電路206、頻寬變壓器201及共同閘極212,該共同閘極可為放大器電路206之部分或單獨耦合至放大器電路206。放大器電路206可包含共同閘極212、具有跨導Gm1之第一放大器級302a、諧振槽電路304及具有跨導Gm2之第二放大器級302b。寬頻變壓器201可驅動天線且包含變壓器204及負載202。共同閘極212可位於回饋迴路內以擴展信號之頻寬。共同閘極212可具有低阻抗且因此可 能不影響電路之阻抗特性。共同閘極212亦可用作任何放大器級之間的電流緩衝器。如關於圖6所論述,可基於經計算以用於功率放大器電路(例如,600、700)之回饋因數而選擇輸入電路210及回饋電路208之組件。此等組件可以任何方式選擇使得回饋因數指示輸入電路210與回饋電路208具有相同阻抗特性。 7 shows an example of a power amplifier 700 that includes an input circuit 210, a feedback circuit 208, an amplifier circuit 206, a bandwidth transformer 201, and a common gate 212, which may be part of the amplifier circuit 206 or separately coupled to the amplifier Circuit 206. The amplifier circuit 206 can include a common gate 212, a first amplifier stage 302a having a transconductance Gm1, a resonant tank circuit 304, and a second amplifier stage 302b having a transconductance Gm2. The broadband transformer 201 can drive an antenna and includes a transformer 204 and a load 202. The common gate 212 can be located within the feedback loop to spread the bandwidth of the signal. The common gate 212 can have low impedance and thus can Can not affect the impedance characteristics of the circuit. The common gate 212 can also be used as a current buffer between any of the amplifier stages. As discussed with respect to FIG. 6, components of input circuit 210 and feedback circuit 208 may be selected based on feedback factors calculated for power amplifier circuits (eg, 600, 700). These components can be selected in any manner such that the feedback factor indicates that the input circuit 210 and the feedback circuit 208 have the same impedance characteristics.

圖8示出包含多個回饋電路之功率放大器800之實例。功率放大器800包含輸入電路210、第一回饋電路208、第二回饋電路214、具有電感值Gm1之第一放大器級302a、具有電感值Gm2之第二放大器級302b及寬頻變壓器201。第一放大器級302a可連接至第二放大器級302b。功率放大器800亦可包含共同閘極212。在一個實施例中,第一回饋電路208可連接至包括如圖8中耦合之第二回饋電路214、第一放大器級302a及第二放大器級302b之放大器電路。第一回饋電路208具有Z_回饋_1的回饋阻抗,且第二回饋電路214具有Z_回饋_2的回饋阻抗。多個回饋電路可在功率放大器設計中節省實體空間。例如,可包含多個回饋電路以在放大器電路中替換諧振槽電路。此外,添加另一回饋電路可擴展頻寬並增加信號增益。然而,額外的回饋電路可降低電路的穩定性及/或增加信號的相移。回饋電路可沿著放大器級302a-c及共同閘極而連接至不同位置。例如,第一回饋電路208可從第二放大器級302b的輸出連接至共同閘極212的輸入。如關於圖6及圖7所論述,基於經計算以用於功率放大器電路(例如,600、700、800)的回饋因數而選擇輸入電路210及回饋電路208、214的組件。此等組件可以任何方式選擇使得回饋因數指示輸入電路210及第一回饋電路208具有相同阻抗特性。 FIG. 8 shows an example of a power amplifier 800 that includes multiple feedback circuits. The power amplifier 800 includes an input circuit 210, a first feedback circuit 208, a second feedback circuit 214, a first amplifier stage 302a having an inductance value Gm1, a second amplifier stage 302b having an inductance value Gm2, and a broadband transformer 201. The first amplifier stage 302a can be coupled to the second amplifier stage 302b. Power amplifier 800 can also include a common gate 212. In one embodiment, the first feedback circuit 208 can be coupled to an amplifier circuit including a second feedback circuit 214 coupled as in FIG. 8, a first amplifier stage 302a, and a second amplifier stage 302b. The first feedback circuit 208 has a feedback impedance of Z_feedback_1, and the second feedback circuit 214 has a feedback impedance of Z_feedback_2. Multiple feedback circuits save physical space in the power amplifier design. For example, multiple feedback circuits can be included to replace the resonant tank circuit in the amplifier circuit. In addition, adding another feedback circuit expands the bandwidth and increases the signal gain. However, additional feedback circuits can reduce the stability of the circuit and/or increase the phase shift of the signal. The feedback circuit can be connected to different locations along amplifier stages 302a-c and a common gate. For example, the first feedback circuit 208 can be coupled from the output of the second amplifier stage 302b to the input of the common gate 212. As discussed with respect to Figures 6 and 7, the components of input circuit 210 and feedback circuits 208, 214 are selected based on feedback factors calculated for power amplifier circuits (e.g., 600, 700, 800). These components can be selected in any manner such that the feedback factor indicates that the input circuit 210 and the first feedback circuit 208 have the same impedance characteristics.

圖9示出類似於圖8中所示之功率放大器800之功率放大器900之實例。功率放大器900除包含功率放大器800之功能及特徵以外還可包含第三回饋電路216。功率放大器900包含輸入電路210、共同閘極212、第一放大器級302a、 第二放大器級302b、第三放大器級302c、第一回饋電路208、第二回饋電路214及第三回饋電路216。第一回饋電路208具有Z_回饋_1之回饋阻抗。第二回饋電路214具有Z_回饋_2之回饋阻抗。回饋電路216具有Z_回饋_3之回饋阻抗。將第三回饋電路216添加至圖9中所示之功率放大器800可用于進一步擴展頻寬且增加信號之增益。回饋電路可沿著放大器級302a-c及共同閘極而連接至不同位置。例如,第一回饋電路208可從第三放大器級302c之輸出連接至共同閘極212之輸入。第一回饋電路208可連接至包括如圖9中耦合之第二回饋電路214、第三回饋電路216、第一放大器級302a、第二放大器級302b及第三放大器級302d之放大器電路。第二回饋電路214可從第一放大器級302a之輸出連接至第一放大器級302a之輸入。第三回饋電路216可從第二放大器級302b之輸出連接至第一放大器級302a之輸入。 FIG. 9 shows an example of a power amplifier 900 similar to the power amplifier 800 shown in FIG. Power amplifier 900 can include a third feedback circuit 216 in addition to the functions and features of power amplifier 800. The power amplifier 900 includes an input circuit 210, a common gate 212, a first amplifier stage 302a, The second amplifier stage 302b, the third amplifier stage 302c, the first feedback circuit 208, the second feedback circuit 214, and the third feedback circuit 216. The first feedback circuit 208 has a feedback impedance of Z_feedback_1. The second feedback circuit 214 has a feedback impedance of Z_feedback_2. The feedback circuit 216 has a feedback impedance of Z_feedback_3. Adding a third feedback circuit 216 to the power amplifier 800 shown in Figure 9 can be used to further spread the bandwidth and increase the gain of the signal. The feedback circuit can be connected to different locations along amplifier stages 302a-c and a common gate. For example, the first feedback circuit 208 can be coupled from the output of the third amplifier stage 302c to the input of the common gate 212. The first feedback circuit 208 can be coupled to an amplifier circuit including a second feedback circuit 214, a third feedback circuit 216, a first amplifier stage 302a, a second amplifier stage 302b, and a third amplifier stage 302d coupled as in FIG. The second feedback circuit 214 can be coupled from the output of the first amplifier stage 302a to the input of the first amplifier stage 302a. The third feedback circuit 216 can be coupled from the output of the second amplifier stage 302b to the input of the first amplifier stage 302a.

為了解決由額外回饋電路引起的穩定性減小,可將一個或多個前饋電路添加至功率放大器。圖10示出功率放大器1000之實例,其包含回饋電路208及前饋電路220、224。特定言之,功率放大器1000包含具有輸入阻抗Z_輸入之輸入電路210、具有跨導Gm1之第一放大器級302a、諧振槽電路304、具有跨導Gm2之第二放大器級302b、具有Z_回饋之回饋阻抗之回饋電路208、第一前饋電路220、第二前饋電路224及寬頻變壓器201。可將共同閘極218、222包含為前饋電路220、224之部分,或在前饋電路220、224的外部。回饋電路208可包括類似於圖8及圖9中所示之電路的多個回饋電路。功率放大器1000中之每一回饋電路(例如,208及/或包含在208中之回饋電路(未示出))可具有與功率放大器1000中之每一回饋電路(例如,220、224)相同之阻抗特性。可基於前饋因數而選擇功率放大器1000之一個或多個回饋電路之每一者及一個或多個前饋電路之每一者之組件使得回饋電路與前饋電路之阻抗特性相同。此等組件可包含電容器、電感器、 電阻器及任何其他合適組件之一者或多者。在一個實例中,功率放大器1000內之一個或多個回饋電路208中的組件可包括電容器。此外,功率放大器1000內之一個或多個前饋電路220、224中的組件亦可包括電容器。可基於計算的參數選擇輸入電路210、回饋電路208及一個或多個前饋電路220、224之組件。例如,所計算的參數可為回饋因數。可使用輸入電路210、回饋電路208及/或前饋電路220、224之阻抗特性而計算回饋因數。例如,回饋因數可指示回饋電路208之阻抗特性與輸入電路210之阻抗特性相同。在另一實例中,所計算的參數可為前饋因數。前饋因數可計算輸入電路210、回饋電路208及/或前饋電路220、224之阻抗特性。例如,前饋因數可指示前饋電路220、224之阻抗特性與輸入電路210之阻抗特性相同,其亦可與回饋電路208之阻抗特性相同。 To address the reduction in stability caused by the additional feedback circuit, one or more feedforward circuits can be added to the power amplifier. FIG. 10 shows an example of a power amplifier 1000 that includes a feedback circuit 208 and feedforward circuits 220, 224. In particular, power amplifier 1000 includes an input circuit 210 having an input impedance Z_ input, a first amplifier stage 302a having a transconductance Gm1, a resonant tank circuit 304, a second amplifier stage 302b having a transconductance Gm2, having a Z_feedback The feedback impedance feedback circuit 208, the first feedforward circuit 220, the second feedforward circuit 224, and the broadband transformer 201. The common gates 218, 222 can be included as part of the feedforward circuits 220, 224, or external to the feedforward circuits 220, 224. The feedback circuit 208 can include a plurality of feedback circuits similar to the circuits shown in Figures 8 and 9. Each of the feedback circuits of power amplifier 1000 (e.g., 208 and/or a feedback circuit (not shown) included in 208) can have the same performance as each of the feedback circuits (e.g., 220, 224) in power amplifier 1000. Impedance characteristics. Each of the one or more feedback circuits of the power amplifier 1000 and each of the one or more feedforward circuits may be selected based on a feedforward factor such that the feedback circuit has the same impedance characteristics as the feedforward circuit. These components can include capacitors, inductors, One or more of a resistor and any other suitable component. In one example, components in one or more of the feedback circuits 208 within the power amplifier 1000 can include capacitors. Additionally, components in one or more of the feedforward circuits 220, 224 within the power amplifier 1000 can also include capacitors. Input circuit 210, feedback circuit 208, and components of one or more feedforward circuits 220, 224 may be selected based on the calculated parameters. For example, the calculated parameter can be a feedback factor. The feedback factor can be calculated using the impedance characteristics of the input circuit 210, the feedback circuit 208, and/or the feedforward circuits 220, 224. For example, the feedback factor may indicate that the impedance characteristic of the feedback circuit 208 is the same as the impedance characteristic of the input circuit 210. In another example, the calculated parameter can be a feed forward factor. The feed forward factor can calculate the impedance characteristics of the input circuit 210, the feedback circuit 208, and/or the feedforward circuits 220, 224. For example, the feed forward factor may indicate that the impedance characteristics of the feedforward circuits 220, 224 are the same as the impedance characteristics of the input circuit 210, and may also be the same as the impedance characteristics of the feedback circuit 208.

前饋電路可在功率放大器之頻率回應中引入零。將零引入至頻率回應可改良放大器之相位裕度及整體穩定性。前饋電路220、224可沿著放大器電路而連接至不同位置。例如,前饋電路220可從輸入電路連接至諧振槽電路304之輸入。前饋電路224可從輸入電路210連接至第二放大器級302b之輸入。 The feedforward circuit introduces zero in the frequency response of the power amplifier. Introducing zero to the frequency response improves the phase margin and overall stability of the amplifier. Feedforward circuits 220, 224 can be connected to different locations along the amplifier circuit. For example, feedforward circuit 220 can be coupled from an input circuit to an input of resonant tank circuit 304. Feedforward circuit 224 can be coupled from input circuit 210 to the input of second amplifier stage 302b.

圖11示出包含回饋電路及前饋電路兩者之功率放大器1100之更詳細的實施例。輸入電路210可包含電流驅動器302c、諧振槽或兩者。如關於圖10所論述,回饋電路208及前饋電路220、224可包含電容器、諧振槽電路或可基於所計算的參數而選擇之任何其他合適組件。 Figure 11 shows a more detailed embodiment of a power amplifier 1100 comprising both a feedback circuit and a feedforward circuit. Input circuit 210 can include current driver 302c, a resonant tank, or both. As discussed with respect to FIG. 10, feedback circuit 208 and feedforward circuits 220, 224 can include capacitors, resonant tank circuits, or any other suitable components that can be selected based on the calculated parameters.

圖12描繪根據一個實施例之用於放大信號之方法的簡化流程圖1200。在1202,信號透過輸入電路210耦合。在1204,信號藉由放大器302a放大。在1206,信號透過諧振槽電路304耦合。放大器302a及諧振槽電路304將相移引入至信號中。 FIG. 12 depicts a simplified flowchart 1200 of a method for amplifying a signal, in accordance with one embodiment. At 1202, the signals are coupled through input circuit 210. At 1204, the signal is amplified by amplifier 302a. At 1206, the signals are coupled through a resonant tank circuit 304. Amplifier 302a and resonant tank circuit 304 introduce a phase shift into the signal.

在1208,信號藉由放大器302b放大。在1210, 信號透過變壓器204耦合以用於無線傳輸。放大器302a及變壓器204將第二相移引入至信號中。 At 1208, the signal is amplified by amplifier 302b. At 1210, Signals are coupled through transformer 204 for wireless transmission. Amplifier 302a and transformer 204 introduce a second phase shift into the signal.

在1210,信號透過回饋電路208耦合。回饋電路208包含電容器且不會將相移引入至信號中或為了穩定操作而在總相移小於臨限值之情況下引入相移。 At 1210, the signals are coupled through feedback circuit 208. The feedback circuit 208 includes a capacitor and does not introduce a phase shift into the signal or introduces a phase shift if the total phase shift is less than a threshold for stable operation.

在1212,信號透過一個或多個前饋電路220、224耦合。每一前饋電路220、224可包含電容器且不會將相移引入至信號中或為了穩定操作而在總相移小於臨限值之情況下引入相移。每一前饋電路可包含諧振槽。每一前饋電路可包含共同閘極。每一前饋電路可包含高頻寬電路或低頻寬電路。可基於前饋因數而選擇前饋電路之組件。放大器電路之輸入阻抗可具有與前饋電路之前饋電路阻抗相同之阻抗特性。 At 1212, the signals are coupled through one or more feedforward circuits 220, 224. Each feedforward circuit 220, 224 may include a capacitor and will not introduce a phase shift into the signal or introduce a phase shift if the total phase shift is less than a threshold for stable operation. Each feedforward circuit can include a resonant tank. Each feedforward circuit can include a common gate. Each feedforward circuit can include a high frequency wide circuit or a low frequency wide circuit. The components of the feedforward circuit can be selected based on the feedforward factor. The input impedance of the amplifier circuit can have the same impedance characteristics as the feedforward circuit impedance of the feedforward circuit.

圖12之程序1200僅係說明性的。程序1200中之任何步驟可被修改(例如,以不同顺序執行)、組合或移除,且任何額外步驟可被添加至程序1200,而不脫離本揭示內容之範疇。 The process 1200 of Figure 12 is merely illustrative. Any of the steps in the program 1200 can be modified (e.g., performed in a different order), combined or removed, and any additional steps can be added to the program 1200 without departing from the scope of the present disclosure.

因此,特定實施例使用電容器或電感器-電容器-電阻器回饋電路。此導致回饋電路208中之最小相移及不振盪且穩定的功率放大器增益輸出。整個迴路之相移小於180°,此意味功率放大器200係穩定的。 Thus, certain embodiments use capacitors or inductor-capacitor-resistor feedback circuits. This results in a minimum phase shift in the feedback circuit 208 and a non-oscillating and stable power amplifier gain output. The phase shift of the entire loop is less than 180°, which means that the power amplifier 200 is stable.

如在本文描述中及貫穿隨後之申請專利範圍所使用,除非內文中另有明確指示,否則「一」及「該」包含複數引用。又,如在本文描述中及貫穿隨後之申請專利範圍所使用,除非上下文另有明確指示,否則「在……中」之含義包含「在……中」及「在……上」。 &quot;an&quot; and &quot;the&quot; are used in the <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; And &quot;in,&quot; and &quot;in,&quot;

上述描述說明本發明之各種實施例以及本發明之態樣可如何實施之實例。上述實例及實施例應被視為僅係實施例且被提出來說明如由下文之申請專利範圍所定義之本發明的靈活性及優點。基於上文之揭示及下文之申請專利範 圍,可使用其他配置、實施例、實施方案及等效物,而不脫離如由申請專利範圍所定義之本發明的範疇。 The above description illustrates various embodiments of the invention and examples of how the aspects of the invention can be implemented. The above examples and embodiments are to be considered in all respects as illustrative and illustrative of the nature of the invention as claimed. Based on the above disclosure and the following patent application Other configurations, embodiments, embodiments, and equivalents may be used without departing from the scope of the invention as defined by the scope of the claims.

200‧‧‧功率放大器 200‧‧‧Power Amplifier

201‧‧‧寬頻變壓器 201‧‧‧Broadband transformer

202‧‧‧負載 202‧‧‧load

204‧‧‧變壓器 204‧‧‧Transformers

206‧‧‧放大器電路 206‧‧‧Amplifier circuit

208‧‧‧回饋電路 208‧‧‧ feedback circuit

210‧‧‧輸入電路 210‧‧‧Input circuit

Cp‧‧‧電容器 Cp‧‧‧ capacitor

Vin‧‧‧輸入電壓 Vin‧‧‧Input voltage

Z_回饋‧‧‧回饋阻抗 Z_ feedback ‧‧‧ feedback impedance

Z_輸入‧‧‧輸入阻抗 Z_ input ‧‧‧ input impedance

Claims (23)

一種具有回饋阻抗以穩定輸出之功率放大器的設備,其包括:一放大器電路;一第一回饋電路,其被耦合至該放大器電路,該第一回饋電路包括一電容器;及一第二回饋電路,連接至該放大器電路,其中:基於一回饋因數選擇該第一回饋電路的組件,及該放大器電路之一輸入阻抗具有與該第一回饋電路的一回饋電路阻抗相同之一阻抗特性。 An apparatus having a feedback amplifier for stabilizing an output power amplifier, comprising: an amplifier circuit; a first feedback circuit coupled to the amplifier circuit, the first feedback circuit comprising a capacitor; and a second feedback circuit Connected to the amplifier circuit, wherein: the component of the first feedback circuit is selected based on a feedback factor, and one of the input impedances of the amplifier circuit has an impedance characteristic that is the same as a feedback circuit impedance of the first feedback circuit. 如申請專利範圍第1項之設備,其中該放大器電路包括一共同閘極。 The device of claim 1, wherein the amplifier circuit comprises a common gate. 如申請專利範圍第1項之設備,其中該第二回饋電路包括一電容器。 The device of claim 1, wherein the second feedback circuit comprises a capacitor. 如申請專利範圍第1項之設備,其中基於該回饋因數選擇該第二回饋電路的組件。 The apparatus of claim 1, wherein the component of the second feedback circuit is selected based on the feedback factor. 如申請專利範圍第1項之設備,其中該放大器電路之一輸入阻抗具有與該第二回饋電路之一回饋電路阻抗相同的一阻抗特性。 The device of claim 1, wherein the input impedance of one of the amplifier circuits has the same impedance characteristic as the feedback circuit of one of the second feedback circuits. 如申請專利範圍第1項之設備,其進一步包括連接至該放大器電路的一第一前饋電路。 The apparatus of claim 1, further comprising a first feedforward circuit coupled to the amplifier circuit. 如申請專利範圍第6項之設備,其中該第一前饋電路包括一電容器。 The device of claim 6, wherein the first feedforward circuit comprises a capacitor. 如申請專利範圍第6項之設備,其中該第一前饋電路係一低頻寬電路或一高頻寬電路。 The device of claim 6, wherein the first feedforward circuit is a low frequency wide circuit or a high frequency wide circuit. 如申請專利範圍第6項之設備,其中基於一前饋因數選擇該第一前饋電路之組件。 The apparatus of claim 6, wherein the component of the first feedforward circuit is selected based on a feedforward factor. 如申請專利範圍第9項之設備,其中該放大器電路之一輸入阻抗具有與該第一前饋電路之一前饋電路阻抗相同之一阻抗特性。 The device of claim 9, wherein the input impedance of one of the amplifier circuits has one of the same impedance characteristics as the feedforward circuit impedance of one of the first feedforward circuits. 如申請專利範圍第6項之設備,其進一步包括於一第二位置耦合至該放大器電路之一第二前饋電路。 The device of claim 6 further comprising a second feedforward circuit coupled to one of the amplifier circuits at a second location. 如申請專利範圍第11項之設備,其中該第二前饋電路包括一電容器。 The device of claim 11, wherein the second feedforward circuit comprises a capacitor. 如申請專利範圍第11項之設備,其中該第二前饋電路包括一共同閘極。 The device of claim 11, wherein the second feedforward circuit comprises a common gate. 如申請專利範圍第11項之設備,其中該第二前饋電路包括一諧振槽電路。 The device of claim 11, wherein the second feedforward circuit comprises a resonant tank circuit. 一種放大器電路系統,其包括:一第一放大器級,其經組態以放大一信號;一電路,其經組態以從該第一放大器級接收一信號;一第二放大器級,其經組態以放大來自該電路之該信號;一回饋電路,其被耦合至該第二放大器級,該回饋電路包括一電容器;及一第二回饋電路,其被耦合至該第一放大器級,其中:基於一回饋因數選擇該回饋電路之組件,且 該第一放大器級之一輸入阻抗具有與該回饋電路之一回饋電路阻抗相同之一阻抗特性;及一變壓器,其經組態以從該第二放大器級接收該信號。 An amplifier circuit system comprising: a first amplifier stage configured to amplify a signal; a circuit configured to receive a signal from the first amplifier stage; a second amplifier stage grouped State to amplify the signal from the circuit; a feedback circuit coupled to the second amplifier stage, the feedback circuit including a capacitor; and a second feedback circuit coupled to the first amplifier stage, wherein: Selecting a component of the feedback circuit based on a feedback factor, and One of the input impedances of the first amplifier stage has one of the same impedance characteristics as the feedback circuit of one of the feedback circuits; and a transformer configured to receive the signal from the second amplifier stage. 如申請專利範圍第15項之系統,其進一步包括耦合至該放大器電路之一前饋電路。 A system of claim 15 further comprising a feedforward circuit coupled to one of the amplifier circuits. 如申請專利範圍第16項之系統,其中基於一前饋因數選擇該前饋電路之組件。 The system of claim 16 wherein the component of the feedforward circuit is selected based on a feedforward factor. 如申請專利範圍第16項之系統,其中該第一放大器級之該輸入阻抗具有與該前饋電路之一前饋電路阻抗相同之一阻抗特性。 The system of claim 16 wherein the input impedance of the first amplifier stage has one of the same impedance characteristics as the feedforward circuit impedance of one of the feedforward circuits. 如申請專利範圍第15項之系統,其中該前饋電路包括一電容器。 The system of claim 15 wherein the feedforward circuit comprises a capacitor. 一種具有回饋阻抗以穩定輸出之功率放大器的方法,其包括:透過一放大器電路放大一信號;及透過一回饋電路耦合該信號;及透過一第二回饋電路連接至該放大器電路,其中:基於一回饋因數選擇該回饋電路之組件,該放大器電路之一輸入阻抗具有與該回饋電路之一回饋電路阻抗相同之一阻抗特性,及該回饋電路包括一電容器。 A method of a power amplifier having a feedback impedance for stabilizing an output, comprising: amplifying a signal through an amplifier circuit; coupling the signal through a feedback circuit; and connecting to the amplifier circuit via a second feedback circuit, wherein: The feedback factor selects a component of the feedback circuit, one of the input impedances of the amplifier circuit having one of the same impedance characteristics as the feedback circuit of one of the feedback circuits, and the feedback circuit includes a capacitor. 如申請專利範圍第20項之方法,其進一步包括透過一前饋電路耦合該信號。 The method of claim 20, further comprising coupling the signal through a feedforward circuit. 如申請專利範圍第21項之方法,其中基於一前饋因數選擇該前饋電路之組件。 The method of claim 21, wherein the component of the feedforward circuit is selected based on a feedforward factor. 如申請專利範圍第22項之方法,其中該放大器電路之該輸入阻抗具有與該前饋電路之一前饋電路阻抗相同之一阻抗特性。 The method of claim 22, wherein the input impedance of the amplifier circuit has one of the same impedance characteristics as the feedforward circuit impedance of one of the feedforward circuits.
TW102127344A 2013-02-20 2013-07-30 Power amplifier with feedback impedance for stable output TWI601374B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201361767125P 2013-02-20 2013-02-20
PCT/US2013/051403 WO2014130075A1 (en) 2013-02-20 2013-07-19 Power amplifier with feedback impedance for stable output
US13/946,912 US9041467B2 (en) 2010-01-04 2013-07-19 Power amplifier with feedback impedance for stable output

Publications (2)

Publication Number Publication Date
TW201434263A TW201434263A (en) 2014-09-01
TWI601374B true TWI601374B (en) 2017-10-01

Family

ID=51943047

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102127344A TWI601374B (en) 2013-02-20 2013-07-30 Power amplifier with feedback impedance for stable output

Country Status (1)

Country Link
TW (1) TWI601374B (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163804A1 (en) * 2010-01-04 2011-07-07 Kan Li Power Amplifier with Feedback Impedance for Stable Output

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110163804A1 (en) * 2010-01-04 2011-07-07 Kan Li Power Amplifier with Feedback Impedance for Stable Output

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Kawada, Shinya, and Yasuhiro Sugimoto. "A 500-MHz and 60-dBΩ CMOS Transimpedance Amplifier Using the New Feedforward Stabilization Technique." IEICE transactions on electronics 88, no. 6 (2005): pp.1285-1287. *

Also Published As

Publication number Publication date
TW201434263A (en) 2014-09-01

Similar Documents

Publication Publication Date Title
US8508294B2 (en) Power amplifier with feedback impedance for stable output
JP5109874B2 (en) Low noise amplifier
JP5479284B2 (en) Electronic circuit
US20080169877A1 (en) Amplifier for use in radio-frequency band
JP6567531B2 (en) Broadband bias circuit and method
JP2009111933A (en) Low-noise amplifier, and differential amplifier
JP5854289B2 (en) Power amplification module
JP2007184895A (en) Amplifier and signal amplification method
JP6030248B2 (en) Tuned wideband driver amplifier
JP4850134B2 (en) High frequency circuit
US9041467B2 (en) Power amplifier with feedback impedance for stable output
JP2008288817A (en) Wide-band and low-noise amplifier
CN104158497A (en) Low noise amplifier
JP2010074501A (en) Amplifier circuit and receiving apparatus
TWI601374B (en) Power amplifier with feedback impedance for stable output
JP5809554B2 (en) Variable gain amplifier
CN111193477A (en) Composite amplifier
JP2013074590A (en) Amplifier
US8773199B2 (en) Compensation technique for feedback amplifiers
CN103475314A (en) Low-noise amplifier
US20100231311A1 (en) System And Method For Implementing An Oscillator
US8604872B2 (en) Highly linear, low-power, transconductor
CN105075113B (en) Power amplifier with the feedback impedance for stablizing output
JP2008228149A (en) Low-noise amplifier
JP2009038550A (en) High frequency amplifier

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees