TWI600051B - Noise based frequency tuning and identification of plasma characteristics - Google Patents

Noise based frequency tuning and identification of plasma characteristics Download PDF

Info

Publication number
TWI600051B
TWI600051B TW104134314A TW104134314A TWI600051B TW I600051 B TWI600051 B TW I600051B TW 104134314 A TW104134314 A TW 104134314A TW 104134314 A TW104134314 A TW 104134314A TW I600051 B TWI600051 B TW I600051B
Authority
TW
Taiwan
Prior art keywords
power
frequency
primary
plasma
signal
Prior art date
Application number
TW104134314A
Other languages
Chinese (zh)
Other versions
TW201715559A (en
Inventor
唐恩 凡 札爾
Original Assignee
先驅能源工業公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 先驅能源工業公司 filed Critical 先驅能源工業公司
Priority to TW104134314A priority Critical patent/TWI600051B/en
Publication of TW201715559A publication Critical patent/TW201715559A/en
Application granted granted Critical
Publication of TWI600051B publication Critical patent/TWI600051B/en

Links

Landscapes

  • Plasma Technology (AREA)

Description

基於雜訊之頻率調整及電漿特徵之識別 Frequency adjustment based on noise and identification of plasma characteristics

本揭示大致關於產生器的頻率調整。尤其但非限制而言,本揭示關於頻率調整電漿處理系統中之產生器以及識別電漿特徵或電漿特徵改變的系統、方法和設備。 This disclosure relates generally to the frequency adjustment of the generator. In particular, but not by way of limitation, the present disclosure is directed to systems, methods and apparatus for frequency-modulating generators in plasma processing systems and for identifying changes in plasma characteristics or plasma characteristics.

自動頻率調整常常尋求將呈現給產生器的負載阻抗匹配於產生器所設計之傳遞功率的阻抗。於某些情況,這可以藉由使負載反射係數ρ的大小減到最小而完成,ρ的定義為:ρ=(Z-Z0)/(Z+Z0 *) 方程式(1)其中Z是呈現給產生器的負載阻抗,Z0是想要的負載阻抗,而*表示採用共軛複數。於許多應用,Z0=Z0 *=50歐姆。 Automatic frequency adjustment often seeks to match the load impedance presented to the generator to the impedance of the delivered power designed by the generator. In some cases, this can be done by minimizing the magnitude of the load reflection coefficient ρ, which is defined as: ρ = (ZZ 0 ) / (Z + Z 0 * ) Equation (1) where Z is presented to The load impedance of the generator, Z 0 is the desired load impedance, and * indicates the conjugate complex number. For many applications, Z 0 = Z 0 * = 50 ohms.

自動調整演算法有時偏重於局部最佳化,因此錯失總體最佳化。圖8示範效能的度量(例如反射功率或負載反射係數大小)為頻率函數的圖形,其顯示在f1的局部最小和在f0的總體最小。於這示範,尋找最佳化等同於尋找最小的效能度量。吾人可以看到如果自動頻率調整開始在比fa還低的頻率,則演算法有可能安頓在f1的局部最小而不知道在f0有總體最小。 Auto-tuning algorithms sometimes focus on local optimization, thus missing overall optimization. Figure 8 exemplary performance metrics (e.g., reflected power or the size of the load reflection coefficient) is a graphical function of the frequency, which shows the overall minimum and f 0 at the local minimum of f. 1. For this demonstration, finding optimization is equivalent to finding the smallest performance metric. We can see that if the automatic frequency adjustment starts at a lower frequency than fa, then the algorithm is likely to settle at the local minimum of f 1 without knowing that there is an overall minimum at f 0 .

對於簡單的負載而言,有可能使頻率單純掃過整個頻率範圍以尋找在f0的總體最佳化。於電漿應用,此種尋找總體最佳化頻率的做法 常常不是選項。一個潛在的問題在於隨著掃過頻率,可能遭遇例如圖8之fa的頻率,在此負載阻抗嚴重不匹配於產生器可以傳遞功率的阻抗。如果產生器頻率在此種產生器無法傳遞足夠功率到負載裡的頻率下停留達任何時間量,則電漿可能熄滅。如果短時間的高反射功率是可接受的,則藉由改變頻率僅達短時間而探測整個頻率範圍以便探測不同頻率的技術可以是可接受的解決方案以尋找總體最佳化頻率。然而,於某些應用,即使這些短時期的電漿擾動也不是可接受的。想要有以電漿負載有最小擾動來尋找總體最佳化的解決方案。於許多應用,雖然尋找最佳化操作頻率等同於使負載阻抗不匹配減到最小,但是例如電漿系統穩定度和系統效率的其他因素可以是頻率最佳化程度的因素。 For a simple load, it is possible to sweep the frequency simply across the entire frequency range to find an overall optimization at f 0 . For plasma applications, this approach to finding an overall optimization frequency is often not an option. One potential problem is that as the frequency is swept, a frequency such as f a of Figure 8 may be encountered, where the load impedance is heavily mismatched by the impedance at which the generator can deliver power. If the generator frequency stays for any amount of time at a frequency at which such a generator cannot deliver sufficient power to the load, the plasma may be extinguished. If short-term high reflected power is acceptable, techniques that detect the entire frequency range by varying the frequency for only a short time to detect different frequencies may be an acceptable solution to find the overall optimized frequency. However, in some applications, even these short-term plasma disturbances are not acceptable. It is desirable to have a solution with minimal disturbances in the plasma load to find an overall optimization. In many applications, while finding an optimized operating frequency is equivalent to minimizing load impedance mismatch, other factors such as plasma system stability and system efficiency may be factors in the degree of frequency optimization.

本發明顯示於圖式的範例性具體態樣則綜述如下。這些和其他的具體態樣更完整描述於【實施方式】一節。然而,要了解不打算將本發明限制於【發明內容】或【實施方式】所述的形式。熟於此技藝者可以體認在如申請專利範圍所表達之本發明的精神和範圍裡有許多修改、等同者和替代者。 Exemplary aspects of the invention shown in the drawings are summarized below. These and other specific aspects are more fully described in the [Embodiment] section. However, it is to be understood that the invention is not intended to be limited to the forms of the invention or the embodiments. Many modifications, equivalents, and alternatives are possible in the spirit and scope of the invention as expressed by the appended claims.

某一方面的特徵可以在於功率產生系統,其建構成自動頻率調整。功率產生系統包括功率來源以施加在主要頻率的主要功率訊號到建構成耦合於電漿負載的輸出,並且功率來源建構成施加功率低於在主要頻率所產生之功率的一或更多個次要功率訊號到電漿負載。感測器安排成感測傳遞到電漿負載之功率的一或更多個屬性以獲得效能的度量,並且總體最佳化識別模組分析效能的度量和識別對應於效能度量之總體最佳化的總 體最佳化頻率。頻率控制模組建構成將主要頻率調整朝向對應於總體最佳化之識別的總體最佳化頻率。 One aspect may be characterized by a power generation system that is constructed to constitute an automatic frequency adjustment. The power generation system includes a power source to apply a primary power signal at a primary frequency to an output coupled to the plasma load, and the power source is constructed to constitute one or more secondary powers that are less than the power generated at the primary frequency. Power signal to the plasma load. The sensor is arranged to sense one or more attributes of the power delivered to the plasma load to obtain a measure of performance, and the overall optimized identification module analyzes the performance metric and identifies an overall optimization corresponding to the performance metric Total Body optimization frequency. The frequency control module is constructed to direct the primary frequency adjustment toward an overall optimized frequency corresponding to the identification of the overall optimization.

另一方面的特徵可以在於非暫態、實體之處理器可讀取的儲存媒體,其編碼了機器可讀取的指令以進行功率產生系統之自動頻率調整的方法。方法包括施加在主要頻率的主要功率訊號到電漿負載,並且施加在一或更多個次要頻率的次要功率訊號到電漿負載,其中在次要頻率所產生的功率低於在主要頻率所產生的功率。監視效能的度量,並且獲得對應於效能度量之總體最佳化的最佳化頻率。然後將主要頻率調整朝向最佳化頻率。 Another aspect may be characterized by a non-transitory, physical processor readable storage medium that encodes machine readable instructions for performing automatic frequency adjustment of the power generation system. The method includes applying a primary power signal at a primary frequency to a plasma load and applying a secondary power signal of one or more secondary frequencies to a plasma load, wherein the power generated at the secondary frequency is lower than at the primary frequency The power produced. A measure of performance is monitored and an optimization frequency corresponding to the overall optimization of the performance metric is obtained. The primary frequency is then adjusted towards the optimized frequency.

100‧‧‧功率產生系統 100‧‧‧Power Generation System

104、105‧‧‧匹配網路 104, 105‧‧‧ Matching network

106‧‧‧電漿 106‧‧‧ Plasma

108‧‧‧電漿腔室 108‧‧‧The plasma chamber

110‧‧‧功率來源 110‧‧‧Power source

112‧‧‧感測器 112‧‧‧ sensor

114‧‧‧電路 114‧‧‧ Circuitry

116‧‧‧總體最佳化識別模組 116‧‧‧Overall Optimized Identification Module

118‧‧‧頻率控制模組 118‧‧‧ frequency control module

122‧‧‧濾波器 122‧‧‧ filter

130、131‧‧‧連接 130, 131‧‧‧ Connection

140‧‧‧外部功率 140‧‧‧External power

150、151‧‧‧RF或DC產生器 150, 151‧‧‧RF or DC generator

200‧‧‧功率產生系統 200‧‧‧Power Generation System

204‧‧‧匹配網路 204‧‧‧matching network

208‧‧‧電漿腔室 208‧‧‧The plasma chamber

210‧‧‧功率來源 210‧‧‧Power source

212‧‧‧感測器 212‧‧‧ sensor

214‧‧‧電路 214‧‧‧ Circuitry

220‧‧‧輸出 220‧‧‧ output

300‧‧‧功率產生系統 300‧‧‧Power Generation System

304‧‧‧匹配網路 304‧‧‧matching network

306‧‧‧電漿 306‧‧‧ Plasma

308‧‧‧電漿腔室 308‧‧‧The plasma chamber

310‧‧‧功率來源 310‧‧‧Power source

312‧‧‧感測器 312‧‧‧ sensor

314‧‧‧電路 314‧‧‧ Circuitry

316‧‧‧頻率控制模組 316‧‧‧ frequency control module

318‧‧‧總體最佳化識別模組 318‧‧‧Overall Optimized Identification Module

320‧‧‧輸出 320‧‧‧ Output

322‧‧‧濾波器 322‧‧‧ filter

400‧‧‧功率產生系統 400‧‧‧Power Generation System

404‧‧‧匹配網路 404‧‧‧matching network

406‧‧‧電漿 406‧‧‧ Plasma

408‧‧‧電漿腔室 408‧‧‧The plasma chamber

411‧‧‧低位準訊號來源 411‧‧‧Low-level source

412、413‧‧‧感測器 412, 413‧‧ ‧ sensors

414‧‧‧電路 414‧‧‧ Circuitry

416‧‧‧頻率控制模組 416‧‧‧frequency control module

418‧‧‧總體最佳化識別模組 418‧‧‧Overall Optimized Identification Module

420‧‧‧輸出 420‧‧‧ output

422、423‧‧‧濾波器 422, 423‧‧‧ filter

424‧‧‧組合器 424‧‧‧ combiner

500‧‧‧功率產生系統 500‧‧‧Power Generation System

510‧‧‧主要訊號來源 510‧‧‧ main source of signals

511‧‧‧次要訊號來源 511‧‧‧ secondary signal source

524‧‧‧組合器 524‧‧‧ combiner

550‧‧‧功率放大器 550‧‧‧Power Amplifier

600‧‧‧功率產生系統 600‧‧‧Power Generation System

610‧‧‧功率來源 610‧‧‧Power source

613‧‧‧雜訊來源 613‧‧‧Miscellaneous sources

620‧‧‧輸出 620‧‧‧ output

624‧‧‧組合器 624‧‧‧ combiner

700‧‧‧功率產生系統 700‧‧‧Power Generation System

710‧‧‧主要頻率來源 710‧‧‧ main frequency source

713‧‧‧雜訊來源 713‧‧‧Source of noise

724‧‧‧組合器 724‧‧‧ combiner

750‧‧‧功率放大器 750‧‧‧Power Amplifier

801‧‧‧真實的效能度量 801‧‧‧Real performance metrics

802‧‧‧估計的效能度量 802‧‧‧ Estimated performance metrics

1600‧‧‧本發明的方法 1600‧‧‧Method of the invention

1602~1610‧‧‧本發明的方法步驟 1602~1610‧‧‧ Method steps of the invention

1710‧‧‧方向性耦合器 1710‧‧‧ Directional Coupler

1720‧‧‧類比對數位轉換器 1720‧‧‧ Analog-to-digital converter

1730‧‧‧濾波器 1730‧‧‧ Filter

1810‧‧‧解調器 1810‧‧‧ demodulator

1820‧‧‧訊號A 1820‧‧‧Signal A

1830‧‧‧訊號B 1830‧‧‧Signal B

1840‧‧‧濾波 1840‧‧‧ Filter

1850‧‧‧乘以餘弦和正弦函數 Multiply cosine and sine functions by 1850‧‧

1900‧‧‧實現總體最佳化識別模組和頻率控制模組的實體構件 1900‧‧‧ Implementing the physical components of the overall optimized recognition module and frequency control module

1912‧‧‧顯示器部分 1912‧‧‧ Display section

1920‧‧‧非揮發性記憶體 1920‧‧‧ Non-volatile memory

1922‧‧‧匯流排 1922‧‧ ‧ busbar

1924‧‧‧隨機存取記憶體(RAM) 1924‧‧‧ Random Access Memory (RAM)

1926‧‧‧處理部分 1926‧‧‧Processing section

1927‧‧‧可場程式化的閘陣列(FPGA) 1927‧‧‧ Field Programmable Gate Array (FPGA)

1928‧‧‧收發器構件 1928‧‧‧Transceiver components

A1~AN‧‧‧訊號A的複數向量代表 A 1 ~A N ‧‧‧ The complex vector representation of signal A

B1~BN‧‧‧訊號B的複數向量代表 The complex vector representation of B 1 ~B N ‧‧‧ signal B

當配合伴隨的圖式來參照以下詳細敘述和所附申請專利範圍,則本發明的多樣目的和優點以及更完全的理解會是明顯而更容易體會。 The various objects and advantages of the present invention, as well as the more complete understanding of the invention, may be

圖1示範功率產生系統,其建構成自動調整傳遞到電漿負載之功率的頻率。 Figure 1 illustrates an exemplary power generation system constructed to automatically adjust the frequency of power delivered to the plasma load.

圖2示範功率產生系統的一具體態樣,其中感測器連同功率來源和一或更多個電路而駐留在功率產生系統裡。 2 illustrates an embodiment of a power generation system in which a sensor resides in a power generation system along with a power source and one or more circuits.

圖3示範功率產生系統的一具體態樣,其中感測器駐留在功率產生系統外。 Figure 3 illustrates a specific aspect of a power generation system in which the sensor resides outside of the power generation system.

圖4示範功率產生系統的進一步具體態樣。 Figure 4 illustrates a further embodiment of a power generating system.

圖5示範功率產生系統的具體態樣,其中主要功率訊號和次要功率訊號在由功率放大器放大之前先組合。 Figure 5 illustrates a particular aspect of a power generation system in which the primary power signal and the secondary power signal are combined prior to amplification by the power amplifier.

圖6示範功率產生系統的具體態樣,其中功率來源產生主要 功率訊號,並且雜訊來源產生呈雜訊形式的次要功率訊號。 Figure 6 illustrates a specific aspect of a power generation system in which the power source is generated primarily The power signal, and the noise source produces a secondary power signal in the form of a noise.

圖7示範功率產生系統的具體態樣,其中次要訊號是雜訊,並且主要功率訊號和次要功率訊號在由功率放大器放大之前先組合。 Figure 7 illustrates a particular aspect of a power generation system in which the secondary signal is noise and the primary power signal and the secondary power signal are combined prior to amplification by the power amplifier.

圖8顯示效能度量為頻率函數的圖形。 Figure 8 shows a graph of performance metrics as a function of frequency.

圖9A是將效能度量(譬如反射係數)顯示為頻率函數的圖形。 Figure 9A is a graph showing performance metrics, such as reflection coefficients, as a function of frequency.

圖9B是圖形表示,其顯示主要功率訊號頻率可以如何調整成使圖9A所示的效能度量減到最小。 Figure 9B is a graphical representation showing how the primary power signal frequency can be adjusted to minimize the performance metric shown in Figure 9A.

圖9C顯示在圖9B時刻t2之功率產生系統輸出的頻譜(每個頻寬的功率,譬如每3千赫茲頻寬的瓦數)。 Figure 9C shows the spectrum of the power production system output at time t 2 of Figure 9B (power per bandwidth, such as watts per 3 kilohertz bandwidth).

圖10A是顯示效能度量對頻率的圖形。 Figure 10A is a graph showing performance metric versus frequency.

圖10B是顯示使用主要功率訊號的總體搜尋可以如何導致電漿熄滅的圖形。 Figure 10B is a graph showing how the overall search using the primary power signal can cause the plasma to go out.

圖10C是顯示在圖10B時刻t2之功率產生系統輸出的頻譜圖形。 Figure 10C is a spectrum diagram showing the output of the power generating system at time t 2 of Figure 10B.

圖11A是顯示使用次要功率訊號之最佳化頻率估計的圖形。 Figure 11A is a graph showing an optimized frequency estimate using a secondary power signal.

圖11B是顯示在使用次要功率訊號而決定想要的頻率之後來調整主要頻率的圖形。 Fig. 11B is a graph showing the adjustment of the main frequency after determining the desired frequency using the secondary power signal.

圖11C是顯示在圖11B的主要訊號和次要訊號之功率頻譜成分的圖形。 Figure 11C is a graph showing the power spectral components of the primary and secondary signals of Figure 11B.

圖12A是顯示使用次要功率訊號之最佳化頻率估計的圖形。 Figure 12A is a graph showing an optimized frequency estimate using a secondary power signal.

圖12B是顯示在使用次要功率訊號而決定想要的頻率之後來調整主要頻率的圖形。 Figure 12B is a graph showing the adjustment of the primary frequency after determining the desired frequency using the secondary power signal.

圖12C是顯示在圖12B的主要訊號和次要訊號之功率頻譜成分的圖形。 Figure 12C is a graph showing the power spectral components of the primary and secondary signals of Figure 12B.

圖13A是顯示使用次要功率訊號之最佳化頻率估計的圖形。 Figure 13A is a graph showing an optimized frequency estimate using a secondary power signal.

圖13B是將雜訊功率顯示為時間函數的圖形,其中雜訊添加於功率產生系統輸出。 Figure 13B is a graph showing noise power as a function of time with noise added to the power generation system output.

圖13C是顯示在圖13B時刻t2之功率產生系統輸出的頻譜圖形。 Figure 13C is a spectrum diagram showing the output of the power generating system at time t 2 of Figure 13B.

圖14A是顯示頻率調整方法之諸多方面的圖形。 Figure 14A is a diagram showing aspects of a frequency adjustment method.

圖14B是顯示圖14A所示頻率調整方法之額外方面的圖形。 Fig. 14B is a diagram showing an additional aspect of the frequency adjustment method shown in Fig. 14A.

圖14C是顯示圖14A和14B所示頻率調整方法之進一步方面的圖形。 Figure 14C is a diagram showing a further aspect of the frequency adjustment method shown in Figures 14A and 14B.

圖14D是顯示圖14A、14B、14C所示頻率調整方法之又一些額外方面的圖形。 Figure 14D is a graph showing still further aspects of the frequency adjustment method shown in Figures 14A, 14B, and 14C.

圖15A是顯示頻率調整方法之諸多方面的圖形。 Fig. 15A is a diagram showing aspects of a frequency adjustment method.

圖15B是顯示圖15A所示頻率調整方法之額外方面的圖形。 Fig. 15B is a diagram showing an additional aspect of the frequency adjustment method shown in Fig. 15A.

圖15C是顯示圖15A和15B所示頻率調整方法之進一步方面的圖形。 Figure 15C is a graph showing a further aspect of the frequency adjustment method shown in Figures 15A and 15B.

圖16示範調整功率產生系統頻率的方法,其可以來回參照在此所述的具體態樣。 Figure 16 illustrates a method of adjusting the frequency of a power generating system that can be referenced back and forth to the specific aspects described herein.

圖17A是顯示範例性感測器的圖解。 Figure 17A is a diagram showing an exemplary sensor.

圖17B是顯示感測器之另一具體態樣的圖解。 Figure 17B is a diagram showing another specific aspect of the sensor.

圖17C是顯示感測器之又一具體態樣的圖解。 Figure 17C is a diagram showing still another specific aspect of the sensor.

圖18是顯示範例性識別模組之諸多方面的圖解。 Figure 18 is a diagram showing aspects of an exemplary recognition module.

圖19是顯示可以用於實現在此揭示的具體態樣之構件的方塊圖。 19 is a block diagram showing components that can be used to implement the specific aspects disclosed herein.

在此使用「範例性」(exemplary)一詞意謂「作為範例、例子或示範」。在此描述為「範例性」的任何具體態樣未必要解讀成更好於或勝於其他的具體態樣。 The word "exemplary" is used herein to mean "as an example, example or demonstration." Any specific aspect described herein as "exemplary" is not necessarily interpreted as being better or better than other specific aspects.

為了本揭示的目的,「低位準訊號」(low level signal)是實質低於正傳遞到電漿腔室之主要訊號的訊號,舉例來說至少小一個數量級。 For the purposes of this disclosure, a "low level signal" is a signal that is substantially lower than the primary signal being passed to the plasma chamber, for example, at least an order of magnitude smaller.

為了本揭示的目的,「電路」(circuit)可以包括基於輸入訊號而產生輸出訊號之電構件的任何組合。電路可以是數位的、類比的、或包括處理器或中央處理單元(central processing unit,CPU)或是其部分。電路可以包括或者可以從非暫態、實體之電腦可讀取的儲存媒體來讀取處理器可讀取的指令以進行下述的方法。 For the purposes of this disclosure, a "circuit" can include any combination of electrical components that produce an output signal based on an input signal. The circuitry can be digital, analog, or include a processor or a central processing unit (CPU) or portion thereof. The circuitry can include or can read processor readable instructions from a non-transitory, physical computer readable storage medium to perform the methods described below.

為了本揭示的目的,構件可以在通訊中,其在某些情形下包括電通訊(譬如能夠在其間傳送訊號)。然而,舉二個非限制性範例,熟於此技藝者將體認通訊也可以包括光學通訊和無線射頻通訊。 For the purposes of this disclosure, components may be in communication, which in some cases includes electrical communication (e.g., capable of transmitting signals therebetween). However, to name two non-limiting examples, those skilled in the art will recognize that communications may also include optical communications and wireless radio communications.

為了本揭示的目的,「總體最佳化」(global optimum)可以包括如跨越頻率範圍所取樣之特徵的最小或最大值。舉例來說,在反射功率是特徵時,總體最佳化可以是總體最小值;在傳遞功率為特徵時,總體最佳化可以是總體最大值。 For the purposes of this disclosure, "global optimum" may include a minimum or maximum value of a feature as sampled across a range of frequencies. For example, when the reflected power is characteristic, the overall optimization may be the overall minimum; when the delivered power is characteristic, the overall optimization may be the overall maximum.

本揭示一般而言關於功率產生器系統,其建構成產生和施加 (附加於在主要頻率的電漿維持功率)次要功率訊號(譬如包括一或更多個頻率),其功率遠低於電漿維持功率。有利而言,施加次要功率訊號則能夠監視電漿負載的一或更多個方面,而不有害的影響電漿負載本身。附帶而言,當電漿維持功率經由匹配網路而施加到電漿負載時,低位準訊號的施加可以由一或更多個特殊頻率來施加,其導致匹配網路的窄濾波帶所通過之可偵測的頻率(例如混合和交互調變頻率)。再者,關於電漿負載所獲得的資訊可以用於控制產生器的一或更多個方面。 The present disclosure relates generally to power generator systems that are constructed and applied (Additional power to the plasma at the primary frequency) Secondary power signals (such as including one or more frequencies) whose power is much lower than the plasma maintenance power. Advantageously, applying a secondary power signal is capable of monitoring one or more aspects of the plasma load without adversely affecting the plasma load itself. Incidentally, when the plasma sustaining power is applied to the plasma load via the matching network, the application of the low level signal can be applied by one or more special frequencies, which leads to the narrow filter band of the matching network. Detectable frequencies (such as mixing and intermodulation frequency). Again, the information obtained regarding the plasma load can be used to control one or more aspects of the generator.

就產生器的控制來說,舉例而言,自動頻率調整可以使用關於電漿負載的資訊來進行。尤其,可以獲得某種效能度量的總體最佳化,並且產生器可以調整朝向這總體最佳化頻率而不熄滅電漿。二種範例性做法包括:(1)處理由產生器的主要操作頻率所產生的雜訊,以便有效進行低功率取樣而掃過有興趣的頻率範圍;或者(2)產生附加於主要功率訊號的低功率訊號,其中低功率訊號用於搜查總體最佳化。 For the control of the generator, for example, automatic frequency adjustment can be performed using information about the plasma load. In particular, an overall optimization of a certain performance metric can be obtained, and the generator can adjust towards this overall optimization frequency without extinguishing the plasma. Two exemplary practices include: (1) processing the noise generated by the generator's primary operating frequency to effectively perform low-power sampling to sweep through the frequency range of interest; or (2) generating additional signal to the primary power signal Low power signal, where low power signals are used to search for overall optimization.

於此二種情形,雜訊或搜查訊號的低功率性質能夠探測頻率範圍,而同時讓產生器的主要功率訊號保持在足夠功率可以傳遞到電漿負載以維持電漿的頻率(例如在效能度量的局部最佳化)。舉例來說,主要功率訊號可以保持在或靠近局部最佳化,而搜查訊號或雜訊(此二者將在下文稱為「次要功率訊號」)尋找總體最佳化,藉此接著允許在發生搜查的同時讓實質的功率抵達電漿負載。 In both cases, the low-power nature of the noise or search signal can detect the frequency range while keeping the generator's main power signal at a sufficient power to pass to the plasma load to maintain the frequency of the plasma (eg, in the performance metric) Local optimization). For example, the primary power signal can be maintained at or near partial optimization, and the search signal or noise (both of which will be referred to hereinafter as "secondary power signal") is sought for overall optimization, thereby allowing The search occurs while allowing substantial power to reach the plasma load.

於次要功率訊號是雜訊的情形,雜訊可以是由於主要功率訊號所導致的固有雜訊,或者雜訊可以添加於主要功率訊號。雜訊可以發生在多個次要頻率,其有時受限於主要功率訊號所應用之濾波器所掌控的頻 寬。在次要功率訊號是低位準訊號時,此種訊號的大小可以比主要功率訊號的振幅低幾個數量級(譬如-3分貝、-5分貝、-10分貝、-20分貝、-50分貝、-100分貝)。低位準訊號可以是正弦或任何其他類型的周期性訊號,並且可以產生在射頻(radio frequency,RF)或其他頻率。開始在有限時間並且最終變成正弦或周期性的訊號則分別視為正弦或周期性的。低位準訊號可以掃過次要頻率的固定範圍。替代而言,低位準訊號可以根據尋求總體最佳化的調整演算法而在次要頻率之間「跳頻」(hop)。 In the case where the secondary power signal is noise, the noise may be due to the inherent noise caused by the main power signal, or the noise may be added to the main power signal. Noise can occur at multiple secondary frequencies, which are sometimes limited by the frequency controlled by the filter applied to the primary power signal. width. When the secondary power signal is a low level signal, the size of such a signal can be several orders of magnitude lower than the amplitude of the main power signal (for example, -3 dB, -5 dB, -10 dB, -20 dB, -50 dB, - 100 decibels). The low level signal can be sinusoidal or any other type of periodic signal and can be generated at radio frequency (RF) or other frequencies. Signals that begin to singularly and eventually become sinusoidal or periodic are considered sinusoidal or periodic, respectively. The low level signal can sweep over a fixed range of secondary frequencies. Alternatively, the low level signal can be "hopped" between the secondary frequencies based on the adjustment algorithm seeking an overall optimization.

總體最佳化可以藉由比較不同頻率的最佳化程度和選擇最佳頻率而發現。舉例而言,如果最佳化程度的度量是最小的負載反射係數大小,則比較在次要功率訊號來源所搜查的不同頻率下之估計的負載反射係數大小,並且選擇負載反射係數是最小的頻率作為總體最佳化頻率。測量和比較以尋找最佳化則可以依序發生;或者譬如在使用雜訊作為次要功率訊號的情形,可以同時計算不同頻率的最佳化程度,並且在不同頻率計算之後才選擇最佳的頻率。 Overall optimization can be found by comparing the degree of optimization of different frequencies and selecting the best frequency. For example, if the measure of the degree of optimization is the minimum load reflection coefficient size, the estimated load reflection coefficient at different frequencies searched by the secondary power signal source is compared, and the load reflection coefficient is selected to be the smallest frequency. As an overall optimization frequency. Measurements and comparisons to find optimizations can occur sequentially; or, for example, when using noise as a secondary power signal, the degree of optimization of different frequencies can be calculated simultaneously, and the best is selected after calculation of different frequencies. frequency.

一旦已經發現總體最佳化,則主要功率訊號可以偏移到總體最佳化的頻率。此種偏移可以涉及從一頻率突然切換到另一頻率,或者可以涉及次要功率訊號的功率滑升而主要功率訊號的功率滑降,使得次要功率訊號變成主要功率訊號。 Once the overall optimization has been found, the primary power signal can be shifted to the overall optimized frequency. Such an offset may involve abrupt switching from one frequency to another, or may involve a power ramp of the secondary power signal and a power slump of the primary power signal such that the secondary power signal becomes the primary power signal.

一旦主要功率訊號是在總體最佳化的頻率操作,則可以發生進一步的細微調整。舉例來說,次要功率訊號可以再次出來以搜尋總體最佳化,這是因為在主要功率訊號之功率位準的總體最佳化不同於次要功率訊號之較低功率的總體最佳化,或者因為總體最佳化有所變化並且自從發 生首次重複調整而已經改變。 Further fine adjustments can occur once the primary power signal is operating at an overall optimized frequency. For example, the secondary power signal can come out again to search for overall optimization because the overall optimization of the power level of the primary power signal is different from the overall optimization of the lower power of the secondary power signal, Or because the overall optimization has changed and since The first time the adjustment was repeated, it has changed.

圖1示範功率產生系統,其建構成自動調整傳遞到電漿負載之功率的頻率。功率產生系統100建構成經由射頻(RF)阻抗匹配電路(其可以是功率來源110內部之可選用的濾波器122和/或功率來源110外部的匹配網路104)而提供RF功率給電漿106或電漿負載。濾波和阻抗匹配經常是由同一實體網路來進行。因此,濾波器(例如可選用的濾波器122)可以進行濾波和阻抗匹配二種功能。 Figure 1 illustrates an exemplary power generation system constructed to automatically adjust the frequency of power delivered to the plasma load. The power generation system 100 is configured to provide RF power to the plasma 106 via a radio frequency (RF) impedance matching circuit (which may be an optional filter 122 internal to the power source 110 and/or a matching network 104 external to the power source 110) Plasma load. Filtering and impedance matching are often performed by the same physical network. Therefore, a filter (such as the optional filter 122) can perform both filtering and impedance matching functions.

功率產生系統100可以包括功率來源110,其將外部功率140轉換成RF功率,並且功率來源110可以是13.56百萬赫茲產生器,但這當然不是必需的。設想到其他的頻率和其他的功率來源100。功率產生系統100建構成提供在足夠位準的RF功率(譬如RF電壓)以點燃和維持包含在電漿腔室108中的電漿106。電漿106一般而言用於處理工件或基板(未顯示)而是熟於此技藝者所熟知的。 Power generation system 100 can include a power source 110 that converts external power 140 to RF power, and power source 110 can be a 13.56 megahertz generator, although this is of course not required. Imagine other frequencies and other power sources 100. The power generation system 100 is constructed to provide sufficient power (e.g., RF voltage) to ignite and maintain the plasma 106 contained in the plasma chamber 108. The plasma 106 is generally used to process a workpiece or substrate (not shown) but is well known to those skilled in the art.

功率來源110可以主要在主要頻率來施加主要功率訊號到輸出。輸出可以建構成耦合於可選用的匹配網路104和耦合於電漿腔室108。尤其,主要功率訊號可以傳遞到電漿106或到電漿106的負載(也已知為電漿負載)。從功率來源110到可選用的匹配網路104之(多個)連接130經常是同軸纜線,雖然也有可能是其他的纜線類型和連接類型。從匹配網路104到電漿腔室108的(多個)連接131經常經由客製化同軸連接器而做成,雖然也有可能是其他的纜線類型和連接類型。於某些應用,沒有匹配網路104,並且功率來源110直接連接到電漿腔室108。於這情形,RF阻抗匹配是以可選用的濾波器122而做在功率來源110的內部。於某些應用,其他可 選用的RF或直流(DC)產生器150可以經由可選用的匹配網路104而連接到電漿腔室108。於某些應用,其他可選用的RF或DC產生器151可以經由其他手段(例如其他可選用的匹配網路105)而連接到電漿腔室108。經由(多個)匹配網路104或透過其他手段(例如連接到不同電極以傳遞功率到同一電漿)而將其他產生器連接到電漿負載,一般而言則使頻率調整問題更複雜。於以下敘述,雖然不排除其他可選用的(多個)產生器150、151和其他連接到電漿的手段(例如(多個)匹配網路105)的可能性,但是為了簡潔將不進一步示範或討論。 Power source 110 can apply primary power signals to the output primarily at the primary frequency. The output can be configured to couple to an optional matching network 104 and to the plasma chamber 108. In particular, the primary power signal can be delivered to the plasma 106 or to the load of the plasma 106 (also known as a plasma load). The connection(s) 130 from the power source 110 to the optional matching network 104 are often coaxial cables, although other cable types and connection types are also possible. The connection(s) 131 from the matching network 104 to the plasma chamber 108 are often made via custom coaxial connectors, although other cable types and connection types are also possible. For some applications, there is no matching network 104 and the power source 110 is directly connected to the plasma chamber 108. In this case, the RF impedance matching is done inside the power source 110 with an optional filter 122. For some applications, others can An optional RF or direct current (DC) generator 150 can be coupled to the plasma chamber 108 via an optional matching network 104. For some applications, other optional RF or DC generators 151 may be coupled to the plasma chamber 108 via other means, such as other optional matching networks 105. Connecting the other generators to the plasma load via the matching network(s) 104 or by other means (eg, connecting to different electrodes to transfer power to the same plasma) generally complicates the frequency adjustment problem. As described below, although the possibilities of other optional generator(s) 150, 151 and other means of connecting to the plasma (eg, matching network 105(s)) are not excluded, no further demonstration will be made for the sake of brevity. Or discuss.

感測器112可以監視指示產生器所傳遞之功率或傳遞功率之能力的特徵,例如僅舉三個非限制性範例:反射功率、傳遞的功率或阻抗不匹配。指示傳遞功率或傳遞功率能力之特徵的進一步非限制性範例包括傳遞到匹配網路104的功率、從匹配網路104反射的功率、傳遞到電漿腔室108的功率、功率產生系統100所看到的負載阻抗、電漿腔室108的特徵(例如電漿密度)。感測器112也可以監視指示電漿系統之穩定度的特徵,例如負載阻抗的波動。感測器112也可以監視指示電漿負載之非線性的特徵,例如混合和交互調變產物的產生。 The sensor 112 can monitor features indicative of the power delivered by the generator or the ability to deliver power, such as only three non-limiting examples: reflected power, delivered power, or impedance mismatch. Further non-limiting examples of features indicative of transfer power or transfer power capability include power delivered to matching network 104, power reflected from matching network 104, power delivered to plasma chamber 108, as seen by power generation system 100 The resulting load impedance, characteristics of the plasma chamber 108 (e.g., plasma density). The sensor 112 can also monitor features indicative of the stability of the plasma system, such as fluctuations in load impedance. The sensor 112 can also monitor features indicative of non-linearity of the plasma load, such as the generation of mixing and intermodulation products.

使用次要訊號來源來實施產生器的頻率調整所具有的額外好處在於可以從產生器做電漿性質的測量。可選用的(多個)匹配網路104典型而言作用為帶通濾波器。(多個)匹配網路104的這性質使得難以在產生器輸出頻率的諧波來可靠的測量電漿,雖然此種資訊或可是有用的。然而,可以藉由觀察次要訊號來源所產生的混合和交互調變產物而定出電漿阻抗調變的特徵。舉例而言,如果主要訊號來源是在13.56百萬赫茲並且次要訊 號來源是在13.57百萬赫茲,則吾人預期混合產物在13.55百萬赫茲並且交互調變產物在13.56百萬赫茲加多個10千赫茲,例如在13.53、13.54、13.58……百萬赫茲。測量混合和交互調變產物的振幅和相位關係並且導出例如振幅和相位調變存在的量則可以提供關於電漿性質的資訊。資訊的處理可以由許多方式來做:從單純分析來自感測器之時間系列的測量並且對時間系列進行更高階統計,到使用調整到混合和交互調變產物頻率的專屬接收器以擷取振幅和相位關係,到使用任何數目的數學轉換(包括但不限於離散的傅立葉(Fourier)轉換)。監視混合和交互調變產物以及偵測例如相位調變量(僅舉一性質為例)所指示的電漿特徵改變則可以是有用的,例如在製造半導體的蝕刻操作中用於終點偵測。 The additional benefit of using a secondary signal source to implement the frequency adjustment of the generator is that the measurement of the plasma properties can be made from the generator. The optional matching network 104 typically functions as a bandpass filter. This property of the matching network 104 makes it difficult to reliably measure the plasma at the harmonics of the generator output frequency, although such information may be useful. However, the characteristics of the plasma impedance modulation can be determined by observing the mixed and interactive modulation products produced by the secondary signal source. For example, if the main source of the signal is at 13.56 megahertz and the secondary news The source is at 13.57 megahertz, then we expect the mixed product to be at 13.55 megahertz and the interactive modulation product at 13.56 megahertz plus multiple 10 kHz, for example at 13.53, 13.54, 13.58 ... megahertz. Measuring the amplitude and phase relationships of the mixed and interactive modulation products and deriving, for example, the amount of amplitude and phase modulation present, can provide information about the properties of the plasma. The processing of information can be done in a number of ways: from simply analyzing the time series measurements from the sensor and making higher-order statistics on the time series, to using a dedicated receiver that adjusts to the mixed and interactive modulation product frequencies to capture the amplitude And phase relationships, to the use of any number of mathematical transformations (including but not limited to discrete Fourier transforms). It may be useful to monitor the mixing and intermodulation products and to detect changes in plasma characteristics as indicated by, for example, a phase modulation (for example, a property), such as for endpoint detection in an etch operation to fabricate a semiconductor.

感測器112可以是方向性耦合器、電流電壓感測器或其他多埠網路,並且可以監視功率來源110和匹配網路104之間或匹配網路104和電漿腔室108之間的電流和電壓或電壓和電流的組合(例如入射和反射訊號)。於另一非限制性範例,感測器112可以光學偵測或導向電漿腔室108裡以光學測量電漿106的密度。這些範例絕非描述感測器112或可以安排感測器112的位置之範圍或限制,反而是示範感測器112可以採取各式各樣的形式並且可以採取各式各樣的方式而耦合於系統(見圖2~7之多樣的非限制性範例)。附帶而言,感測器112可以是已經駐留於可選用的(多個)匹配網路104或電漿腔室108中的一或多個感測器。 The sensor 112 can be a directional coupler, a current voltage sensor, or other multi-turn network, and can monitor between the power source 110 and the matching network 104 or between the matching network 104 and the plasma chamber 108. Current and voltage or a combination of voltage and current (eg, incident and reflected signals). In another non-limiting example, the sensor 112 can optically detect or direct the plasma chamber 108 to optically measure the density of the plasma 106. These examples are by no means a description of the range or limitation of the position of the sensor 112 or the position of the sensor 112. Instead, the exemplary sensor 112 can take a wide variety of forms and can be coupled in a variety of ways. System (see the various non-limiting examples of Figures 2-7). Incidentally, the sensor 112 can be one or more sensors that have resided in the optional matching network(s) 104 or plasma chamber 108.

來自感測器112或已經駐留於(多個)匹配網路104和電漿腔室108中之感測器的訊號可以提供給一或更多個電路114,其也與功率來源110通訊而控制之。一或更多個電路114可以使用來自感測器112和/或已 經駐留於(多個)匹配網路104和電漿腔室108中之感測器的資訊以調整功率來源110所操作的主要和/或次要頻率,以使傳遞給電漿106的功率最佳化或者使另一最佳化程度的度量(例如電漿穩定度)最佳化。 Signals from the sensor 112 or sensors that have resided in the matching network 104 and the plasma chamber 108 may be provided to one or more circuits 114 that are also controlled in communication with the power source 110. It. One or more circuits 114 may be used from sensor 112 and/or have been Information about the sensors resident in the matching network 104 and the plasma chamber 108 is adjusted to adjust the primary and/or secondary frequencies at which the power source 110 operates to optimize the power delivered to the plasma 106. Optimize or optimize the measure of another degree of optimization (eg, plasma stability).

於某些情形,因為此種調整導致在局部最佳化的操作(譬如僅舉二個範例為反射功率的局部最小或傳遞功率的局部最大),所以某些調整演算法能夠進一步調整主要頻率以便尋求總體最佳化(譬如經由一系列的快速「跳頻」)。然而,此種搜尋可以使功率通過阻抗匹配不良的頻譜區域(譬如在圖8的fa附近),因此可以使傳遞的功率顯著滑落,並且在某些情形下可以使電漿106熄滅(譬如在圖8的fa)。 In some cases, because such adjustments result in locally optimized operations (such as just two examples of local minimization of reflected power or local maximum of transmitted power), some adjustment algorithms can further adjust the primary frequency so that Seek overall optimization (for example, through a series of fast "frequency hopping"). However, such a search can be made by poor impedance matching of the power spectral region (for example FIG. 8 in the vicinity of f a), so that the transmission power can fall significantly, and in some cases can cause plasma 106 is turned off (for example, in FIG. 8 f a).

為了避免這點,此種尋求總體最佳化可以由一或更多個次要訊號來進行,因此能夠使高功率的主要功率訊號保持在足夠功率可以傳遞到電漿106而同時進行尋求總體最佳化的頻率(譬如在局部最佳化)。圖11~13顯示監視的特徵為頻率函數的圖形,以及顯示振幅實質低於主要功率訊號的次要功率訊號可以如何用於搜尋出總體最佳化。一旦已經描述了相關的系統和設備,則稍後將深入討論這些圖形。 In order to avoid this, such seeking overall optimization can be performed by one or more secondary signals, thereby enabling the high power primary power signal to be maintained at a sufficient power to be delivered to the plasma 106 while seeking the overall overall The frequency of optimization (such as local optimization). Figures 11-13 show a graph of the monitored features as a function of frequency and how the secondary power signals showing amplitudes substantially lower than the primary power signal can be used to search for overall optimization. Once the relevant systems and devices have been described, these graphics will be discussed in depth later.

圖1示範功率產生系統,其用於自動調整傳遞到電漿負載之功率的頻率。功率來源110可以提供主要功率訊號給電漿處理腔室108中之電漿106的電漿負載,其中功率來源110所看到的阻抗是藉由安排在功率來源110和電漿腔室108之間的匹配網路104以及藉由功率來源110的頻率調整而加以阻抗匹配。雖然功率來源110可加以頻率調整以便尋找最佳化頻率,典型而言在此最佳化了傳遞的功率,但是可以使用其他最佳化程度的度量。此種調整有時可以導致來自功率來源110的主要功率訊號被調整成 局部最佳化而非總體最佳化。於此種情形,一或更多個次要訊號可以由功率來源110所產生並且處理成識別總體最佳化,而不必使用主要功率訊號來搜查出總體最佳化。 Figure 1 illustrates an exemplary power generation system for automatically adjusting the frequency of power delivered to a plasma load. The power source 110 can provide a primary power signal to the plasma load of the plasma 106 in the plasma processing chamber 108, wherein the impedance seen by the power source 110 is arranged between the power source 110 and the plasma chamber 108. Matching network 104 and impedance matching by power source 110 are impedance matched. While power source 110 can be frequency adjusted to find an optimized frequency, the delivered power is typically optimized here, but other metrics of optimization can be used. Such adjustments can sometimes cause the primary power signal from power source 110 to be adjusted to Local optimization rather than overall optimization. In such a case, one or more secondary signals may be generated by power source 110 and processed to identify overall optimization without having to use the primary power signal to find an overall optimization.

於其他情形,次要功率來源可以提供次要功率訊號(舉例而言見圖4和6)。一或更多個次要功率訊號可以提供在低於主要功率訊號的振幅或功率位準(或者實質低於主要功率訊號、主要功率訊號的分數、或在此種實質較低功率位準而相較於主要功率訊號來說對於電漿106的效應可以忽略)。一或更多個次要功率訊號可以包括都在同一時刻所產生的多個次要頻率(譬如圖11~13)。替代而言,一或更多個次要功率訊號可以在不同時刻調整成二或更多個不同頻率(譬如圖11~13所示)。 In other cases, the secondary power source can provide a secondary power signal (see, for example, Figures 4 and 6). One or more secondary power signals may be provided at an amplitude or power level below the primary power signal (either substantially below the primary power signal, a fraction of the primary power signal, or at a substantially lower power level) The effect on the plasma 106 is negligible compared to the main power signal). The one or more secondary power signals may include a plurality of secondary frequencies that are all generated at the same time (see Figures 11-13). Alternatively, one or more secondary power signals can be adjusted to two or more different frequencies at different times (as shown in Figures 11-13).

一或更多個次要功率訊號可以用於對在不是主要功率訊號頻率下傳遞的功率加以取樣,而不在這些次要頻率施加很多功率來影響電漿。換言之,主要功率訊號可以保持在可以維持電漿的頻率(例如在或靠近局部最佳化),而同時一或更多個次要功率訊號用於尋求總體最佳化。 One or more secondary power signals can be used to sample power delivered at frequencies other than the primary power signal without applying a lot of power to the secondary frequencies to affect the plasma. In other words, the primary power signal can be maintained at a frequency at which plasma can be maintained (eg, at or near local optimization) while one or more secondary power signals are used to seek overall optimization.

尤其,感測器112、或二或更多個感測器、和/或已經存在於功率產生系統100之其他構件中的感測器可以在主要功率訊號的頻率以及在次要頻率下監視效能的度量。一或更多個感測器(譬如感測器112)也可以在預期之混合和交互調變產物的頻率下測量以擷取關於電漿108之非線性特徵的資訊。舉例來說,混合和交互調變產物的改變可以用於感測電漿過程的電漿點燃或終點偵測。注入一或多個次要頻率成分並且測量混合和交互調變產物的性質則可以在主要功率訊號的諧波下感測電漿108的非線性特徵,即使(多個)匹配網路104和濾波器122可以不允許直接測量諧波。 In particular, the sensor 112, or two or more sensors, and/or sensors already present in other components of the power generation system 100 can monitor performance at the frequency of the primary power signal as well as at the secondary frequency. Metrics. One or more sensors (e.g., sensor 112) may also be measured at the frequency of the expected blending and intermodulation products to extract information about the nonlinear characteristics of the plasma 108. For example, changes in mixing and intermodulation products can be used to sense plasma ignition or endpoint detection of a plasma process. Injecting one or more secondary frequency components and measuring the properties of the mixed and intermodulation products can sense the nonlinear characteristics of the plasma 108 under the harmonics of the primary power signal, even with the matching network 104 and filtering The 122 may not allow direct measurement of harmonics.

舉例來說,感測器112可以是反射功率感測器或傳遞功率感測器,並且特徵可以分別是反射功率或傳遞功率。也可以監視其他特徵並且用於識別局部和總體最佳化(譬如僅舉幾個非限制性範例:功率來源110所看到的負載阻抗、對(多個)匹配網路104之供應纜線130上的電壓和電流、電漿106的密度)。感測器112和/或其他感測器可以提供描述(多個)特徵的資訊給一或更多個電路114(譬如邏輯電路、數位電路、類比電路、非暫態之電腦可讀取的媒體及以上的組合)。一或更多個電路114可以與感測器112和功率來源110通訊(譬如電通訊)。一或更多個電路114可以調整功率來源110的主要頻率以便調整功率來源110而使對電漿負載所傳遞的功率最佳化。 For example, sensor 112 can be a reflected power sensor or a transmitted power sensor, and the features can be reflected power or transmitted power, respectively. Other features may also be monitored and used to identify local and overall optimizations (such as to name a few non-limiting examples: load impedance seen by power source 110, supply cable 130 to matching network 104(s)) The voltage and current on, the density of the plasma 106). The sensor 112 and/or other sensors may provide information describing the feature(s) to one or more circuits 114 (eg, logic circuits, digital circuits, analog circuits, non-transitory computer readable media) And combinations of the above). One or more circuits 114 may be in communication (e.g., electrical communication) with the sensor 112 and the power source 110. The one or more circuits 114 may adjust the primary frequency of the power source 110 to adjust the power source 110 to optimize the power delivered by the plasma load.

於某些具體態樣,效能度量的最佳化包括控制回饋迴路,其使用次要功率訊號以便搜查或尋求總體最佳化。於此種情形,基於來自感測器112(或是二或更多個感測器以及/或者已經存在於功率產生系統100之其他構件中的感測器)而關於效能度量的回饋,一或更多個電路114可以控制次要功率訊號和其一或更多個次要頻率。舉例來說,次要功率訊號的頻率可以掃過涵蓋了主要功率訊號之主要頻率的固定頻率範圍,並且一或更多個電路114可以監視效能的度量而為次要功率訊號之頻率的函數。基於這掃過,一或更多個電路114可以識別總體最佳化,然後指示功率來源110調整其主要頻率,如此以將主要功率訊號移動到識別的總體最佳化。跳頻或其他調整方案可以經由一或更多個次要功率訊號而用於尋找總體最佳化。 In some embodiments, the optimization of performance metrics includes controlling the feedback loop, which uses secondary power signals to search or seek overall optimization. In this case, based on feedback from the performance metrics from the sensor 112 (or two or more sensors and/or sensors already present in other components of the power generation system 100), More circuits 114 can control the secondary power signal and its one or more secondary frequencies. For example, the frequency of the secondary power signal can sweep over a fixed frequency range that encompasses the primary frequency of the primary power signal, and one or more circuits 114 can monitor the performance metric as a function of the frequency of the secondary power signal. Based on this sweep, one or more circuits 114 can identify the overall optimization and then instruct the power source 110 to adjust its primary frequency, such as to move the primary power signal to the identified overall optimization. Frequency hopping or other adjustment schemes can be used to find overall optimization via one or more secondary power signals.

次要功率訊號可以採取許多不同的形式。於一情形,一或更 多個電路114可以指示功率來源110在一個次要頻率(譬如圖11所示)或更多個次要頻率(譬如圖12所示)施加呈低位準訊號形式的次要功率訊號,而以特殊次序在那些次要頻率來施加低位準訊號(譬如圖11),或者根據演算法來使效能的度量最佳化(譬如圖12)。於另一情形,一或更多個電路114可以指示功率來源110施加呈雜訊形式的次要功率訊號。這雜訊可以是固有於主要功率訊號,在此情形,一或更多個電路114未必要供應指令給功率來源110;或者可以是非固有的雜訊,其添加於功率來源110的輸出(譬如圖6和7所示)。 Secondary power signals can take many different forms. In one situation, one or more The plurality of circuits 114 may instruct the power source 110 to apply a secondary power signal in the form of a low level signal at a secondary frequency (as shown in FIG. 11) or a plurality of secondary frequencies (as shown in FIG. 12). The order is to apply a low level signal at those secondary frequencies (see Figure 11), or to optimize the performance metric based on the algorithm (Figure 12). In another scenario, the one or more circuits 114 can instruct the power source 110 to apply a secondary power signal in the form of a noise. The noise may be inherent to the primary power signal, in which case one or more of the circuits 114 are not necessarily supplying instructions to the power source 110; or may be non-inherent noise added to the output of the power source 110 (see figure 6 and 7).

無論次要功率訊號所呈現的形式為何,於許多具體態樣,其振幅要比主要功率訊號低一或更多個數量級。舉例來說,次要功率訊號可以比主要功率訊號低1到100分貝。於其他具體態樣,次要功率訊號可以比主要功率訊號低1分貝、5分貝、10分貝、20分貝、50分貝或100分貝。 Regardless of the form in which the secondary power signal is presented, in many instances, the amplitude is one or more orders of magnitude lower than the primary power signal. For example, the secondary power signal can be 1 to 100 decibels lower than the primary power signal. In other embodiments, the secondary power signal can be 1 dB, 5 dB, 10 dB, 20 dB, 50 dB, or 100 dB lower than the primary power signal.

如所示,一或更多個電路114可以包括總體最佳化識別模組116和頻率控制模組118。總體最佳化識別模組116可以分析來自感測器112而在一或更多個次要頻率之每一者的資訊並且識別對應於總體最佳化的頻率。這頻率可以稱為識別的總體最佳化頻率,並且它對應於產生器傳遞功率之特徵的總體最佳化。頻率控制模組118可以在主要功率訊號的初始調整期間(這可以導致識別局部最佳化)以及一旦總體最佳化是由總體最佳化識別模組116所識別而將主要頻率調整朝向識別之總體最佳化頻率的期間來調整主要功率訊號的主要頻率。 As shown, the one or more circuits 114 can include an overall optimization identification module 116 and a frequency control module 118. The overall optimization recognition module 116 can analyze information from the sensor 112 for each of the one or more secondary frequencies and identify frequencies corresponding to the overall optimization. This frequency may be referred to as the identified overall optimization frequency, and it corresponds to an overall optimization of the characteristics of the generator delivery power. The frequency control module 118 may adjust the primary frequency toward the identification during initial adjustment of the primary power signal (which may result in identifying local optimizations) and once the overall optimization is identified by the overall optimization identification module 116 The main frequency of the main power signal is adjusted during the period of the overall optimization frequency.

尤其,一旦識別出識別的總體最佳化頻率,則頻率控制模組118可以指示功率來源110調整主要頻率以跳到識別的總體最佳化頻率,或 者跳到較低振幅的主要頻率而同時增加在識別的總體最佳化頻率之次要頻率的振幅,如此則主要和次要頻率的角色逆轉。以此方式,主要頻率可以轉移到對應於功率特徵之總體最佳化(譬如低反射功率或低振盪位準)的頻率,而不在或可抑制或熄滅電漿的頻譜區域(譬如圖8~13的fa附近)來施加功率。 In particular, once the identified overall optimization frequency is identified, the frequency control module 118 can instruct the power source 110 to adjust the primary frequency to jump to the identified overall optimized frequency, or to jump to the lower amplitude primary frequency while increasing The amplitude of the secondary frequency at the identified overall optimized frequency is such that the roles of the primary and secondary frequencies are reversed. In this way, the primary frequency can be shifted to a frequency corresponding to the overall optimization of the power characteristics (such as low reflected power or low oscillating level) without suppressing or extinguishing the spectral region of the plasma (see Figures 8-13). The vicinity of f a ) to apply power.

總體最佳化識別模組116和頻率控制模組118可以循環操作以重複改善將主要頻率調整朝向總體最佳化的正確度。舉例來說,在正被監視的特徵(譬如電漿阻抗)是非線性的情形,當施加低位準次要功率訊號時可以發現特徵的總體最小值;但是當在同一頻率施加大很多的主要功率訊號時,更高功率的訊號可以存在有不同的總體最佳化頻率。如此,則次要功率訊號可以再次用於進一步探究主要功率訊號的總體最佳化,並且這可以採取循環方式而持續多次。將頻率調整朝向總體最佳化則可以包括將頻率改變到關聯於總體最佳化的頻率,或者僅將頻率改變到較靠近總體最佳化的頻率而非原始頻率。 The overall optimization recognition module 116 and the frequency control module 118 can be cycled to repeatedly improve the accuracy of optimizing the primary frequency adjustment toward the overall. For example, where the feature being monitored (such as plasma impedance) is non-linear, the overall minimum of the feature can be found when a low level secondary power signal is applied; but when a much larger main power signal is applied at the same frequency Higher power signals can have different overall optimization frequencies. As such, the secondary power signal can be used again to further explore the overall optimization of the primary power signal, and this can be repeated in a round-robin fashion. Optimizing the frequency adjustment toward the overall may include changing the frequency to a frequency associated with the overall optimization, or simply changing the frequency to a frequency that is closer to the overall optimization than the original frequency.

於某些具體態樣,一或更多個次要頻率開始下降/上升於頻率曲線的足夠陡峭部分(例如在圖8~14的fa和f0之間),主要頻率就可以立刻切換到一或更多個次要頻率當中一者。當識別出此種曲線的陡峭部分時,總體最佳化識別模組116可以判定它正逼近總體最佳化,藉以指示功率來源110將主要頻率切換到靠近次要功率訊號的頻率,藉此能夠使主要功率訊號跳過和避免或可抑制電漿的頻率曲線區域(譬如在fa附近)。一旦主要功率訊號切換了頻率,則一或更多個次要功率訊號可以接著探究總體最佳化,或者主要功率訊號可以用於進一步探究總體最佳化。 In some embodiments, one or more secondary frequencies begin to fall/rise above a sufficiently steep portion of the frequency curve (eg, between f a and f 0 in Figures 8-14), and the primary frequency can be switched immediately One of one or more secondary frequencies. When a steep portion of such a curve is identified, the overall optimization recognition module 116 can determine that it is approaching the overall optimization, thereby instructing the power source 110 to switch the primary frequency to a frequency near the secondary power signal, thereby enabling The main power signal is skipped and avoided or the frequency curve region of the plasma can be suppressed (eg, near f a ). Once the primary power signal switches frequency, one or more secondary power signals can then be explored for overall optimization, or the primary power signal can be used to further explore overall optimization.

於許多具體態樣,(多個)供應連接130可以由一對導體或由連接功率來源110與匹配網路104之二導體同軸纜線的集合所實現。於其他具體態樣,纜線130是由一或更多條雙絞纜線所實施。於另外其他的具體態樣,纜線130可以由任何的纜線網路所實現,包括但不限於單純的導體接線和四極連接。雖然(多個)連接131經常以連接器來實施,但也可以採取各式各樣的形式,包括簡單的導體接線。 In many aspects, the supply connection(s) 130 can be implemented by a pair of conductors or by a collection of two conductor coaxial cables connecting the power source 110 to the matching network 104. In other specific aspects, the cable 130 is implemented by one or more twisted pairs of cables. In still other specific aspects, cable 130 can be implemented by any cable network including, but not limited to, simple conductor wiring and quadrupole connections. Although the connection(s) 131 are often implemented with connectors, they can take a wide variety of forms, including simple conductor wiring.

匹配網路104可以由各式各樣的匹配網路架構所實現。如此技藝中的一般技術者所將體會,匹配網路104可以用於將電漿106的負載匹配於功率來源110。藉由正確設計匹配網路104或105,則有可能將電漿106的負載阻抗轉換到接近功率來源110所想要的負載阻抗值。匹配網路104或105的正確設計可以包括功率來源110內部的匹配網路(譬如經由濾波器122)或功率來源110外部的匹配網路,如圖1~7所見。 Matching network 104 can be implemented by a wide variety of matching network architectures. It will be appreciated by one of ordinary skill in the art that the matching network 104 can be used to match the load of the plasma 106 to the power source 110. By properly designing the matching network 104 or 105, it is possible to convert the load impedance of the plasma 106 to a desired load impedance value close to the power source 110. The correct design of the matching network 104 or 105 may include a matching network within the power source 110 (e.g., via the filter 122) or a matching network external to the power source 110, as seen in Figures 1-7.

一或更多個電路114可以是功率產生系統100的原始裝備;而於其他具體態樣,一或更多個電路114可以是翻新的構件,其可以添加於原本無法做到在此描述之頻率調整的功率產生系統。 One or more of the circuits 114 may be the original equipment of the power generation system 100; and in other specific aspects, the one or more circuits 114 may be refurbished components that may be added to frequencies that would otherwise not be described herein Adjusted power generation system.

於具體態樣,功率產生系統100可以包括可選用的濾波器122。濾波器122可以建構成衰減主要功率訊號在所選頻寬外的部分並且做出額外的阻抗匹配。舉例而言,因為50歐姆對於纜線和連接器130而言是主控的阻抗,所以在功率來源110的輸出所看到之想要的阻抗典型而言是50歐姆或其他某種方便的阻抗。在濾波器122之輸入(在功率來源110的輸出相對側)的阻抗乃藉由功率來源的主動元件(例如金屬氧化物半導體場效電晶體(MOSFET))而提供想要的阻抗,並且典型而言極不同於50歐姆,例 如單一MOSFET放大器之典型的5+j6歐姆。對於此種系統來說,濾波器122則將設計成使在輸出的50歐姆匹配於在輸入的5+j6歐姆。除了阻抗匹配以外,濾波器典型而言也設計成限制主動元件所產生的諧波。例如濾波器可以設計成在產生器所預期操作的頻率範圍(例如從12.882到14.238百萬赫茲)使在輸出的50歐姆匹配於靠近5+j6的數值,並且抑制在輸出的第二或第三諧波之高於25百萬赫茲頻率的訊號達一定的量,典型而言至少20分貝。 In a particular aspect, power generation system 100 can include an optional filter 122. Filter 122 can be constructed to attenuate portions of the main power signal outside of the selected bandwidth and make additional impedance matching. For example, because 50 ohms is the master impedance for the cable and connector 130, the desired impedance seen at the output of power source 110 is typically 50 ohms or some other convenient impedance. . The impedance at the input of filter 122 (on the opposite side of the output of power source 110) is the desired impedance provided by the active component of the power source, such as a metal oxide semiconductor field effect transistor (MOSFET), and typically Very different from 50 ohms, for example Typical 5+j6 ohms as a single MOSFET amplifier. For such a system, filter 122 will be designed to match 50 ohms at the output to 5+j6 ohms at the input. In addition to impedance matching, filters are typically designed to limit the harmonics produced by the active components. For example, the filter can be designed to match the 50 ohms at the output to a value close to 5+j6 and suppress the second or third at the output in the frequency range in which the generator is expected to operate (eg, from 12.882 to 14.238 megahertz). Signals with harmonics above the 25 megahertz frequency amount to a certain amount, typically at least 20 decibels.

感測器112可以安排於各式各樣的位置,包括是功率產生系統100之一部分的位置和在外部的位置。感測器112監視特徵的所在位置也可以隨著不同的具體態樣而變化,如將於圖2~7所見。 The sensor 112 can be arranged in a wide variety of locations, including the location of a portion of the power generation system 100 and the location externally. The location of the sensor 112 to monitor the feature may also vary with different specific aspects, as will be seen in Figures 2-7.

圖2示範功率產生系統200的一具體態樣,其中感測器212連同功率來源210和一或更多個電路214而駐留在功率產生系統200裡。功率產生系統200包括輸出220,其建構成耦合於可選用的(多個)匹配網路204,或者如果(多個)匹配網路204不存在則直接耦合於電漿腔室208。因此,主要功率訊號和一或更多個次要功率訊號可以提供給輸出220,因而建構成傳遞到(多個)匹配網路204。 2 illustrates a specific aspect of power generation system 200 in which sensor 212 resides in power generation system 200 along with power source 210 and one or more circuits 214. The power generation system 200 includes an output 220 that is configured to be coupled to the optional matching network(s) 204 or directly coupled to the plasma chamber 208 if the matching network(s) 204 are not present. Thus, the primary power signal and one or more secondary power signals can be provided to the output 220 and thus constructed to be passed to the matching network(s) 204.

圖3示範功率產生系統300的一具體態樣,其中感測器312駐留在功率產生系統300外。在此,功率產生系統300包括功率來源310、一或更多個電路314、可選用的濾波器322、功率產生系統300的輸出320。感測器312耦合於一或更多個電路314並且提供描述效能度量(例如負載反射係數大小或電漿密度)的資訊。感測器312監視功率產生系統300和可選用的(多個)匹配網路304之間、(多個)匹配網路304和電漿腔室308之間、在電漿腔室308、或功率產生系統300和電漿腔室308之間(如果(多個)匹配 網路304不存在)的特徵。感測器312也或可在(多個)匹配網路304或裡面來進行監視。 FIG. 3 illustrates a specific aspect of power generation system 300 in which sensor 312 resides outside of power generation system 300. Here, power generation system 300 includes a power source 310, one or more circuits 314, an optional filter 322, and an output 320 of power generation system 300. Sensor 312 is coupled to one or more circuits 314 and provides information describing performance metrics (eg, load reflection coefficient magnitude or plasma density). The sensor 312 monitors between the power generation system 300 and the optional matching network(s) 304, between the matching network(s) 304 and the plasma chamber 308, in the plasma chamber 308, or power Between system 300 and plasma chamber 308 (if (multiple) match The characteristics of the network 304 do not exist. Sensor 312 may also be monitored within or within matching network(s) 304.

雖然圖1~3示範單一功率來源110、210、310,不過熟於此技藝者將體認這功率來源110、210、310能夠同時產生主要和次要功率訊號二者。舉例來說,舉二個非限制性範例,功率來源110、210、310可以發源出高功率主要功率訊號和低位準次要功率訊號二者,或者功率來源110、210、310可以發源出高功率主要功率訊號並且使用固有於主要功率訊號的雜訊作為次要功率訊號。替代而言,功率來源110、210、310可以產生主要功率訊號並且將它組合所產生或放大的雜訊。雖然這些範例都示範單一功率來源110、210、310可以如何產生主要功率訊號和次要功率訊號二者,不過圖4~7所將示範的具體態樣是功率來源產生主要功率訊號,並且低位準訊號來源產生次要功率訊號。 Although Figures 1-3 demonstrate a single power source 110, 210, 310, those skilled in the art will recognize that the power source 110, 210, 310 can simultaneously generate both primary and secondary power signals. For example, for two non-limiting examples, the power sources 110, 210, 310 can originate both the high power primary power signal and the low level secondary power signal, or the power sources 110, 210, 310 can generate high power. The main power signal and the noise inherent to the main power signal are used as the secondary power signal. Alternatively, the power source 110, 210, 310 can generate a primary power signal and combine it with the noise generated or amplified. Although these examples demonstrate how a single power source 110, 210, 310 can generate both a primary power signal and a secondary power signal, the specific aspects that will be exemplified in Figures 4-7 are that the power source produces a primary power signal and the low level The source of the signal produces a secondary power signal.

圖4示範功率產生系統400的具體態樣,其具有功率來源410、低位準訊號來源411、一或更多個電路414、可以安排在功率產生系統400裡之可選用的感測器412或可以安排在功率產生系統400外之可選用的感測器413、組合來自功率來源410和低位準訊號來源411之輸出的組合器424。如此技藝中的一般人士所將體會,組合器可以由此技藝所知的耦合器來實現。 4 illustrates a particular aspect of power generation system 400 having a power source 410, a low level signal source 411, one or more circuits 414, an optional sensor 412 that may be arranged in power generation system 400, or may An optional sensor 413 disposed outside of the power generation system 400, a combiner 424 that combines outputs from the power source 410 and the low level signal source 411. It will be appreciated by those of ordinary skill in the art that the combiner can be implemented by a coupler known in the art.

圖5示範功率產生系統500的具體態樣,其中主要和次要訊號在被功率放大器550放大之前先加以組合。 FIG. 5 illustrates a particular aspect of power generation system 500 in which the primary and secondary signals are combined prior to amplification by power amplifier 550.

圖6示範功率產生系統600的具體態樣,其中功率來源610產生主要功率訊號,並且雜訊來源613產生呈雜訊形式的次要功率訊號。 主要功率訊號和次要功率訊號或雜訊可以在功率產生系統600中組合,並且組合的訊號可以提供給功率產生系統600的輸出620。如此技藝中的一般人士所將體會,雜訊來源613可以由各式各樣不同類型的裝置所實現,包括雜訊二極體。有利而言,雜訊來源613可以產生連續的次要頻率,並且次要頻率的回應可以在多個不同頻率下平行處理(譬如藉由多個解調頻道或快速傅立葉轉換模組來為之)。舉例而言,在多個頻率下的反射係數可以平行抵達以識別出提供低反射係數的頻率、穩定的頻率、或穩定度和低反射係數之間的平衡。 6 illustrates a particular aspect of power generation system 600 in which power source 610 generates a primary power signal and noise source 613 produces a secondary power signal in the form of a noise. The primary power signal and the secondary power signal or noise may be combined in the power generation system 600, and the combined signals may be provided to the output 620 of the power generation system 600. It will be appreciated by those of ordinary skill in the art that the noise source 613 can be implemented by a wide variety of different types of devices, including noise diodes. Advantageously, the noise source 613 can generate a continuous secondary frequency, and the secondary frequency response can be processed in parallel at a plurality of different frequencies (eg, by multiple demodulation channels or fast Fourier transform modules) . For example, the reflection coefficients at multiple frequencies can arrive in parallel to identify a frequency that provides a low reflection coefficient, a stable frequency, or a balance between stability and low reflection coefficient.

圖7示範功率產生系統700的具體態樣,其中主要和次要訊號在被功率放大器750放大之前加以組合。於這具體態樣,次要訊號是由雜訊來源713所產生。 FIG. 7 illustrates a particular aspect of power generation system 700 in which the primary and secondary signals are combined prior to amplification by power amplifier 750. In this specific aspect, the secondary signal is generated by the noise source 713.

圖1~7所示範的系統可以參考圖8~15所看到的圖形而更輕易的理解。 The system illustrated in Figures 1-7 can be more easily understood with reference to the figures seen in Figures 8-15.

圖8顯示效能度量為頻率函數的圖形。實線801顯示真實的效能度量(譬如負載反射係數大小)為頻率的函數,如果調整主要功率訊號到每個頻率並且做測量則會產生這結果。虛線802顯示估計的效能度量,其使用一或多個次要功率訊號而主要功率訊號保持在固定頻率(譬如f1)所獲得。 Figure 8 shows a graph of performance metrics as a function of frequency. The solid line 801 shows the true performance metric (such as the magnitude of the load reflection coefficient) as a function of frequency, which is produced if the primary power signal is adjusted to each frequency and measurements are taken. Dotted line 802 shows the estimated performance metric, using one or more of the main secondary power signal and the power signal at a constant frequency (for example f 1) is obtained.

如所討論,主要頻率的功率位準影響效能的度量(譬如負載反射係數);因此,使用低位準功率訊號所估計的效能度量將異於在主要訊號之較高功率下的效能度量。但如在此所進一步討論,低位準訊號能夠密切估計想要的主要頻率(譬如其產生低反射係數和/或低不穩度)。主要訊號 的頻率然後可以在較高功率位準下做細微調整,而不測試可以導致電漿熄滅的頻率。 As discussed, the power level of the primary frequency affects the measure of performance (such as the load reflection coefficient); therefore, the performance metric estimated using the low level power signal will be different from the performance metric at the higher power of the primary signal. However, as discussed further herein, the low level signal can closely estimate the desired primary frequency (e.g., it produces low reflection coefficients and/or low instability). Main signal The frequency can then be fine-tuned at a higher power level without testing the frequency that can cause the plasma to go out.

圖9顯示的方面是初始主要頻率可以施加在f1和fa之間,並且顯示頻率調整演算法(其依賴於掃過和測試主要功率的頻率)可以如何變成陷在效能度量的局部最佳化中,而沒有低功率次要訊號所提供的資訊。更特定而言,調整演算法可以將主要頻率調整朝向相信是最佳化的頻率f1。尤其,圖9A顯示效能的度量(譬如反射係數)為頻率的函數;圖9B的實線顯示僅使用主要功率的演算法或可如何調整主要功率訊號頻率以使效能的度量減到最小;以及圖9C顯示功率產生系統輸出220、320、420、520、620或720在圖9B之時刻t2的頻譜(每個頻寬的功率,例如每3千赫茲頻寬的瓦數)。如圖9B的虛線所示,總體最佳化頻率或可使用低位準次要訊號而識別。 Figure 9 shows an aspect in which the initial dominant frequency can be applied between f 1 and f a and shows how the frequency adjustment algorithm (which depends on the frequency of sweeping and testing the main power) can become a local best trapped in the performance metric. In the middle, there is no information provided by the low-power secondary signal. More specifically, the adjustment algorithm can adjust the primary frequency to a frequency f 1 that is believed to be optimized. In particular, Figure 9A shows a measure of performance (such as the reflection coefficient) as a function of frequency; the solid line of Figure 9B shows the algorithm using only the primary power or how the primary power signal frequency can be adjusted to minimize the measure of performance; 9C shows the spectrum of the power generation system output 220, 320, 420, 520, 620 or 720 at time t 2 of Figure 9B (power per bandwidth, such as watts per 3 kilohertz bandwidth). As indicated by the dashed line in Figure 9B, the overall optimized frequency may be identified using a low level secondary signal.

但是如實線所示,在抵達在f1的局部最佳化時,如果主要頻率用於搜尋總體最佳化,則此種嘗試可能導致施加了在頻率fa附近的功率,這可以導致電漿熄滅,如圖10A和10B所見。圖10A顯示效能的度量為頻率的函數。圖10A的實線顯示電漿點著下的效能度量,並且虛線顯示電漿熄滅下的效能度量。圖10B顯示使用主要功率訊號的總體搜尋可以如何導致電漿熄滅,因為可以在fa附近傳遞不夠的功率來維持電漿。圖10C顯示在圖10B時刻t2之功率產生系統輸出的頻譜。 However, as shown by the solid line, when local optimization at f 1 is reached, if the primary frequency is used to search for overall optimization, such an attempt may result in the application of power near the frequency f a , which may result in a plasma It is extinguished as seen in Figures 10A and 10B. Figure 10A shows the measure of performance as a function of frequency. The solid line of Figure 10A shows the performance metric for the plasma point, and the dashed line shows the performance metric for the plasma to extinguish. Figure 10B shows how an overall search using primary power signals can cause plasma to extinguish, as insufficient power can be delivered near f a to maintain the plasma. Figure 10C shows the spectrum of the power production system output at time t 2 of Figure 10B.

一或更多個次要功率訊號反而可以用於搜尋總體最佳化,如圖11(顯示一個次要功率訊號)和圖12(顯示多個次要功率訊號)所示,而主要功率訊號保持在固定的頻率(譬如在或靠近局部最佳化)。於圖11,顯示的 頻率調整乃使用呈低位準訊號形式的次要功率訊號而在單一次要頻率以特殊次序來施加。圖12顯示的頻率調整則使用呈低位準訊號形式的次要功率訊號,其頻譜成分是在根據演算法所調整的多個次要頻率以使效能的度量最佳化。 One or more secondary power signals can instead be used to search for overall optimization, as shown in Figure 11 (showing a secondary power signal) and Figure 12 (showing multiple secondary power signals), while the primary power signal remains At a fixed frequency (such as at or near local optimization). Figure 11, shown The frequency adjustment is performed using a secondary power signal in the form of a low level signal and in a special order at a single frequency. The frequency adjustment shown in Figure 12 uses a secondary power signal in the form of a low level signal whose spectral components are optimized at a plurality of secondary frequencies adjusted according to the algorithm to optimize performance.

如所示,一或更多個次要功率訊號可以施加在遠低於主要功率訊號的功率位準,並且可以施加在一或更多個次要頻率。次要頻率可以是具有相等或不相等間隔的固定頻率,或者可以是可變的頻率,如圖12所示。此外,主要和次要功率訊號可以同時施加。 As shown, one or more secondary power signals can be applied at a power level well below the primary power signal and one or more secondary frequencies can be applied. The secondary frequencies may be fixed frequencies with equal or unequal spacing, or may be variable frequencies, as shown in FIG. In addition, primary and secondary power signals can be applied simultaneously.

如圖11所示範,次要訊號可以持續的施加,或者如圖12所示範的僅在尋求總體最佳化的期間施加。此外,雖然單一特徵顯示於圖8~13的圖形,不過於其他具體態樣,可以同時監視多個特徵,譬如負載反射係數大小與測量穿過的電漿穩定度(譬如負載阻抗的波動)一起,並且所有監視特徵(或多個監視特徵)的分析可以用於識別總體最佳化。以此方式,識別出總體最佳化,而不在fa或在或可熄滅電漿的任何頻率附近施加完全功率的主要訊號。 As exemplified in FIG. 11, the secondary signal may be applied continuously, or as illustrated in FIG. 12, only during the period in which overall optimization is sought. In addition, although a single feature is shown in the graphs of Figures 8-13, in other embodiments, multiple features can be monitored simultaneously, such as the magnitude of the load reflection coefficient and the measured plasma stability (such as fluctuations in load impedance). And analysis of all monitoring features (or multiple monitoring features) can be used to identify overall optimization. In this way, overall optimization is identified without applying a full power main signal near f a or any frequency at or quenching the plasma.

於某些操作模式,施加在一或更多個次要頻率之一或更多個次要功率訊號的振幅很小,以致它相較於主要功率訊號而可以視為可忽略的,因而對於電漿沒有顯著的影響。於其他應用,如果目標單純是在尋求總體最佳化的同時而不熄滅電漿,則一或多個次要功率訊號的振幅相較於主要功率訊號而言可以是顯著的。於此種情形,必須小心不超過電漿系統之電壓和電流的額定值,因為在拍頻會有高所得振幅。 In some modes of operation, the amplitude of one or more secondary power signals applied to one or more secondary frequencies is so small that it can be considered negligible compared to the primary power signal, thus The slurry has no significant effect. For other applications, if the goal is simply to seek overall optimization without extinguishing the plasma, the amplitude of one or more secondary power signals can be significant compared to the primary power signal. In this case, care must be taken not to exceed the voltage and current ratings of the plasma system because of the high gain amplitude at the beat frequency.

圖11顯示的具體態樣是單一次要頻率連續掃過頻率範圍。 (多個)次要頻率所掃過的範圍典型而言會是功率產生系統所預期操作的頻率範圍(例如12.882到14.238百萬赫茲),但不必就是如此。可以考慮之其他頻率範圍的範例包括當使用次要功率訊號而例如藉由分析混合和交互調變產物來擷取關於電漿條件的資訊。於如圖12所示範的其他情形,一或多個次要頻率可以根據演算法來調整以尋找最佳化頻率,而非如圖11所示以預先決定的樣式來掃過。也如圖12所示,一旦已經識別了總體最佳化,則次要功率訊號可以關閉而非如圖11所示的連續施加。 Figure 11 shows a specific aspect in which the frequency is continuously swept through the frequency range. The range swept by the secondary frequency (typically) will typically be the frequency range in which the power generation system is expected to operate (eg, 12.882 to 14.238 megahertz), but this need not be the case. Examples of other frequency ranges that may be considered include information on plasma conditions when using secondary power signals, for example by analyzing mixed and interactive modulation products. In other scenarios as exemplified in FIG. 12, one or more secondary frequencies may be adjusted according to an algorithm to find an optimized frequency instead of being swept in a predetermined pattern as shown in FIG. As also shown in FIG. 12, once the overall optimization has been identified, the secondary power signal can be turned off instead of being continuously applied as shown in FIG.

如圖11A和圖12A所示範,使用一或多個次要功率訊號所做的最佳化頻率估計可能不精確對應於真實的最佳化。典型而言,此種分歧會肇因於電漿負載的非線性。如圖11B和圖12B所示範,在使用次要功率訊號來決定最佳化頻率之後,可以調整主要頻率以使效能進一步最佳化。圖11C和12C分別顯示圖11B和11C之主要和次要頻率的頻譜成分。 As exemplified in Figures 11A and 12A, the optimized frequency estimate made using one or more secondary power signals may not exactly correspond to the true optimization. Typically, this divergence is due to the nonlinearity of the plasma load. As exemplified in Figures 11B and 12B, after the secondary power signal is used to determine the optimized frequency, the primary frequency can be adjusted to further optimize performance. Figures 11C and 12C show the spectral components of the primary and secondary frequencies of Figures 11B and 11C, respectively.

圖13顯示次要功率訊號是雜訊的情形。圖13C顯示功率產生系統輸出在圖13B之時刻t2的頻譜。雜訊可以是固有於主要功率訊號,或者可以添加於功率產生系統輸出(譬如見圖6和7)。圖13B顯示雜訊功率為時間的函數,而假設的情形是雜訊添加於功率產生系統輸出。 Figure 13 shows the case where the secondary power signal is a noise. Fig. 13C shows the spectrum of the power generation system output at time t 2 of Fig. 13B. The noise can be inherent to the main power signal or can be added to the power generation system output (see Figures 6 and 7 for example). Figure 13B shows the noise power as a function of time, and the hypothetical situation is that noise is added to the power generation system output.

一旦已經識別出總體最佳化,則主要功率訊號可以調整或切換到(或朝向)對應於總體最佳化的頻率,而不讓主要功率訊號通過或可抑制電漿的頻譜區域(譬如靠近fa)。舉例來說,於圖14,主要功率訊號的振幅滑降,而在總體最佳化之次要頻率的振幅則滑升。以此方式,主要功率訊號和次要功率訊號交換位置。圖15顯示將主要頻率切換朝向總體最佳化的另一變化例,其中主要功率訊號的頻率突然改變到識別的總體最佳化頻率。 Once the overall optimization has been identified, the primary power signal can be adjusted or switched (or directed) to the frequency corresponding to the overall optimization without passing the primary power signal or suppressing the spectral region of the plasma (eg, near f) a ). For example, in Figure 14, the amplitude of the primary power signal is ramped down, while the amplitude of the secondary frequency that is optimized overall is ramping up. In this way, the primary power signal and the secondary power signal exchange positions. Figure 15 shows another variation of the primary frequency switching towards overall optimization, where the frequency of the primary power signal suddenly changes to the identified overall optimized frequency.

於某些具體態樣,雖然識別的總體最佳化頻率可以選擇自某一次要頻率,但是這不是必要的。舉例來說,識別的總體最佳化頻率可以是在二或更多個次要頻率當中二者之間。舉例來說,多個次要頻率之間的內插可以用於識別該識別的總體最佳化頻率。 In some specific aspects, although the overall optimized frequency of the identification can be selected from a certain frequency, this is not necessary. For example, the identified overall optimization frequency can be between two or more secondary frequencies. For example, interpolation between multiple secondary frequencies can be used to identify the overall optimized frequency of the identification.

圖16示範調整功率產生系統之頻率的方法,其使用次要功率訊號來尋找總體最佳化而探究效能度量的總體最佳化。方法1600主要在主要頻率來施加主要功率訊號給電漿系統(譬如連接到電漿腔室108的(多個)匹配網路104)(方塊1602)。同時,方法1600在一或更多個或連續的(譬如雜訊的情形)次要頻率來施加低位準訊號到電漿系統(方塊1604)。 16 illustrates a method of adjusting the frequency of a power generation system that uses a secondary power signal to find an overall optimization to explore an overall optimization of performance metrics. The method 1600 primarily applies a primary power signal to the plasma system at a primary frequency (e.g., to the matching network 104(s) connected to the plasma chamber 108) (block 1602). At the same time, method 1600 applies a low level signal to the plasma system in one or more or consecutive (eg, the case of a noise) secondary frequency (block 1604).

低位準訊號可以是周期性的或周期性訊號的總和、可以是固有於主要功率訊號的雜訊、或者可以是添加於主要功率訊號的雜訊。一或更多個次要頻率可以有相等的頻率間隔,或者可以具有變化的間隔。一或更多個次要頻率可以全部一次施加或者在分開的時刻施加,並且可以隨時調整。一或更多個次要頻率可以掃過固定的頻率範圍。替代而言,一或更多個次要頻率可以經由回饋來調整以探測和探究總體最佳化。可以總是施加或僅在需要時施加一或更多個次要或連續的次要頻率。 The low level signal may be the sum of periodic or periodic signals, may be noise inherent to the primary power signal, or may be noise added to the primary power signal. The one or more secondary frequencies may have equal frequency intervals or may have varying intervals. One or more secondary frequencies may be applied all at once or at separate times and may be adjusted at any time. One or more secondary frequencies can be swept across a fixed frequency range. Alternatively, one or more secondary frequencies may be adjusted via feedback to detect and explore overall optimization. One or more secondary or continuous secondary frequencies may be applied or applied only as needed.

方法1600監視的特徵是頻率函數的效能度量(譬如負載反射係數大小),尤其是在一或更多個或連續的次要頻率和/或在主要頻率和/或在主要和次要頻率之預期的混合和交互調變產物(方塊1606)。方法1600然後識別對應於特徵之總體最佳化的最佳化頻率(方塊1608)。這可以經由熟於此技藝者所熟悉的最小化或最大化演算法來為之。最後,方法1600將主要功率訊號的主要頻率調整為識別操作中所識別的最佳化頻率(方塊 1610)。這調整可以採取各式各樣的方式來做。舉例來說,調整可能必須避免僅在反射功率逼近100%的區域(譬如圖8的fa附近)施加主要功率而達延長的時間,因為這可能熄滅電漿(除非例如電漿是由另一功率來源150或151所維持)。如此,舉二個非限制性範例,則主要功率訊號可以切換到最佳化頻率,或者主要和次要功率訊號的功率位準可以逐漸逆轉,使得功率訊號交換位置。 The feature monitored by method 1600 is a measure of the performance of the frequency function (such as the magnitude of the load reflection coefficient), especially one or more or consecutive secondary frequencies and/or expectations at the primary frequency and/or at the primary and secondary frequencies. The blending and interactive modulation products (block 1606). The method 1600 then identifies an optimization frequency corresponding to the overall optimization of the feature (block 1608). This can be done by minimizing or maximizing the algorithm familiar to those skilled in the art. Finally, method 1600 adjusts the primary frequency of the primary power signal to the optimized frequency identified in the identification operation (block 1610). This adjustment can be done in a variety of ways. For example, the adjustment may have to avoid applying the main power for only an extended period of time in the region where the reflected power approaches 100% (譬 near f a in Figure 8), as this may extinguish the plasma (unless, for example, the plasma is by another Power source 150 or 151 is maintained). Thus, for two non-limiting examples, the primary power signal can be switched to the optimized frequency, or the power levels of the primary and secondary power signals can be gradually reversed, such that the power signal exchanges positions.

於某些具體態樣,當主要功率訊號已經移動到使用一或多個次要功率訊號而識別為總體最佳化的頻率時,方法1600結束。然而,於其他例子,由於例如電漿負載的非線性或可以隨時改變之參數(譬如電漿腔室氣體壓力)的緣故,方法1600可以循環以進一步微調最佳化或者負責總體最佳化的改變。 In some embodiments, method 1600 ends when the primary power signal has been moved to a frequency that is identified as being generally optimized using one or more secondary power signals. However, in other examples, method 1600 may cycle to further fine tune optimization or be responsible for overall optimization changes due to, for example, non-linearity of the plasma load or parameters that may be changed at any time, such as plasma chamber gas pressure. .

最佳化頻率的識別(方塊1608)可以隨著從監視獲得樣本(方塊1606)而即時發生,或者可以在頻率範圍已經取樣之後才發生分析。只有一旦已經識別了總體最佳化(方塊1608)才可以發生主要頻率的移動(方塊1610),或者一旦識別了非目前主要頻率的更多最佳化頻率則它就可以發生。 The identification of the optimized frequency (block 1608) may occur immediately as the sample is obtained from monitoring (block 1606), or may occur after the frequency range has been sampled. The movement of the primary frequency may occur only once the overall optimization has been identified (block 1608) (block 1610), or it may occur once more optimized frequencies than the current primary frequency are identified.

使用次要功率訊號來監視特徵的方法也可以用於識別電漿特徵或電漿特徵的改變。不是識別最佳化頻率和將主要頻率調整朝向識別的總體最佳化,輸出或監視特徵(方塊1608)反而可以用於識別電漿特徵或電漿特徵的改變。監視混合和交互調變產物則可以用於監視電漿的非線性行為,或者單純偵測電漿是否點著。不是觀察特殊的混合和交互調變產物,更高階的統計(譬如雙頻譜)反而可以用於識別電漿特徵或電漿特徵的改變。 The method of using secondary power signals to monitor features can also be used to identify changes in plasma characteristics or plasma characteristics. Instead of identifying the optimization frequency and overall optimization of the primary frequency adjustment toward the identification, the output or monitoring feature (block 1608) can instead be used to identify changes in the plasma or plasma characteristics. Monitoring mixed and interactive modulation products can be used to monitor the nonlinear behavior of the plasma, or simply to detect if the plasma is lit. Instead of observing special blending and intermodulation products, higher-order statistics (such as dual-spectrum) can be used to identify changes in plasma characteristics or plasma characteristics.

圖17顯示感測器(例如感測器112或412的三個範例性實施 例。感測器譬如可以是方向性耦合器1710(如圖17A所示)或電壓和電流(VI)感測器(如圖17B所示),並且該等實施例任一者可以包括濾波器1730和類比對數位轉換器1720(如圖17C所示)。 Figure 17 shows three exemplary implementations of a sensor (e.g., sensor 112 or 412) example. The sensor can be, for example, a directional coupler 1710 (as shown in Figure 17A) or a voltage and current (VI) sensor (as shown in Figure 17B), and any of these embodiments can include a filter 1730 and Analog to digital converter 1720 (as shown in Figure 17C).

圖18顯示總體最佳化識別模組(譬如116或418)的範例性實施例。圖18所示的部分功能性也可以是感測器的一部分。圖18顯示的實施例使用多個解調器1810,其允許同時處理多個頻率成分。訊號1820(標為A)和1830(標為B)舉例而言可以是前向和反射功率、電壓和電流、或某些其他有興趣的測量。在乘以餘弦和正弦函數1850與濾波1840之後,A和B在不同頻率的複數向量代表標為A1、B1到AN、BN,其用於計算在多個頻率的功率和負載反射係數。典型而言,一個頻道將逆轉而用於主要頻率。其他的頻道可以設定為一或多個次要頻率,或者設定為預期的混合和交互調變產物。如之前所注意,這僅是一個實施例,並且舉例而言,可能有許多其他的實施例使用譬如離散的傅立葉轉換而非專屬的解調頻道。 Figure 18 shows an exemplary embodiment of an overall optimization recognition module (e.g., 116 or 418). Part of the functionality shown in Figure 18 can also be part of the sensor. The embodiment shown in Figure 18 uses a plurality of demodulators 1810 that allow multiple frequency components to be processed simultaneously. Signals 1820 (labeled A) and 1830 (labeled B) may be, for example, forward and reflected power, voltage and current, or some other interesting measurement. After multiplying the cosine and sine functions 1850 with the filter 1840, the complex vectors of A and B at different frequencies are denoted as A 1 , B 1 to A N , B N , which are used to calculate power and load reflections at multiple frequencies. coefficient. Typically, one channel will be reversed for the primary frequency. Other channels can be set to one or more secondary frequencies, or set to the expected blending and intermodulation products. As noted previously, this is only one embodiment, and by way of example, many other embodiments may use, for example, discrete Fourier transforms rather than dedicated demodulation channels.

圖1~7所示構件的示範安排是邏輯的,多樣構件之間的連接僅為範例性的,並且這些具體態樣的顯示不是意謂為真實的硬體圖解;因此,真實實施例中的構件可加以組合或進一步分離,並且構件可以採取各式各樣的方式來連接,而不改變系統的基本操作。 The exemplary arrangement of the components shown in Figures 1-7 is logical, the connections between the various components are merely exemplary, and the display of these specific aspects is not intended to be a true hardware diagram; therefore, in the real embodiment The components can be combined or further separated, and the components can be connected in a variety of ways without changing the basic operation of the system.

不是單一的次要功率來源(如圖4~7所見),二、三、四或更多個次要功率來源反而或可用於產生二或更多個次要功率訊號。 Rather than a single secondary power source (as seen in Figures 4-7), two, three, four or more secondary power sources may instead be used to generate two or more secondary power signals.

為了本揭示的目的,次要功率訊號可以是周期性的,舉例來說為RF訊號。然而,於其他具體態樣,可以使用非周期性功率訊號(例如雜訊)。 For the purposes of this disclosure, the secondary power signal can be periodic, such as an RF signal. However, in other specific aspects, aperiodic power signals (such as noise) can be used.

雖然本揭示已經重複顯示為了局部和總體最小值而調整,不過熟於此技藝者將體會也想像到為了局部和總體最大值而調整,並且本揭示可以輕易應用於在傳遞功率的主要頻率是為了監視特徵的總體最大值而最佳化的情形下監視特徵。 Although the present disclosure has repeatedly shown adjustments for local and overall minima, those skilled in the art will appreciate that it is also tuned for local and overall maximums, and that the present disclosure can be readily applied to the primary frequencies at which power is delivered. The feature is monitored in the case where the overall maximum value of the feature is monitored and optimized.

關聯於在此揭示之具體態樣所述的方法可以直接實施於硬體、編碼於非暫態之處理器可讀取的媒體中之處理器可執行的指令、或此二者的組合。舉例而言,參見圖19,顯示的是方塊圖,其根據範例性具體態樣而顯示可以用來實現總體最佳化識別模組116和頻率控制模組118的實體構件。如所示,於本具體態樣,顯示器部分1912和非揮發性記憶體1920耦合於匯流排1922,其也耦合於隨機存取記憶體(random access memory,RAM)1924、處理部分(其包括N個處理構件)1926、可場程式化的閘陣列(field programmable gate array,FPGA)1927、收發器構件1928(其包括N個收發器)。雖然圖19所示的構件代表實體構件,但是圖19不打算是詳細的硬體圖解;因此圖19所示的許多構件可以由共同的架構所實現或者分散於額外的實體構件。再者,設想到其他既有或尚待開發的實體構件和架構可以用來實施參考圖19所述的功能性構件。 The methods described in connection with the specific aspects disclosed herein can be directly implemented in hardware, processor-executable instructions encoded in non-transitory processor readable media, or a combination of both. For example, referring to FIG. 19, a block diagram is shown that shows the physical components that can be used to implement the overall optimization recognition module 116 and the frequency control module 118 in accordance with an exemplary embodiment. As shown, in this particular aspect, display portion 1912 and non-volatile memory 1920 are coupled to busbar 1922, which is also coupled to a random access memory (RAM) 1924, processing portion (which includes N). Processing components) 1926, field programmable gate array (FPGA) 1927, transceiver component 1928 (which includes N transceivers). Although the components shown in FIG. 19 represent solid components, FIG. 19 is not intended to be a detailed hardware diagram; thus many of the components shown in FIG. 19 may be implemented by a common architecture or dispersed among additional physical components. Furthermore, it is contemplated that other physical components and architectures that are either existing or yet to be developed can be used to implement the functional components described with reference to FIG.

這顯示器部分1912一般而言操作成提供用於使用者的使用者介面;於幾個實施例,顯示器是由觸控螢幕顯示器所實現。一般而言,非揮發性記憶體1920是非暫態記憶體,其功能在於儲存(譬如持久儲存)資料和可由處理器執行的碼(包括關聯於實現在此所述之方法的可執行碼)。於某些具體態樣,舉例而言,非揮發性記憶體1920包括啟動載入碼、作業系統碼、檔案系統碼、非暫態處理器可執行的碼以利於執行參考圖16所述的 方法和在此所述的其他方法。 The display portion 1912 is generally operative to provide a user interface for the user; in several embodiments, the display is implemented by a touch screen display. In general, non-volatile memory 1920 is a non-transitory memory that functions to store (e.g., persistently store) data and code executable by the processor (including executable code associated with methods that implement the methods described herein). In some specific aspects, for example, the non-volatile memory 1920 includes a boot load code, a job system code, a file system code, a non-transitory processor executable code to facilitate execution of the method described with reference to FIG. Methods and other methods described herein.

於許多實施例,雖然非揮發性記憶體1920是由快閃記憶體(例如NAND或ONENAND記憶體)所實現,但是設想到也可以利用其他的記憶體類型。雖然有可能可以執行來自非揮發性記憶體1920的碼,但是非揮發性記憶體中之可執行的碼典型而言載入RAM 1924中而由處理部分1926中之N個處理構件的一或更多者來執行。非揮發性記憶體1920或RAM 1924可以用於儲存如圖8~14所述之總體最佳化的頻率。 In many embodiments, although the non-volatile memory 1920 is implemented by flash memory (eg, NAND or ONENAND memory), it is contemplated that other memory types may be utilized as well. While it is possible to execute code from non-volatile memory 1920, executable code in non-volatile memory is typically loaded into RAM 1924 and is processed by one or more of the N processing elements in processing portion 1926. More to implement. Non-volatile memory 1920 or RAM 1924 can be used to store the overall optimized frequency as described in Figures 8-14.

N個處理構件連同RAM 1924一般而言操作成執行儲存在非揮發性記憶體1920中的指令,以使產生器的來源阻抗能夠被修改而達成一或更多個目的。舉例而言,實現參考圖16和18所述方法的非暫態之處理器可執行的指令可以持久儲存於非揮發性記憶體1920中,並且由關聯於RAM 1924的N個處理構件所執行。如此技藝中的一般技術者所將體會,處理部分1926可以包括視訊處理器、數位訊號處理器(digital signal processor,DSP)、圖形處理單元(graphics processing unit,GPU)和其他處理構件。DSP舉例而言可以用於採用離散的傅立葉轉換以分析指示電漿負載的產生器輸出功率之諸多方面的具體態樣。 The N processing components, along with the RAM 1924, generally operate to execute instructions stored in the non-volatile memory 1920 to enable the source impedance of the generator to be modified to achieve one or more purposes. For example, non-transitory processor-executable instructions that implement the methods described with reference to Figures 16 and 18 can be persistently stored in non-volatile memory 1920 and executed by N processing components associated with RAM 1924. As will be appreciated by one of ordinary skill in the art, processing portion 1926 can include a video processor, a digital signal processor (DSP), a graphics processing unit (GPU), and other processing components. The DSP can be used, for example, to employ discrete Fourier transforms to analyze specific aspects of various aspects of the generator output power indicative of the plasma load.

附帶或替代而言,FPGA 1927可以建構成實現在此所述方法的一或更多個方面(譬如參考圖16和18所述的方法)。舉例而言,非暫態的FPGA組態指令可以持久儲存於非揮發性記憶體1920中和由FPGA 1927所存取(譬如在開機期間),以將FPGA 1927建構成實現總體最佳化識別模組116和頻率控制模組118的功能。 Additionally or alternatively, FPGA 1927 can be constructed to implement one or more aspects of the methods described herein (such as the methods described with reference to Figures 16 and 18). For example, non-transitory FPGA configuration instructions can be permanently stored in non-volatile memory 1920 and accessed by FPGA 1927 (eg, during power-on) to build FPGA 1927 into an overall optimized recognition mode. The functions of group 116 and frequency control module 118.

輸入構件操作成接收訊號(譬如來自感測器112、312、412、 413的輸出訊號),其指示輸出功率和/或電漿負載的一或更多個方面。在輸入構件所接收的訊號舉例而言可以包括電壓、電流、前向功率、反射功率、電漿負載阻抗。設想到輸入構件可以包括數位和類比輸入二者,並且可以包括類比對數位轉換構件以將類比訊號轉換成數位訊號。輸出構件一般而言操作成提供一或更多個類比或數位訊號以實現產生器的操作方面。舉例而言,輸出部分可以提供頻率控制訊號給在此所示和所述的振盪器。也設想到控制施加功率之振幅和相位的訊號也可以從輸出構件輸出。 The input member is operative to receive signals (eg, from sensors 112, 312, 412, An output signal of 413) indicating one or more aspects of output power and/or plasma loading. The signals received at the input member may include, for example, voltage, current, forward power, reflected power, and plasma load impedance. It is contemplated that the input member can include both digital and analog input, and can include an analog to digital conversion component to convert the analog signal to a digital signal. The output member is generally operative to provide one or more analog or digital signals to achieve an operational aspect of the generator. For example, the output portion can provide a frequency control signal to the oscillator shown and described herein. It is also contemplated that a signal that controls the amplitude and phase of the applied power can also be output from the output member.

顯示的收發器構件1928包括N個收發器鏈,其可以用於經由無線或有線網路而與外部裝置通訊。N個收發器鏈的每一者可以代表關聯於特殊通訊方案(譬如無線傳真(WiFi)、乙太網路、Profibus……)的收發器。收發器構件舉例而言可以用於與關聯於電漿處理工具的一或更多個其他裝置通訊。 The illustrated transceiver component 1928 includes N transceiver chains that can be used to communicate with external devices via a wireless or wired network. Each of the N transceiver chains can represent a transceiver associated with a particular communication scheme (e.g., wireless fax (WiFi), Ethernet, Profibus, ...). The transceiver components can be used, for example, to communicate with one or more other devices associated with the plasma processing tool.

在本說明書裡,相同的參考字符用於指稱端子、訊號線、電線……及其對應的訊號。就這方面來說,「訊號」(signal)、「電線」(wire)、「連接」(connection)、「端子」(terminal)、「針腳」(pin)等詞在本說明書裡總是可以互換使用。也應體會「訊號」、「電線」或類似的詞可以代表一或更多個訊號,譬如單一位元透過單一電線來傳輸或是多個平行位元透過多條平行電線來傳輸。此外,每個電線或訊號可以代表訊號或電線所連接的二或更多個構件之間的雙向通訊,就如情形所可以是的樣子。 In this specification, the same reference characters are used to refer to terminals, signal lines, wires, and their corresponding signals. In this respect, the words "signal", "wire", "connection", "terminal", "pin" (pin) are always interchangeable in this manual. use. It should also be appreciated that "signals", "wires" or similar words may represent one or more signals, such as a single bit transmitted over a single wire or multiple parallel bits transmitted through multiple parallel wires. In addition, each wire or signal can represent a two-way communication between two or more components to which the signal or wire is connected, as can be the case.

前面提供揭示之具體態樣的敘述以使熟於此技藝的任何人能夠製作和利用本發明。熟於此技藝者將輕易明白這些具體態樣有多樣的修改,並且在此定義的一般原理可以應用於其他具體態樣,而不偏離本發 明的精神和範圍。因此,本發明不打算受限於在此所示的具體態樣,而是要依據與在此揭示之原理和新穎特色一致的最廣範圍。 The foregoing description of the specific aspects of the invention is intended to enable any of those skilled in the art to make and use the invention. Those skilled in the art will readily appreciate that there are numerous modifications to these specific aspects, and that the general principles defined herein can be applied to other specific aspects without departing from the present invention. The spirit and scope of the Ming. Therefore, the invention is not intended to be limited to the details of the details disclosed herein,

100‧‧‧功率產生系統 100‧‧‧Power Generation System

104、105‧‧‧匹配網路 104, 105‧‧‧ Matching network

106‧‧‧電漿 106‧‧‧ Plasma

108‧‧‧電漿腔室 108‧‧‧The plasma chamber

110‧‧‧功率來源 110‧‧‧Power source

112‧‧‧感測器 112‧‧‧ sensor

114‧‧‧電路 114‧‧‧ Circuitry

116‧‧‧總體最佳化識別模組 116‧‧‧Overall Optimized Identification Module

118‧‧‧頻率控制模組 118‧‧‧ frequency control module

122‧‧‧濾波器 122‧‧‧ filter

130、131‧‧‧連接 130, 131‧‧‧ Connection

140‧‧‧外部功率 140‧‧‧External power

150、151‧‧‧RF或DC產生器 150, 151‧‧‧RF or DC generator

Claims (23)

一種功率產生系統,其建構成自動調整傳遞到電漿負載之功率的頻率,該功率產生系統包括:功率來源,其施加在主要頻率的主要功率訊號到輸出,該輸出建構成直接或透過匹配網路而耦合於電漿負載,該功率來源建構成施加在一或更多個頻率的一或更多個次要功率訊號到該電漿負載,其中在該等次要頻率所產生的功率低於在該主要頻率所產生的功率;感測器,其安排成感測傳遞到該電漿負載之功率的一或更多個屬性以獲得效能的度量;總體最佳化識別模組,其分析該效能的度量,並且將總體最佳化頻率識別為對應於該效能的度量之總體最佳化;頻率控制模組,其將該主要頻率調整朝向對應於該總體最佳化之該識別的總體最佳化頻率。 A power generation system constructed to automatically adjust a frequency of power delivered to a plasma load, the power generation system comprising: a power source that applies a primary power signal at a primary frequency to an output, the output being constructed directly or through a matching network The circuit is coupled to a plasma load, the power source being configured to apply one or more secondary power signals to the plasma load at one or more frequencies, wherein the power generated at the secondary frequencies is lower than The power generated at the primary frequency; a sensor arranged to sense one or more attributes of power delivered to the plasma load to obtain a measure of performance; an overall optimization identification module that analyzes the a measure of performance and identifying the overall optimized frequency as an overall optimization of the metric corresponding to the performance; a frequency control module that adjusts the primary frequency toward the overall identity of the identification corresponding to the overall optimization The frequency of optimization. 如申請專利範圍第1項的系統,其中在該等次要頻率所產生的功率要比在該主要頻率的該功率低1到100分貝。 A system as claimed in claim 1, wherein the power generated at the secondary frequencies is 1 to 100 decibels lower than the power at the primary frequency. 如申請專利範圍第1項的系統,其中該感測器是選擇自以下所組成之群組的感測器:電壓和電流感測器、方向性耦合器。 A system as claimed in claim 1, wherein the sensor is a sensor selected from the group consisting of: a voltage and current sensor, a directional coupler. 如申請專利範圍第1項的系統,其中該效能的度量之該總體最佳化是該效能的度量之數值,其小於或大於在可以調整該主要功率訊號之頻率的頻寬裡之所有其他取樣的度量數值。 The system of claim 1, wherein the overall optimization of the measure of performance is a measure of the performance, which is less than or greater than all other samples in a bandwidth at which the frequency of the primary power signal can be adjusted. The metric value. 如申請專利範圍第1項的系統,其中該效能的度量是選自以下所組成之群組的效能度量:相對於想要之參考阻抗所計算的反射功率、該功率 來源看到負載阻抗偏離於想要之阻抗有多遠的度量、負載反射係數大小的度量。 The system of claim 1, wherein the measure of performance is a performance metric selected from the group consisting of: reflected power calculated relative to a desired reference impedance, the power The source sees how far the load impedance deviates from the desired impedance, and a measure of the magnitude of the load reflection coefficient. 如申請專利範圍第1項的系統,其中該一或更多個次要功率訊號是雜訊。 The system of claim 1, wherein the one or more secondary power signals are noise. 如申請專利範圍第6項的系統,其中該功率來源包括單一的振盪器放大器組合以產生該主要功率訊號,並且該雜訊是固有於該單一的振盪器放大器組合。 A system of claim 6 wherein the source of power comprises a single oscillator amplifier combination to generate the primary power signal and the noise is inherent to the single oscillator amplifier combination. 如申請專利範圍第1項的系統,其包括次要振盪器;其中該功率來源包括產生該主要功率訊號的主要振盪器和產生該等次要功率訊號的該次要振盪器。 A system as claimed in claim 1, comprising a secondary oscillator; wherein the source of power comprises a primary oscillator that generates the primary power signal and the secondary oscillator that generates the secondary power signals. 一種非暫態及實體之電腦可讀取儲存媒體,其編碼機器可讀取的指令以進行功率產生系統之自動頻率調整的方法,該方法包括:直接或透過匹配網路而施加在主要頻率的主要功率訊號到電漿負載;施加在一或更多個次要頻率的次要功率訊號到該電漿負載,其中在該等次要頻率所產生的功率低於在該主要頻率所產生的功率;監視效能的度量;識別對應於該效能度量之總體最佳化的最佳化頻率;以及將該主要頻率調整朝向該最佳化頻率。 A non-transitory and physical computer readable storage medium encoding a machine readable command for performing automatic frequency adjustment of a power generation system, the method comprising: applying the primary frequency directly or through a matching network a primary power signal to a plasma load; applying a secondary power signal of one or more secondary frequencies to the plasma load, wherein the power generated at the secondary frequencies is lower than the power generated at the primary frequency Metricing a measure of performance; identifying an optimized frequency corresponding to the overall optimization of the performance metric; and adjusting the primary frequency toward the optimized frequency. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中循環應用該方法以便重複改善將該主要頻率調整朝向該總體最佳化的正確度。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the method is cyclically applied to repeatedly improve the accuracy of the primary frequency adjustment towards the overall optimization. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其 中該次要功率訊號是周期性的或周期性訊號的總和。 Non-transitory and physical computer readable storage medium as claimed in claim 9 The secondary power signal is the sum of periodic or periodic signals. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中同時施加該一或更多個次要功率訊號包括:將該一或更多個次要頻率掃過固定的頻率範圍。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein simultaneously applying the one or more secondary power signals comprises: sweeping the one or more secondary frequencies through a fixed Frequency Range. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中同時施加該一或更多個次要功率訊號包括:在不同時刻將單一次要功率訊號調整成多個次要頻率當中的不同者。 A non-transitory and physical computer readable storage medium as claimed in claim 9, wherein simultaneously applying the one or more secondary power signals comprises: adjusting a single power signal to a plurality of times at different times Want different people in the frequency. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中將該主要頻率調整朝向該最佳化頻率包括:減少施加在該主要頻率之功率的振幅,並且增加施加在目標頻率之功率的振幅。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the primary frequency adjustment toward the optimized frequency comprises: reducing an amplitude of power applied to the primary frequency, and increasing the applied The amplitude of the power of the target frequency. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中將該主要頻率調整朝向該最佳化頻率包括:將該主要頻率改變為目標頻率,並且在該目標頻率附近進行額外的調整。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the primary frequency adjustment toward the optimized frequency comprises: changing the primary frequency to a target frequency and near the target frequency Make additional adjustments. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中該效能度量的該總體最佳化是該效能度量的數值,其小於或大於在可以調整該主要功率訊號之頻率的頻寬裡之所有其他取樣的效能度量數值。 The non-transitory and physical computer readable storage medium of claim 9 wherein the overall optimization of the performance metric is a value of the performance metric that is less than or greater than a primary power signal that can be adjusted. The performance metric value of all other samples in the frequency bandwidth. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中該效能的度量是選自以下所組成之群組的效能度量:相對於想要之參考阻抗所計算的反射功率、該功率來源看到負載阻抗偏離於想要之阻抗有多遠的度量、負載反射係數大小的度量。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the measure of performance is a performance metric selected from the group consisting of: a reflection calculated relative to a desired reference impedance Power, the source of power sees how far the load impedance deviates from the desired impedance, and a measure of the magnitude of the load reflection coefficient. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中同時施加一或更多個次要功率訊號包括:施加雜訊。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the simultaneous application of one or more secondary power signals comprises: applying noise. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中將該主要頻率調整朝向該最佳化頻率包括:減少施加在該主要頻率之功率的振幅,並且增加施加在目標頻率之功率的振幅。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the primary frequency adjustment toward the optimized frequency comprises: reducing an amplitude of power applied to the primary frequency, and increasing the applied The amplitude of the power of the target frequency. 如申請專利範圍第9項的非暫態及實體之電腦可讀取儲存媒體,其中將該主要頻率調整朝向該最佳化頻率包括:將該主要頻率改變為目標頻率,並且在該目標頻率附近進行額外的調整。 A non-transitory and physical computer readable storage medium as claimed in claim 9 wherein the primary frequency adjustment toward the optimized frequency comprises: changing the primary frequency to a target frequency and near the target frequency Make additional adjustments. 一種功率產生系統,其建構成自動調整傳遞到電漿負載之功率的頻率,該功率產生系統包括:功率來源,其施加主要功率訊號到輸出,該輸出建構成直接或透過匹配網路而耦合於電漿負載,該功率來源建構成施加在一或更多個或連續之次要頻率的一或更多個次要功率訊號到該電漿負載,其中在該等次要頻率所產生的功率低於在該主要頻率所產生的功率;感測器,其安排成感測傳遞到該電漿負載之功率的一或更多個屬性以獲得效能的度量;總體最佳化識別模組,其包括非暫態及實體之處理器可讀取儲存媒體,該媒體編碼可由處理器或可場程式化之閘陣列所讀取的指令以進行功率產生系統之自動頻率調整的方法,該方法包括:以該功率來源而直接或透過匹配網路來施加在主要頻率的主要功率訊號到電漿負載;同時施加在一或更多個或連續之次要頻率的一或更多個次要功率訊號到該電漿負載;監視效能的度量; 識別對應於該效能度量之總體最佳化的最佳化頻率;以及將該主要頻率調整朝向該最佳化頻率。 A power generation system configured to automatically adjust a frequency of power delivered to a plasma load, the power generation system comprising: a power source that applies a primary power signal to an output, the output being configured to be coupled directly or through a matching network a plasma load that is constructed to form one or more secondary power signals applied to one or more or successive secondary frequencies to the plasma load, wherein the power generated at the secondary frequencies is low The power generated at the primary frequency; a sensor arranged to sense one or more attributes of power delivered to the plasma load to obtain a measure of performance; an overall optimization recognition module comprising The non-transitory and physical processor can read a storage medium that encodes instructions read by the processor or the field programmable gate array for automatic frequency adjustment of the power generation system, the method comprising: The power source directly or through the matching network to apply the main power signal at the primary frequency to the plasma load; simultaneously applying one or more or consecutive secondary frequencies Or more secondary plasma power signal to the load; monitoring performance metrics; Identifying an optimized frequency corresponding to the overall optimization of the performance metric; and adjusting the primary frequency toward the optimized frequency. 如申請專利範圍第21項的功率產生系統,其包括:至少一解調頻道,其耦合於該感測器以獲得至少一特殊頻率下的該效能度量。 A power generation system according to claim 21, comprising: at least one demodulation channel coupled to the sensor to obtain the performance metric at at least one particular frequency. 如申請專利範圍第21項的功率產生系統,其包括:離散的傅立葉轉換模組,其耦合於該感測器以獲得在一或更多個特殊頻率下的該效能度量。 A power generation system as in claim 21, comprising: a discrete Fourier transform module coupled to the sensor to obtain the performance metric at one or more particular frequencies.
TW104134314A 2015-10-19 2015-10-19 Noise based frequency tuning and identification of plasma characteristics TWI600051B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104134314A TWI600051B (en) 2015-10-19 2015-10-19 Noise based frequency tuning and identification of plasma characteristics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104134314A TWI600051B (en) 2015-10-19 2015-10-19 Noise based frequency tuning and identification of plasma characteristics

Publications (2)

Publication Number Publication Date
TW201715559A TW201715559A (en) 2017-05-01
TWI600051B true TWI600051B (en) 2017-09-21

Family

ID=59366732

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104134314A TWI600051B (en) 2015-10-19 2015-10-19 Noise based frequency tuning and identification of plasma characteristics

Country Status (1)

Country Link
TW (1) TWI600051B (en)

Also Published As

Publication number Publication date
TW201715559A (en) 2017-05-01

Similar Documents

Publication Publication Date Title
US10194518B2 (en) Noise based frequency tuning and identification of plasma characteristics
TW202249400A (en) Inter-period control system for plasma power delivery system and method of operating the same
US9947513B2 (en) Edge ramping
US11804362B2 (en) Frequency tuning for modulated plasma systems
CN109156075B (en) Arrangement for frequency tuning in an RF generator
KR101675625B1 (en) System level power delivery to a plasma processing load
WO2018095114A1 (en) Mobile terminal, method and device for tuning antenna, and storage medium
WO2018061617A1 (en) High-frequency power supply device
US10896810B2 (en) RF generating apparatus and plasma treatment apparatus
Martin et al. A peak-search algorithm for load–pull optimization of power-added efficiency and adjacent-channel power ratio
TWI600051B (en) Noise based frequency tuning and identification of plasma characteristics
JP2018074587A (en) Noise filter and utilization method of noise filter
US20240014838A1 (en) Signal processing systems and methods
Pirrone et al. Zeroth-order optimization for varactor-tuned matching network
JP6696860B2 (en) Automatic alignment device and automatic alignment method
FR3066860A1 (en) METHOD FOR AUTOMATICALLY ADJUSTING A PASSIVE TUNABLE ANTENNA AND A TUNING UNIT, AND APPARATUS FOR RADIO COMMUNICATION USING THE SAME
KR20210113073A (en) Plasma processing apparatus
TW202243548A (en) Frequency tuning for modulated plasma systems
Bilik Automatic impedance matching in high-power microwave applications
Samoylov et al. The use of adaptive matching circuits to adjust the impedance of high-frequency loads
Goad et al. Algorithm for Fast Simultaneous Harmonic and Fundamental Impedance Tuning in Reconfigurable Radar Transmitter Power Amplifiers
US20170272106A1 (en) Amplifier adjusting device, system including an amplifier adjusting device and method for operating an amplifier adjusting device
JP2015019454A (en) High frequency power supply device
JP4661723B2 (en) Control device for variable attenuator
Kim Optimization Algorithm for Antenna Impedance Matching in Digitally Tunable Network