TW202243548A - Frequency tuning for modulated plasma systems - Google Patents

Frequency tuning for modulated plasma systems Download PDF

Info

Publication number
TW202243548A
TW202243548A TW111105646A TW111105646A TW202243548A TW 202243548 A TW202243548 A TW 202243548A TW 111105646 A TW111105646 A TW 111105646A TW 111105646 A TW111105646 A TW 111105646A TW 202243548 A TW202243548 A TW 202243548A
Authority
TW
Taiwan
Prior art keywords
frequency
power
plasma
signal
primary
Prior art date
Application number
TW111105646A
Other languages
Chinese (zh)
Inventor
吉狄翁 封扎爾
Original Assignee
新加坡商Aes全球公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US17/177,874 external-priority patent/US11804362B2/en
Application filed by 新加坡商Aes全球公司 filed Critical 新加坡商Aes全球公司
Publication of TW202243548A publication Critical patent/TW202243548A/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32174Circuits specially adapted for controlling the RF discharge
    • H01J37/32183Matching circuits

Abstract

Plasma processing and power supply systems and methods are disclosed. The plasma processing system comprises a high-frequency generator configured to deliver power to a plasma chamber and a low-frequency generator configured to deliver power to the plasma chamber. A filter is coupled between the plasma chamber and the high-frequency generator, and the filter suppresses mixing products of high frequencies produced by the high-frequency generator and low frequencies produced by the low-frequency generator. The plasma processing system also comprises means for frequency tuning the high-frequency generator using a probe signal that is concurrently applied with the power applied to the plasma chamber at the primary frequency.

Description

用於經調變電漿系統之頻率調諧Frequency Tuning for Modulated Plasma Systems

本文所揭示之實施例大體上係關於電漿處理系統,且更具體言之,係關於具有經調變電漿之電漿處理系統。Embodiments disclosed herein relate generally to plasma processing systems, and more specifically, to plasma processing systems having modulated plasmas.

本專利申請案的對應優先權案係於2021年7月21日申請之題為「Apparatus and System for Modulated Plasma Systems」的第16/934,257號專利申請案之部分連續申請案,這個部分連續申請案係於2018年12月21日申請且於2020年7月21日發佈為第10,720,305號美國專利之題為「Plasma Delivery System for Modulated Plasma Systems」的第16/230,923號專利申請案之部分連續申請案,並且所有上述申請案皆已讓渡給本發明的受讓人且在此明確地以引用之方式併入本文中。The corresponding priority of this patent application is the continuation-in-part of patent application No. 16/934,257, entitled "Apparatus and System for Modulated Plasma Systems," filed on July 21, 2021. This continuation-in-part Continuation-in-Part of Patent Application No. 16/230,923, entitled "Plasma Delivery System for Modulated Plasma Systems," filed on December 21, 2018 and published as U.S. Patent No. 10,720,305 on July 21, 2020 , and all of the above applications are assigned to the assignee of the present invention and are hereby expressly incorporated herein by reference.

儘管用於蝕刻及沈積之電漿處理系統已使用了數十年,但處理技術及裝備技術之升級會繼續產生愈來愈複雜的系統。這些愈來愈複雜的系統在驅動同一電漿系統之多個產生器之間產生更難以解決之互動。Although plasma processing systems for etching and deposition have been used for decades, upgrades in processing technology and equipment technology continue to produce more and more complex systems. These increasingly complex systems create more difficult interactions between the multiple generators driving the same plasma system.

一態樣可表徵為一種發電系統,其包含:一高頻率產生器,其經組態以在一主要頻率下將功率施加至一電漿腔室;以及一濾波器,其經組態以抑制混合產物以限制呈現至該高頻率產生器之一時變負載反射係數的變化。該發電系統亦包括一頻率調諧子系統,其經組態以:在該高頻率產生器正在該主要頻率下施加功率的同時,施加包含一或多個探測頻率之一探測信號;並且回應於指示效能之一改良量測的該一或多個探測頻率而調整該高頻率產生器之該主要頻率。An aspect may be characterized as a power generation system comprising: a high frequency generator configured to apply power to a plasma chamber at a primary frequency; and a filter configured to suppress The products are mixed to limit the variation presented to a time-varying load reflection coefficient of the high frequency generator. The power generation system also includes a frequency tuning subsystem configured to: apply a probe signal comprising one or more probe frequencies while the high frequency generator is applying power at the primary frequency; and respond to an indication The primary frequency of the high frequency generator is adjusted to improve the one or more detection frequencies measured for performance.

另一態樣可表徵為一種用於一發電系統之自動頻率調諧的方法,其包含藉由一高頻率產生器在一主要頻率下將一主要功率信號施加至一電漿負載,以及在一或多個探測頻率下將一探測信號施加至該電漿負載。混合產物係藉由一濾波器抑制以減少呈現至該高頻率產生器之一時變負載反射係數的變化,且該主要頻率係回應於探測信號而基於效能之一量測來調整。Another aspect may be characterized as a method for automatic frequency tuning of a power generation system comprising applying, by a high frequency generator, a primary power signal to a plasma load at a primary frequency, and at one or A detection signal is applied to the plasma load at a plurality of detection frequencies. Mixing products are suppressed by a filter to reduce variations in a time-varying load reflection coefficient present to the high frequency generator, and the primary frequency is adjusted based on a measure of performance in response to the probe signal.

又一態樣可表徵為一種電漿處理系統,其包含:一電漿腔室;一高頻率產生器,其經組態以在一主要頻率下將功率施加至一電漿腔室;以及一低頻率產生器,其用以在一低頻率下將功率施加至該電漿腔室。該系統中的一濾波器經組態以抑制該主要頻率與該低頻率之混合產物以限制呈現至該高頻率產生器之一時變負載反射係數的變化。並且該系統包含用於使用一探測信號對該高頻率產生器進行頻率調諧之構件,該探測信號與在該主要頻率下施加至該電漿腔室之該功率同時施加。Yet another aspect can be characterized as a plasma processing system comprising: a plasma chamber; a high frequency generator configured to apply power to a plasma chamber at a primary frequency; and a a low frequency generator for applying power to the plasma chamber at a low frequency. A filter in the system is configured to suppress the mixing product of the dominant frequency and the low frequency to limit changes in a time-varying load reflection coefficient presented to the high frequency generator. And the system includes means for frequency tuning the high frequency generator using a probe signal applied simultaneously with the power applied to the plasma chamber at the primary frequency.

驅動同一電漿之產生器之間的互動(其中產生器中之一者調變由另一產生器所見之負載)隨著功率位準增大變得愈來愈難以解決;因此,需要用於處理此問題之新的且改良的方法及系統。The interaction between generators driving the same plasma, where one of the generators modulates the load seen by the other, becomes increasingly intractable as power levels increase; therefore, the need for New and improved methods and systems to address this problem.

詞語「例示性」在本文中用以意謂「充當一實例、個例或示例」。本文中描述為「例示性」之任何實施例不必理解為比其他實施例更佳或更有利。The word "exemplary" is used herein to mean "serving as an example, instance, or illustration." Any embodiment described herein as "exemplary" is not necessarily to be construed as preferred or advantageous over other embodiments.

參考圖1,展示了描繪其中可實施實施例之例示性環境之方塊圖。如所展示,電漿腔室100之電漿負載經由濾波器104及匹配網路106(亦被稱作匹配106)耦接至高頻率產生器102。另外,低頻率產生器108亦經由匹配110耦接至電漿負載。在許多應用中,匹配106可與匹配110組合。亦展示了視情況選用之寬頻量測組件114、116、118及120以及視情況選用之延遲元件112。視情況選用之延遲元件112可使用一段同軸纜線或一固定或可變RLCM(亦即,含有電阻器、電感器、電容器及耦接電感器之電路)電路或含有分散式電路元件(亦即,傳輸線電路)的電路來實現。亦展示了視情況選用之連接122及124,這些連接允許視情況選用之寬頻量測系統116、120中的一者在視情況選用之延遲元件112經恰當地表徵的情況下交接另一者之功能性。Referring to FIG. 1 , there is shown a block diagram depicting an exemplary environment in which embodiments may be implemented. As shown, the plasma load of plasma chamber 100 is coupled to high frequency generator 102 via filter 104 and matching network 106 (also referred to as matching 106 ). In addition, the low frequency generator 108 is also coupled to the plasma load via the matching 110 . Matching 106 may be combined with matching 110 in many applications. Optional broadband measurement components 114, 116, 118 and 120 and optional delay element 112 are also shown. The optional delay element 112 may use a length of coaxial cable or a fixed or variable RLCM (i.e., circuit containing resistors, inductors, capacitors, and coupled inductors) circuit or contain discrete circuit elements (i.e., , transmission line circuit) circuit to achieve. Also shown are optional connections 122 and 124 which allow one of the optional broadband measurement systems 116, 120 to interface with the other provided that the optional delay element 112 is properly characterized. Feature.

儘管高頻率產生器102及低頻率產生器108可各自在一頻率範圍內操作,但一般而言,高頻率產生器102在高於低頻率產生器108之頻率下操作。在許多實施例中,高頻率產生器102可為在10 MHz至200 MHz頻率範圍內將RF功率遞送至電漿腔室100中之電漿負載的產生器,且低頻率產生器108可例如處於100 kHz至2 MHz範圍內。因此,低頻率產生器108之頻率與高頻率產生器102之頻率的例示性頻率比率係在0.0005與0.2之間。在許多實施例中,舉例而言,低頻率產生器108之頻率與高頻率產生器102之頻率的頻率比率小於0.05,且在一些實施例中,低頻率產生器108與高頻率產生器102之頻率比率小於0.01。舉例而言,該比率可為1:150或約0.0067。Although high frequency generator 102 and low frequency generator 108 may each operate within a range of frequencies, in general, high frequency generator 102 operates at a higher frequency than low frequency generator 108 . In many embodiments, the high frequency generator 102 may be a generator that delivers RF power to the plasma load in the plasma chamber 100 in the frequency range of 10 MHz to 200 MHz, and the low frequency generator 108 may be, for example, at 100 kHz to 2 MHz range. Accordingly, an exemplary frequency ratio of the frequency of the low frequency generator 108 to the frequency of the high frequency generator 102 is between 0.0005 and 0.2. In many embodiments, for example, the frequency ratio of the frequency of the low frequency generator 108 to the frequency of the high frequency generator 102 is less than 0.05, and in some embodiments the ratio of the frequency of the low frequency generator 108 to the high frequency generator 102 The frequency ratio is less than 0.01. For example, the ratio can be 1:150 or about 0.0067.

根據應用,高頻率產生器102可用以點燃且維持電漿腔室100中之電漿負載,且低頻率產生器108可用以將週期性電壓函數施加至電漿腔室100的基板支撐件以實現電漿腔室100中之基板之表面處的離子能量之所要分佈。Depending on the application, the high frequency generator 102 can be used to ignite and maintain the plasma load in the plasma chamber 100, and the low frequency generator 108 can be used to apply a periodic voltage function to the substrate support of the plasma chamber 100 to achieve Desired distribution of ion energy at the surface of the substrate in the plasma chamber 100 .

關於功率位準,低頻率產生器108可將相對較大功率量(例如,在10 kW至30 kW範圍內)施加至電漿腔室100之電漿負載。在低頻率下施加至電漿之大量功率調變呈現至高頻率產生器102之電漿阻抗。With regard to power levels, the low frequency generator 108 may apply a relatively large amount of power (eg, in the range of 10 kW to 30 kW) to the plasma load of the plasma chamber 100 . A large amount of power modulation applied to the plasma at low frequencies modifies the plasma impedance presented to the high frequency generator 102 .

本申請人已發現,在具有調變電漿負載之產生器(例如,低頻率產生器108)之先前系統中,不在由系統產生的足夠數目個混合產物下量測功率。並且未能這麼做係在功率量測中產生約100%或更多之誤差的問題。過去採取之典型方法(當低頻率功率擾動電漿時)為僅濾除由將高頻率功率施加至在低頻率下調變之負載而產生的混合頻率分量(例如,在低產生器頻率及高產生器頻率分別為400 kHz及60 MHz時濾除59.6 MHz及60.4 MHz分量)。但當利用低通濾波器時,明顯複雜阻抗軌跡收縮至一點,且誤導性地,看起來似乎高頻率產生器102正將功率遞送至50歐姆。Applicants have found that in previous systems with generators that modulated the plasma load (eg, low frequency generator 108 ), power was not measured at a sufficient number of mixing products produced by the system. And failure to do so is a matter of generating errors of about 100% or more in power measurements. The typical approach taken in the past (when low frequency power disturbs the plasma) is to filter out only the mixed frequency components produced by applying high frequency power to a load modulated at low frequency (e.g., at low generator frequency and high generated 59.6 MHz and 60.4 MHz components are filtered out when the frequency of the filter is 400 kHz and 60 MHz respectively). But when the low pass filter is utilized, the apparent complex impedance locus shrinks to a point and, misleadingly, it appears that the high frequency generator 102 is delivering power down to 50 ohms.

參考圖2,展示了描繪可如何藉由使用不同量測系統濾波器頻寬量測功率而感知功率之曲線圖。量測系統濾波係在經量測信號之降頻或解調之後應用;因此,量測系統對集中於產生器輸出頻率之頻率分量進行濾波。舉例而言,應用於產生60 MHz輸出之產生器的100 kHz之量測系統頻寬將會抑制頻率分量低於59.9 MHz且高於60.1 MHz。如所展示,當量測系統之濾波器頻寬經選擇為小於電漿之調變頻率時,則看起來似乎存在比實際上存在之反射功率少得多的反射功率(因此,看起來似乎僅前向功率正進入電漿負載),但實際上事情並非如此。Referring to FIG. 2 , there is shown a graph depicting how power may be perceived by measuring power using different measurement system filter bandwidths. Measurement system filtering is applied after down-conversion or demodulation of the measurement signal; thus, the measurement system filters frequency components centered on the generator output frequency. For example, a measurement system bandwidth of 100 kHz applied to a generator producing a 60 MHz output will suppress frequency components below 59.9 MHz and above 60.1 MHz. As shown, when the filter bandwidth of the measurement system is chosen to be smaller than the modulation frequency of the plasma, it appears that there is much less reflected power than actually exists (thus, it appears that only forward power is going into the plasma load), but that's not actually the case.

相比之下,當功率係藉由足夠頻寬(例如,藉由寬頻量測系統116、120中之一者或兩者)來量測時,明顯功率之僅一部分(例如,功率之僅一半)正進入電漿負載。因此,本揭示內容之一態樣包含調整量測系統以使得其濾波器頻寬超過調變頻率以在較高頻率下俘獲混合產物。題為「System, Method, and Apparatus for Monitoring Power」(其以引用之方式併入本文中)之美國專利第7,970,562號揭示各種類型的感測器(例如,定向耦接器或電壓/電流(VI)感測器),這些感測器可用於實現感測器114、118,以及可由寬頻量測系統116、120利用以達成能夠在較高頻率下俘獲關於混合產物之資訊之濾波器頻寬的取樣及處理技術。應注意,量測系統116、120的濾波器頻寬不應與濾波器104混淆。In contrast, when power is measured with sufficient bandwidth (e.g., by one or both of broadband measurement systems 116, 120), only a fraction of the apparent power (e.g., only half of the power ) is entering the plasma load. Therefore, one aspect of the present disclosure includes adjusting the measurement system so that its filter bandwidth exceeds the modulation frequency to capture the mixing products at higher frequencies. U.S. Patent No. 7,970,562, entitled "System, Method, and Apparatus for Monitoring Power," which is incorporated herein by reference, discloses various types of sensors (e.g., directional couplers or voltage/current (VI ) sensors) that can be used to implement the sensors 114, 118, and can be utilized by the broadband measurement systems 116, 120 to achieve filter bandwidths capable of capturing information about the mixing products at higher frequencies Sampling and processing techniques. It should be noted that the filter bandwidths of the measurement systems 116 , 120 should not be confused with the filter 104 .

另一問題係高頻率產生器102需要將功率遞送至時變負載(經調變電漿負載),其中時間平均負載反射係數量值較高。參考圖3A及圖3B,舉例而言,展示了描繪高頻率產生器102在低頻率產生器108之一個循環的時段內所見之負載反射係數之曲線圖,並且圖3C係描繪當並未利用圖1中所描繪之濾波器104時藉由高頻率產生器102可見的所得反射功率之曲線圖。如所展示,藉由高頻率產生器102所見之尖峰負載反射係數量值可接近於1(且可甚至超過1,此意謂淨功率正自電漿負載流動至高頻率產生器102),同時藉由高頻率產生器102所見之平均負載反射係數量值可為0.76。相對較高負載反射係數量值意謂,一般而言,高頻率產生器102可能難以施加所要功率位準且更容易發生故障。因此,高頻率產生器102可能需要比通常所需更多之功率裝置(雙極電晶體、MOSFET等)以將所需功率量遞送至電漿腔室100。Another problem is that the high frequency generator 102 needs to deliver power to a time-varying load (modulated plasma load), where the time-averaged load reflection coefficient magnitude is high. Referring to FIGS. 3A and 3B , for example, graphs depicting the load reflection coefficient seen by the high frequency generator 102 over the period of one cycle of the low frequency generator 108 are shown, and FIG. Graph of the resulting reflected power seen by the high frequency generator 102 for the filter 104 depicted in 1. As shown, the magnitude of the peak load reflection coefficient seen by the high frequency generator 102 can be close to 1 (and can even exceed 1, meaning that net power is flowing from the plasma load to the high frequency generator 102), while by The average load reflection coefficient value seen by the high frequency generator 102 may be 0.76. The relatively high load reflection coefficient magnitude means that, in general, the high frequency generator 102 may have difficulty applying the desired power level and be more prone to failure. Therefore, the high frequency generator 102 may require more power devices (bipolar transistors, MOSFETs, etc.) than would normally be required to deliver the required amount of power to the plasma chamber 100 .

本揭示內容之態樣在此係關於用以移除或減輕電漿調變之效應的解決方案。圖1中所描繪之態樣係所描繪之濾波器104。如上文所論述,在不存在所描繪之濾波器104的情況下,經調變電漿負載向高頻率產生器102呈現時變非線性負載,此呈現出具有挑戰性的問題。Aspects of the disclosure herein relate to solutions to remove or mitigate the effects of plasma modulation. The aspect depicted in FIG. 1 is filter 104 depicted. As discussed above, in the absence of the depicted filter 104, the modulated plasma load presents a time-varying non-linear load to the high frequency generator 102, which presents a challenging problem.

在許多實施例中,圖1中所描繪之濾波器104可經實施為安置於高頻率產生器102與電漿腔室100之間的極窄頻寬、高功率濾波器。濾波器104可在高頻率產生器102之頻率下具有相當低損耗且充分抑制混合產物以限制在濾波器104之輸入處呈現至高頻率產生器102的負載反射係數之變化,同時在高功率施加下為穩定的。當實施時,濾波器104可具有窄頻寬以對旁頻帶頻率進行濾波。如本文所使用,頻寬經定義為存在於較低截止頻率與較高截止頻率之間的頻率範圍,其中這些截止頻率中之每一者比最大中心或諧振峰值低3 dB,同時使這兩個點外部的其他頻率衰減或減弱超過3 dB。In many embodiments, the filter 104 depicted in FIG. 1 may be implemented as a very narrow bandwidth, high power filter disposed between the high frequency generator 102 and the plasma chamber 100 . The filter 104 can have relatively low loss at the frequency of the high frequency generator 102 and suppress the mixing products sufficiently to limit the change in the load reflection coefficient presented at the input of the filter 104 to the high frequency generator 102 while under high power application for stable. When implemented, filter 104 may have a narrow bandwidth to filter sideband frequencies. As used herein, bandwidth is defined as the frequency range that exists between the lower cutoff frequency and the upper cutoff frequency, where each of these cutoff frequencies is 3 dB below the maximum center or resonant peak, while making both Other frequencies outside the point are attenuated or attenuated by more than 3 dB.

在一些實施例中,舉例而言,低頻率產生器108係藉由400 kHz產生器實現,且高頻率產生器102係藉由60 MHz RF產生器實現;因此,呈現1比150之頻率比率。因此,在這些實施例中,濾波器104可在距離中心頻率不到百分之一的頻率下抑制功率。作為一特定實例,低頻率產生器108可為將電壓函數施加至基板支撐件之偏壓供應器,且高頻率產生器102係點燃且維持電漿之源產生器。In some embodiments, for example, the low frequency generator 108 is implemented with a 400 kHz generator and the high frequency generator 102 is implemented with a 60 MHz RF generator; thus, a frequency ratio of 1 to 150 is present. Thus, in these embodiments, filter 104 may reject power at frequencies less than one percent away from the center frequency. As a specific example, the low frequency generator 108 may be a bias voltage supply that applies a function of voltage to the substrate support, and the high frequency generator 102 is a source generator that ignites and maintains the plasma.

並且在許多實施例中,在高頻率產生器102之頻率下對功率的抑制係至多2 dB,且在大於低頻率產生器108之頻率的頻率下來自高頻率產生器102之頻率的對功率之抑制比在高頻率產生器102之頻率下對功率的抑制高了至少2 dB。在一些實施方案中,濾波器104之頻寬係高頻率產生器102之頻率的2%(或更小)。若高頻率產生器102係藉由60 MHz RF產生器實現,則例如濾波器之頻寬可為1.2 MHz或更小。And in many embodiments, the rejection of the power at the frequency of the high frequency generator 102 is at most 2 dB, and the rejection of the power from the frequency of the high frequency generator 102 at frequencies greater than the frequency of the low frequency generator 108 The rejection is at least 2 dB higher than the rejection of power at the high frequency generator 102 frequency. In some implementations, the bandwidth of filter 104 is 2% (or less) of the frequency of high frequency generator 102 . If the high-frequency generator 102 is realized by a 60 MHz RF generator, then, for example, the bandwidth of the filter can be 1.2 MHz or less.

簡要地參考圖4A,展示了描繪用於濾波器104之例示性設計的效能態樣之曲線圖。在圖4A中,濾波器104之頻寬具有約60 MHz之中心頻率,且在離中心頻率幾分之一百萬赫處,功率抑制了8 dB。圖4B展示當並未利用圖1中所描繪之濾波器時可藉由高頻率產生器遞送至電漿負載之淨功率。圖4B展示具有諸如圖4A中所展示之回應的濾波器將允許以60 MHz之基本頻率遞送至電漿負載的功率以相對較高效率自高頻率產生器102傳遞至電漿負載,且將自電漿負載反射之功率抑制回至高頻率產生器102。Referring briefly to FIG. 4A , there is shown a graph depicting performance profiles for an exemplary design of filter 104 . In FIG. 4A, the bandwidth of filter 104 has a center frequency of about 60 MHz, and the power is rejected by 8 dB at fractions of a megahertz from the center frequency. Figure 4B shows the net power that can be delivered to the plasma load by the high frequency generator when the filter depicted in Figure 1 is not utilized. 4B shows that a filter with a response such as that shown in FIG. 4A will allow power delivered to the plasma load at the fundamental frequency of 60 MHz to be delivered from the high frequency generator 102 to the plasma load with relatively high efficiency, and will automatically The power reflected by the plasma load is suppressed back to the high frequency generator 102 .

但所屬技術領域中具有通常知識者尚未引起實施具有類似於圖4A中之濾波器特性的特性之濾波器104。缺少對電漿調變之基礎問題的意識係一個原因。但另外,設計具有圖4A中所描繪之特性之濾波器係具有挑戰性的(即使在低功率位準下)。但在許多實施例中,濾波器104處置高功率量(例如,若干kW之功率),且高功率及窄頻帶組合並非係所屬技術領域中具有通常知識者可能嘗試之組合。But those of ordinary skill in the art have not yet led to implement a filter 104 with characteristics similar to the filter characteristics in FIG. 4A. A lack of awareness of the fundamental issues of plasma modulation is one reason. But in addition, designing a filter with the characteristics depicted in Figure 4A is challenging (even at low power levels). In many embodiments, however, filter 104 handles high amounts of power (eg, several kW of power), and the combination of high power and narrowband is not a combination that one of ordinary skill in the art might try.

如上文所論述,圖3A及圖3B描繪當並未利用濾波器104時藉由高頻率產生器所見之負載反射係數。並且圖5A及圖5B描繪當實施例示性濾波器104時藉由高頻率產生器102所見之負載反射係數。如圖5A中所展示,當濾波器104經部署時,反射係數經壓縮以在電漿調變之循環內保持更接近於曲線圖之中心(相比於圖3A中的負載反射係數)。As discussed above, FIGS. 3A and 3B depict the load reflection coefficient seen by the high frequency generator when the filter 104 is not utilized. And FIGS. 5A and 5B depict the load reflection coefficient seen by the high frequency generator 102 when the exemplary filter 104 is implemented. As shown in FIG. 5A , when filter 104 is deployed, the reflection coefficient is compressed to stay closer to the center of the graph over cycles of plasma modulation (compared to the loaded reflection coefficient in FIG. 3A ).

圖3B描繪在不利用濾波器104的情況下時域中之反射係數量值。圖3C中所描繪之前向功率(接近於100瓦特)的對應位準遠低於在電漿處理期間所利用之功率,但圖3B中所描繪之反射係數及圖3C中的正向及反射功率之相對量值係指令性的。如所展示,前向功率係99.8瓦特且反射功率係63.4瓦特。相比之下,如圖5C中所展示,在濾波器104就位的情況下,存在99.9瓦特之前向功率及3.4瓦特之反射功率;因此,高頻率產生器102置放於小得多的應力下。並且在濾波器104之負載側上,如圖6C中所展示,濾波器104可增加平均前向功率。FIG. 3B depicts reflection coefficient magnitudes in the time domain without utilizing filter 104 . The corresponding level of forward power (nearly 100 watts) depicted in FIG. 3C is much lower than that utilized during plasma processing, but the reflection coefficient depicted in FIG. 3B and the forward and reflected power in FIG. 3C The relative magnitude is prescriptive. As shown, the forward power is 99.8 watts and the reflected power is 63.4 watts. In contrast, as shown in Figure 5C, with the filter 104 in place, there is 99.9 watts of forward power and 3.4 watts of reflected power; thus, the high frequency generator 102 is placed under much less stress Down. And on the load side of the filter 104, as shown in Figure 6C, the filter 104 can increase the average forward power.

參考圖7,展示了描繪用於經調變電漿系統中之電漿處理之方法的流程圖700。如所展示,功率係藉由高頻率產生器102供應至電漿腔室100以點燃且維持電漿(區塊710)。另外,功率係藉由低頻率產生器108供應至電漿腔室100(區塊720)。高頻率產生器102與電漿腔室100之間的功率傳送係藉由濾波器104在對應於高頻率及低頻率之混合產物的頻率下被抑制,該濾波器安置於電漿腔室100與高頻率產生器之間(區塊730)。匹配網路106之調諧可經調整(例如,最佳化)以平衡向高頻率產生器102提供良好匹配阻抗的要求以及至電漿腔室100之功率傳送的效率(區塊740)。Referring to FIG. 7 , there is shown a flowchart 700 depicting a method for plasma processing in a modulated plasma system. As shown, power is supplied to the plasma chamber 100 by the high frequency generator 102 to ignite and sustain the plasma (block 710). Additionally, power is supplied to the plasma chamber 100 by the low frequency generator 108 (block 720). Power transfer between the high frequency generator 102 and the plasma chamber 100 is suppressed at frequencies corresponding to the mixed product of the high frequency and the low frequency by a filter 104 disposed between the plasma chamber 100 and the plasma chamber 100. between high frequency generators (block 730). The tuning of the matching network 106 may be adjusted (eg, optimized) to balance the requirement to provide a well-matched impedance to the high frequency generator 102 and the efficiency of power delivery to the plasma chamber 100 (block 740 ).

簡要地返回參考圖6A,應注意,負載反射係數之軌跡為繞原點不對稱的,如圖3A中之情況。此為濾波器104之負載側上所需之阻抗的特性,以便使濾波器104之輸入匹配於接近於零之負載反射係數且得到自高頻率產生器102至電漿負載的高效功率傳送。濾波器104之負載側上之平均負載反射係數在圖6A中藉由「+」指示。如圖6A中所指示的濾波器104之負載側上之負載反射係數的平均值係大致-0.23至j0.00。如圖5A中所指示的濾波器104之高頻率產生器102側上之負載反射係數的平均值係大致0.04至j0.02。此繪示使用此濾波器104之態樣,即濾波器104之負載側上的負載反射係數並未經調諧至匹配負載(大部分系統中為50歐姆),但典型地經設定以達成如藉由寬頻量測系統量測之較低時間平均負載反射係數量值。因此,在許多實施方案中,寬頻量測組件116或120用以俘獲至少一階混合產物。寬頻量測系統116或120可經實施為匹配網路106、高頻率產生器102之整體式組件,或可經實施為個別組件。因此,在區塊740處調整匹配網路之步驟不同於匹配網路106通常所需之步驟。Referring back briefly to Figure 6A, it should be noted that the locus of the load reflection coefficient is asymmetric about the origin, as is the case in Figure 3A. This is a characteristic of the required impedance on the load side of the filter 104 in order to match the input of the filter 104 to a load reflection coefficient close to zero and to obtain efficient power transfer from the high frequency generator 102 to the plasma load. The average load reflection coefficient on the load side of filter 104 is indicated by a "+" in FIG. 6A. The average value of the load reflection coefficient on the load side of the filter 104 as indicated in FIG. 6A is approximately -0.23 to j0.00. The average value of the load reflection coefficient on the high frequency generator 102 side of the filter 104 as indicated in FIG. 5A is approximately 0.04 to j0.02. This depicts the use of this filter 104, ie the load reflection coefficient on the load side of the filter 104 is not tuned to match the load (50 ohms in most systems), but is typically set so as to achieve Lower time-averaged load reflection coefficient values measured by a broadband measurement system. Thus, in many embodiments, broadband measurement component 116 or 120 is used to capture at least first order mixing products. The broadband measurement system 116 or 120 may be implemented as an integral component of the matching network 106, the high frequency generator 102, or may be implemented as individual components. Therefore, the step of adjusting the matching network at block 740 is different from the steps normally required by the matching network 106 .

在許多實施方案中,藉由電漿腔室100呈現至濾波器104之阻抗經調整以最佳化自高頻率產生器102至電漿腔室100之功率傳送的效率。舉例而言,可最小化呈現至濾波器之負載反射係數之絕對值的時間平均值,且可使用至少等於低頻率產生器108之頻率的頻寬來量測負載反射係數(例如,藉由寬頻量測系統116或120)。亦考慮,負載反射係數之時間平均值最佳化為遠離0+j0。In many implementations, the impedance presented by the plasma chamber 100 to the filter 104 is adjusted to optimize the efficiency of power transfer from the high frequency generator 102 to the plasma chamber 100 . For example, the time average of the absolute value of the load reflection coefficient presented to the filter can be minimized, and the load reflection coefficient can be measured using a bandwidth at least equal to the frequency of the low frequency generator 108 (e.g., by broadband metrology system 116 or 120). It is also considered that the time average value of the load reflection coefficient is optimized away from 0+j0.

再次參考圖7,匹配網路106與濾波器104之間的纜線之長度可經調整(例如,最佳化)以控制終止功率混合產物所藉由之阻抗(區塊750)。儘管在其他電漿處理系統中調整(例如,為了穩定性)纜線長度(在匹配網路與電漿處理腔室之間),但當使用濾波器104時,在選擇此纜線長度時存在額外考慮因素,亦即:在混合產物之頻率下藉由濾波器104提供至電漿系統的終端阻抗;將濾波器104連接至匹配網路106之纜線;以及匹配網路106。改變纜線長度會改變在濾波器104之負載側上的調變之性質。此纜線長度亦影響多狀態應用中之頻率調諧;因此,此纜線長度之選擇相比於在先前電漿處理系統中可為更複雜的。Referring again to FIG. 7 , the length of the cable between the matching network 106 and the filter 104 may be adjusted (eg, optimized) to control the impedance by which the power mixing product is terminated (block 750 ). While the cable length (between the matching network and the plasma processing chamber) is adjusted (e.g. for stability) in other plasma processing systems, when using the filter 104 there are Additional considerations, namely: the terminating impedance provided by the filter 104 to the plasma system at the frequency of the hybrid product; the cables connecting the filter 104 to the matching network 106; and the matching network 106. Changing the cable length changes the nature of the modulation on the load side of the filter 104 . This cable length also affects frequency tuning in multi-state applications; therefore, the selection of this cable length can be more complex than in previous plasma processing systems.

圖8A及圖8B係參考圖1所描述之濾波器104之實施例的等效電路。圖8A展示無損耗原型之等效電路,且圖8B展示當被簡化為使用可實現之有損耗組件來實現時的濾波器104之等效電路。存在實現此窄頻帶、高功率濾波器(例如,使用大型環形諧振器或空腔)之其他方式,但在所有情況下,必須謹慎注意存在於這些濾波器中之高電壓、高電流及高功率耗散。8A and 8B are equivalent circuits of an embodiment of the filter 104 described with reference to FIG. 1 . Figure 8A shows the equivalent circuit of the lossless prototype, and Figure 8B shows the equivalent circuit of filter 104 when simplified to be implemented using realizable lossy components. Other ways of implementing this narrow-band, high-power filter exist (for example, using large ring resonators or cavities), but in all cases, careful attention must be paid to the high voltage, high current, and high power present in these filters dissipation.

接下來參考圖9,展示了經設計具有兩個並聯螺旋諧振器之水冷濾波器904之外部的透視圖。濾波器含有用於使水穿過濾波器以供冷卻之兩個水連接910及920、輸入連接器930以及輸出連接器(在此視圖中不可見)。Referring next to FIG. 9 , there is shown a perspective view of the exterior of a water-cooled filter 904 designed with two parallel spiral resonators. The filter contains two water connections 910 and 920 for passing water through the filter for cooling, an input connector 930 and an output connector (not visible in this view).

圖10係具有兩個並聯螺旋諧振器之濾波器904設計之內部的視圖。如所展示,螺旋諧振器中之每一者包含中空螺旋線圈1020,且每一中空螺旋線圈1020耦接至銅塊1024。自銅塊1024延伸的係銅綁帶1026且使銅綁帶1026與銅塊1024絕緣的係陶瓷絕緣體1028。在此實施方案中,金屬化物1030安置於陶瓷1028上以形成輸入電容器810及輸出電容器820。另外,每一中空螺旋線圈1020包含接地端1022。濾波器904亦包含包圍中空螺旋線圈1020及銅塊1024之經灌封圓柱形殼體1032(出於觀察濾波器104之內部組件的目的而透明地表示)。Figure 10 is a view of the interior of a filter 904 design with two parallel spiral resonators. As shown, each of the helical resonators includes hollow helical coils 1020 , and each hollow helical coil 1020 is coupled to a copper block 1024 . Extending from the copper block 1024 is a copper strap 1026 and insulating the copper strap 1026 from the copper block 1024 is a ceramic insulator 1028 . In this implementation, metallization 1030 is disposed on ceramic 1028 to form input capacitor 810 and output capacitor 820 . In addition, each hollow helical coil 1020 includes a ground terminal 1022 . Filter 904 also includes a potted cylindrical housing 1032 (shown transparently for purposes of viewing the internal components of filter 104 ) surrounding hollow helical coil 1020 and copper block 1024 .

圖11展示濾波器904之剖視圖。此視圖展示銅綁帶1026如何連接至輸入連接器1110及輸出連接器1140至形成於陶瓷絕緣體1120及1150上之電容器。此視圖亦展示中空螺旋線圈1130及1160如何連接至銅塊1024。FIG. 11 shows a cross-sectional view of filter 904 . This view shows how copper strap 1026 is connected to input connector 1110 and output connector 1140 to capacitors formed on ceramic insulators 1120 and 1150 . This view also shows how hollow helical coils 1130 and 1160 are connected to copper block 1024 .

圖12更詳細地展示銅塊1240(圖10中為1024)。此總成提供自輸入及輸出至螺旋諧振器之所需電容耦接。由於所需電容器之較小值、電容器必須耐受的高電壓以及電容器必須耗散之功率,因此在陶瓷基板上實施電容器用於濾波器之設計中。銅塊含有水道1210,中空螺旋線圈附接(藉由例如焊接)於該水道中。形成於陶瓷絕緣體1220及1260上之電容器因此為水冷式。陶瓷絕緣體分別具有前部金屬化物1280及後部金屬化物1250。前部金屬化物1280之大小控制由總成實現之電容。陶瓷絕緣體可使用導電環氧樹脂附接至銅塊1240。綁帶1270及1230可焊接至前部金屬化物且焊接至連接器1110及1140。Figure 12 shows copper block 1240 (1024 in Figure 10) in more detail. This assembly provides the required capacitive coupling from the input and output to the spiral resonator. Implementing capacitors on ceramic substrates is used in the design of filters due to the small value of the required capacitors, the high voltage the capacitors must withstand, and the power the capacitors must dissipate. The copper block contains a water channel 1210 into which the hollow helical coil is attached (by eg welding). The capacitors formed on ceramic insulators 1220 and 1260 are thus water cooled. The ceramic insulators have front metallization 1280 and rear metallization 1250 respectively. The size of the front metallization 1280 controls the capacitance implemented by the assembly. A ceramic insulator may be attached to copper block 1240 using conductive epoxy. Straps 1270 and 1230 may be soldered to the front metallization and to connectors 1110 and 1140 .

圖13展示濾波器904之分解視圖。絕緣托架1310將中空螺旋線圈固持於適當位置且向總成提供機械穩定性。該托架由例如PTFE塑膠或陶瓷等合適低損耗介電材料製成,且含有孔以允許灌封材料流過。歸因於在此設計中可能遇到之高電壓,濾波器之高電壓區域經灌封(例如,使用矽酮介電性凝膠)以降低由於空氣擊穿所致的故障風險。替代地,整個總成可抽空至高真空、藉由高品質介電液體填充,或藉由諸如但不限於六氟化硫(SF6)之絕緣加壓氣體填充。FIG. 13 shows an exploded view of filter 904 . An insulating bracket 1310 holds the hollow helical coil in place and provides mechanical stability to the assembly. The bracket is made of a suitable low loss dielectric material such as PTFE plastic or ceramic and contains holes to allow the potting material to flow through. Due to the high voltages that may be encountered in this design, the high voltage area of the filter is potted (for example, with a silicone dielectric gel) to reduce the risk of failure due to air breakdown. Alternatively, the entire assembly can be evacuated to high vacuum, filled with a high quality dielectric liquid, or filled with an insulating pressurized gas such as but not limited to sulfur hexafluoride (SF6).

應認識到,鑒於本揭示內容,所屬技術領域中具有通常知識者能夠設計螺旋線圈1020之態樣(例如,匝數、半徑、長度、節距、內線圈直徑及外線圈直徑,以及線圈之外部直徑)以達成所要頻寬及熱耗散。亦應認識到,當然考慮到圖9至圖13中所描繪之濾波器904之設計的變化。It should be appreciated that, in view of this disclosure, one of ordinary skill in the art can design aspects of the helical coil 1020 (e.g., number of turns, radius, length, pitch, inner and outer coil diameters, and outer coil diameters of the coils). diameter) to achieve the desired bandwidth and heat dissipation. It should also be appreciated that variations in the design of the filter 904 depicted in FIGS. 9-13 are of course contemplated.

與使用電感器之設計相比,使用在低頻率或諧振感應側上接近於諧振之螺旋諧振器而非電感器實現了類似頻寬,但是與具有電感器的設計相比,螺旋諧振器提供了較小有效電感。另外,並聯使用兩個諧振器允許整個總成之接地連接之水冷,其中水系統可保持接地。更具體言之,自接地連接之水系統提供的水經由中空螺旋線圈1020饋送,從而使得能夠耗散大量熱。舉例而言,濾波器904(及濾波器904之變化)可在相對較高功率位準(例如,在1 kW至30 kW功率範圍內)下操作。藉助於其設計,濾波器904(及其變化)可在相對較高功率位準下操作,同時以至少75%之效率操作。Using a spiral resonator instead of an inductor, which is close to resonance on the low frequency or inductive side of the resonance, achieves a similar bandwidth compared to a design using an inductor, but compared to a design with an inductor, the spiral resonator provides Smaller effective inductance. Additionally, the use of two resonators in parallel allows water cooling of the ground connection of the entire assembly, where the water system can remain grounded. More specifically, water provided from a ground-connected water system is fed through the hollow helical coil 1020, enabling a large amount of heat to be dissipated. For example, filter 904 (and variations of filter 904) may operate at relatively high power levels (eg, in the 1 kW to 30 kW power range). By virtue of its design, filter 904 (and variations thereof) can operate at relatively high power levels while operating at an efficiency of at least 75%.

圖14展示具有調諧芯塊之濾波器1404。可需要調諧以用於歸因於組件製造容限而設定濾波器之通帶頻率,但亦可主動地調整該調諧以補償歸因於例如濾波器1404之自加熱的分量值變化。調諧芯塊1420及1440可為例如可在中空螺旋線圈1020內沿所描繪Y軸移動之鐵氧體棒,但更典型地,調諧芯塊可由銅製成。由合適絕緣體(例如,PTFE塑膠)製成之杯體1410及1430提供不含灌封化合物之區域,在其中可移動調諧芯塊。Figure 14 shows a filter 1404 with tuning chips. Tuning may be required for setting the passband frequency of the filter due to component manufacturing tolerances, but may also be actively adjusted to compensate for component value variations due to, for example, self-heating of the filter 1404 . Tuning pellets 1420 and 1440 may be, for example, ferrite rods movable within hollow helical coil 1020 along the depicted Y-axis, but more typically, tuning pellets may be made of copper. Cups 1410 and 1430 made of a suitable insulator (eg, PTFE plastic) provide an area free of potting compound in which to move the tuning pellets.

使用濾波器104、804B、904、1404將頻率範圍壓縮至極小頻率範圍,在該極小頻率範圍內可進行頻率調諧(用於阻抗匹配)。此需要不同方法來應對產生器之多狀態操作。多狀態操作之實例可在多個功率位準之間切換,其中每一功率位準表示一狀態且其中高頻率產生器102歸因於電漿負載之非線性性質在每一狀態下看到不同負載阻抗,且其中高頻率產生器102可在每一狀態下以不同頻率操作以便改良該狀態之阻抗匹配或穩定性。為了促進使用濾波器104之系統中的多狀態操作,吾人可需要確保針對不同狀態呈現至濾波器104之負載側的阻抗位於沿著或接近於可藉由對高頻率產生器102頻率進行頻率調諧而匹配之阻抗線。此可藉由在濾波器之負載側上添加固定或可變時間延遲,諸如延遲元件112,而進行。Filters 104, 804B, 904, 1404 are used to compress the frequency range to a very small frequency range within which frequency tuning (for impedance matching) is possible. This requires a different approach to multi-state operation of generators. An example of multi-state operation may be switching between multiple power levels, where each power level represents a state and where the high frequency generator 102 sees different values in each state due to the non-linear nature of the plasma load. load impedance, and wherein the high frequency generator 102 may operate at a different frequency in each state in order to improve impedance matching or stability for that state. To facilitate multi-state operation in systems using filter 104, one may need to ensure that the impedance presented to the load side of filter 104 for the different states lies along or close to And the matching impedance line. This can be done by adding a fixed or variable time delay, such as delay element 112, on the load side of the filter.

本揭示內容之態樣係高頻率產生器102之頻率調諧以調整呈現至高頻率產生器102的阻抗。參考圖15,舉例而言,展示了可用於實現參考圖1所描述之高頻率產生器102的高頻率產生器1502之方塊圖。如所展示,高頻率產生器1502包含激發器1505、功率放大器1510、濾波器1515、感測器1520及頻率調諧子系統1525。激發器1505(其可包括振盪器)在RF頻率下產生典型地呈正弦波或方波形式之振盪信號。功率放大器1510放大藉由激發器1505產生之信號以產生經放大振盪信號。舉例而言,功率放大器1510可放大1 mW至3 kW之激發器輸出信號。濾波器1515係視情況選用的(且不同於濾波器104)且可對經放大振盪信號進行濾波以產生由單一RF頻率(正弦的)構成之信號。An aspect of the present disclosure is frequency tuning of the high frequency generator 102 to adjust the impedance presented to the high frequency generator 102 . Referring to FIG. 15 , for example, a block diagram of a high frequency generator 1502 that may be used to implement the high frequency generator 102 described with reference to FIG. 1 is shown. As shown, high frequency generator 1502 includes exciter 1505 , power amplifier 1510 , filter 1515 , sensor 1520 and frequency tuning subsystem 1525 . An exciter 1505 (which may include an oscillator) generates an oscillating signal, typically in the form of a sine or square wave, at an RF frequency. The power amplifier 1510 amplifies the signal generated by the exciter 1505 to generate an amplified oscillation signal. For example, the power amplifier 1510 can amplify the exciter output signal from 1 mW to 3 kW. Filter 1515 is optional (and different from filter 104) and may filter the amplified oscillating signal to produce a signal consisting of a single RF frequency (sinusoidal).

感測器1520量測指示電漿腔室100中之電漿負載之一或多個參數。在一個實施例中,感測器1520量測指示電漿負載之阻抗Z之功率參數。取決於特定實施例,感測器1520可為例如但不限於VI感測器或定向耦接器。Sensor 1520 measures one or more parameters indicative of plasma loading in plasma chamber 100 . In one embodiment, sensor 1520 measures a power parameter indicative of the impedance Z of the plasma load. Depending on the particular embodiment, sensor 1520 may be, for example but not limited to, a VI sensor or a directional coupler.

對負載阻抗接近於所要阻抗之程度的量測可採取許多形式,但典型地其表現為反射係數 Γ =

Figure 02_image001
其中Γ(γ)係阻抗Z相對於所要阻抗 Z 0之反射係數。反射係數(|Γ|)之量值係用以表現阻抗Z接近於所要阻抗 Z 0之程度的極便利方式。Z及 Z 0一般均為複數。 A measure of how close the load impedance is to the desired impedance can take many forms, but typically it is expressed as the reflection coefficient Γ =
Figure 02_image001
where Γ(γ) is the reflection coefficient of the impedance Z relative to the desired impedance Z 0 . The magnitude of the reflection coefficient (|Γ|) is a very convenient way of expressing how close the impedance Z is to the desired impedance Z 0 . Z and Z 0 are generally plural.

一般而言,頻率調諧子系統1525自感測器1520接收指示電漿負載之阻抗Z的量測且處理這些量測以產生經由頻率控制線1530饋送至激發器1505以調整由激發器1505產生之頻率的頻率調整。In general, the frequency tuning subsystem 1525 receives measurements from the sensor 1520 that are indicative of the impedance Z of the plasma load and processes these measurements to generate a frequency that is fed to the exciter 1505 via a frequency control line 1530 to adjust the frequency generated by the exciter 1505. frequency adjustment of the frequency.

作為感測器1520(如下文所論述)之替代方案,感測器114可用於量測濾波器104之負載側上的功率參數,且寬頻量測系統116可將指示電漿負載之阻抗Z的信號提供至頻率調諧子系統1525。As an alternative to sensor 1520 (discussed below), sensor 114 may be used to measure a power parameter on the load side of filter 104, and broadband measurement system 116 may be indicative of the impedance Z of the plasma load. The signal is provided to frequency tuning subsystem 1525 .

頻率調諧子系統1525執行計算(基於頻率調諧方法)以產生經由頻率控制線1530饋送至激發器1505之頻率調整(例如,頻率步階)。在一些使用情況下,目標係調整激發器1505之頻率,藉此以使|Γ|(亦即,其達成儘可能接近於零的Γ)最小化之方式改變電漿負載的阻抗。達成此最小|Γ|之頻率可被稱為目標頻率。如所屬技術領域中具有通常知識者所理解,零之理想複雜反射係數對應於其中電漿負載阻抗與所要阻抗Z 0完美匹配之匹配條件。在其他實施例中,目標並非為最小|Γ|。實情為,頻率調諧子系統1525有意地調諧激發器1505以產生除產生最小|Γ|之頻率之外的頻率。此實施例可被稱為「去諧」實施方案,且目標頻率可不使Γ最小化。 Frequency tuning subsystem 1525 performs calculations (based on frequency tuning methods) to generate frequency adjustments (eg, frequency steps) that are fed to exciter 1505 via frequency control line 1530 . In some use cases, the goal is to adjust the frequency of exciter 1505, thereby changing the impedance of the plasmonic load in a way that minimizes |Γ| (ie, it achieves Γ as close to zero as possible). The frequency at which this minimum |Γ| is achieved may be referred to as the target frequency. As understood by those of ordinary skill in the art, an ideal complex reflection coefficient of zero corresponds to a matching condition where the plasma load impedance perfectly matches the desired impedance Z 0 . In other embodiments, the target is not minimum |Γ|. Instead, the frequency tuning subsystem 1525 intentionally tunes the exciter 1505 to produce frequencies other than the frequency that produces the minimum |Γ|. This embodiment may be referred to as a "detuned" implementation, and the target frequency may not minimize Γ.

接下來參考圖16,展示了描繪可結合本文所揭示之實施例進行之方法的流程圖1600。如所展示,具有多狀態波形之功率係藉由高頻率產生器102、1502施加至電漿腔室100(區塊1610),且功率亦係藉由低頻率產生器108施加至電漿腔室100(區塊1620)。藉由濾波器104抑制高頻率及低頻率之混合產物(區塊1630)。並且如所展示,在濾波器104與電漿腔室100之間的功率信號經延遲(區塊1640),且高頻率產生器102之頻率在這些狀態中之每一者期間經調整以調整呈現至高頻率產生器的阻抗(區塊1650)。Referring next to FIG. 16 , there is shown a flowchart 1600 depicting a method that may be performed in conjunction with embodiments disclosed herein. As shown, power having a multi-state waveform is applied to the plasma chamber 100 by the high frequency generator 102, 1502 (block 1610), and power is also applied to the plasma chamber by the low frequency generator 108 100 (block 1620). Mixed products of high and low frequencies are suppressed by the filter 104 (block 1630). And as shown, the power signal between the filter 104 and the plasma chamber 100 is delayed (block 1640), and the frequency of the high frequency generator 102 is adjusted during each of these states to adjust the presented Impedance to high frequency generator (block 1650).

準確功率量測可需要藉由足以俘獲足夠數目個混合產物之頻寬來量測濾波器104之負載側上的功率。此係因為濾波器104之效率取決於呈現至濾波器104之負載阻抗的軌跡。濾波器104之高頻率產生器102側上之量測可不提供對遞送至電漿負載的功率之準確量測,此係因為即使有可能考慮濾波器104之效率,此亦為困難的。Accurate power measurements may require measuring the power on the load side of the filter 104 with a bandwidth sufficient to capture a sufficient number of mixing products. This is because the efficiency of the filter 104 depends on the locus of the load impedance presented to the filter 104 . Measurements on the high frequency generator 102 side of the filter 104 may not provide an accurate measurement of the power delivered to the plasma load because it is difficult, if not impossible, to take into account the efficiency of the filter 104 .

多種不同頻率調諧方法可用以在區塊1650處調整高頻率產生器102之頻率。一般而言,頻率調諧方法判定在哪一方向調整頻率(增大還是減小頻率)且判定在對頻率進行改變時所使用的頻率步階之量值。A variety of different frequency tuning methods may be used to adjust the frequency of the high frequency generator 102 at block 1650 . In general, frequency tuning methods determine in which direction to adjust the frequency (increase or decrease the frequency) and determine the magnitude of the frequency steps used in making the change in frequency.

假定理想操作頻率係負載反射係數之量值處於或實質上接近於其最小值的頻率,應注意,受控變數(頻率)與誤差之間的關係未必為單調的。此外,操作之最佳點係在增益(定義為誤差變化除以頻率變化)為零之點處。Assuming that the ideal operating frequency is the frequency at which the magnitude of the load reflection coefficient is at or substantially close to its minimum value, it should be noted that the relationship between the controlled variable (frequency) and the error is not necessarily monotonic. Furthermore, the optimum point of operation is at the point where the gain (defined as the change in error divided by the change in frequency) is zero.

為了增加挑戰,亦有可能的係,局部最小值可存在於其中控制方法可經截留之區域中。在已知關於負載之先驗資訊的一些特殊情況下,有可能將誤差函數配置為頻率之單調函數,以使得可使用簡單線性控制器。舉例而言,此系統揭示於Chen等人於2002年10月29日發佈之題為「Pulsed RF Power Delivery for Plasma Processing」的美國專利第6,472,822號中。此線性控制由於頻率與誤差之間的非單調關係而很少適用,除了在關於負載之先驗資訊可用的這些特殊情況下。To add to the challenge, it is also possible that local minima may exist in regions where control methods may be trapped. In some special cases where a priori information about the load is known, it is possible to configure the error function as a monotonic function of frequency, so that a simple linear controller can be used. For example, such a system is disclosed in US Patent No. 6,472,822, issued October 29, 2002 to Chen et al., entitled "Pulsed RF Power Delivery for Plasma Processing." This linear control is rarely applicable due to the non-monotonic relationship between frequency and error, except in these special cases where a priori information about the load is available.

已發現,關於電漿負載之兩個常見問題係:(1)負載之非線性性質,因為電漿負載阻抗係功率位準之函數;以及(2)負載阻抗由於非線性電漿負載之變化化學性質、壓力、溫度及其他物理特性而隨時間改變。電漿(或電漿類)負載特有之另一問題係:若遞送至電漿之功率在足夠長時間內降至低於最小值,則電漿可熄滅。因此,不充分功率遞送至電漿負載之頻率無法非常長時間地施加,或電漿將熄滅。It has been found that two common problems with plasma loading are: (1) the nonlinear nature of the loading, since the plasma loading impedance is a function of power level; and (2) the changing chemistry of the loading impedance due to the nonlinear plasma loading. Properties, pressure, temperature, and other physical properties change over time. Another problem specific to plasma (or plasma-like) loads is that the plasma can go out if the power delivered to the plasma falls below the minimum for a long enough time. Consequently, frequencies that do not deliver sufficient power to the plasma load cannot be applied for very long periods of time, or the plasma will go out.

此外,當至負載之功率(例如,RF功率)經脈衝時,頻率調諧變得甚至更成問題。歸因於負載之非線性性質及阻抗匹配網路所使用的相對較高品質因數(儲存能量與每循環(例如,RF循環)遞送之能量的比率,常常由「Q」表示),負載阻抗在所施加脈衝(例如,RF脈衝)之前幾微秒期間極快速地改變。Furthermore, frequency tuning becomes even more problematic when power (eg, RF power) to the load is pulsed. Due to the nonlinear nature of the load and the relatively high figure of merit (the ratio of stored energy to delivered energy per cycle (e.g., RF cycle), often denoted "Q") used by the impedance matching network, the load impedance in The applied pulse (eg RF pulse) changes very rapidly during the preceding few microseconds.

van Zyl等人於2010年11月23日發佈('223專利)之以引用之方式併入本文的題為「Method and Apparatus for Advanced Frequency Tuning」之美國專利第7,839,223號揭示可結合本文中所揭示之實施例而使用的多種頻率調諧方法。在'223專利中所描述之一種方法中,若誤差(例如,γ之所要值與γ之實際值之間的差)正逐步減小,則准許頻率步階增加,且若誤差正逐步增加,則頻率步階可減小(或保持恆定)。此方法可結合本文所揭示之實施例而使用以有助於保持時變負載(例如,以限制或減小時變負載反射係數之變化)。The disclosure of U.S. Patent No. 7,839,223, entitled "Method and Apparatus for Advanced Frequency Tuning," issued by van Zyl et al. on November 23, 2010 (the '223 patent), incorporated herein by reference, may be incorporated herein by reference Various frequency tuning methods used in the embodiment. In one approach described in the '223 patent, if the error (e.g., the difference between the desired value of γ and the actual value of γ) is decreasing stepwise, the frequency step is allowed to increase, and if the error is increasing stepwise, Then the frequency step can be reduced (or kept constant). This approach can be used in conjunction with embodiments disclosed herein to help maintain time-varying loads (eg, to limit or reduce changes in time-varying load reflection coefficients).

一種用於同時施加多狀態波形(例如,脈衝)及頻率調諧之方法在脈衝開始時捨棄資訊,同時阻抗仍快速改變且在負載阻抗穩定時僅使用資訊有效地控制頻率。此方法避免對脈衝內之調諧的需要,但管理以獲得良好平均操作頻率。A method for simultaneous application of multi-state waveforms (eg, pulses) and frequency tuning discards information at the beginning of the pulse while the impedance is still changing rapidly and uses only the information to effectively control the frequency when the load impedance is stable. This approach avoids the need for in-pulse tuning, but manages to obtain a good average operating frequency.

為了避免混迭影響,量測及控制可與脈衝之上升邊緣同步。藉由延遲自脈衝開始時之量測及控制循環之開始,有可能在電漿型負載上進行合理操作。典型地,捨棄開始脈衝之後的前10微秒足以達成合理之結果。To avoid aliasing effects, measurement and control can be synchronized to the rising edge of the pulse. By delaying the start of the measurement and control cycle from the start of the pulse, it is possible to operate properly on plasma-type loads. Typically, discarding the first 10 microseconds after the start pulse is sufficient to achieve reasonable results.

在一些情況下,不可能在脈衝開始時完全捨棄資訊,但歸因於混迭效應之危險,或歸因於不充分控制頻寬,或歸因於由對頻率控制系統之高頻寬要求而引起的不穩定操作之風險,不希望使用脈衝內資訊。藉由使用記憶體,有可能設計具有與真正脈衝內控制系統類似之效能的系統,但其係使用控制脈衝間資訊之較低速度穩定控制器來實施。In some cases it is not possible to completely discard information at the beginning of the pulse, but due to the danger of aliasing effects, either due to insufficient control of the bandwidth, or due to the high bandwidth requirements of the frequency control system Risk of unstable operation, use of in-pulse information is undesirable. By using memory, it is possible to design a system with similar performance to a true intra-pulse control system, but implemented using a slower speed stabilizing controller that controls inter-pulse information.

由於量測及控制循環可與脈衝同步,因此有可能在依序脈衝中使用相同時槽且使用較慢(相比於脈衝內控制器)控制系統來在脈衝間基礎上控制頻率。另外,依序脈衝之相同時槽的量測可與鄰近於這些時槽之時槽的量測組合。不僅頻率,而且其他控制參數亦可由控制系統儲存及使用以例如控制遞送至負載之功率。這些其他控制參數可包含供應至功率裝置之DC電壓、在MOSFET之情況下(在雙極裝置的情況下之基極發射器)的閘極偏壓電壓以及RF驅動位準。描繪用於高脈衝重複頻率之脈衝間受控系統之操作的曲線圖展示於圖17、圖18及圖19中。若脈衝接通時間變得極長,則可更有利的係僅忽略來自前幾個時槽之資訊,或在脈衝中稍後某一時間切換至脈衝內控制。Since the measurement and control loops can be synchronized to the pulses, it is possible to control frequency on a pulse-to-pulse basis using the same time slot in sequential pulses and using a slower (compared to intra-pulse controller) control system. Additionally, measurements of the same time slots of sequential pulses may be combined with measurements of time slots adjacent to these time slots. Not only frequency, but other control parameters can also be stored and used by the control system to, for example, control the power delivered to the load. These other control parameters may include the DC voltage supplied to the power device, the gate bias voltage in the case of a MOSFET (base emitter in the case of a bipolar device), and the RF drive level. Graphs depicting the operation of pulse-to-pulse controlled systems for high pulse repetition frequencies are shown in FIGS. 17 , 18 and 19 . If the pulse on-time becomes extremely long, it may be more advantageous to just ignore the information from the first few time slots, or to switch to intra-pulse control sometime later in the pulse.

圖17、圖18及圖19一起繪示所揭示之脈衝間頻率調諧。在此方案中, f a2 為僅(或在鄰近時槽亦被視為具有某一加權的情況下為主要) e a0 e a1 f a1 之函數。類似地, f b2 為僅(或主要) e b0 e b1 f b1 之函數,等等。 Figures 17, 18 and 19 together illustrate the disclosed pulse-to-pulse frequency tuning. In this scheme, f a2 is a function of only (or predominantly if adjacent time slots are also considered to have some weight) e a0 , e a1 and f a1 . Similarly, f b2 is a function of only (or primarily) e b0 , e b1 and f b1 , and so on.

另一問題截留於局部非最佳最小值中。使用存在電漿可在實質上降低之功率下操作而不熄滅之固定時間的事實,有可能取樣且儲存關於完全不同於當前操作點之頻率下的操作之資訊。假定電漿在功率實質上減少足夠短時間T的情況下將不會熄滅,該方法藉由在最佳頻率(如藉由頻率調諧方法判定)下操作例如99%之時間且使用持續時間不超過T之時槽中的剩餘1%之時間以探究在其他頻率下之操作來起作用。在一些實施方案中,功率可在選定頻率下經遞送持續總時間之至少90%,且功率可在不長於總時間之10%的測試時段期間在測試頻率下經遞送。Another problem is entrapment in local non-optimal minima. Using the fact that there is a fixed time during which a plasma can operate at substantially reduced power without extinguishing, it is possible to sample and store information about operation at a frequency completely different from the current operating point. Assuming that the plasma will not be extinguished if the power is substantially reduced for a short enough time T, the method operates by operating at the optimal frequency (as judged by the frequency tuning method) e.g. 99% of the time and for a duration not exceeding The remaining 1% of the time slot at T is spent exploring operations at other frequencies. In some implementations, power may be delivered at the selected frequency for at least 90% of the total time, and power may be delivered at the test frequency during a test period no longer than 10% of the total time.

在一些實施方案中,測試頻率之值可根據不同測試週期而變化。在其他實施方案中,多次訪問同一測試頻率,每次朝向所要功率位準調整遞送至電漿負載之功率。In some implementations, the value of the test frequency can vary according to different test periods. In other implementations, the same test frequency is accessed multiple times, each time adjusting the power delivered to the plasma load toward a desired power level.

儘管許多變化係可能的,但以下方法係例示性及說明性的。考慮在最佳頻率下操作持續等於99T之時間且接著切換至不同測試頻率持續T時間。自 f min f max 之整個頻率範圍可分成例如16個等間隔頻率 f 0 f 15 。用以劃分整個頻率範圍之頻率的數目為所採用之匹配電路之已知品質因數的函數。十六係確保在最佳頻率之後續搜尋中將不會遺漏真實最佳點之典型數目。 While many variations are possible, the following methods are exemplary and illustrative. Consider operating at the optimal frequency for a time equal to 99T and then switching to a different test frequency for T time. The entire frequency range from f min to f max can be divided into eg 16 equally spaced frequencies f 0 to f 15 . The number of frequencies used to divide the entire frequency range is a function of the known quality factor of the matching circuit employed. Sixteen is the typical number to ensure that no true sweet spot will be missed in subsequent searches for the best frequency.

該方法可藉由在持續時間T之時槽中依序搜尋 f 0 f 15 開始以找出粗略最佳值。可能需要對空間進行若干次搜尋,此係因為功率控制系統可能無法在時間T內正確地調整功率。歸因於遇到的典型負載之非線性性質,在所要功率位準處或接近於所要功率位準時量測負載反射係數(或由該方法使用之其他誤差度量)係有益的。藉由每當訪問頻率時儲存控制值及功率位準,可在訪問同一頻率若干次之後獲得正確功率位準。 The method may start by sequentially searching f 0 to f 15 in time slots of duration T to find a rough optimum. Several searches of space may be required because the power control system may not be able to correctly adjust the power within the time T. Due to the non-linear nature of typical loads encountered, it is beneficial to measure the load reflection coefficient (or other error metric used by the method) at or near the desired power level. By storing the control value and power level each time a frequency is accessed, the correct power level can be obtained after accessing the same frequency several times.

一旦例如在f k處已發現粗略最佳值,其中 k為0至15之整數,則該方法可開始使用長度為T之時槽以找出最佳值。一個選項應為 f 16=0.5( f k-1 + f k ),限制條件為 k>0,並且 f 17=0.5( f k+ f k +1),限制條件為 k<15。誤差處於 f 16f kf 17之間的最小值時之頻率接著變為新所要頻率。再次將新最佳值之左右區間分為兩個,且選擇先前最小頻率與兩個最新測試頻率當中之最小值。並且當最小頻率碰巧為 f minf max時,僅產生一個新頻率。歸因於區間每次一分為二之事實,在僅幾個反覆內以足夠準確度找出最佳頻率。並且因為負載一般為時變的,所以一旦已發現最佳頻率,則該方法一般必須開始以確保條件尚未改變且新的全域最佳值尚未產生。 Once a rough optimum has been found, for example at fk, where k is an integer from 0 to 15, the method can start using time slots of length T to find the optimum. One option would be f 16 =0.5( f k-1 + f k ) with the constraint that k >0, and f 17 =0.5( f k + f k +1 ) with the constraint that k <15. The frequency at which the error is at the minimum value between f 16 , f k and f 17 then becomes the new desired frequency. Divide the left and right intervals of the new optimum value into two again, and select the minimum value among the previous minimum frequency and the two latest test frequencies. And only generate a new frequency when the minimum frequency happens to be f min or f max . Due to the fact that the interval is bisected each time, the optimal frequency is found with sufficient accuracy within only a few iterations. And because the load is generally time-varying, once the optimum frequency has been found, the method must generally start to ensure that conditions have not changed and a new global optimum has not been produced.

儘管用以找出全域最佳值之此方法正在執行,但先前所描述之局部調諧方法可在99T時槽期間運行以將操作維持在當前局部最小值處。並且99%之時間保持在當前最佳頻率下確保至負載之平均遞送功率保持幾乎不變。圖20以圖形方式繪示可與使用較小百分比之時間與最大時槽T來搜尋全域最佳頻率之方法相關聯的例示性操作特性。While this method to find the global optimum is being performed, the previously described local tuning method can be run during the 99T time slot to maintain operation at the current local minimum. And 99% of the time staying at the current optimum frequency ensures that the average delivered power to the load remains almost constant. 20 graphically depicts exemplary operating characteristics that may be associated with a method of searching for an overall best frequency using a smaller percentage of time and a maximum time slot T. FIG.

參考圖21至圖38描述對高頻率產生器102進行頻率調諧以調整呈現至高頻率產生器102之阻抗的另一方法。舉例而言,在一些實施方案中,本文中進一步描述之電源2110、電路2114、感測器2112、發電系統2200、2300、2400、2500、2600、2700可與高頻率產生器102整合。在其他實施方案中,電源2110、電路2114、感測器2112以及發電系統2200、2300、2400、2500、2600、2700之一或多個組件可分散。舉例而言,電路(例如,電路2114、2214、2314、2414)及/或感測器(例如,感測器2112、2312、2412)可實施於與高頻率產生器102分開容納之集中式控制器中。作為一額外實例,電路(例如,電路2114、2214、2314、2414)可實施為頻率調諧子系統1525之部分。Another method of frequency tuning the high frequency generator 102 to adjust the impedance presented to the high frequency generator 102 is described with reference to FIGS. 21-38 . For example, in some implementations, the power supply 2110 , circuitry 2114 , sensors 2112 , power generation systems 2200 , 2300 , 2400 , 2500 , 2600 , 2700 described further herein may be integrated with the high frequency generator 102 . In other embodiments, one or more components of the power source 2110, the circuit 2114, the sensor 2112, and the power generation systems 2200, 2300, 2400, 2500, 2600, 2700 may be distributed. For example, circuits (e.g., circuits 2114, 2214, 2314, 2414) and/or sensors (e.g., sensors 2112, 2312, 2412) may be implemented in a centralized control housed separately from high frequency generator 102 device. As an additional example, circuits (eg, circuits 2114 , 2214 , 2314 , 2414 ) may be implemented as part of frequency tuning subsystem 1525 .

如參考圖21至圖38所描述,電漿維持功率可在主要頻率下施加,同時功率遠低於電漿維持功率之次要功率信號(例如,包含一或多個頻率)用於探測替代性主要頻率。有利地,次要功率信號之施加使得能夠監測電漿負載之一或多個態樣而不會不利地影響電漿負載自身。另外,當電漿維持功率經由匹配網路施加至電漿負載時,低位準信號之施加可在一或多個特定頻率下施加,這些特定頻率產生由匹配網路之窄濾波頻帶傳遞的可偵測頻率(例如,混合及互調頻率)。此外,所獲得之關於電漿負載的資訊可用於控制產生器之一或多個態樣。As described with reference to FIGS. 21-38 , plasma sustaining power can be applied at a primary frequency while a secondary power signal (e.g., comprising one or more frequencies) at a much lower power than the plasma sustaining power is used to detect alternative primary frequency. Advantageously, application of the secondary power signal enables monitoring of one or more aspects of the plasma load without adversely affecting the plasma load itself. Additionally, when the plasma sustaining power is applied to the plasma load via the matching network, the application of the low level signal can be applied at one or more specific frequencies that produce detectable Frequency of measurement (for example, mixing and intermodulation frequencies). Additionally, the information obtained about plasma loading can be used to control one or more aspects of the generator.

舉例而言,就產生器控制而言,可使用關於電漿負載之資訊來執行自動頻率調諧。舉例而言,可獲得效能之一些量測的全域最佳值,且高頻率產生器102可朝向此全域最佳頻率而調整——而不會熄滅電漿。例示性方法包含處理由產生器之主要操作頻率產生的雜訊以便有效地執行相關頻率範圍之低功率取樣掃掠或產生除主要功率信號以外的低功率信號,其中低功率信號用於探索或探測全域最佳值。For example, for generator control, automatic frequency tuning can be performed using information about plasma loading. For example, a global optimum for some measure of performance may be obtained, and the high frequency generator 102 may be tuned towards this global optimum - without extinguishing the plasma. Exemplary methods include processing noise generated by the generator's primary operating frequency to efficiently perform low power sampling sweeps of relevant frequency ranges or to generate low power signals other than the primary power signal, where the low power signal is used for exploration or detection Global best value.

在兩種情況下,雜訊或探測信號之低功率性質使得能夠探索一或多個探測頻率之頻率範圍,同時產生器之主要功率信號保持在一頻率下(例如,在效能之量測的局部最佳值下),其中足夠功率可遞送至電漿負載以維持電漿。舉例而言,主要功率信號可保持在局部最佳值或接近於局部最佳值,同時探索信號或雜訊(兩者將在下文中被稱為「次要功率信號」或「探測信號」)找出全域最佳值,藉此在探測發生時繼續允許實質性功率到達電漿負載。In both cases, the low-power nature of the noise or probe signal enables exploration of the frequency range of one or more probe frequencies while the generator's main power signal remains at one frequency (e.g., in local optimal value), where enough power can be delivered to the plasma load to maintain the plasma. For example, the primary power signal can be kept at or close to a local optimum while the search signal or noise (both will be referred to as "secondary power signal" or "probing signal" hereinafter) finds global optimum, thereby continuing to allow substantial power to reach the plasma load while detection occurs.

在次要功率信號為雜訊的情況下,雜訊可為由於主要功率信號而產生之固有雜訊,或雜訊可添加至主要功率信號。該雜訊可出現在有時限於藉由應用於主要功率信號之濾波器控管之頻寬的複數個次要探測頻率下。在次要功率信號為低位準信號的情況下,此探測信號可為低於主要功率信號之振幅的數量級(例如,-3 dB、-5 dB、-10 dB、-20 dB、-50 dB、-100 dB)。該低位準信號可為正弦的或任何其他類型之週期性信號,且可在RF或其他頻率下產生。在有限時間開始且最終變為正弦或週期性之信號分別被視為正弦或週期性的。可跨越次要探測頻率之固定範圍而掃掠低位準探測信號。替代地,低位準探測信號可根據搜尋全域最佳值之調諧演算法而在次要探測頻率之間「跳躍」。Where the secondary power signal is noise, the noise may be inherent noise due to the primary power signal, or noise may be added to the primary power signal. The noise can appear at secondary probing frequencies that are sometimes limited to the bandwidth governed by the filter applied to the primary power signal. Where the secondary power signal is a low level signal, this probe signal can be orders of magnitude lower than the amplitude of the primary power signal (e.g. -3 dB, -5 dB, -10 dB, -20 dB, -50 dB, -100dB). The low level signal may be sinusoidal or any other type of periodic signal and may be generated at RF or other frequencies. A signal that begins in finite time and eventually becomes sinusoidal or periodic is considered sinusoidal or periodic, respectively. The low-level probe signal can be swept across a fixed range of secondary probe frequencies. Alternatively, the low-level probing signal may "hop" between secondary probing frequencies according to a tuning algorithm that searches for a global optimum.

可藉由將不同頻率之最佳性進行比較以及選擇最佳頻率來找出全域最佳值。舉例而言,若最佳性之量測為最小負載反射係數量值,則將藉由次要功率信號源探索之不同頻率下的經估計負載反射係數量值進行比較,並且選擇負載反射係數最小時的頻率作為全域最佳頻率。用以找出最佳值之量測及比較可依序發生,或例如在雜訊用作次要功率信號之情況下發生,不同頻率之最佳性可被同時計算且在不同頻率下的計算之後選擇最佳頻率。The global optimum can be found by comparing the optimum of different frequencies and selecting the best frequency. For example, if the measure of optimality is the minimum load reflection coefficient value, then the estimated load reflection coefficient values at different frequencies explored by the secondary power signal source are compared and the load reflection coefficient minimum value is selected. The hourly frequency is used as the global best frequency. Measurements and comparisons to find the optimum can take place sequentially or, for example, in the case of noise used as a secondary power signal, the optimum at different frequencies can be calculated simultaneously and at different frequencies Then choose the best frequency.

一旦已找出全域最佳值,則主要功率信號可移位至全域最佳值之頻率。此移位可涉及自一個頻率至另一頻率的急劇切換,或可涉及至次要功率信號之功率正斜升,同時至主要功率信號之功率斜降,以使得次要功率信號變為主要功率信號。Once the global optimum has been found, the main power signal can be shifted to the frequency of the global optimum. This shift may involve a sharp switch from one frequency to another, or may involve a power ramp-up of the secondary power signal while a power ramp-down to the primary power signal is made such that the secondary power signal becomes the primary power signal Signal.

一旦主要功率信號在全域最佳值之頻率下操作,則可發生進一步精細調諧。舉例而言,次要功率信號可在搜尋全域最佳值時再次熄滅,此係因為主要功率信號之功率位準下的全域最佳值不同於次要功率信號之較低功率的全域最佳值,或因為全域最佳值發生變化且由於調諧之第一反覆發生而改變。 Once the main power signal is operating at the frequency of the global optimum, further fine tuning can occur. For example, the secondary power signal can go off again while searching for a global optimum because the global optimum at the power level of the primary power signal differs from the global optimum at a lower power for the secondary power signal , or as the global optimum changes and as the first iteration of tuning occurs.

出於本揭示內容之目的,「低位準信號」實質上低於遞送至電漿腔室之主要信號,例如至少小一個數量級。For the purposes of this disclosure, a "low level signal" is substantially lower, eg, at least an order of magnitude smaller, than the primary signal delivered to the plasma chamber.

出於本揭示內容之目的,「電路」可包含基於輸入信號而產生輸出信號之電組件的任何組合。電路可為數位、類比或處理器或中央處理單元(CPU)之部分或包含處理器或中央處理單元。電路可包含具有用於執行下文所描述之方法之處理器可讀指令的非暫時性有形電腦可讀儲存媒體或可由該非暫時性有形電腦可讀儲存媒體讀取。For purposes of this disclosure, a "circuit" may include any combination of electrical components that generate an output signal based on an input signal. The circuitry may be or include a digital, analog, or part of a processor or central processing unit (CPU). The circuitry may comprise or be readable from a non-transitory tangible computer-readable storage medium having processor-readable instructions for performing the methods described below.

出於本揭示內容之目的,組件可進行通信,這些組件在一些情況下包含電通信(例如,能夠在其間發送信號)。然而,所屬技術領域中具有通常知識者將認識到,通信亦可包含光學及無線無線電通信,僅舉兩個非限制性實例。For the purposes of this disclosure, components are in communication, which in some cases includes electrical communication (eg, capable of sending signals between them). However, those of ordinary skill in the art will recognize that communications may also include optical and wireless radio communications, just to name two non-limiting examples.

出於本揭示內容之目的,「全域最佳值」可包含如跨越頻率範圍取樣之特性的最小值或最大值。舉例而言,在反射功率為特性之情況下,全域最佳值可為全域最小值,而在經遞送功率為特性之情況下,全域最佳值可為全域最大值。For purposes of this disclosure, a "global optimum" may include, for example, the minimum or maximum value of a characteristic sampled across a frequency range. For example, where reflected power is the characteristic, the global optimum may be the global minimum, while where delivered power is the characteristic, the global optimum may be the global maximum.

圖21繪示經組態用於遞送至電漿負載之功率之自動頻率調諧的電源供應系統。發電系統2100經組態以經由RF阻抗匹配電路將射頻(RF)功率提供至電漿2106或電漿負載,該RF阻抗匹配電路可為在電源2110內部的視情況選用之濾波器2122及/或在電源2110外部之匹配網路2104。濾波及阻抗匹配通常由相同實體網路進行。因此,諸如視情況選用之濾波器2122等濾波器可執行濾波及阻抗匹配兩個功能。Figure 21 depicts a power supply system configured for automatic frequency tuning of power delivered to a plasma load. The power generation system 2100 is configured to provide radio frequency (RF) power to the plasma 2106 or the plasma load via an RF impedance matching circuit, which may be an optional filter 2122 internal to the power supply 2110 and/or Matching network 2104 external to power supply 2110 . Filtering and impedance matching are usually performed by the same physical network. Thus, a filter such as optional filter 2122 can perform both filtering and impedance matching functions.

發電系統2100可包含將外部功率2140轉換成RF功率之電源2110,且電源2110可為13.56 MHz產生器,但此當然並非所需的。考慮其他頻率及其他電源。發電系統2100經組態以在充足位準下提供RF功率(例如,RF電壓)以點燃且維持包含於電漿腔室2108中之電漿2106。電漿2106一般用於處理工件或基板(圖中未示),但為所屬技術領域中具有通常知識者所熟知。Power generation system 2100 may include power supply 2110 that converts external power 2140 to RF power, and power supply 2110 may be a 13.56 MHz generator, although this is of course not required. Consider other frequencies and other power supplies. Power generation system 2100 is configured to provide RF power (eg, RF voltage) at a sufficient level to ignite and maintain plasma 2106 contained in plasma chamber 2108 . Plasma 2106 is typically used to process workpieces or substrates (not shown), but is well known to those of ordinary skill in the art.

電源2110可主要在主要頻率下將主要功率信號施加至輸出2111。輸出2111可經組態用於耦接至視情況選用之匹配網路2104且耦接至電漿腔室2108。詳言之,主要功率信號可遞送至電漿2106或遞送至電漿2106之負載(亦稱為電漿負載)。自電源2110至視情況選用之匹配網路2104之連接2130通常為同軸纜線,但其他纜線類型及連接類型亦為可能的。通常經由定製同軸連接器形成自匹配網路2104至電漿腔室2108之連接2131,但其他纜線類型及連接類型亦為可能的。在一些應用中,不存在匹配網路2104,且電源2110之輸出2111直接連接至電漿腔室2108。在此情況下,RF阻抗匹配係藉由視情況選用之濾波器2122在電源2110內部進行。The power supply 2110 may apply a primary power signal to the output 2111 primarily at the primary frequency. Output 2111 may be configured for coupling to optional matching network 2104 and to plasma chamber 2108 . In particular, the primary power signal may be delivered to the plasma 2106 or to a load of the plasma 2106 (also referred to as a plasma load). The connection 2130 from the power source 2110 to the optional matching network 2104 is typically a coaxial cable, although other cable types and connection types are possible. The connection 2131 from the matching network 2104 to the plasma chamber 2108 is typically made via a custom coaxial connector, although other cable types and connection types are possible. In some applications, the matching network 2104 is absent and the output 2111 of the power supply 2110 is directly connected to the plasma chamber 2108 . In this case, RF impedance matching is performed inside the power supply 2110 by an optional filter 2122.

在一些應用中,其他視情況選用之RF或DC產生器2150可經由視情況選用之匹配網路2104連接至電漿腔室2108。且在一些應用中,其他視情況選用之RF或DC產生器2151(例如,低頻率產生器108)可經由其他構件(例如,其他視情況選用之匹配網路2105)連接至電漿腔室2108。其他產生器經由匹配網路2104或經由其他構件(例如,連接至不同電極以將功率遞送至同一電漿)連接至電漿負載通常使頻率調諧問題更加複雜。在以下描述中,不排除其他視情況選用之一或多個產生器2150及2151以及連接至電漿之其他構件(例如,匹配網路2105)的可能性,但為簡單起見,將不對其進行繪示或論述。In some applications, other optional RF or DC generators 2150 may be connected to plasma chamber 2108 via optional matching network 2104 . And in some applications, other optional RF or DC generators 2151 (e.g., low frequency generator 108) may be connected to plasma chamber 2108 via other components (e.g., other optional matching network 2105) . Other generators connected to the plasma load via the matching network 2104 or via other means (eg, connections to different electrodes to deliver power to the same plasma) often complicate the frequency tuning problem. In the following description, the possibility of selecting one or more generators 2150 and 2151 and other components connected to the plasma (for example, matching network 2105) as appropriate is not excluded, but for the sake of simplicity, they will not be To illustrate or describe.

感測器2112可監測指示產生器遞送之功率或遞送功率能力的特性,諸如反射功率、經遞送功率或阻抗失配,僅舉三個非限制性實例。指示經遞送功率或遞送功率能力之特性的其他非限制性實例包含遞送至匹配網路2104之功率、自匹配網路2104反射之功率、遞送至電漿腔室2108的功率、由發電系統2100所見之負載阻抗,以及諸如電漿密度之電漿腔室2108的特性。感測器2112亦可監測指示電漿系統之穩定性的特性,諸如負載阻抗之波動。感測器2112亦可監測指示電漿負載之非線性性質的特性,諸如混合及互調產物之產生。The sensors 2112 may monitor characteristics indicative of the power delivered by the generator or the ability to deliver power, such as reflected power, delivered power, or impedance mismatch, just to name three non-limiting examples. Other non-limiting examples of characteristics indicative of delivered power or the ability to deliver power include power delivered to matching network 2104, power reflected from matching network 2104, power delivered to plasma chamber 2108, seen by power generation system 2100 load impedance, and properties of the plasma chamber 2108 such as plasma density. Sensors 2112 may also monitor characteristics indicative of the stability of the plasma system, such as fluctuations in load impedance. Sensor 2112 may also monitor characteristics indicative of nonlinear properties of the plasmonic load, such as the generation of mixing and intermodulation products.

使用次要信號源來實施產生器之頻率調諧具有額外益處:可由產生器進行電漿屬性之量測。視情況選用之匹配網路2104典型地充當帶通濾波器。匹配網路2104之此屬性使得難以在產生器輸出頻率之諧波下進行電漿之可靠量測,但此資訊可為有用的。然而,電漿阻抗之調變之特性可在於觀測由次要信號源產生的混合及互調產物。舉例而言,若主要信號源處於13.56 MHz且次要信號源處於13.57 MHz,則吾人預期混合產物處於13.55 MHz且互調產物處於13.56加上10 kHz之倍數,例如處於13.53、13.54、13.58等。量測混合及互調產物之振幅與相位關係且推導例如所存在的振幅與相位調變之量可提供關於電漿屬性之資訊。可以數種方式進行資訊之處理:簡單地分析來自感測器之量測的時間序列且對時間序列執行高階統計以使用經調諧至混合及互調產物頻率之專用接收器;擷取振幅與相位關係以使用包含但不限於離散傅立葉變換的任何數目個數學變換。監測混合及互調產物且偵測藉由例如相位調變量所指示之電漿之特性變化,僅舉例一個屬性可用於半導體製造中例如蝕刻操作中的例如端點偵測中。Using a secondary signal source to perform frequency tuning of the generator has an additional benefit: measurements of plasma properties can be made by the generator. Optional matching network 2104 typically acts as a bandpass filter. This property of the matching network 2104 makes it difficult to make reliable measurements of the plasma at harmonics of the generator output frequency, but this information can be useful. However, the modulation of plasmonic impedance can be characterized by observing mixing and intermodulation products produced by secondary signal sources. For example, if the primary signal source is at 13.56 MHz and the secondary signal source is at 13.57 MHz, then one would expect the mixing products to be at 13.55 MHz and the intermodulation products to be at 13.56 plus multiples of 10 kHz, such as at 13.53, 13.54, 13.58, etc. Measuring the amplitude and phase relationship of mixing and intermodulation products and deriving, for example, the amount of amplitude and phase modulation present can provide information about the properties of the plasma. The processing of the information can be done in several ways: simply analyzing the time series of measurements from the sensors and performing higher order statistics on the time series using a dedicated receiver tuned to the frequency of the mixing and intermodulation products; extracting the amplitude and phase The relationship can use any number of mathematical transformations including, but not limited to, the discrete Fourier transform. Monitoring mixing and intermodulation products and detecting changes in properties of the plasma indicated by, for example, the amount of phase modulation is just to name one attribute that can be used in, for example, endpoint detection in semiconductor manufacturing, such as in etching operations.

感測器2112可為定向耦接器、電流-電壓感測器或其他多埠網路,且可監測電源2110與匹配網路2104之間或匹配網路2104與電漿腔室2108之間的電流及電壓或電壓與電流之組合(例如,入射及反射信號)。在另一非限制性實例中,感測器2112可為經導向至電漿腔室2108中以光學方式量測電漿2106之密度的光學偵測器。這些實例決不描述感測器2112之範圍或限值或其中可配置感測器2112之位置,但實際上展現了感測器2112可呈多種形式且可以多種方式耦接至系統(各種非限制性實例參見圖22至圖27)。另外,感測器2112可為已駐存於視情況選用之匹配網路2104或電漿腔室2108中之一或多個感測器。The sensor 2112 can be a directional coupler, a current-voltage sensor, or other multi-port network, and can monitor the voltage between the power supply 2110 and the matching network 2104 or between the matching network 2104 and the plasma chamber 2108. A combination of current and voltage or voltage and current (for example, incident and reflected signals). In another non-limiting example, sensor 2112 may be an optical detector directed into plasma chamber 2108 to optically measure the density of plasma 2106 . These examples in no way describe the range or limits of the sensor 2112 or the location in which the sensor 2112 can be configured, but in fact demonstrate that the sensor 2112 can take many forms and can be coupled to the system in a variety of ways (various non-limiting See Figures 22 to 27 for examples). Additionally, the sensor 2112 may be one or more sensors already resident in the optional matching network 2104 or plasma chamber 2108 .

來自感測器2112或已駐存於匹配網路2104及電漿腔室2108中之感測器的信號可提供至一或多個電路2114,該一或多個電路亦與電源2110進行通信且控制該電源。一或多個電路2114可使用來自感測器2112及/或已駐存於匹配網路2104及電漿腔室2108中之感測器的資訊以調諧電源2110操作時之主要及/或次要探測頻率,以最佳化遞送至電漿2106的功率或最佳化諸如電漿穩定性等最佳性之另一量測。Signals from sensors 2112 or sensors already resident in matching network 2104 and plasma chamber 2108 may be provided to one or more circuits 2114 that are also in communication with power supply 2110 and control the power. One or more circuits 2114 may use information from sensors 2112 and/or sensors already resident in matching network 2104 and plasma chamber 2108 to tune the primary and/or secondary for power supply 2110 operation. The frequency is probed to optimize the power delivered to the plasma 2106 or to optimize another measure of optimum such as plasma stability.

在一些情況下,此類調諧在局部最佳值(例如,反射功率之局部最小值或經遞送功率之局部最大值,僅舉兩個實例)下引起操作,因此一些調諧演算法能夠進一步調整主要頻率以便尋求全域最佳值(例如,經由一連串快速頻率「躍點」)。然而,此搜尋可經由頻率頻譜之不充分阻抗匹配的區域(例如,圖28中fa附近)獲取功率,且因此可使經遞送功率顯著下降,且在一些情況下可使電漿2106熄滅(例如,圖28中 fa附近)。 In some cases, such tuning results in operation at a local optimum (e.g., a local minimum of reflected power or a local maximum of delivered power, to name two examples), so some tuning algorithms are able to further tune the main frequency in order to find the global optimum (for example, via a series of rapid frequency "hops"). However, this search can harvest power through regions of the frequency spectrum with insufficient impedance matching (e.g., near fa in FIG. , near fa in Figure 28).

為了避免此情形,此搜尋全域最佳值可藉由一或多個次要信號執行,因此使得高功率主要功率信號能夠保持在足夠功率可在搜尋全域最佳值繼續進行的同時遞送至電漿2106時之頻率下(例如,在局部最佳值)。圖31至圖33展示所監測特性隨頻率而變之曲線以及具有實質上比主要功率信號低之振幅的次要功率信號可如何用於搜尋全域最佳值。一旦已描述相關系統及設備,稍後將深入論述這些曲線。To avoid this, the search for the global optimum can be performed with one or more secondary signals, thus enabling the high power primary power signal to remain at sufficient power to be delivered to the plasma while the search for the global optimum continues at a frequency of 2106 (for example, at a local optimum). Figures 31-33 show plots of the monitored characteristic as a function of frequency and how a secondary power signal having a substantially lower amplitude than the primary power signal can be used to search for an overall optimum. These curves will be discussed in depth later, once the related systems and devices have been described.

圖21繪示用於遞送至電漿負載之功率之自動頻率調諧的發電系統。電源2110可將主要功率信號提供至電漿腔室2108中之電漿2106的電漿負載,其中電源2110所見之阻抗與配置於電源2110與電漿腔室2108之間的匹配網路2104及電源2110之頻率調諧阻抗匹配。電源2110可經頻率調諧以便找出最佳頻率,典型地在經遞送功率經最佳化之情況下,但可使用最佳性之其他量測。此調諧有時可使得來自電源2110之主要功率信號經調諧至局部最佳值而非全域最佳值。在此類情況下,包含一或多個探測頻率之探測信號可由電源2110產生且經處理以識別全域最佳值而不必使用主要功率信號來探索全域最佳值。Figure 21 depicts a power generation system for automatic frequency tuning of power delivered to a plasma load. A power supply 2110 may provide the main power signal to the plasma load of the plasma 2106 in the plasma chamber 2108, wherein the impedance seen by the power supply 2110 is compatible with the matching network 2104 and the power supply disposed between the power supply 2110 and the plasma chamber 2108 2110 frequency tuning impedance matching. The power supply 2110 can be frequency tuned to find the optimal frequency, typically where the delivered power is optimized, although other measures of optimality can be used. This tuning can sometimes cause the main power signal from the power supply 2110 to be tuned to a local optimum rather than a global optimum. In such cases, a probe signal comprising one or more probe frequencies may be generated by the power supply 2110 and processed to identify the global optimum without having to use the primary power signal to search for the global optimum.

在其他情況下,次要電源可提供次要功率信號(亦被稱作探測信號)(例如,參見圖24及圖26)。一或多個次要功率信號可以低於主要功率信號之振幅或功率位準的振幅或功率位準提供(或實質上低於主要功率信號、主要功率信號之一部分,或以實質上較低功率位準提供以便相較於主要功率信號而對電漿2106具有可忽略的影響)。探測信號可包含全部同時產生之複數個次要探測頻率(例如,圖31至圖33)。在一替代方案中,一或多個次要功率信號可在不同時間經調諧至兩個或更多個不同頻率(例如,如圖31至圖33中所描繪)。In other cases, the secondary power source may provide a secondary power signal (also referred to as a probe signal) (see, eg, FIGS. 24 and 26 ). One or more secondary power signals may be provided at an amplitude or power level lower than that of the primary power signal (or substantially lower than the primary power signal, a portion of the primary power signal, or at a substantially lower power The level is provided so as to have a negligible effect on the plasma 2106 compared to the main power signal). The probing signal may comprise a plurality of secondary probing frequencies all generated simultaneously (eg, FIGS. 31-33 ). In an alternative, one or more secondary power signals may be tuned to two or more different frequencies at different times (eg, as depicted in FIGS. 31-33 ).

一或多個次要功率信號可用於在除了主要功率信號之頻率以外的頻率下對功率遞送進行取樣,而無需在這些次要頻率下施加過多功率以至於影響電漿。換言之,主要功率信號可保持在一頻率下,在該頻率下,電漿可持續(例如,在局部最佳值處或接近於局部最佳值)且同時一或多個次要功率信號用於搜尋全域最佳值。One or more secondary power signals may be used to sample power delivery at frequencies other than that of the primary power signal without applying too much power at these secondary frequencies to affect the plasma. In other words, the primary power signal may be maintained at a frequency at which the plasma is sustainable (e.g., at or near a local optimum) while one or more secondary power signals are used to Search for the global best value.

詳言之,感測器2112或兩個或更多個感測器及/或已存在於發電系統2100之其他組件中的感測器可監測在主要功率信號之頻率下以及在次要頻率下的效能之量測。一或多個感測器(例如,感測器2112)亦可在預期混合及互調產物之頻率下量測,以擷取關於電漿2106之非線性特性的資訊。舉例而言,混合及互調產物之變化可用於感測電漿製程之電漿點燃或端點偵測。一或多個次要頻率分量之注入以及混合及互調產物之屬性的量測可感測主要功率信號之諧波下的電漿2106之非線性特性,即使匹配網路2104及濾波器2122可能不允許對諧波之直接量測。In particular, sensor 2112 or two or more sensors and/or sensors already present in other components of power generation system 2100 may monitor the frequency of the primary power signal as well as at the secondary frequency measure of effectiveness. One or more sensors (eg, sensor 2112 ) may also measure at frequencies where mixing and intermodulation products are expected to extract information about the nonlinear properties of plasma 2106 . For example, changes in mixing and intermodulation products can be used to sense plasma ignition or endpoint detection for plasma processing. The injection of one or more secondary frequency components and the measurement of the properties of the mixing and intermodulation products can sense the nonlinear characteristics of the plasma 2106 at harmonics of the primary power signal, even though the matching network 2104 and filter 2122 may Direct measurement of harmonics is not allowed.

舉例而言,感測器2112可為反射功率感測器或經遞送功率感測器,且特性可分別為反射功率或經遞送功率。亦可監測其他特性且使用其他特性來識別局部及全域最佳值(例如,電源2110所見之負載阻抗、至匹配網路2104的供電纜線2130上之功率的電壓及電流,以及電漿2106密度,僅舉幾個非限制性實例)。感測器2112及/或其他感測器可將描述特性之資訊提供至一或多個電路2114(例如,邏輯電路、數位電路、類比電路、非暫時性電腦可讀媒體及以上各者之組合)。一或多個電路2114可與感測器2112及電源2110進行通信(例如,電通信)。一或多個電路2114可調整電源2110之主要頻率,以便調諧電源2110以使至電漿負載之經遞送功率最佳化。For example, sensor 2112 may be a reflected power sensor or a delivered power sensor, and the characteristic may be reflected power or delivered power, respectively. Other characteristics can also be monitored and used to identify local and global optima (e.g., load impedance seen by power source 2110, voltage and current of power on supply cable 2130 to matching network 2104, and plasma 2106 density , just to name a few non-limiting examples). Sensors 2112 and/or other sensors may provide information descriptive to one or more circuits 2114 (e.g., logic circuits, digital circuits, analog circuits, non-transitory computer readable media, and combinations thereof ). One or more circuits 2114 may be in communication (eg, in electrical communication) with sensor 2112 and power source 2110 . One or more circuits 2114 may adjust the primary frequency of power supply 2110 in order to tune power supply 2110 to optimize the delivered power to the plasma load.

在一些實施例中,使效能之量測最佳化包含控制使用次要功率信號之反饋迴路以便探索或搜尋全域最佳值。在此情況下,一或多個電路2114可基於來自感測器2112(或兩個或更多個感測器,及/或已存在於發電系統2100之其他組件中的感測器)之關於效能之量測的反饋而控制次要功率信號及其一或多個次要頻率。舉例而言,次要功率信號之頻率可跨越涵蓋主要功率信號之主要頻率的固定頻率範圍而掃掠,且一或多個電路2114可監測隨次要功率信號之頻率而變的效能之量測。基於此掃掠,一或多個電路2114可識別全域最佳值且接著指示電源2110調整其主要頻率,以便將主要功率信號移動至經識別全域最佳值。跳頻或其他調諧方案可用以經由一或多個次要功率信號而找出全域最佳值。In some embodiments, optimizing the measure of performance includes controlling a feedback loop using the secondary power signal in order to explore or search for a global optimum. In this case, one or more circuits 2114 may be based on information from sensor 2112 (or two or more sensors, and/or sensors already present in other components of power generation system 2100) regarding The secondary power signal and its one or more secondary frequencies are controlled in response to the measured performance. For example, the frequency of the secondary power signal may be swept across a fixed frequency range covering the primary frequency of the primary power signal, and one or more circuits 2114 may monitor a measure of performance as a function of frequency of the secondary power signal . Based on this sweep, one or more circuits 2114 may identify a global optimum and then instruct power supply 2110 to adjust its primary frequency in order to move the primary power signal to the identified global optimum. Frequency hopping or other tuning schemes can be used to find the global optimum via one or more secondary power signals.

次要功率信號可採取數個不同形式。在一種情況下,一或多個電路2114可指示電源2110在一(例如,如圖11中所描繪)或多個(例如,如圖32中所展示)次要頻率下施加呈低位準信號形式之次要功率信號,或者以特定次序(例如,圖31)在這些次要頻率下施加低位準信號,或根據演算法來最佳化效能之量測(例如,圖32)。在另一情況下,一或多個電路2114可指示電源2110施加呈雜訊形式之次要功率信號。此雜訊可為主要功率信號固有的,在此情況下,一或多個電路2114未必一定將指令供應至電源2110,或該雜訊可為添加至電源2110之輸出的非固有雜訊(例如,如圖26及圖27中所展示)。The secondary power signal can take several different forms. In one instance, one or more circuits 2114 may instruct power supply 2110 to apply a low-level signal at one (eg, as depicted in FIG. 11 ) or multiple (eg, as shown in FIG. 32 ) secondary frequencies. The secondary power signals, or apply low level signals at these secondary frequencies in a specific order (eg, Figure 31), or according to an algorithm to optimize the measurement of performance (eg, Figure 32). In another case, one or more circuits 2114 may instruct power supply 2110 to apply a secondary power signal in the form of noise. This noise may be intrinsic to the main power signal, in which case one or more circuits 2114 may not necessarily supply commands to the power supply 2110, or the noise may be extrinsic noise added to the output of the power supply 2110 (e.g. , as shown in Figures 26 and 27).

無論次要功率信號以何種形式出現,在許多實施例中,其振幅比主要功率信號之振幅低一或多個數量級。舉例而言,次要功率信號可比主要功率信號低1 dB至100 dB。在其他實施例中,次要功率信號可比主要功率信號低1 dB、5 dB、10 dB、20 dB、50 dB或100 dB。Regardless of the form in which the secondary power signal occurs, in many embodiments its amplitude is one or more orders of magnitude lower than that of the primary power signal. For example, the secondary power signal may be 1 dB to 100 dB lower than the primary power signal. In other embodiments, the secondary power signal may be 1 dB, 5 dB, 10 dB, 20 dB, 50 dB or 100 dB lower than the primary power signal.

如所展示,一或多個電路2114可包含全域最佳值識別模組2116及頻率控制模組2118。全域最佳值識別模組2116可在一或多個次要頻率中之每一者下分析來自感測器2112的資訊,且識別對應於全域最佳值之頻率。此頻率可被稱作經識別全域最佳頻率,且其對應於產生器遞送之功率之特性的全域最佳值。頻率控制模組2118可在初始調諧主要功率信號期間調整主要功率信號之主要頻率,此可引起局部最佳值之識別,以及在全域最佳值識別模組2116識別到全域最佳值時朝向經識別全域最佳頻率調整主要頻率。As shown, one or more circuits 2114 may include a global optimum identification module 2116 and a frequency control module 2118 . The global optimum identification module 2116 may analyze information from the sensor 2112 at each of the one or more secondary frequencies and identify the frequency corresponding to the global optimum. This frequency may be referred to as the identified global best frequency, and it corresponds to the global best value for the characteristic of the power delivered by the generator. Frequency control module 2118 may adjust the primary frequency of the primary power signal during initial tuning of the primary power signal, which may result in the identification of a local optimum, as well as towards a global optimum when the global optimum is identified by the global optimum identification module 2116. Identify the best frequency in the world and adjust the main frequency.

詳言之,一旦經識別全域最佳頻率被識別到,則頻率控制模組2118可指示電源2110調整主要頻率,以跳至經識別全域最佳頻率或以降低主要頻率之振幅,同時增加在經識別全域最佳頻率下之次要頻率的振幅,以使得主要頻率及次要頻率反轉作用。以此方式,主要頻率可轉變至對應於功率特性之全域最佳值的頻率(例如,低反射功率或低位準振盪),而無需在頻譜之可抑制或熄滅電漿(例如,圖28至圖33中 fa附近)之區域中施加功率。 In detail, once the identified global best frequency is identified, the frequency control module 2118 may instruct the power supply 2110 to adjust the main frequency to jump to the identified global best frequency or to reduce the amplitude of the main frequency while increasing The amplitude of the secondary frequency at the global optimum frequency is identified such that the primary frequency and the secondary frequency invert the effect. In this way, the dominant frequency can be shifted to a frequency corresponding to the global optimum of the power characteristics (e.g., low reflected power or low level oscillations) without suppressing or extinguishing the plasma in the frequency spectrum (e.g., Figures 28-28). 33 in the vicinity of fa ) to apply power in the area.

全域最佳值識別模組2116及頻率控制模組2118之操作可循環以重複地改良將主要頻率調整成全域最佳值之準確度。舉例而言,在正被監測之特性(例如,電漿阻抗)係非線性的情況下,可在施加低位準次要功率信號時找出特性之全域最小值,但當在相同頻率下施加大得多的主要功率信號時,針對較高功率信號可存在不同全域最佳頻率。因此,次要功率信號可再次用以進一步導向主要功率信號之全域最佳值且此可以循環方式繼續多個反覆。朝向全域最佳值調整頻率可包含將頻率改變為與全域最佳值相關聯之頻率,或僅將頻率改變為比原始頻率更接近於全域最佳值之頻率。The operations of the global best value identification module 2116 and the frequency control module 2118 can be looped to iteratively improve the accuracy of tuning the primary frequency to the global best value. For example, where the characteristic being monitored (e.g., plasma impedance) is non-linear, the global minimum of the characteristic can be found when a low-level secondary power signal is applied, but when a large When there are many dominant power signals, different global optimal frequencies may exist for higher power signals. Thus, the secondary power signal can again be used to further guide the global optimum of the primary power signal and this can continue in a round-robin fashion for multiple iterations. Adjusting the frequency toward the global best value may include changing the frequency to a frequency associated with the global best value, or simply changing the frequency to a frequency that is closer to the global best value than the original frequency.

在一些實施例中,一旦一或多個次要頻率開始下降/上升頻率曲線之足夠陡部分(例如,圖28至圖34中在 faf0之間),主要頻率便可切換至一或多個次要頻率中之一者。當曲線之此陡部分經識別時,全域最佳值識別模組2116可判定其正接近全域最佳值且藉此指示電源2110將主要頻率切換至接近於次要功率信號之頻率的頻率,藉此使得主要功率信號能夠跳過且避開可能抑制電漿之頻率曲線區域(例如, fa附近)。一旦主要功率信號切換頻率,一或多個次要功率信號便可繼續導向全域最佳值,或主要功率信號可用於進一步導向全域最佳值。 In some embodiments, once one or more secondary frequencies begin a sufficiently steep portion of the falling/rising frequency curve (eg, between fa and f0 in FIGS. 28-34 ), the primary frequency may switch to one or more one of the minor frequencies. When this steep portion of the curve is identified, the global optimum identification module 2116 can determine that it is approaching the global optimum and thereby instruct the power supply 2110 to switch the primary frequency to a frequency that is close to the frequency of the secondary power signal, thereby This enables the main power signal to skip and avoid regions of the frequency curve (eg, near fa ) that may suppress the plasma. Once the primary power signal switches frequency, one or more secondary power signals can continue to lead to the global optimum, or the primary power signal can be used to further steer to the global optimum.

在許多實施例中,供電連接2130可由一對導體或連接電源2110與匹配網路2104之雙導體同軸纜線合集來實現。在其他實施例中,纜線2130係藉由一或多個雙絞線纜線實施。在另外其他實施例中,纜線2130可由包含但不限於簡單導體連接及四極連接之任何纜線網路實現。連接2131通常藉由連接器實施,但亦可呈包含簡單導體連接之多種形式。In many embodiments, the power connection 2130 may be implemented by a pair of conductors or a set of two-conductor coaxial cables connecting the power source 2110 and the matching network 2104 . In other embodiments, cable 2130 is implemented with one or more twisted pair cable wires. In yet other embodiments, cable 2130 may be implemented by any cable network including, but not limited to, simple conductor connections and four-pole connections. Connections 2131 are typically made by connectors, but can take a variety of forms including simple conductor connections.

匹配網路2104可由多種匹配網路架構實現。如所屬技術領域中具有通常知識者將瞭解,匹配網路2104可用以將電漿2106之負載匹配至電源2110。藉由匹配網路2104或2105之正確設計,有可能將電漿2106之負載的阻抗變換成接近於電源2110之所要負載阻抗的值。匹配網路2104或2105之正確設計可包含電源2110內部之匹配網路(例如,經由濾波器2122)或如圖21至圖27中所展示的電源2110外部之匹配網路。The matching network 2104 can be realized by various matching network architectures. The matching network 2104 may be used to match the load of the plasma 2106 to the power source 2110 as will be appreciated by those of ordinary skill in the art. With proper design of the matching network 2104 or 2105, it is possible to transform the impedance of the load of the plasma 2106 to a value close to the desired load impedance of the power source 2110. Proper design of the matching network 2104 or 2105 may include matching networks internal to the power supply 2110 (eg, via filter 2122 ) or external to the power supply 2110 as shown in FIGS. 21-27 .

一或多個電路2114可為發電系統2100之原始裝備,而在其他實施例中,一或多個電路2114可為修整組件,其可添加至原先不能夠進行本文中所描述之頻率調諧的發電系統。One or more circuits 2114 may be original equipment of power generation system 2100, while in other embodiments one or more circuits 2114 may be retrofit components that may be added to power generation that were not originally capable of frequency tuning as described herein system.

在一實施例中,發電系統2100可包含視情況選用之濾波器2122。濾波器2122可經組態以使主要功率信號之部分衰減於選定頻寬外部且進行額外阻抗匹配。舉例而言,因為50歐姆為纜線及連接2130之主要阻抗,所以在電源2110之輸出處所見的所要阻抗典型地為50歐姆或某一其他便利阻抗。在濾波器2122之輸入處(在與電源2110之輸出處於相對側處)的阻抗提供電源之主動元件(例如,MOSFET)所要的阻抗,且典型地極不同於50歐姆,例如5+j6歐姆典型用於單一MOSFET放大器。對於此類系統,濾波器2122隨後經設計成將輸出處之50歐姆匹配於輸入處之5+j6歐姆。除阻抗匹配以外,濾波器亦典型地經設計成限制由主動元件產生之諧波。例如,濾波器可經設計以將輸出處之50歐姆匹配於接近預期產生器操作所經由之頻率範圍內的5+j6之值,例如自12.882至14.238 MHz,且在高於25 MHz之頻率下將信號抑制某一量,典型地在輸出之第二或第三諧波下至少20 dB。In one embodiment, the power generation system 2100 may include an optional filter 2122 . Filter 2122 may be configured to attenuate a portion of the main power signal outside the selected bandwidth and to perform additional impedance matching. For example, since 50 ohms is the predominant impedance of the cables and connections 2130, the desired impedance seen at the output of the power supply 2110 is typically 50 ohms or some other convenient impedance. The impedance at the input of the filter 2122 (on the opposite side from the output of the power supply 2110) provides the impedance required by the active components of the power supply (e.g., MOSFETs) and is typically very different from 50 ohms, such as 5+j6 ohms typical for single MOSFET amplifiers. For such a system, the filter 2122 is then designed to match 50 ohms at the output to 5+j6 ohms at the input. In addition to impedance matching, filters are also typically designed to limit harmonics generated by active components. For example, a filter can be designed to match 50 ohms at the output to a value close to 5+j6 over the frequency range over which the generator is expected to operate, such as from 12.882 to 14.238 MHz, and at frequencies above 25 MHz The signal is suppressed by some amount, typically at least 20 dB at the second or third harmonic of the output.

感測器2112可配置於多種位置中,包含作為發電系統2100之部分的位置及在其外部之位置。感測器2112監測特性之處亦可根據實施例不同而變化,如將在圖22至圖27中所見。The sensors 2112 may be deployed in a variety of locations, including locations that are part of the power generation system 2100 and locations external thereto. Where the sensor 2112 monitors characteristics may also vary from embodiment to embodiment, as will be seen in FIGS. 22-27 .

圖22繪示發電系統2200之一個實施例,其中感測器2212連同電源2210及一或多個電路2214駐存於發電系統2200內。發電系統2200包含輸出2220,該輸出經組態用於在不存在匹配網路2204的情況下耦接至視情況選用之匹配網路2204或直接耦接至電漿腔室2208。因此,主要功率信號及一或多個次要功率信號可提供至輸出2220且因此經組態用於遞送至匹配網路2204。FIG. 22 illustrates one embodiment of a power generation system 2200 in which a sensor 2212 resides within the power generation system 2200 along with a power source 2210 and one or more circuits 2214 . Power generation system 2200 includes output 2220 configured for coupling to optional matching network 2204 or directly to plasma chamber 2208 in the absence of matching network 2204 . Accordingly, a primary power signal and one or more secondary power signals may be provided to output 2220 and thus configured for delivery to matching network 2204 .

圖23繪示發電系統2300之一個實施例,其中感測器2312駐存於發電系統2300外部。此處,發電系統2300包含電源2310、一或多個電路2314、視情況選用之濾波器2322及至發電系統2300之輸出2320。感測器2312耦接至一或多個電路2314且提供描述效能之量測(例如,負載反射係數量值或電漿密度)之資訊。若匹配網路2304不存在,則感測器2312監測發電系統2300與視情況選用之匹配網路2304之間、匹配網路2304與電漿腔室2308之間,或電漿腔室2308處,或發電系統2300與電漿腔室2308之間的特性。感測器2312亦可在匹配網路2304處或內執行監測。FIG. 23 illustrates an embodiment of a power generation system 2300 in which a sensor 2312 resides external to the power generation system 2300 . Here, a power generation system 2300 includes a power source 2310 , one or more circuits 2314 , an optional filter 2322 , and an output 2320 to the power generation system 2300 . Sensors 2312 are coupled to one or more circuits 2314 and provide information describing performance measurements such as load reflection coefficient values or plasma density. If the matching network 2304 does not exist, the sensor 2312 monitors between the power generation system 2300 and the optional matching network 2304, between the matching network 2304 and the plasma chamber 2308, or at the plasma chamber 2308, Or the characteristics between the power generation system 2300 and the plasma chamber 2308 . Sensors 2312 may also perform monitoring at or within matching network 2304 .

儘管圖21至圖23繪示單一電源2110、2210、2310,但所屬技術領域中具有通常知識者將認識到,此電源2110、2210、2310能夠同時產生主要及次要功率信號兩者。舉例而言,電源2110、2210、2310可供應高功率主要功率信號(例如,使用主要振盪器)及低位準次要功率信號(例如,使用次要振盪器)兩者,或電源2110、2210、2310可供應高功率主要功率信號(例如,藉由單一振盪器-放大器組合)且將該主要功率信號所固有之雜訊用作次要功率信號,僅舉兩個非限制性實例。替代地,電源2110、2210、2310可產生主要功率信號(例如,藉由單一振盪器-放大器組合)且將此與經產生或經放大雜訊組合。儘管這些實例中之每一者展現單一電源2110、2210、2310可如何產生主要功率信號及次要功率信號兩者,但圖24至圖27將繪示電源產生主要功率信號且低位準信號源產生次要功率信號之實施例。Although Figures 21-23 depict a single power supply 2110, 2210, 2310, one of ordinary skill in the art will recognize that this power supply 2110, 2210, 2310 is capable of generating both primary and secondary power signals simultaneously. For example, the power supplies 2110, 2210, 2310 may supply both a high-power primary power signal (eg, using a primary oscillator) and a low-level secondary power signal (eg, using a secondary oscillator), or the power supplies 2110, 2210, The 2310 can supply a high power primary power signal (eg, by a single oscillator-amplifier combination) and use the noise inherent in that primary power signal as a secondary power signal, just to name two non-limiting examples. Alternatively, the power supplies 2110, 2210, 2310 may generate the main power signal (eg, by a single oscillator-amplifier combination) and combine this with generated or amplified noise. While each of these examples shows how a single power supply 2110, 2210, 2310 can generate both primary and secondary power signals, FIGS. Embodiment of secondary power signal.

圖24繪示發電系統2400之一實施例,該發電系統具有電源2410、低位準信號源2411、一或多個電路2414、可配置於發電系統2400內的視情況選用之感測器2412或可配置於發電系統2400外部的視情況選用之感測器2413,以及組合來自電源2410及低位準信號源2411之輸出的組合器2424。如所屬技術領域中具有通常知識者將瞭解,組合器可藉由此項技術中已知之耦接器實現。24 illustrates an embodiment of a power generation system 2400 having a power source 2410, a low level signal source 2411, one or more circuits 2414, optional sensors 2412 that may be configured within the power generation system 2400 or may be An optional sensor 2413 disposed outside the power generation system 2400 and a combiner 2424 combining outputs from the power source 2410 and the low-level signal source 2411 . As will be appreciated by those of ordinary skill in the art, the combiner can be implemented with couplers known in the art.

圖25繪示發電系統2500之一實施例,其中主要信號與次要信號在藉由功率放大器2550放大之前經組合。FIG. 25 illustrates an embodiment of a power generation system 2500 in which the primary and secondary signals are combined before being amplified by a power amplifier 2550 .

圖26繪示發電系統2600之一實施例,其中電源2610產生主要功率信號且雜訊源2613產生呈雜訊形式之次要功率信號。主要功率信號及次要功率信號或雜訊可組合在發電系統2600中,且組合信號可提供至發電系統2600之輸出2620。如所屬技術領域中具有通常知識者將瞭解,雜訊源2613可藉由包含雜訊二極體之多種不同類型之裝置來實現。有利地,雜訊源2613可產生次要頻率之連續譜,且次要頻率之回應可在複數個不同頻率下並行處理(例如,藉由複數個解調頻道或快速傅立葉變換模組)。舉例而言,在複數個頻率下之反射係數可並行到達以識別提供低反射係數、穩定頻率或穩定性與低反射係數之間的平衡之頻率。Figure 26 illustrates an embodiment of a power generation system 2600 in which a power source 2610 generates a primary power signal and a noise source 2613 generates a secondary power signal in the form of noise. The primary power signal and the secondary power signal or noise may be combined in the power generation system 2600 and the combined signal may be provided to an output 2620 of the power generation system 2600 . As will be appreciated by those of ordinary skill in the art, the noise source 2613 can be implemented by many different types of devices including noise diodes. Advantageously, the noise source 2613 can generate a continuum of secondary frequencies, and the responses of the secondary frequencies can be processed in parallel at multiple different frequencies (eg, by multiple demodulation channels or fast Fourier transform modules). For example, reflection coefficients at multiple frequencies can be arrived at in parallel to identify frequencies that provide low reflection coefficients, stable frequencies, or a balance between stability and low reflection coefficients.

圖27繪示發電系統2700之一實施例,其中主要信號與次要信號在藉由功率放大器2750放大之前經組合。在此實施例中,次要信號由雜訊源2713產生。FIG. 27 illustrates an embodiment of a power generation system 2700 in which the primary and secondary signals are combined before being amplified by a power amplifier 2750 . In this embodiment, the secondary signal is generated by noise source 2713 .

圖21至圖27中所繪示之系統可參考圖28至圖35中所見之曲線而更易於理解。The systems depicted in FIGS. 21-27 can be more easily understood with reference to the curves seen in FIGS. 28-35 .

圖28展示隨頻率而變之效能之量測的曲線。實線2801展示隨頻率而變之實際效能之量測(例如,負載反射係數量值),該頻率將在主要功率信號經調整至每一頻率且進行量測的情況下產生。虛線2802展示使用一或多個次要功率信號獲得的經估計效能之量測,同時主要功率信號保持在固定頻率(例如, f1)下。 Figure 28 shows plots of measurements of performance as a function of frequency. Solid line 2801 shows a measure of actual performance (eg, load reflection coefficient magnitude) as a function of frequency that would result if the main power signal were tuned to each frequency and measured. Dashed line 2802 shows a measure of estimated performance obtained using one or more secondary power signals while the primary power signal is kept at a fixed frequency (eg, f1 ).

如所論述,主要頻率之功率位準影響效能之量測(例如,負載反射係數);因此,使用低位準功率信號所估計的效能之量測將不同於主要信號之較高功率下的效能之量測。但如本文中進一步論述,低位準信號使得能夠密切估計所要主要頻率(例如,其產生低反射係數及/或低不穩定性)。可接著在較高功率位準下微調主要信號之頻率而無需測試可引發電漿熄滅之頻率。As discussed, the power level of the primary frequency affects measures of performance (e.g., load reflection coefficient); therefore, measures of performance estimated using a low-level power signal will differ from performance at higher powers of the primary signal. Measure. But as discussed further herein, the low level signal enables close estimation of the desired dominant frequency (eg, which results in low reflection coefficient and/or low instability). The frequency of the main signal can then be fine-tuned at higher power levels without testing for frequencies that would cause the plasma to go out.

圖29描繪其中初始主要頻率可施加於f1與fa之間的一態樣,以及頻率調諧演算法(其依賴於掃掠及測試主要功率之頻率)可如何在效能之量測的局部最佳值下被截獲而無需由低功率次要信號提供之資訊。更具體言之,調諧演算法可朝向被認為係在 f1之最佳頻率來調諧主要頻率。詳言之,圖29A展示隨頻率而變的效能之量測(例如,反射係數);圖29B之實線展示僅使用主要功率的演算法可如何調整主要功率信號頻率以使效能之量測最小化;並且圖29C展示在圖29B中之時間t2的發電系統輸出2220、2320、2420、2520、2620或2720之頻譜(每頻寬之功率,例如,每3 kHz頻寬之瓦特)。如藉由圖29B中之虛線所展示,可使用低位準次要信號來識別全域最佳頻率。 Figure 29 depicts an aspect where an initial dominant frequency can be applied between f1 and fa, and how the frequency tuning algorithm (which relies on sweeping and testing the frequency of the dominant power) can be at a local optimum of the measure of performance can be intercepted without the information provided by the low power secondary signal. More specifically, the tuning algorithm may tune the primary frequency towards an optimal frequency considered to be at f1 . In particular, Figure 29A shows a measure of performance (e.g., reflection coefficient) as a function of frequency; the solid line of Figure 29B shows how an algorithm using only the main power can adjust the frequency of the main power signal to minimize the measure of performance and FIG. 29C shows the frequency spectrum (power per bandwidth, eg, watts per 3 kHz bandwidth) of the power generation system output 2220, 2320, 2420, 2520, 2620, or 2720 at time t2 in FIG. 29B. As shown by the dotted line in Figure 29B, the low level secondary signal can be used to identify the best frequency globally.

但如由實線所展示,在達至處於f1之局部最佳值後,若主要頻率用以搜尋全域最佳值,則這些嘗試可能引起頻率fa附近之功率的施加,此可如在圖30A及圖30B中所見的導致電漿熄滅。圖30A展示隨頻率而變之效能之量測。圖30A中之實線展示藉由點亮電漿的效能之量測,且虛線展示熄滅電漿的效能之量測。圖30B展示使用主要功率信號之全域搜尋可如何產生熄滅電漿,因為可能無法在fa附近遞送足夠功率來維持電漿。圖30C展示在圖30B中之時間t2的發電系統輸出之頻譜。But as shown by the solid line, after reaching the local optimum at f1, if the dominant frequency is used to search for the global optimum, these attempts may result in the application of power around the frequency fa, as can be seen in Fig. 30A and that seen in Figure 30B results in the extinction of the plasma. Figure 30A shows a measure of performance as a function of frequency. The solid line in Figure 30A shows the measure of the efficiency by lighting the plasma, and the dashed line shows the measure of the efficiency of extinguishing the plasma. Fig. 30B shows how a global search using the main power signal may result in quenching plasma, since it may not be possible to deliver enough power near fa to sustain the plasma. Figure 30C shows the frequency spectrum of the power generation system output at time t2 in Figure 30B.

實情為,一或多個次要功率信號可用於搜尋全域最佳值,如圖31(展示一個次要功率信號)及圖32(展示多個次要功率信號)中所展示,同時主要功率信號保持在固定頻率下(例如,在局部最佳值處或接近於局部最佳值)。在圖31中,展示了使用在以特定次序施加之單一次要頻率下呈低位準信號形式之次要功率信號進行的頻率調諧。圖32展示使用呈具有處於多個次要頻率下的頻譜分量之低位準信號形式之次要功率信號進行的頻率調諧,該多個次要頻率根據演算法調整以最佳化效能之量測。The fact is that one or more secondary power signals can be used to search for the global optimum, as shown in Figure 31 (showing one secondary power signal) and Figure 32 (showing multiple secondary power signals), while the primary power signal Stay at a fixed frequency (eg, at or close to a local optimum). In FIG. 31 , frequency tuning using a secondary power signal in the form of a low level signal at a single secondary frequency applied in a particular order is shown. 32 shows frequency tuning using a secondary power signal in the form of a low level signal with spectral components at multiple secondary frequencies adjusted according to an algorithm to optimize a measure of performance.

如所展示,一或多個次要功率信號可以遠低於主要功率信號之功率位準的功率位準來施加,且可在一或多個次要頻率下施加。次要頻率可為具有相等或不等間隔之固定頻率,或可為如圖32中所展示之可變頻率。此外,主要及次要功率信號可同時經施加。As shown, one or more secondary power signals may be applied at a power level substantially lower than that of the primary power signal, and may be applied at one or more secondary frequencies. The secondary frequencies may be fixed frequencies with equal or unequal spacing, or may be variable frequencies as shown in FIG. 32 . Additionally, primary and secondary power signals can be applied simultaneously.

如圖31中所繪示,可連續地施加次要信號(探測頻率),或如圖32中所繪示,僅在搜尋全域最佳值時施加這些次要信號。另外,儘管單一特性展示於圖28至圖33之曲線中,但在其他實施例中可同時監測到多個特性,例如負載反射係數量值連同經由(例如,負載阻抗之波動)量測的電漿穩定性,且對所有監測到的特性(或複數個監測到的特性)之分析可用以識別全域最佳值。以此方式,在不於fa或可能熄滅電漿之任何頻率附近施加主要信號之全功率的情況下識別全域最佳值。The secondary signals (probing frequencies) can be applied continuously, as shown in FIG. 31 , or only when searching for global optimum, as shown in FIG. 32 . In addition, although a single characteristic is shown in the graphs of FIGS. 28-33 , in other embodiments multiple characteristics can be monitored simultaneously, such as the magnitude of the load reflection coefficient in conjunction with electrical current measured via (e.g., fluctuations in load impedance). slurry stability, and analysis of all monitored properties (or a plurality of monitored properties) can be used to identify global optimum values. In this way, a global optimum is identified without applying the full power of the primary signal around fa or any frequency that might extinguish the plasma.

在一些操作模式中,在一或多個次要探測頻率下施加之一或多個次要功率信號的振幅小到以至於其相比於主要功率信號而可被視為可忽略的且因此對電漿沒有顯著影響。在其他應用中,若目標僅為在搜尋全域最佳值時不熄滅電漿,則一或多個次要功率信號之振幅相較於主要功率信號而可為重要的。在此情況下,必須注意不超過電漿系統之電壓及電流額定值,此係因為拍頻處之高所得振幅。In some modes of operation, the amplitude of one or more secondary power signals applied at one or more secondary probing frequencies is so small that it can be considered negligible compared to the primary power signal and therefore has no effect on Plasma has no significant effect. In other applications, the amplitude of one or more secondary power signals may be important compared to the primary power signal if the goal is simply not to extinguish the plasma while searching for a global optimum. In this case, care must be taken not to exceed the voltage and current ratings of the plasma system due to the high resulting amplitude at the beat frequency.

圖31展示單一次要探測頻率在頻率範圍內連續掃掠之實施例。次要探測頻率掃掠所處之範圍將典型地為發電系統預期操作所處之頻率範圍(例如,12.882至14.238 MHz),但情況並非必須如此。可考慮其他頻率範圍之實例包含何時藉由例如分析混合及互調產物而使用次要功率信號來擷取關於電漿條件之資訊。在如圖32中所繪示之其他情況下,一或多個次要探測頻率可根據演算法調整以找出最佳頻率而非如圖31中所展示的在預定圖案中掃掠。亦如圖32中所展示,一旦已識別到全域最佳值,則可關斷次要功率信號而非如圖31中所展示的連續施加次要功率信號。Figure 31 shows an embodiment where a single secondary detection frequency is swept continuously across the frequency range. The range over which the secondary sounding frequency is swept will typically be the frequency range over which the power generation system is expected to operate (eg, 12.882 to 14.238 MHz), but this is not necessarily the case. Examples where other frequency ranges may be considered include when the secondary power signal is used to extract information about plasma conditions by, for example, analyzing mixing and intermodulation products. In other cases, as shown in FIG. 32 , one or more secondary probing frequencies may be adjusted according to an algorithm to find an optimal frequency rather than sweeping in a predetermined pattern as shown in FIG. 31 . As also shown in FIG. 32 , once the global optimum has been identified, the secondary power signal may be turned off rather than continuously applied as shown in FIG. 31 .

如圖31A及圖32A中所繪示,使用一或多個次要功率信號對最佳頻率之估計可能並未準確地對應於真實最佳值。典型地,此差異將由電漿負載之非線性性質產生。如圖31B及圖32B中所繪示,在使用次要功率信號判定最佳頻率之後,可調整主要頻率以進一步最佳化效能。圖31C及圖32C分別描繪圖31B及圖31C之主要及次要探測頻率的頻譜分量。As shown in Figures 31A and 32A, the estimate of the optimum frequency using one or more secondary power signals may not correspond exactly to the true optimum. Typically, this difference will arise from the non-linear nature of the plasma loading. As shown in Figures 3 IB and 32B, after determining the optimum frequency using the secondary power signal, the primary frequency can be adjusted to further optimize performance. Figures 31C and 32C depict the spectral components of the primary and secondary sounding frequencies of Figures 31B and 31C, respectively.

圖33A至圖33C展示次要功率信號為雜訊之情況。圖33C展示在圖33B中之時間t2的發電系統輸出之頻譜。雜訊可為主要功率信號所固有的或可添加至發電系統輸出(例如,參見圖26及圖27)。圖33B展示隨時間而變之雜訊功率,假定雜訊經添加至發電系統輸出之情況。33A-33C show the case where the secondary power signal is noise. Figure 33C shows the frequency spectrum of the power generation system output at time t2 in Figure 33B. Noise can be inherent to the main power signal or can be added to the power generation system output (see, eg, Figures 26 and 27). Figure 33B shows the noise power as a function of time, assuming that the noise is added to the output of the generating system.

一旦已識別到全域最佳值,則主要功率信號可經調整或切換至(或朝向)對應於全域最佳值之頻率,而無需主要功率信號穿過頻譜之可能抑制電漿的區域(例如, fa附近)。舉例而言,在圖14中,主要功率信號振幅斜降,而次要頻率之振幅在全域最佳值下斜升。以此方式,主要功率信號及次要功率信號交換位置。圖35展示使主要頻率朝向全域最佳值切換之另一變化,其中主要功率信號之頻率突然改變為經識別全域最佳頻率。 Once the global optimum has been identified, the main power signal may be adjusted or switched to (or towards) the frequency corresponding to the global optimum without requiring the main power signal to pass through regions of the spectrum where plasma may be suppressed (e.g., near fa ). For example, in FIG. 14, the amplitude of the primary power signal is ramped down, while the amplitude of the secondary frequency is ramped up at the global optimum. In this way, the primary power signal and the secondary power signal swap places. Figure 35 shows another variation of switching the primary frequency towards the global optimum, where the frequency of the primary power signal changes abruptly to the identified global optimum frequency.

在一些實施例中,經識別全域最佳頻率可選自次要頻率中之一者,但此並非必要的。舉例而言,經識別全域最佳頻率可在兩個或更多個次要頻率中之兩者之間。舉例而言,次要頻率之間的內插可用以識別經識別全域最佳頻率。In some embodiments, the identified global best frequency may be selected from one of the secondary frequencies, but this is not required. For example, the identified global best frequency may be between two of the two or more secondary frequencies. For example, interpolation between secondary frequencies can be used to identify the identified overall best frequency.

圖36繪示用於對發電系統進行頻率調諧以使用次要探測信號導向效能之量測的全域最佳值以找出全域最佳值之方法。方法3600主要在主要頻率下將主要功率信號施加(例如,藉由高頻率產生器102)至電漿系統(例如,連接至電漿腔室2108之匹配網路2104)(區塊3602)。同時,方法3600在次要探測頻率之一或多者或連續譜(例如,如在雜訊之情況下)下將低位準信號施加至電漿系統(區塊3604)。FIG. 36 illustrates a method for frequency tuning a power generation system to find the global optimum of a measure of performance using a secondary sounding signal to steer the global optimum. Method 3600 applies (eg, by high frequency generator 102 ) a primary power signal to a plasma system (eg, matching network 2104 connected to plasma chamber 2108 ) primarily at a primary frequency (block 3602 ). Simultaneously, the method 3600 applies a low level signal to the plasmonic system at one or more of the secondary detection frequencies or a continuum (eg, as in the case of noise) (block 3604 ).

低位準信號可為週期性的或週期性信號之總和,可為主要功率信號固有的雜訊,或可為添加至主要功率信號之雜訊。一或多個次要頻率可在頻率上等距間隔開或可具有變化之間隔。一或多個次要頻率可一起施加或在不同時間施加,且可隨時間推移而加以調整。一或多個次要頻率可跨越固定頻率範圍而掃掠。替代地,一或多個次要頻率可經由反饋調整以探測且導向全域最佳值。次要頻率之一或多個次要或連續譜可一直施加或僅在需要時施加。The low level signal can be periodic or the sum of periodic signals, it can be noise inherent in the main power signal, or it can be noise added to the main power signal. The one or more secondary frequencies may be equally spaced in frequency or may have varying intervals. One or more secondary frequencies may be applied together or at different times, and may be adjusted over time. One or more secondary frequencies may be swept across a fixed frequency range. Alternatively, one or more secondary frequencies can be adjusted via feedback to detect and steer to a global optimum. One or more secondary or continuum frequencies of the secondary frequencies can be applied all the time or only when required.

方法3600監測作為隨頻率而變之效能之量測(例如,負載反射係數量值)的特性,詳言之在次要頻率之一或多者或連續譜下及/或在主要頻率下及/或在主要頻率及次要頻率之預期混合及互調產物下監測該特性(區塊3606)。如所展示,抑制(例如,藉由濾波器104)主要頻率與來自任何低頻率產生器(例如,低頻率產生器108)之任何低頻率的混合產物(區塊3607)。方法3600接著識別對應於特性之全域最佳值之最佳頻率(區塊3608)。此可經由所屬技術領域中具有通常知識者所熟悉之最小化及最大化演算法來進行。最後,方法3600將主要功率信號之主要頻率調整至識別操作中所識別之最佳頻率(區塊3610)。此調整可以多種方式進行。舉例而言,該調整可必須避免在延長時段內僅在其中反射功率接近於100%之區域(例如,圖28中 fa附近)中施加主要功率,此係因為此可熄滅電漿(除非例如電漿係藉由另一電源2150或2151維持)。因此,主要功率信號可切換至最佳頻率,或主要功率信號及次要功率信號之功率位準可逐漸反向以使得功率信號反向置放,僅舉兩個非限制性實例。 Method 3600 monitors a characteristic as a measure of frequency-dependent performance (e.g., load reflection coefficient magnitude), specifically at one or more of the secondary frequencies or a continuum and/or at the primary frequency and/or Alternatively, the characteristic is monitored for expected mixing and intermodulation products of primary and secondary frequencies (block 3606 ). As shown, the mixing product of the dominant frequency and any low frequencies from any low frequency generator (eg, low frequency generator 108 ) is suppressed (eg, by filter 104 ) (block 3607 ). The method 3600 then identifies the best frequency corresponding to the global best value of the characteristic (block 3608). This can be done via minimization and maximization algorithms familiar to those of ordinary skill in the art. Finally, the method 3600 adjusts the primary frequency of the primary power signal to the optimal frequency identified in the identification operation (block 3610 ). This adjustment can be done in a number of ways. For example, this adjustment may be necessary to avoid applying major power only in regions where the reflected power is close to 100% (e.g., near fa in FIG. The slurry system is maintained by another power source 2150 or 2151). Thus, the primary power signal can be switched to an optimal frequency, or the power levels of the primary and secondary power signals can be gradually reversed such that the power signals are placed in reverse, just to name two non-limiting examples.

在一些實施例中,方法3600在主要功率信號已移動至使用一或多個次要功率信號識別為全域最佳值之頻率時結束。但在其他情況下,方法3600可循環以進一步改進最佳化或考慮歸因於例如電漿負載之非線性性質或可隨時間改變之參數(例如,電漿腔室氣體壓力)所引起的全域最佳值之變化。In some embodiments, method 3600 ends when the primary power signal has moved to a frequency identified as the global optimum using one or more secondary power signals. But in other cases, the method 3600 can be iterated to further refine the optimization or to account for global variations due to, for example, the nonlinear nature of the plasma load or parameters that can change over time (e.g., plasma chamber gas pressure). Variation of the best value.

最佳頻率之識別(區塊3608)可即時發生,此係因為樣本係自監測(區塊3606)獲得,或者分析可在頻率範圍已經過取樣之後發生。主要頻率之移動(區塊3610)可僅在已識別到全域最佳值(區塊3608)後發生,或其可在識別到比當前主要頻率更佳之頻率後發生。The identification of the best frequencies (block 3608) can happen instantaneously because the samples are obtained from monitoring (block 3606), or the analysis can happen after the frequency range has been sampled. The movement of the primary frequency (block 3610) may only occur after a global optimum has been identified (block 3608), or it may occur after a frequency better than the current primary frequency has been identified.

使用次要功率信號來監測特性之方法亦可出於識別電漿特性或電漿特性之變化的目的而使用。代替識別最佳頻率且朝向經識別全域最佳值調整主要頻率,輸出或監測特性(區塊3608)可用以識別電漿特性或電漿特性之變化。監測混合及互調產物可用於監測電漿之非線性行為或僅用於偵測電漿是否被點亮。代替查看特定混合及互調產生,高階統計(例如,雙頻譜)可用以識別電漿特性或電漿特性之變化。Methods of monitoring properties using secondary power signals may also be used for the purpose of identifying plasma properties or changes in plasma properties. Instead of identifying an optimal frequency and adjusting the primary frequency toward the identified global optimum, outputting or monitoring characteristics (block 3608 ) may be used to identify plasma characteristics or changes in plasma characteristics. Monitoring mixing and intermodulation products can be used to monitor the nonlinear behavior of the plasma or simply to detect whether the plasma is lit. Instead of looking at specific mixing and intermodulation production, higher order statistics (eg, bispectrum) can be used to identify plasmonic properties or changes in plasmonic properties.

圖37展示例如感測器2112或2412等感測器之三個例示性實施方案。感測器可例如為如圖37A中所展示之定向耦接器3710或如圖37B中所展示之電壓及電流(VI)感測器,並且任一實施方案可包含如圖37C中所展示的濾波器3730及類比至數位轉換器3720。FIG. 37 shows three exemplary implementations of sensors, such as sensors 2112 or 2412 . The sensor can be, for example, a directional coupler 3710 as shown in FIG. 37A or a voltage and current (VI) sensor as shown in FIG. 37B , and either implementation can include a directional coupler 3710 as shown in FIG. 37C filter 3730 and analog-to-digital converter 3720 .

圖38展示全域最佳值識別模組(例如,2116或2418)之例示性實施方案。圖38中所展示之功能性之部分亦可為感測器之部分。圖38展示使用允許同時處理多個頻率分量之多個解調器3810之實施方案。信號3820(標記為A)及3830(標記為B)可例如為前向及反射功率或電壓及電流或某一其他相關量測。在藉由餘弦及正弦函數進行乘法3850以及濾波3840之後,在標記為A 1、B 1至A N、B N的不同頻率下之A及B的複向量表示用於在多個頻率下計算功率及負載反射係數中。典型地,將保留一個頻道用於主要頻率。其他頻道可設定成一或多個次要頻率或預期混合及互調產物。如之前所提及,此僅為一個實施方案,且使用例如離散傅立葉變換而非專用解調頻道之許多其他實施方案係可能的。 Figure 38 shows an exemplary implementation of a global best value identification module (eg, 2116 or 2418). Part of the functionality shown in Figure 38 may also be part of a sensor. Figure 38 shows an implementation using multiple demodulators 3810 that allow simultaneous processing of multiple frequency components. Signals 3820 (labeled A) and 3830 (labeled B) may be, for example, forward and reflected power or voltage and current or some other related measurement. After multiplication 3850 and filtering 3840 by cosine and sine functions, the complex vector representations of A and B at different frequencies labeled A 1 , B 1 to AN , B N are used to calculate power at multiple frequencies and load reflection coefficient. Typically, one channel will be reserved for the primary frequency. Other channels can be set to one or more secondary frequencies or desired mixing and intermodulation products. As mentioned before, this is only one implementation, and many other implementations are possible using, for example, discrete Fourier transforms rather than dedicated demodulation channels.

圖21至圖27中所展示之組件之所繪示配置為邏輯的,各種組件之間的連接僅為例示性的,且這些實施例之描繪並不意謂為實際硬體圖;因此,組件可在實際實施方案中組合或進一步分離,且組件可在不改變系統之基本操作的情況下以多種方式連接。The depicted configurations of the components shown in FIGS. 21-27 are logical, the connections between the various components are illustrative only, and the depictions of these embodiments are not meant to be actual hardware diagrams; therefore, the components may Combined or further separated in practical implementations, and components can be connected in various ways without changing the basic operation of the system.

代替單一次要電源,如圖24至圖27中所見,兩個、三個、四個或更多個次要電源可用於產生兩個或更多個次要功率信號。Instead of a single secondary power supply, as seen in Figures 24-27, two, three, four or more secondary power supplies can be used to generate two or more secondary power signals.

出於本揭示內容之目的,次要功率信號可為週期性的,例如RF信號。然而,在其他實施例中,可使用非週期性功率信號(例如,雜訊)。For purposes of this disclosure, the secondary power signal may be periodic, such as an RF signal. However, in other embodiments, a non-periodic power signal (eg, noise) may be used.

儘管本揭示內容已重複地展示對局部及全域最小值之調諧,但所屬技術領域中具有通常知識者應瞭解,亦設想對局部及全域最大值之調諧,且本揭示內容可容易應用於經監測特性,其中經遞送功率之主要頻率針對經監測特性之全域最大值而經最佳化。此外,無需執行本文中所描述之頻率調諧以達到局部或全域最大值/最小值。實情為,有益於達到去諧頻率之應用在一些情況下可為較佳的,例如在達成穩定電漿之高頻率產生器(例如,高頻率產生器102)的頻率優於反射功率之最小位準的情況下。Although the disclosure has repeatedly shown tuning to local and global minima, those of ordinary skill in the art will appreciate that tuning to local and global maxima is also contemplated and that the disclosure can be readily applied to monitored A characteristic where the dominant frequency of the delivered power is optimized for the global maximum of the monitored characteristic. Furthermore, there is no need to perform the frequency tuning described herein to achieve local or global maxima/minima. In fact, applications where it is beneficial to achieve a detuned frequency may be preferable in some cases, such as where the frequency of the high frequency generator (e.g., high frequency generator 102) to achieve a stable plasma is better than the minimum position of the reflected power standard case.

所屬技術領域中具有通常知識者應理解,可使用多種不同技術及技藝中之任一者來表示資訊及信號。舉例而言,可貫穿以上描述提及之資料、指令、命令、資訊、信號、位元、符號及晶片可由電壓、電流、電磁波、磁場或磁性粒子、光場或光學粒子或其任何組合表示。Those of ordinary skill in the art would understand that information and signals may be represented using any of a variety of different technologies and techniques. For example, data, instructions, commands, information, signals, bits, symbols, and chips that may be referred to throughout the above description may be represented by voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, optical fields or optical particles, or any combination thereof.

所屬技術領域中具有通常知識者將進一步瞭解,結合本文所揭示之實施例描述的各種說明性邏輯區塊、模組、電路及演算法步驟可實施為電子硬體、電腦軟體或兩者之組合。可藉由通用處理器、數位信號處理器(DSP)、特殊應用積體電路(ASIC)、場可程式化閘陣列(FPGA)或經設計以執行本文中所描述之功能的其他可程式化邏輯裝置、離散閘或電晶體邏輯、離散硬體組件或其任何組合來實施或執行結合本文所揭示之實施例描述的各種說明性邏輯區塊、模組及電路。通用處理器可為微處理器,但在替代方案中,處理器可為任何習知處理器、控制器、微控制器或狀態機。處理器亦可實施為計算裝置之組合,例如DSP與微處理器之組合、複數個微處理器、結合DSP核心的一或多個微處理器或任何其他此類組態。Those of ordinary skill in the art will further appreciate that the various illustrative logic blocks, modules, circuits, and algorithm steps described in conjunction with the embodiments disclosed herein may be implemented as electronic hardware, computer software, or a combination of both . A general-purpose processor, digital signal processor (DSP), application-specific integrated circuit (ASIC), field-programmable gate array (FPGA), or other programmable logic designed to perform the functions described herein devices, discrete gate or transistor logic, discrete hardware components, or any combination thereof to implement or execute the various illustrative logic blocks, modules, and circuits described in connection with the embodiments disclosed herein. A general-purpose processor may be a microprocessor, but in the alternative, the processor may be any conventional processor, controller, microcontroller, or state machine. A processor may also be implemented as a combination of computing devices, eg, a combination of a DSP and a microprocessor, a plurality of microprocessors, one or more microprocessors in combination with a DSP core, or any other such configuration.

結合本文所揭示之實施例描述的方法或演算法之步驟可直接體現於硬體中、由處理器執行之軟體模組中,或兩者的組合中。軟體模組可駐存於非暫時性記憶體中,該非暫時性記憶體包含RAM記憶體、快閃記憶體、ROM記憶體、EPROM記憶體、EEPROM記憶體、暫存器、硬碟、可移磁碟、CD-ROM,或所屬技術領域中已知之任何其他形式的儲存媒體。例示性儲存媒體耦接至處理器以使得處理器可自儲存媒體讀取資訊且將資訊寫入至儲存媒體。在替代方案中,儲存媒體可與處理器成一體式。處理器及儲存媒體可駐存於ASIC中。ASIC可駐存於使用者終端機中。在替代方案中,處理器及儲存媒體可作為離散組件駐存於使用者終端機中。The steps of the methods or algorithms described in conjunction with the embodiments disclosed herein may be directly embodied in hardware, in software modules executed by a processor, or in a combination of both. Software modules can reside in non-transitory memory, which includes RAM memory, flash memory, ROM memory, EPROM memory, EEPROM memory, scratchpad, hard disk, removable Disk, CD-ROM, or any other form of storage media known in the art. An exemplary storage medium is coupled to the processor such that the processor can read information from, and write information to, the storage medium. In the alternative, the storage medium may be integral with the processor. The processor and storage medium can reside in the ASIC. The ASIC may reside in a user terminal. In the alternative, the processor and storage medium may reside as discrete components in the user terminal.

參考圖39,展示了可結合本文所揭示之實施例而使用的計算系統3900之實例。如所展示,顯示器3912及非揮發性記憶體3920耦接至匯流排3922,該匯流排亦耦接至隨機存取記憶體(「RAM」)3924、處理部分(其包含 N個處理組件)3926、場可程式化閘陣列(FPGA)3927以及包含 N個收發器之收發器組件3928。儘管圖39中所描繪之組件表示實體組件,但圖39並不意欲為詳細硬體圖;因此,圖39中所描繪之許多組件可藉由常見構造實現或分散於額外實體組件當中。此外,經考慮,其他現有及尚待開發之實體組件及架構可用以實施參考圖39所描述之功能組件。 Referring to FIG. 39 , there is shown an example of a computing system 3900 that may be used in conjunction with embodiments disclosed herein. As shown, display 3912 and non-volatile memory 3920 are coupled to bus 3922, which is also coupled to random access memory ("RAM") 3924, processing section (which includes N processing elements) 3926 , a field programmable gate array (FPGA) 3927 and a transceiver assembly 3928 comprising N transceivers. Although the components depicted in FIG. 39 represent physical components, FIG. 39 is not intended to be a detailed hardware diagram; thus, many of the components depicted in FIG. 39 may be implemented with common configurations or dispersed among additional physical components. In addition, it is contemplated that other existing and yet to be developed physical components and architectures may be used to implement the functional components described with reference to FIG. 39 .

此顯示器3912一般用以向使用者提供使用者介面,且在若干實施方案中,顯示器3912係藉由觸控式螢幕顯示器實現。一般而言,非揮發性記憶體3920為用於儲存(例如,持久地儲存)資料及機器可讀(例如,處理器可執行)程式碼(包含與實現本文中所描述之方法相關聯的可執行程式碼)的非暫時性記憶體。舉例而言,在一些實施例中,非揮發性記憶體3920包含開機載入程式碼、作業系統程式碼、檔案系統程式碼及非暫時性處理器可執行程式碼以促進本文中所描述之方法的執行(包括但不限於參考流程圖圖7、圖16至圖20以及圖36所描述的方法)。This display 3912 is generally used to provide a user interface to the user, and in some embodiments, the display 3912 is implemented by a touch screen display. In general, non-volatile memory 3920 is memory used for storing (e.g., persistent storage) data and machine-readable (e.g., processor-executable) code (including executable code associated with implementing the methods described herein) Executing program code) in non-transitory memory. For example, in some embodiments, non-volatile memory 3920 includes boot loader code, operating system code, file system code, and non-transitory processor executable code to facilitate the methods described herein (including but not limited to the methods described with reference to the flowcharts of FIG. 7 , FIG. 16 to FIG. 20 and FIG. 36 ).

在許多實施方案中,非揮發性記憶體3920係藉由快閃記憶體(例如,NAND或ONENAND記憶體)實現,但經考慮,亦可利用其他記憶體類型。儘管有可能執行來自非揮發性記憶體3920之程式碼,但典型地將非揮發性記憶體中之可執行程式碼載入至RAM 3924中且藉由處理部分3926中的 N個處理組件中之一或多者來執行該可執行程式碼。非揮發性記憶體3920或RAM 3924可用於儲存如圖28至圖34中所描述之全域最佳值之頻率。 In many implementations, non-volatile memory 3920 is implemented by flash memory (eg, NAND or ONENAND memory), although it is contemplated that other memory types may be utilized. While it is possible to execute code from non-volatile memory 3920, executable code from non-volatile memory is typically loaded into RAM 3924 and processed by one of the N processing elements in processing section 3926 One or more to execute the executable code. Non-volatile memory 3920 or RAM 3924 may be used to store the frequency of the global optimum as described in FIGS. 28-34.

在操作中, N個處理組件結合RAM 3924一般可用以執行儲存於非揮發性記憶體3920中之指令,以實現寬頻量測系統116、120的態樣、頻率調諧子系統1525、全域最佳值識別模組2116、頻率控制模組2118、電路2114且控制高頻率產生器102、1502之態樣(例如,頻率調諧態樣)、電源2110及匹配106。舉例而言,用以實現參考圖7、圖16及圖16至圖20所描述之方法之態樣的非暫時性處理器可執行指令可持久地儲存於非揮發性記憶體1620中且藉由 N個處理組件結合RAM 3924來執行。如所屬技術領域中具有通常知識者將瞭解,處理部分3926可包含視訊處理器、數位信號處理器(DSP)、圖形處理單元(GPU)及其他處理組件。 In operation, N processing elements in combination with RAM 3924 are generally available to execute instructions stored in non-volatile memory 3920 to implement aspects of broadband measurement systems 116, 120, frequency tuning subsystem 1525, global optimum Identify module 2116 , frequency control module 2118 , circuit 2114 and control the aspect of high frequency generator 102 , 1502 (eg, frequency tuning aspect), power supply 2110 and matching 106 . For example, non-transitory processor-executable instructions for implementing aspects of the methods described with reference to FIGS. N processing components execute in conjunction with RAM 3924 . As will be appreciated by those of ordinary skill in the art, the processing portion 3926 may include a video processor, a digital signal processor (DSP), a graphics processing unit (GPU), and other processing components.

另外或在替代方案中,場可程式化閘陣列(FPGA)3927可經組態以實現本文中所描述之方法中之一或多個態樣(例如,參考圖7、圖16至圖20及圖36所描述之方法)。舉例而言,非暫時性FPGA組態指令可持久地儲存於非揮發性記憶體3920中且由FPGA 3927存取(例如,在啟動期間)以組態FPGA 3927以實現寬頻量測系統116、120之態樣且控制高頻率產生器102之態樣(例如,頻率調諧態樣)及匹配106。Additionally or in the alternative, Field Programmable Gate Array (FPGA) 3927 can be configured to implement one or more aspects of the methods described herein (eg, see FIGS. 7, 16-20 and method described in Figure 36). For example, non-transitory FPGA configuration instructions may be persistently stored in non-volatile memory 3920 and accessed by FPGA 3927 (e.g., during startup) to configure FPGA 3927 to implement broadband measurement systems 116, 120 and controls the aspect (eg, frequency tuning aspect) and matching 106 of the high frequency generator 102 .

輸入組件可用以接收指示功率之一或多個態樣之信號(例如,來自感測器114、118、1520、2112、2312、2412、2413)。在輸入組件處接收之信號可包含例如電壓、電流、前向功率、反射功率及電漿負載阻抗。輸出組件一般用以提供一或多個類比或數位信號(例如,頻率控制線1530上之頻率控制信號)以實現產生器102、108、匹配106及/或寬頻量測系統116、120之操作態樣。舉例而言,輸出部分可提供由產生器102、108、匹配106及/或寬頻量測系統116、120之振盪器及功率放大器利用的控制信號。An input component can be used to receive a signal (eg, from a sensor 114, 118, 1520, 2112, 2312, 2412, 2413) indicative of one or more aspects of power. Signals received at the input component may include, for example, voltage, current, forward power, reflected power, and plasma load impedance. Output components are typically used to provide one or more analog or digital signals (eg, a frequency control signal on frequency control line 1530 ) to achieve the operational states of generators 102 , 108 , matching 106 and/or broadband measurement systems 116 , 120 Sample. For example, the output section may provide control signals utilized by generators 102 , 108 , matching 106 and/or oscillators and power amplifiers of broadband measurement systems 116 , 120 .

所描繪之收發器組件3928包含可用於經由無線或有線網路與外部裝置進行通信之 N個收發器鏈。N個收發器鏈中之每一者可表示與特定通信方案(例如,WiFi、乙太網路、Profibus等)相關聯之收發器。 The depicted transceiver component 3928 includes N transceiver chains that can be used to communicate with external devices over a wireless or wired network. Each of the N transceiver chains may represent a transceiver associated with a particular communication scheme (eg, WiFi, Ethernet, Profibus, etc.).

提供所揭示實施例之先前描述以使得任何所屬技術領域中具有通常知識者能夠製作或使用本發明。應認識到,各種所描繪實施例並不意欲為獨立實施例。實情為,本文中所描繪之若干實施例應經檢視以傳達可經組合之若干態樣。舉例而言,參考圖21至圖38所描述之探測信號及信號偵測技術可結合參考圖1至圖20所描述之頻率調諧演算法而使用。作為另一實例,濾波器104、904、1404及寬頻量測系統116、118可結合參考圖21至圖38所描述之實施例而使用。對這些實施例之各種修改將對所屬技術領域中具有通常知識者顯而易見,並且在不背離本發明之精神或範圍的情況下可將本文中定義之一般原理應用於其他實施例。因此,本發明並不意欲限於本文中所展示之實施例,而應符合與本文中所揭示原理及新穎特徵相一致的最廣範圍。The previous description of the disclosed embodiments is provided to enable any person of ordinary skill in the art to make or use the invention. It should be appreciated that the various depicted embodiments are not intended to be stand-alone embodiments. Rather, several of the embodiments depicted herein should be examined to convey aspects that can be combined. For example, the probing signal and signal detection techniques described with reference to FIGS. 21-38 may be used in conjunction with the frequency tuning algorithms described with reference to FIGS. 1-20. As another example, the filters 104, 904, 1404 and broadband measurement systems 116, 118 may be used in conjunction with the embodiments described with reference to FIGS. 21-38. Various modifications to these embodiments will be readily apparent to those skilled in the art, and the generic principles defined herein may be applied to other embodiments without departing from the spirit or scope of the invention. Thus, the present invention is not intended to be limited to the embodiments shown herein but is to be accorded the widest scope consistent with the principles and novel features disclosed herein.

100:電漿腔室 102:高頻率產生器/產生器 104:濾波器 106:匹配網路/匹配 108:低頻率產生器/產生器 110:匹配 112:延遲元件 114:感測器 116:寬頻量測組件/寬頻量測系統 118:感測器 120:寬頻量測組件/寬頻量測系統 122:連接 124:連接 700:流程圖 710:區塊 720:區塊 730:區塊 740:區塊 750:區塊 804B:濾波器 810:輸入電容器 820:輸出電容器 904:水冷濾波器/濾波器 910:水連接 920:水連接 930:輸入連接器 1020:中空螺旋線圈/螺旋線圈 1022:接地端 1024:銅塊 1026:銅綁帶 1028:陶瓷絕緣體/陶瓷 1030:金屬化物 1032:經灌封圓柱形殼體 1110:輸入連接器/連接器 1120:陶瓷絕緣體 1130:中空螺旋線圈 1140:輸出連接器/連接器 1150:陶瓷絕緣體 1160:中空螺旋線圈 1210:水道 1220:陶瓷絕緣體 1230:綁帶 1240:銅塊 1250:後部金屬化物 1260:陶瓷絕緣體 1270:綁帶 1280:前部金屬化物 1310:絕緣托架 1404:濾波器 1410:杯體 1420:調諧芯塊 1430:杯體 1440:調諧芯塊 1502:高頻率產生器 1505:激發器 1510:功率放大器 1515:濾波器 1520:感測器 1525:頻率調諧子系統 1530:頻率控制線 1600:流程圖 1610:區塊 1620:區塊 1630:區塊 1640:區塊 1650:區塊 2100:發電系統 2104:匹配網路 2105:匹配網路 2106:電漿 2108:電漿腔室 2110:電源 2111:輸出 2112:感測器 2114:電路 2116:全域最佳值識別模組 2118:頻率控制模組 2122:濾波器 2130:連接/供電纜線/供電連接/纜線 2131:連接 2140:外部功率 2150:RF或DC產生器/產生器 2151:RF或DC產生器/產生器 2200:發電系統 2204:匹配網路 2208:電漿腔室 2210:電源 2214:電路 2220:輸出/發電系統輸出 2300:發電系統 2304:匹配網路 2306:電漿 2308:電漿腔室 2310:電源 2312:感測器 2314:電路 2316:頻率控制模組 2318:全域最佳值識別模組 2320:輸出 2322:濾波器 2400:發電系統 2404:匹配網路 2406:電漿 2408:電漿腔室 2410:電源 2411:低位準信號源 2412:感測器 2413:感測器 2414:電路 2416:頻率控制模組 2418:全域最佳值識別模組 2420:發電系統輸出 2422:濾波器 2423:濾波器 2424:組合器 2500:發電系統 2510:主要頻率源 2511:次要頻率源 2524:組合器 2550:功率放大器 2600:發電系統 2610:電源 2613:雜訊源 2620:輸出/發電系統輸出 2624:組合器 2700:發電系統 2710:主要頻率源 2713:雜訊源 2724:組合器 2750:功率放大器 2801:實線 2802:虛線 3600:方法 3602:區塊 3604:區塊 3606:區塊 3607:區塊 3608:區塊 3610:區塊 3710:定向耦接器 3720:類比至數位轉換器 3730:濾波器 3810:解調器 3820:信號 3830:信號 3840:濾波 3850:乘法 3900:計算系統 3912:顯示器 3920:非揮發性記憶體 3922:匯流排 3924:隨機存取記憶體/RAM 3926:處理部分 3927:場可程式化閘陣列/FPGA 3928:收發器組件 T:持續時間/最大時槽 100: Plasma chamber 102:High frequency generator/generator 104: filter 106:Matching Network/Matching 108:Low frequency generator/generator 110: match 112: delay element 114: sensor 116:Broadband measurement components/broadband measurement system 118: sensor 120:Broadband measurement components/broadband measurement system 122: connection 124: connection 700: Flowchart 710: block 720: block 730: block 740: block 750: block 804B: filter 810: input capacitor 820: output capacitor 904: Water-cooled filter/filter 910: Water connection 920: water connection 930: input connector 1020: hollow helical coil / helical coil 1022: ground terminal 1024: copper block 1026: copper strap 1028: ceramic insulator/ceramic 1030: metallization 1032: potted cylindrical shell 1110: input connector/connector 1120: ceramic insulator 1130: hollow spiral coil 1140: output connector/connector 1150: ceramic insulator 1160: hollow spiral coil 1210: waterway 1220: ceramic insulator 1230: strap 1240: copper block 1250: rear metallization 1260: ceramic insulator 1270: strap 1280: front metallization 1310: insulation bracket 1404: filter 1410: cup body 1420: tuning pellets 1430: cup body 1440: tuning pellets 1502: High frequency generator 1505: exciter 1510: Power Amplifier 1515: filter 1520: sensor 1525: Frequency Tuning Subsystem 1530: frequency control line 1600: Flowchart 1610: block 1620: block 1630: block 1640: block 1650: block 2100: Power generation system 2104: Matching network 2105: Matching network 2106: Plasma 2108: Plasma chamber 2110: Power 2111: output 2112: sensor 2114: circuit 2116: Global Best Value Identification Module 2118: Frequency Control Module 2122: filter 2130: Connection/supply cable/supply connection/cable 2131: connect 2140: External power 2150: RF or DC generator/generator 2151: RF or DC generator/generator 2200: Power generation system 2204: Matching network 2208: Plasma chamber 2210: power supply 2214: circuit 2220: Output/Generation System Output 2300: Power generation system 2304: Matching network 2306: Plasma 2308: Plasma chamber 2310: power supply 2312: sensor 2314: circuit 2316: frequency control module 2318: Global best value identification module 2320: output 2322: filter 2400: Power generation system 2404: Matching network 2406: Plasma 2408: Plasma chamber 2410: power supply 2411: Low level signal source 2412: sensor 2413: sensor 2414: circuit 2416: frequency control module 2418: Global best value identification module 2420: Power generation system output 2422: filter 2423: filter 2424: Combiner 2500: power generation system 2510: Main frequency source 2511: Secondary frequency source 2524: Combiner 2550: power amplifier 2600: Power generation system 2610: power supply 2613: noise source 2620: Output/Generation System Output 2624: Combiner 2700: Power generation system 2710: Main frequency source 2713: noise source 2724: Combiner 2750: Power Amplifier 2801: solid line 2802: dotted line 3600: method 3602: block 3604: block 3606: block 3607: block 3608: block 3610: block 3710: Directional coupler 3720: Analog to Digital Converter 3730: filter 3810: demodulator 3820:Signal 3830:Signal 3840: filter 3850: multiplication 3900: Computing Systems 3912:Display 3920: non-volatile memory 3922: busbar 3924: Random Access Memory/RAM 3926: processing part 3927: Field Programmable Gate Array/FPGA 3928: Transceiver Components T: duration/maximum time slot

[圖1]係描繪電源供應系統及電漿處理系統之方塊圖; [圖2]係描繪可如何藉由使用不同量測系統濾波器頻寬量測功率而感知功率之曲線圖; [圖3A]及[圖3B]係描繪負載反射係數之調變的曲線圖; [圖3C]係描繪當並未利用圖1中所描繪之濾波器時藉由高頻率產生器可見之所得反射功率的曲線圖; [圖4A]包含描繪用於圖1中所描繪之濾波器之例示性設計的效能態樣之兩個曲線圖; [圖4B]係描繪當並未利用圖1中所描繪之濾波器時在基本及混合產物頻率下可藉由高頻率產生器遞送至電漿負載之淨功率的曲線圖; [圖5A]及[圖5B]係描繪負載反射係數之調變的曲線圖; [圖5C]係描繪當並未利用圖1中所描繪之濾波器時藉由高頻率產生器可見之所得反射功率的曲線圖; [圖6A]及[圖6B]係描繪負載反射係數之調變的曲線圖; [圖6C]係描繪藉由圖1中所描繪之濾波器可見的所得反射功率之曲線圖; [圖7]係描繪可結合本文中所揭示之實施例來詳細研究的方法之流程圖; [圖8A]及[圖8B]係描繪參考圖1所描述之濾波器之實施例的等效電路之圖式; [圖9]係具有兩個並聯螺旋諧振器之例示性水冷濾波器設計之透視圖; [圖10]係具有兩個並聯螺旋諧振器之水冷濾波器設計之內部的視圖; [圖11]係具有兩個並聯螺旋諧振器之水冷濾波器設計之剖視圖; [圖12]係具有兩個並聯螺旋諧振器之水冷濾波器設計之電容器區塊的細節視圖; [圖13]係具有兩個並聯螺旋諧振器之水冷濾波器設計之分解視圖; [圖14]係包含用以調諧濾波器之措施的濾波器之視圖; [圖15]係描繪例示性高頻率產生器之方塊圖; [圖16]係描繪可結合本文中所揭示之實施例來詳細研究的方法之流程圖; [圖17]係描繪可由圖1及圖15之高頻率產生器應用之多狀態波形的曲線圖; [圖18]係描繪頻率調諧方法之例示性態樣之曲線圖; [圖19]係描繪參考圖18所描述之頻率調諧方法之額外態樣的曲線圖; [圖20]係描繪另一頻率調諧方法之操作態樣之曲線圖; [圖21]繪示經組態用於遞送至電漿負載之功率之自動頻率調諧的發電系統; [圖22]繪示發電系統之一個實施例,其中感測器連同電源及一或多個電路駐存於發電系統內; [圖23]繪示發電系統之一個實施例,其中感測器駐存於發電系統外部; [圖24]繪示發電系統之另一實施例; [圖25]繪示發電系統之一實施例,其中主要功率信號與次要功率信號在藉由功率放大器放大之前經組合; [圖26]繪示發電系統之一實施例,其中電源產生主要功率信號且雜訊源產生呈雜訊形式之次要功率信號; [圖27]繪示發電系統之一實施例,其中次要信號係雜訊且主要功率信號與次要功率信號在藉由功率放大器放大之前經組合; [圖28]展示隨頻率而變之效能之量測的曲線; [圖29A]係描繪隨頻率而變之效能之量測(例如,反射係數)的曲線圖; [圖29B]係描繪可如何調整主要功率信號頻率以最小化圖29A中所描繪之效能之量測的圖形表示; [圖29C]描繪在圖29B中之時間t2的發電系統輸出之頻譜(功率/頻寬,例如,每3 kHz頻寬之瓦特); [圖30A]係描繪效能之量測與頻率之曲線圖; [圖30B]係描繪使用主要功率信號之全域搜尋可如何產生熄滅電漿之曲線; [圖30C]係展示在圖10B中之時間t2的發電系統輸出之頻譜之曲線圖; [圖31A]係描繪使用次要功率信號之最佳頻率之估計的曲線圖; [圖31B]係描繪在使用次要功率信號判定所要頻率之後的主要頻率之調整的曲線圖; [圖31C]係展示圖31B之主要信號及次要信號處之功率的頻譜分量之曲線圖; [圖32A]係描繪使用次要功率信號之最佳頻率之估計的曲線圖; [圖32B]係描繪在使用次要功率信號判定所要頻率之後的主要頻率之調整的曲線圖; [圖32C]係描繪圖32B之主要信號及次要信號處之功率的頻譜分量之曲線圖; [圖33A]係描繪使用次要功率信號之最佳頻率之估計的曲線圖; [圖33B]係描繪雜訊功率隨時間而變之曲線圖,其中雜訊經添加至發電系統輸出; [圖33C]係描繪展示在圖33B中之時間t2的發電系統輸出之頻譜之曲線圖; [圖34A]係描繪用於頻率調諧之方法之態樣的曲線圖; [圖34B]係描繪用於圖34A中所展示的頻率調諧之方法之額外態樣的曲線圖; [圖34C]係描繪用於圖34A及圖34B中所描繪的頻率調諧之方法之其他態樣的曲線圖; [圖34D]係描繪圖34A、圖34B及圖34C中所描繪的用於頻率調諧之方法之又額外態樣的曲線圖; [圖35A]係描繪用於頻率調諧之方法之態樣的曲線圖; [圖35B]係描繪圖35A中所描繪的用於頻率調諧之方法之額外態樣的曲線圖; [圖35C]係描繪圖35A及圖35B中所描繪的用於頻率調諧之方法之其他態樣的曲線圖; [圖36]繪示用於對可結合本文中所描述之實施例來詳細研究的發電系統進行頻率調諧之方法。 [圖37A]係描繪例示性感測器之圖式。 [圖37B]係描繪感測器之另一實施例之圖式。 [圖37C]係描繪感測器之又一實施例之圖式。 [圖38]係描繪例示性識別模組之態樣之圖式。 [圖39]係描繪可用以實現本文所揭示之實施例之組件的方塊圖。 [Figure 1] is a block diagram depicting the power supply system and plasma treatment system; [Fig. 2] is a graph depicting how power can be perceived by measuring power using different measurement system filter bandwidths; [FIG. 3A] and [FIG. 3B] are graphs depicting the modulation of the load reflection coefficient; [FIG. 3C] is a graph depicting the resulting reflected power seen by the high frequency generator when the filter depicted in FIG. 1 is not utilized; [FIG. 4A] Contains two graphs depicting performance profiles for an exemplary design of the filter depicted in FIG. 1; [ FIG. 4B ] is a graph depicting the net power that can be delivered to the plasma load by the high frequency generator at the fundamental and mixed product frequencies when the filter depicted in FIG. 1 is not utilized; [FIG. 5A] and [FIG. 5B] are graphs depicting the modulation of the load reflection coefficient; [FIG. 5C] is a graph depicting the resulting reflected power seen by the high frequency generator when the filter depicted in FIG. 1 is not utilized; [FIG. 6A] and [FIG. 6B] are graphs depicting the modulation of the load reflection coefficient; [FIG. 6C] is a graph depicting the resulting reflected power seen by the filter depicted in FIG. 1; [ FIG. 7 ] is a flowchart depicting a method that can be studied in detail in conjunction with the embodiments disclosed herein; [ FIG. 8A ] and [ FIG. 8B ] are diagrams depicting an equivalent circuit of an embodiment of the filter described with reference to FIG. 1 ; [FIG. 9] is a perspective view of an exemplary water-cooled filter design with two parallel spiral resonators; [FIG. 10] is a view of the interior of a water-cooled filter design with two parallel spiral resonators; [FIG. 11] is a cross-sectional view of a water-cooled filter design with two parallel spiral resonators; [FIG. 12] is a detailed view of the capacitor block of a water-cooled filter design with two parallel spiral resonators; [FIG. 13] is an exploded view of a water-cooled filter design with two parallel spiral resonators; [FIG. 14] is a view of a filter including means for tuning the filter; [FIG. 15] is a block diagram depicting an exemplary high frequency generator; [ FIG. 16 ] is a flowchart depicting a method that can be studied in detail in conjunction with the embodiments disclosed herein; [FIG. 17] is a graph depicting multi-state waveforms that can be applied by the high-frequency generators of FIGS. 1 and 15; [FIG. 18] is a graph depicting an exemplary aspect of a frequency tuning method; [FIG. 19] is a graph depicting additional aspects of the frequency tuning method described with reference to FIG. 18; [FIG. 20] is a graph depicting the operation state of another frequency tuning method; [FIG. 21] depicts a power generation system configured for automatic frequency tuning of power delivered to a plasma load; [ FIG. 22 ] depicts an embodiment of a power generation system, wherein sensors reside within the power generation system along with a power source and one or more circuits; [FIG. 23] depicts an embodiment of the power generation system, wherein the sensors reside outside the power generation system; [Figure 24] shows another embodiment of the power generation system; [FIG. 25] An embodiment of a power generation system is shown, wherein the primary power signal and the secondary power signal are combined before being amplified by a power amplifier; [FIG. 26] depicts an embodiment of a power generation system in which a power source generates a primary power signal and a noise source generates a secondary power signal in the form of noise; [ FIG. 27 ] shows an embodiment of a power generation system, wherein the secondary signal is noise and the primary power signal and the secondary power signal are combined before being amplified by a power amplifier; [FIG. 28] Curves showing measurements of performance as a function of frequency; [FIG. 29A] is a graph depicting a measure of performance (eg, reflection coefficient) as a function of frequency; [FIG. 29B] is a graphical representation depicting how the main power signal frequency may be adjusted to minimize the measure of efficacy depicted in FIG. 29A; [FIG. 29C] Spectrum (power/span, e.g., Watts per 3 kHz bandwidth) of power generation system output depicted in FIG. 29B at time t2; [FIG. 30A] is a graph depicting the measure of performance versus frequency; [FIG. 30B] is a graph depicting how a global search using the main power signal can produce quenched plasma; [FIG. 30C] is a graph showing the frequency spectrum of the power generation system output at time t2 in FIG. 10B; [FIG. 31A] is a graph depicting the estimation of the optimal frequency using the secondary power signal; [FIG. 31B] is a graph depicting the adjustment of the primary frequency after determining the desired frequency using the secondary power signal; [FIG. 31C] is a graph showing the spectral components of the power at the main signal and the secondary signal of FIG. 31B; [FIG. 32A] is a graph depicting the estimation of the optimal frequency using the secondary power signal; [FIG. 32B] is a graph depicting the adjustment of the primary frequency after determining the desired frequency using the secondary power signal; [FIG. 32C] is a graph depicting the spectral components of the power at the primary signal and the secondary signal of FIG. 32B; [FIG. 33A] is a graph depicting the estimation of the optimal frequency using the secondary power signal; [FIG. 33B] is a graph depicting the power of noise as a function of time, where noise is added to the output of the power generation system; [FIG. 33C] is a graph depicting the frequency spectrum of the power generation system output at time t2 shown in FIG. 33B; [FIG. 34A] is a graph depicting aspects of a method for frequency tuning; [FIG. 34B] is a graph depicting additional aspects of the method for frequency tuning shown in FIG. 34A; [ FIG. 34C ] is a graph depicting other aspects of the method for frequency tuning depicted in FIGS. 34A and 34B ; [FIG. 34D] is a graph depicting yet additional aspects of the method for frequency tuning depicted in FIGS. 34A, 34B, and 34C; [FIG. 35A] is a graph depicting aspects of a method for frequency tuning; [FIG. 35B] is a graph depicting additional aspects of the method for frequency tuning depicted in FIG. 35A; [FIG. 35C] is a graph depicting other aspects of the method for frequency tuning depicted in FIG. 35A and FIG. 35B; [ FIG. 36 ] Illustrates a method for frequency tuning a power generation system that can be studied in detail in conjunction with the embodiments described herein. [FIG. 37A] is a diagram depicting an exemplary sensor. [FIG. 37B] is a diagram depicting another embodiment of a sensor. [FIG. 37C] is a diagram depicting yet another embodiment of a sensor. [FIG. 38] is a diagram depicting the aspect of an exemplary recognition module. [ FIG. 39 ] is a block diagram depicting components that may be used to implement embodiments disclosed herein.

3600:方法 3600: method

3602:區塊 3602: block

3604:區塊 3604: block

3606:區塊 3606: block

3607:區塊 3607: block

3608:區塊 3608: block

3610:區塊 3610: block

Claims (20)

一種發電系統,其包含: 一高頻率產生器,其經組態以在一主要頻率下將功率施加至一電漿腔室; 一濾波器,其經組態以抑制混合產物以限制呈現至該高頻率產生器之一時變負載反射係數的變化;以及 一頻率調諧子系統,其經組態以: 在該高頻率產生器正在該主要頻率下施加功率的同時,施加包含一或多個探測頻率之一探測信號,其中該探測信號之功率低於在該主要頻率下產生的功率;並且 回應於指示效能之一改良量測的該一或多個探測頻率而調整該高頻率產生器之該主要頻率。 A power generation system comprising: a high frequency generator configured to apply power to a plasma chamber at a primary frequency; a filter configured to suppress mixing products to limit variations presented to a time-varying load reflection coefficient of the high frequency generator; and a frequency tuning subsystem configured to: while the high frequency generator is applying power at the primary frequency, applying a probe signal comprising one or more probe frequencies, wherein the probe signal has a power lower than that generated at the primary frequency; and The primary frequency of the high frequency generator is adjusted in response to the one or more probe frequencies indicative of an improved measure of performance. 如請求項1之發電系統,其包含一低頻率產生器以在一低頻率下將功率施加至該電漿腔室,其中該濾波器經組態以抑制該主要頻率與該低頻率之混合產物。The power generation system of claim 1, comprising a low frequency generator to apply power to the plasma chamber at a low frequency, wherein the filter is configured to suppress a mixture product of the dominant frequency and the low frequency . 如請求項2之發電系統,其中該低頻率產生器與該高頻率產生器之一頻率比率在0.0005與0.2之間。The power generation system according to claim 2, wherein a frequency ratio of the low frequency generator and the high frequency generator is between 0.0005 and 0.2. 如請求項1之發電系統,其中以在該些探測頻率下產生之功率比在該主要頻率下的功率低1 dB至100 dB。The power generation system as claimed in claim 1, wherein the power generated at the detection frequencies is 1 dB to 100 dB lower than the power at the main frequency. 如請求項1之發電系統,其包含經組態以耦接於該濾波器與該電漿腔室之間的一延遲元件。The power generation system of claim 1, comprising a delay element configured to be coupled between the filter and the plasma chamber. 如請求項1之發電系統,其中效能之量測係選自由以下各者組成之群組的效能之量測:一反射功率;藉由該高頻率產生器所見的一負載阻抗偏離一所要阻抗之程度的一量測;以及負載反射係數量值之一量測。The power generation system of claim 1, wherein the measure of performance is a measure of performance selected from the group consisting of: a reflected power; a deviation of a load impedance seen by the high frequency generator from a desired impedance a measure of the degree; and a measure of the magnitude of the load reflection coefficient. 如請求項1之發電系統,其中該一或多個探測頻率係雜訊。The power generation system according to claim 1, wherein the one or more detection frequencies are noises. 如請求項7之發電系統,其包含一單一振盪器-放大器組合以產生主要功率信號,且該雜訊係該單一振盪器-放大器組合所固有的。The power generation system according to claim 7, which includes a single oscillator-amplifier combination to generate the main power signal, and the noise is inherent to the single oscillator-amplifier combination. 如請求項1之發電系統,其包含用以產生主要功率信號之一主要振盪器以及用以產生該一或多個探測頻率的一次要振盪器。The power generation system according to claim 1, comprising a primary oscillator for generating a primary power signal and a secondary oscillator for generating the one or more detection frequencies. 一種用於一發電系統之自動頻率調諧之方法,該方法包含: 藉由一高頻率產生器直接或經由一匹配網路在一主要頻率下將一主要功率信號施加至一電漿負載; 在一或多個探測頻率下將一探測信號施加至該電漿負載,其中在該些探測頻率下產生之功率低於在該主要頻率下產生之功率; 藉由一濾波器抑制混合產物以減少呈現至該高頻率產生器之一時變負載反射係數的變化;以及 回應於該探測信號而基於效能之量測來調整該主要頻率。 A method for automatic frequency tuning of a power generation system, the method comprising: applying a primary power signal to a plasma load at a primary frequency by a high frequency generator directly or via a matching network; applying a probe signal to the plasma load at one or more probe frequencies, wherein the power generated at the probe frequencies is lower than the power generated at the primary frequency; suppressing the mixing products by a filter to reduce variations in a time-varying load reflection coefficient present to the high frequency generator; and The primary frequency is adjusted based on the measure of performance in response to the probe signal. 如請求項10之方法,其中循環地執行該探測信號之該施加及該主要頻率的該調整,以便重複地改良將該主要頻率調整為一全域最佳值之一準確度。The method of claim 10, wherein the application of the detection signal and the adjustment of the main frequency are performed cyclically so as to repeatedly improve the accuracy of adjusting the main frequency to a global best value. 如請求項10之方法,其中該探測信號是週期性的或者是週期性信號之一總和。The method of claim 10, wherein the detection signal is periodic or a sum of one of periodic signals. 如請求項10之方法,其中施加該探測信號包含跨越一固定頻率範圍掃掠該一或多個探測頻率。The method of claim 10, wherein applying the probing signal comprises sweeping the one or more probing frequencies across a fixed frequency range. 如請求項10之方法,其中施加該探測信號包含在不同時間將一探測信號調諧至複數個不同探測頻率中之一單一者。The method of claim 10, wherein applying the detection signal comprises tuning a detection signal to a single one of a plurality of different detection frequencies at different times. 一種電漿處理系統,其包含: 一電漿腔室; 一高頻率產生器,其經組態以在一主要頻率下將功率施加至該電漿腔室; 一低頻率產生器,其用以在一低頻率下將功率施加至該電漿腔室; 一濾波器,其經組態以抑制該主要頻率與該低頻率之混合產物以限制呈現至該高頻率產生器之一時變負載反射係數的變化;以及 用於使用一探測信號對該高頻率產生器進行頻率調諧之構件,該探測信號與在該主要頻率下施加至該電漿腔室之功率同時施加。 A plasma treatment system comprising: a plasma chamber; a high frequency generator configured to apply power to the plasma chamber at a primary frequency; a low frequency generator for applying power to the plasma chamber at a low frequency; a filter configured to suppress the mixing product of the dominant frequency and the low frequency to limit changes in a time-varying load reflection coefficient presented to the high frequency generator; and Means for frequency tuning the high frequency generator using a probe signal applied simultaneously with power applied to the plasma chamber at the primary frequency. 如請求項15之電漿處理系統,其包含耦接於該高頻率產生器與該電漿腔室之間的一匹配網路。The plasma processing system according to claim 15, comprising a matching network coupled between the high frequency generator and the plasma chamber. 如請求項15之電漿處理系統,其中該低頻率產生器與該高頻率產生器之一頻率比率在0.0005與0.2之間。The plasma processing system according to claim 15, wherein a frequency ratio of the low frequency generator to the high frequency generator is between 0.0005 and 0.2. 如請求項15之電漿處理系統,其中在該探測信號之一或多個探測頻率下產生的功率比在該主要頻率下之功率低1 dB至100 dB。The plasma processing system of claim 15, wherein the power generated at one or more detection frequencies of the detection signal is 1 dB to 100 dB lower than the power at the main frequency. 如請求項15之電漿處理系統,其中用於進行頻率調諧之該構件包含用於藉由包含雜訊的該探測信號進行頻率調諧之構件。The plasma processing system according to claim 15, wherein the means for performing frequency tuning comprises means for performing frequency tuning by using the probe signal containing noise. 如請求項15之電漿處理系統,其中用於進行頻率調諧之該構件包含一次要振盪器,且其中該高頻率產生器包含用以產生該主要頻率的一主要振盪器以及用以產生該探測信號之該次要振盪器。The plasma processing system of claim 15, wherein the means for frequency tuning includes a secondary oscillator, and wherein the high frequency generator includes a primary oscillator for generating the primary frequency and for generating the probe signal of the secondary oscillator.
TW111105646A 2021-02-17 2022-02-16 Frequency tuning for modulated plasma systems TW202243548A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/177,874 US11804362B2 (en) 2018-12-21 2021-02-17 Frequency tuning for modulated plasma systems
US17/177,874 2021-02-17

Publications (1)

Publication Number Publication Date
TW202243548A true TW202243548A (en) 2022-11-01

Family

ID=82931106

Family Applications (1)

Application Number Title Priority Date Filing Date
TW111105646A TW202243548A (en) 2021-02-17 2022-02-16 Frequency tuning for modulated plasma systems

Country Status (2)

Country Link
TW (1) TW202243548A (en)
WO (1) WO2022177845A1 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016124A (en) * 2008-07-02 2010-01-21 Hitachi High-Technologies Corp Plasma treatment device, and plasma treatment method
KR102053720B1 (en) * 2013-03-11 2019-12-09 삼성전자주식회사 Method and Apparatus for diagnosing Plasma
US9263350B2 (en) * 2014-06-03 2016-02-16 Lam Research Corporation Multi-station plasma reactor with RF balancing
US11515123B2 (en) * 2018-12-21 2022-11-29 Advanced Energy Industries, Inc. Apparatus and system for modulated plasma systems
US11804362B2 (en) * 2018-12-21 2023-10-31 Advanced Energy Industries, Inc. Frequency tuning for modulated plasma systems

Also Published As

Publication number Publication date
WO2022177845A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
US11804362B2 (en) Frequency tuning for modulated plasma systems
JP6910320B2 (en) Microwave output device and plasma processing device
US10720305B2 (en) Plasma delivery system for modulated plasma systems
US9854659B2 (en) Noise based frequency tuning and identification of plasma characteristics
US11515123B2 (en) Apparatus and system for modulated plasma systems
US9947513B2 (en) Edge ramping
KR100525961B1 (en) Improving plasma process performance by filtering plasma sheath-generated harmonics
TW202249400A (en) Inter-period control system for plasma power delivery system and method of operating the same
US20190318915A1 (en) Plasma generating method
US7102292B2 (en) Method and device for removing harmonics in semiconductor plasma processing systems
EP2299922A1 (en) System, method and apparatus for generating plasma
JP2008517429A (en) Apparatus and method for improving RF power delivery stability to a plasma load
KR20240043808A (en) Distortion Current Mitigation in Radio Frequency Plasma Processing Chambers
US8441193B2 (en) Electronic frequency tuning magnetron
KR102536545B1 (en) Microwave output device and plasma processing device
KR100818068B1 (en) Device and method for etching a substrate using an inductively coupled plasma
TW202243548A (en) Frequency tuning for modulated plasma systems
US11972927B2 (en) Frequency tuning for modulated plasma systems
KR20210113073A (en) Plasma processing apparatus
RU2522894C2 (en) Hollow-cathode discharge-based high-frequency radiation generator (versions)
KR102358938B1 (en) Method for presetting tuner of plasma processing apparatus and plasma processing apparatus
KR20230100087A (en) Plasma control apparatus and plasma processing system
KR20130115826A (en) Adjustable inductor, impedance matching apparatus and substrate treaing apparatus with the same