TWI599057B - Solar cell and solar cell module - Google Patents
Solar cell and solar cell module Download PDFInfo
- Publication number
- TWI599057B TWI599057B TW105108496A TW105108496A TWI599057B TW I599057 B TWI599057 B TW I599057B TW 105108496 A TW105108496 A TW 105108496A TW 105108496 A TW105108496 A TW 105108496A TW I599057 B TWI599057 B TW I599057B
- Authority
- TW
- Taiwan
- Prior art keywords
- solar cell
- bus bar
- electrode
- light
- regions
- Prior art date
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
Landscapes
- Photovoltaic Devices (AREA)
Description
本發明係關於一種太陽能電池與太陽能電池模組;特別言之,係關於一種可增加吸光量之太陽能電池及設置有擴光結構之太陽能電池模組。 The present invention relates to a solar cell and a solar cell module; in particular, to a solar cell capable of increasing the amount of light absorbed and a solar cell module provided with a light-expanding structure.
一般太陽能電池模組係由多個太陽能電池陣列排列於一基板上所形成。並且,於各太陽能電池上形成有封裝用之結構。至於各太陽能電池,基本包含一可用於將光能轉變為電能之基板,及分別形成於基板之頂面及底面之頂面電極及底面電極。入射光為基板吸收且轉換為電能後,藉由頂面電極及底面電極間形成之內電路迴路,再透過與外部裝置之外電路迴路連接,而將電能傳送至外部裝置。 Generally, a solar cell module is formed by arranging a plurality of solar cell arrays on a substrate. Further, a structure for packaging is formed on each solar cell. Each of the solar cells basically includes a substrate that can be used to convert light energy into electrical energy, and top and bottom electrodes respectively formed on the top and bottom surfaces of the substrate. After the incident light is absorbed by the substrate and converted into electric energy, the electric energy is transmitted to the external device through an internal circuit formed between the top surface electrode and the bottom surface electrode, and then connected to a circuit circuit other than the external device.
上述太陽能電池及太陽能電池模組中,如何獲致良好之吸光量相當重要,另如何有效率地將電能取出亦同等重要。一般上述太陽能電池之頂面電極及底面電極係通常以金屬材質製成,因而阻擋部分入射光而使吸光量減少。然而,若為取得較大吸光量而犧牲電極之配置,則將降低電取出率。 In the above solar cells and solar cell modules, how to obtain a good amount of light absorption is very important, and how to efficiently extract the electric energy is equally important. Generally, the top surface electrode and the bottom surface electrode of the above solar cell are usually made of a metal material, thereby blocking part of the incident light and reducing the amount of light absorption. However, if the arrangement of the electrodes is sacrificed in order to obtain a large amount of light absorption, the electric take-out rate will be lowered.
據上,如何能在維持電取出率狀況下而獲致較高之光吸收量,實為一重要課題。 According to the above, how to obtain a higher light absorption amount while maintaining the electric take-out rate is an important issue.
明確言之,本發明係提供太陽能電池及其模組。透過太陽能電池上不同匯流排電極及延伸電極之配置,可獲致較大之吸光量及電取出率。並且,於形成太陽能電池模組時,透過形成於封裝材料、透光件或匯流排電極內部或表面之擴光結構,可更為提高吸光量,獲致更好之光電轉換效率。 In particular, the present invention provides solar cells and their modules. Through the arrangement of different bus electrodes and extension electrodes on the solar cell, a large amount of light absorption and an electric extraction rate can be obtained. Moreover, when the solar cell module is formed, the light-expanding structure formed in the interior or surface of the packaging material, the light-transmitting member or the bus bar electrode can further increase the light absorption amount, thereby achieving better photoelectric conversion efficiency.
為達上述目的,於一實施例中,本發明提供一太陽能電池,其包含一基板以及一頂面電極,其中基板可用於將光能轉換為電能。頂面電極形成於頂面上,其包含至少一匯流排電極及自匯流排電極延伸之複數延伸電極,其中匯流排電極及此些延伸電極具相異方向。於匯流排電極兩側定義一第一區域及一第二區域,其中第一區域內之此些延伸電極面積小於第二區域內之此些延伸電極面積。 To achieve the above object, in one embodiment, the present invention provides a solar cell comprising a substrate and a top surface electrode, wherein the substrate can be used to convert light energy into electrical energy. The top surface electrode is formed on the top surface, and comprises at least one bus bar electrode and a plurality of extension electrodes extending from the bus bar electrode, wherein the bus bar electrodes and the extension electrodes have different directions. A first area and a second area are defined on both sides of the bus bar electrode, wherein the extended electrode areas in the first area are smaller than the extended electrode areas in the second area.
上述之太陽能電池中,更包含一底面電極,其形成於太陽能電池之底面上。此外,第一區域之寬度小於等於20mm,且第一區域之寬度等於第二區域之寬度。藉此,第一區域之吸光量大於第二區域之吸光量。 The solar cell described above further includes a bottom electrode formed on the bottom surface of the solar cell. Further, the width of the first region is less than or equal to 20 mm, and the width of the first region is equal to the width of the second region. Thereby, the amount of light absorbed by the first region is greater than the amount of light absorbed by the second region.
於一實施例中,上述頂面電極可包含三匯流排電極。於各匯流排電極各自延伸複數延伸電極。各匯流排電極兩側定義各第一 區域及各第二區域,其中各第一區域內之延伸電極面積小於各第二區域內之延伸電極面積。 In an embodiment, the top surface electrode may include a triple bus bar electrode. A plurality of extension electrodes are respectively extended to each of the bus bar electrodes. First on each side of each bus electrode The region and each of the second regions, wherein the area of the extended electrodes in each of the first regions is smaller than the area of the extended electrodes in each of the second regions.
上述之太陽能電池中,各第一區域之寬度小於等於20mm,且各第一區域之寬度等於各第二區域之寬度。 In the above solar cell, the width of each of the first regions is less than or equal to 20 mm, and the width of each of the first regions is equal to the width of each of the second regions.
上述之太陽能電池中,自各匯流排電極延伸出之延伸電極可互相平行連接、斷開或互相交錯排列。藉此,可獲致不同之電取出率。 In the above solar cell, the extension electrodes extending from the bus bar electrodes may be connected to each other in parallel, disconnected or staggered. Thereby, different electrical extraction rates can be obtained.
於一實施例中,本發明另提供一種太陽能電池模組,其包含一背板、一太陽能電池、一封裝材料以及一透光件。太陽能電池設置於背板上,其包含一基板及一頂面電極。頂面電極形成於基板之頂面上,且基板可用於將光能轉換為電能。頂面電極包含至少一匯流排電極及自匯流排電極延伸之複數延伸電極。其中匯流排電極及此些延伸電極具相異方向,且於匯流排電極兩側定義一第一區域及一第二區域,其中第一區域內之延伸電極面積小於第二區域內之延伸電極面積。封裝材料包覆太陽能電池。透光件覆蓋於封裝材料上。其中於對應匯流排電極位置形成一擴光結構,透過擴光結構令第一區域之吸光量大於第二區域之吸光量。 In one embodiment, the present invention further provides a solar cell module comprising a backing plate, a solar cell, a packaging material, and a light transmissive member. The solar cell is disposed on the backplane and includes a substrate and a top electrode. A top electrode is formed on the top surface of the substrate, and the substrate can be used to convert light energy into electrical energy. The top electrode includes at least one bus bar electrode and a plurality of extension electrodes extending from the bus bar electrode. The bus bar electrodes and the extension electrodes have different directions, and a first region and a second region are defined on both sides of the bus bar electrode, wherein the extended electrode area in the first region is smaller than the extended electrode area in the second region . The encapsulating material covers the solar cell. The light transmissive member is covered on the packaging material. A light-expanding structure is formed at the position of the corresponding bus bar electrode, and the light-expanding structure transmits the light-absorbing amount of the first region to be larger than the light-absorbing amount of the second region.
上述太陽能電池模組中,擴光結構係可以複數粒子摻雜於封裝材料或透光件內形成,且擴光結構位置對應匯流排電極位置。或者,擴光結構可直接以帶狀(ribbon)形成於匯流排電極上,例如其可透過貼合或焊接等方式以帶狀形成於匯流排電極表面上。擴光結構亦可形成於透光件表面或封裝材料表面。擴光結構可以多個透鏡或多個 角柱排列而成,且擴光結構表面可呈規則或不規則狀。擴光結構亦可為於封裝材料表面、透光件表面或匯流排電極表面上形成之一粗化面。 In the above solar cell module, the light-expanding structure may be formed by doping a plurality of particles in the encapsulating material or the light-transmitting member, and the position of the light-expanding structure corresponds to the position of the bus bar electrode. Alternatively, the light-expanding structure may be formed directly on the bus bar electrode by a ribbon, for example, it may be formed in a strip shape on the surface of the bus bar electrode by means of lamination or soldering. The light-expanding structure may also be formed on the surface of the light-transmitting member or the surface of the packaging material. The light-emitting structure can have multiple lenses or multiple The corner posts are arranged, and the surface of the light-emitting structure may be regular or irregular. The light-expanding structure may also form a roughened surface on the surface of the encapsulating material, the surface of the light transmissive member or the surface of the bus bar electrode.
上述太陽能電池模組中,透光件可為一透光玻璃或壓克力。且封裝材料可為乙烯-醋酸乙烯酯共聚物(Ethylene-Vinyl Acetate Copolymer,EVA)或聚乙烯醇縮丁醛(Poly-Vinyl Butyral,PVB)。 In the above solar cell module, the light transmissive member may be a light transmissive glass or acrylic. The encapsulating material may be Ethylene-Vinyl Acetate Copolymer (EVA) or Poly-Vinyl Butyral (PVB).
上述太陽能電池模組中,頂面電極可包含三匯流排電極。於各匯流排電極各自延伸複數延伸電極。各匯流排電極兩側定義各第一區域及各第二區域,其中各第一區域內之延伸電極面積小於各第二區域內之延伸電極面積。 In the above solar cell module, the top surface electrode may include three bus bar electrodes. A plurality of extension electrodes are respectively extended to each of the bus bar electrodes. Each of the first region and each of the second regions is defined on each of the bus bar electrodes, wherein the extended electrode area in each of the first regions is smaller than the extended electrode area in each of the second regions.
上述之太陽能電池中,各第一區域之寬度小於等於20mm,且各第一區域之寬度等於各第二區域之寬度。 In the above solar cell, the width of each of the first regions is less than or equal to 20 mm, and the width of each of the first regions is equal to the width of each of the second regions.
上述之太陽能電池模組中,自各匯流排電極延伸出之延伸電極可互相平行連接、斷開或互相交錯排列。藉此,可獲致不同之電取出率。此外,上述之太陽能電池模組可包含多個於背板上陣列排列之太陽能電池。 In the above solar cell module, the extension electrodes extending from the bus bar electrodes may be connected to each other in parallel, disconnected or staggered. Thereby, different electrical extraction rates can be obtained. In addition, the solar cell module described above may include a plurality of solar cells arranged in an array on the backplane.
藉此,上述太陽能電池及太陽能電池模組可獲致較大之吸光量及電取出率,可增進光電轉換效率。 Thereby, the solar cell and the solar cell module can obtain a large amount of light absorption and an electric extraction rate, and the photoelectric conversion efficiency can be improved.
100‧‧‧太陽能電池 100‧‧‧ solar cells
110‧‧‧基板 110‧‧‧Substrate
111‧‧‧頂面 111‧‧‧ top surface
120‧‧‧頂面電極 120‧‧‧ top electrode
121‧‧‧匯流排電極 121‧‧‧ Bus bar electrode
122‧‧‧延伸電極 122‧‧‧Extended electrode
200‧‧‧太陽能電池 200‧‧‧ solar cells
210‧‧‧基板 210‧‧‧Substrate
211‧‧‧頂面 211‧‧‧ top surface
220‧‧‧頂面電極 220‧‧‧ top electrode
221‧‧‧匯流排電極 221‧‧‧ bus bar electrode
300‧‧‧太陽能電池模組 300‧‧‧Solar battery module
310‧‧‧背板 310‧‧‧ Backplane
320‧‧‧封裝材料 320‧‧‧Packaging materials
330‧‧‧透光件 330‧‧‧Transparent parts
340‧‧‧擴光結構 340‧‧‧Light-emitting structure
341‧‧‧透鏡 341‧‧‧ lens
342‧‧‧角柱 342‧‧‧ corner column
A1‧‧‧第一區域 A1‧‧‧ first area
A2‧‧‧第二區域 A2‧‧‧Second area
L‧‧‧入射光線 L‧‧‧ incident light
L1‧‧‧散射光線 L1‧‧‧scattered light
222‧‧‧延伸電極 222‧‧‧Extended electrode
L2‧‧‧散射光線 L2‧‧‧scattered light
U1‧‧‧單元 Unit U1‧‧
U2‧‧‧單元 Unit U2‧‧
P‧‧‧粒子 P‧‧‧ particles
第1圖係繪示依據本發明之太陽能電池一實施例結構示意圖;第2圖係繪示依據第1圖之太陽能電池之另一實施例結構示意圖; 第3圖係繪示本發明中使用三匯流排電極之太陽能電池一實施例結構示意圖;第4圖係繪示依據第3圖之太陽能電池之另一實施例結構示意圖;第5A圖係繪示本發明中使用三匯流排電極之太陽能電池一實施例結構示意圖;第5B圖係繪示依據第5A圖之太陽能電池之另一實施例結構示意圖;第6A圖係繪示本發明中使用三匯流排電極之太陽能電池一實施例結構示意圖;第6B圖係繪示依據第6A圖之太陽能電池之另一實施例結構示意圖;第7圖係繪示本發明中使用三匯流排電極之太陽能電池一實施例結構示意圖;第8圖係繪示本發明中使用三匯流排電極之太陽能電池一實施例結構示意圖;第9圖係繪示依據第8圖之太陽能電池之另一實施例結構示意圖;第10圖係繪示本發明之太陽能電池模組一實施例結構示意圖;第11圖係繪示本發明之太陽能電池模組一實施例結構示意圖;第12圖係繪示本發明之太陽能電池模組一實施例結構示意圖;第13圖係繪示本發明之太陽能電池模組一實施例結構示意圖;第14圖係繪示本發明之太陽能電池模組一實施例結構示意圖;第15圖係繪示本發明之太陽能電池模組一實施例結構示意圖;以及 第16圖係繪示本發明之太陽能電池模組一實施例結構示意圖。 1 is a schematic structural view showing an embodiment of a solar cell according to the present invention; and FIG. 2 is a schematic structural view showing another embodiment of the solar cell according to FIG. 1; 3 is a schematic structural view showing an embodiment of a solar cell using a three-bus bar electrode in the present invention; FIG. 4 is a schematic structural view showing another embodiment of the solar cell according to FIG. 3; FIG. 5B is a schematic structural view showing another embodiment of a solar cell according to FIG. 5A; FIG. 6A is a schematic view showing the use of a triple current in the present invention; FIG. 6B is a schematic structural view showing another embodiment of a solar cell according to FIG. 6A; FIG. 7 is a schematic diagram showing a solar cell using a triple bus electrode in the present invention. FIG. 8 is a schematic structural view showing an embodiment of a solar cell using a triple bus electrode in the present invention; and FIG. 9 is a schematic structural view showing another embodiment of the solar cell according to FIG. 8; 10 is a schematic structural view of an embodiment of a solar cell module of the present invention; and FIG. 11 is a schematic structural view showing an embodiment of a solar cell module of the present invention; 12 is a schematic structural view of an embodiment of a solar cell module of the present invention; FIG. 13 is a schematic structural view showing an embodiment of a solar cell module of the present invention; and FIG. 14 is a view showing a solar cell module of the present invention; BRIEF DESCRIPTION OF THE DRAWINGS FIG. 15 is a schematic structural view showing an embodiment of a solar cell module of the present invention; Figure 16 is a block diagram showing an embodiment of a solar cell module of the present invention.
以下將參照圖式說明本發明之複數個實施例。為明確說明起見,許多實務上的細節將在以下敘述中一併說明。然而,應瞭解到,這些實務上的細節不應用以限制本發明。也就是說,在本發明部分實施例中,這些實務上的細節是非必要的。此外,為簡化圖式起見,一些習知慣用的結構與元件在圖式中將以簡單示意的方式繪示之。 Hereinafter, a plurality of embodiments of the present invention will be described with reference to the drawings. For the sake of clarity, many practical details will be explained in the following description. However, it should be understood that these practical details are not intended to limit the invention. That is, in some embodiments of the invention, these practical details are not necessary. In addition, some of the conventional structures and elements are shown in the drawings in a simplified schematic manner in order to simplify the drawings.
請一併參照第1圖及第2圖。第1圖係繪示依據本發明之太陽能電池100一實施例結構示意圖;第2圖係繪示依據第1圖之太陽能電池100之另一實施例結構示意圖。 Please refer to Figure 1 and Figure 2 together. 1 is a schematic structural view showing an embodiment of a solar cell 100 according to the present invention; and FIG. 2 is a schematic structural view showing another embodiment of the solar cell 100 according to FIG. 1.
太陽能電池100基本包含一基板110及形成於基板110頂面111上之一頂面電極120。此處基板110係包含有能將光能轉換為電能之結構,此光電轉換結構為習知技術,本發明中不特別述及,後續所有實施例皆通以基板稱之。基板110另包含一底面以及形成於底面上之一底面電極。需提及的是,由於本發明的實施例中,基板110之頂面111為吸光面,因此本發明係主要變化頂面電極120之匯流排電極121及延伸電極122之配置型態以增加吸光量,故底面電極係可以習知可理解之各種形式配置於基板110之底面,並不特別討論之,且於本發明之實施例中,為便於理解,將省略此底面及底面電極之繪製與編號,但不表示無類似此底面及底面電極之存在,故特此說明之。 The solar cell 100 basically includes a substrate 110 and a top surface electrode 120 formed on the top surface 111 of the substrate 110. Here, the substrate 110 includes a structure capable of converting light energy into electrical energy. The photoelectric conversion structure is a conventional technique, and is not particularly described in the present invention. All subsequent embodiments are referred to as a substrate. The substrate 110 further includes a bottom surface and a bottom surface electrode formed on the bottom surface. It should be noted that, in the embodiment of the present invention, the top surface 111 of the substrate 110 is a light absorbing surface, so the present invention mainly changes the configuration of the bus bar electrode 121 and the extension electrode 122 of the top surface electrode 120 to increase the light absorption. Therefore, the bottom electrode can be disposed on the bottom surface of the substrate 110 in various forms that can be understood and understood, and is not particularly discussed. In the embodiment of the present invention, the drawing of the bottom and bottom electrodes will be omitted for ease of understanding. The numbering, but does not mean that there is no such surface and bottom electrode, so it is hereby stated.
將頂面電極120形成於頂面111上的方式,大致具有網版印刷(Imprinting)、蒸鍍(Evaporation)、濺鍍(Sputtering)、化學氣象沉積(Chemical Vapor Deposition,CVD)、物理氣象沉積(Physical Vapor Deposition,PVD)以及原子層沉積(Atomic Layer Deposition,ALD)等方式,此為習知技術,不再贅述。 The top surface electrode 120 is formed on the top surface 111, and has substantially the following functions: Imprinting, Evaporation, Sputtering, Chemical Vapor Deposition (CVD), and Physical Meteorological Deposition ( Physical Vapor Deposition (PVD) and Atomic Layer Deposition (ALD), which are conventional techniques, will not be described again.
頂面電極120包含一匯流排電極121及複數延伸電極122。複數延伸電極122自匯流排電極121延伸而出,且與匯流排電極121具相異方向。更明確言之,如第1圖或第2圖所繪示,於一最佳例中,匯流排電極121係垂直排列於基板110之頂面111上,而複數延伸電極122,係各自由匯流排電極121兩側水平延伸而出,並彼此連接。以此種排列可獲致較好之電取出率。 The top electrode 120 includes a bus bar electrode 121 and a plurality of extension electrodes 122. The plurality of extension electrodes 122 extend from the bus bar electrode 121 and have a different direction from the bus bar electrode 121. More specifically, as shown in FIG. 1 or FIG. 2, in a preferred embodiment, the bus bar electrodes 121 are vertically arranged on the top surface 111 of the substrate 110, and the plurality of extension electrodes 122 are respectively confluent. The drain electrodes 121 extend horizontally on both sides and are connected to each other. In this arrangement, a better electrical extraction rate can be obtained.
於匯流排電極121之左右兩側各自定義有一第一區域A1及一第二區域A2。於第一區域A1內之延伸電極122面積小於第二區域A2內之延伸電極122面積。更詳而言之,無論於第一區域A1內之延伸電極122數量、形狀或大小為何,其面積總和小於第二區域A2內之延伸電極122面積總和。由於本發明之實施例中,基板110之頂面111為吸光面,而匯流排電極121和延伸電極122通常為不透光材質(例如金屬),故阻擋入射光線L而令吸光量減少,進而降低光電轉換效率。本發明中,藉由對各自位於匯流排電極121左右兩側之第一區域A1及第二區域A2內延伸電極122的面積限定,令第一區域A1之吸光量大於第二區域A2之吸光量,藉此可增加太陽能電池100之總吸光量,進而增進光電轉換效率。於一較佳例中,由第1圖中,可得第一區域A1中幾乎無延 伸電極122的配置以便得到盡量大之吸光量。然而,由於太陽能電池100吸光後,其轉換成之電能仍需靠電極取出,故於增加吸光量與維持電取出率仍需取得平衡,非是無限制增大吸光量;故上述第一區域A1之寬度小於等於20mm;且第一區域A1之寬度等於第二區域A2之寬度。藉此,本發明之太陽能電池100不僅具有較高的吸光量,且仍然維持良好之電取出率。於第2圖中,第一區域A1較為遠離匯流排電極121,此令第一區域A1中配置有數量較多的延伸電極122,但其延伸電極122之面積總和仍小於第二區域A2中的延伸電極122之面積總和。藉此,第2圖中之電取出率不同於第1圖中之電取出率,以便配合應用於不同狀況中。 A first area A1 and a second area A2 are defined on the left and right sides of the bus bar electrode 121, respectively. The area of the extension electrode 122 in the first area A1 is smaller than the area of the extension electrode 122 in the second area A2. More specifically, regardless of the number, shape or size of the extension electrodes 122 in the first region A1, the sum of the areas is smaller than the sum of the areas of the extension electrodes 122 in the second region A2. In the embodiment of the present invention, the top surface 111 of the substrate 110 is a light absorbing surface, and the bus bar electrode 121 and the extension electrode 122 are generally opaque materials (for example, metal), so that the incident light L is blocked and the amount of light absorption is reduced. Reduce the photoelectric conversion efficiency. In the present invention, by limiting the area of the extending electrode 122 in the first area A1 and the second area A2 on the left and right sides of the bus bar electrode 121, the light absorption amount of the first area A1 is larger than the light absorption amount of the second area A2. Thereby, the total light absorption amount of the solar cell 100 can be increased, thereby improving the photoelectric conversion efficiency. In a preferred embodiment, from the first figure, there is almost no extension in the first area A1. The configuration of the electrode 122 is extended to obtain as much light absorption as possible. However, since the solar cell 100 absorbs light, the electric energy converted into the electrode still needs to be taken out by the electrode. Therefore, it is necessary to balance the increase in the amount of light absorption and the maintenance of the electric extraction rate, and the amount of light absorption is increased without limitation; The width is less than or equal to 20 mm; and the width of the first area A1 is equal to the width of the second area A2. Thereby, the solar cell 100 of the present invention not only has a high light absorption amount, but still maintains a good electric extraction rate. In FIG. 2, the first area A1 is farther away from the bus bar electrode 121, so that a larger number of extension electrodes 122 are disposed in the first area A1, but the total area of the extension electrodes 122 is still smaller than that in the second area A2. The sum of the areas of the extension electrodes 122. Thereby, the electric take-out rate in FIG. 2 is different from the electric take-out rate in FIG. 1 so as to be applied to different situations.
請續參照第3圖及第4圖。第3圖係繪示本發明中使用三匯流排電極221之太陽能電池200一實施例結構示意圖;第4圖係繪示依據第3圖之太陽能電池200之另一實施例結構示意圖。太陽能電池200基本包含一基板210以及設置於基板210之頂面211上之一頂面電極220。於此基板210之底面及底面電極將不特別討論之,故未繪出。 Please continue to refer to Figures 3 and 4. 3 is a schematic structural view showing an embodiment of a solar cell 200 using a three bus bar electrode 221 in the present invention; and FIG. 4 is a schematic structural view showing another embodiment of the solar cell 200 according to FIG. The solar cell 200 basically includes a substrate 210 and a top surface electrode 220 disposed on the top surface 211 of the substrate 210. The bottom and bottom electrodes of the substrate 210 will not be discussed in detail, and thus are not depicted.
與前第1圖及第2圖中實施例不同之處在於,第3圖及第4圖中之太陽能電池200中,其頂面電極220包含三匯流排電極221及由此三匯流排電極221各自兩側延伸而出之複數延伸電極222。各延伸電極222與各自對應之各匯流排電極221具相異方向。與前述實施例類似地,於一最佳例中,各匯流排電極221係垂直排列於基板210之頂面211上,而各延伸電極222,係各自由各匯流排電極221兩側水平延伸而出,並彼此連接,以此種排列可獲致較好之電取出率。 The difference from the first embodiment in FIG. 1 and FIG. 2 is that in the solar cell 200 of FIGS. 3 and 4, the top surface electrode 220 includes the three bus bar electrodes 221 and thus the three bus bar electrodes 221 A plurality of extension electrodes 222 extending from both sides. Each of the extension electrodes 222 has a different direction from each of the corresponding bus bar electrodes 221. Similar to the previous embodiment, in a preferred embodiment, each bus bar electrode 221 is vertically arranged on the top surface 211 of the substrate 210, and each of the extension electrodes 222 is horizontally extended from both sides of each bus bar electrode 221. Out and connected to each other, a better electrical extraction rate can be obtained in this arrangement.
各匯流排電極221之左右兩側各自定義有一第一區域A1及第二區域A2,為便於理解,此以位於中央之匯流排電極221為代表說明第一區域A1及第二區域A2之配置方式,其餘兩匯流排電極221可各自類推,不再另述;於後續之實施例中,亦以此方式簡化說明之。於第一區域A1內之延伸電極222面積小於第二區域A2內之延伸電極222面積。更詳而言之,無論於第一區域A1內之延伸電極222數量、形狀或大小為何,其面積總和小於第二區域A2內之延伸電極222面積總和。藉由對各自位於各匯流排電極221左右兩側之第一區域A1及第二區域A2內延伸電極222的面積限定,令第一區域A1之吸光量大於第二區域A2之吸光量,藉此可增加太陽能電池200之總吸光量,進而增進光電轉換效率。 A first area A1 and a second area A2 are defined on the left and right sides of each of the bus bar electrodes 221. For ease of understanding, the arrangement of the first area A1 and the second area A2 is represented by the centrally located bus bar electrode 221. The other two bus bar electrodes 221 can be analogized by analogy, and will not be described again; in the following embodiments, the description is simplified in this way. The area of the extension electrode 222 in the first area A1 is smaller than the area of the extension electrode 222 in the second area A2. More specifically, regardless of the number, shape or size of the extension electrodes 222 in the first region A1, the sum of the areas is smaller than the sum of the areas of the extension electrodes 222 in the second region A2. By limiting the area of the extension electrode 222 in each of the first area A1 and the second area A2 on the left and right sides of each of the bus bar electrodes 221, the amount of light absorbed by the first area A1 is made larger than the amount of light absorbed by the second area A2. The total light absorption of the solar cell 200 can be increased, thereby improving the photoelectric conversion efficiency.
為使增加吸光量與維持電取出率取得平衡,上述第一區域A1之寬度小於等於20mm;且第一區域A1之寬度等於第二區域A2之寬度。藉此,本發明之太陽能電池200不僅具有較高的吸光量,且仍然維持良好之電取出率。於第4圖中,第一區域A1較為遠離匯流排電極221,此令第一區域A1中配置有數量較多的延伸電極222,但其延伸電極222之面積總和仍小於第二區域A2中的延伸電極222之面積總和。藉此,第4圖中之電取出率不同於第3圖中之電取出率,以便配合應用於不同狀況中。 In order to balance the increase of the light absorption amount with the maintenance of the electric extraction rate, the width of the first region A1 is less than or equal to 20 mm; and the width of the first region A1 is equal to the width of the second region A2. Thereby, the solar cell 200 of the present invention not only has a high light absorption amount, but also maintains a good electric extraction rate. In FIG. 4, the first area A1 is farther away from the bus bar electrode 221, so that a larger number of extended electrodes 222 are disposed in the first area A1, but the total area of the extended electrodes 222 is still smaller than that in the second area A2. The sum of the areas of the extension electrodes 222. Thereby, the electric take-out rate in FIG. 4 is different from the electric take-out rate in FIG. 3 so as to be applied to different conditions.
前述第3圖和第4圖中,太陽能電池200可視為以第1圖和第2圖之太陽能電池100為單位擴展而出。需知第3圖和第4圖中,除可將類於第1圖和第2圖中之匯流排電極221數量擴展為三個之外,亦可擴 展為任意偶數個或奇數個以便應付各式不同狀況。另外,除匯流排電極221數量外,於各匯流排電極221及其延伸電極222間亦可有不同之數量、形狀、大小、長短或排列之幾何形態配置變化。以下分別以第5A圖至第9圖之多個實施例說明各式應用狀況。 In the third and fourth figures, the solar cell 200 can be considered to be expanded in units of the solar cells 100 of Figs. 1 and 2 . It should be noted that in FIG. 3 and FIG. 4, in addition to expanding the number of bus bar electrodes 221 in the first and second figures to three, it is also possible to expand The exhibition is any even or odd number to cope with different situations. In addition, in addition to the number of the bus bar electrodes 221, there may be different geometric configurations of the number, shape, size, length, or arrangement between the bus bar electrodes 221 and the extension electrodes 222 thereof. In the following, various embodiments of the application will be described with reference to a plurality of embodiments of FIGS. 5A to 9.
第5A圖係繪示本發明中使用三匯流排電極221之太陽能電池200一實施例結構示意圖;第5B圖係繪示依據第5A圖之太陽能電池200之另一實施例結構示意圖。於第5A圖及5B圖中,類似於第3圖及第4圖的結構將不再另述。第5A圖及第5B圖中,可以視得由各匯流排電極221兩側延伸之各延伸電極222彼此斷開不連接。藉此,可得到不同之電取出率。於一最佳例中,第5A圖及第5B圖於各匯流排電極221兩側之第一區域A1及第二區域A2之面積限定分別同於前述實施例中所述及。 FIG. 5A is a schematic structural view showing an embodiment of a solar cell 200 using the three bus bar electrodes 221 in the present invention; and FIG. 5B is a schematic structural view showing another embodiment of the solar cell 200 according to FIG. 5A. In FIGS. 5A and 5B, structures similar to those of FIGS. 3 and 4 will not be described again. In FIGS. 5A and 5B, it can be seen that the extension electrodes 222 extending from both sides of each bus bar electrode 221 are disconnected from each other. Thereby, different electrical extraction rates can be obtained. In a preferred embodiment, the areas of the first area A1 and the second area A2 on both sides of each of the bus bar electrodes 221 in FIGS. 5A and 5B are respectively the same as those described in the foregoing embodiments.
第6A圖係繪示本發明中使用三匯流排電極221之太陽能電池200一實施例結構示意圖;第6B圖係繪示依據第6A圖之太陽能電池200之另一實施例結構示意圖。於第6A圖及6B圖中,類似於第5A圖及第5B圖的結構將不再另述。第6A圖及第6B圖中,可以視得由各匯流排電極221兩側延伸之各延伸電極222彼此不僅斷開不連接,並且互相交錯排列。藉此,可得到不同之電取出率。於一最佳例中,第6A圖及第6B圖於各匯流排電極221兩側之第一區域A1及第二區域A2之面積限定分別同於前述實施例中所述及。 6A is a schematic structural view showing an embodiment of a solar cell 200 using a triple bus electrode 221 in the present invention; and FIG. 6B is a schematic structural view showing another embodiment of the solar cell 200 according to FIG. 6A. In FIGS. 6A and 6B, structures similar to those of FIGS. 5A and 5B will not be described again. In FIGS. 6A and 6B, it can be seen that the extension electrodes 222 extending from both sides of each bus bar electrode 221 are not only disconnected from each other, but are also alternately arranged. Thereby, different electrical extraction rates can be obtained. In a preferred embodiment, the areas of the first area A1 and the second area A2 on both sides of each of the bus bar electrodes 221 in FIGS. 6A and 6B are respectively the same as those described in the foregoing embodiments.
第7圖係繪示本發明中使用三匯流排電極221之太陽能電池200一實施例結構示意圖。於第7圖中,類似於第6A圖及第6B圖的結 構將不再另述。第7圖中,可以視得由各匯流排電極221兩側延伸之各延伸電極222彼此不僅斷開不連接、互相交錯排列且各延伸電極222具不同長度變化。舉例而言,於第7圖中,位於最旁側之兩匯流排電極221所延伸之延伸電極222,其長度長於靠近中心之匯流排電極221所延伸之延伸電極222。藉此,可得到不同之電取出率。於一最佳例中,第7圖於各匯流排電極221兩側之第一區域A1及第二區域A2之面積限定分別同於前述實施例中所述及。 Fig. 7 is a view showing the structure of an embodiment of a solar cell 200 using a three bus bar electrode 221 in the present invention. In Figure 7, a knot similar to Figure 6A and Figure 6B The structure will not be described separately. In FIG. 7, it can be seen that each of the extension electrodes 222 extending from both sides of each of the bus bar electrodes 221 is not only disconnected from each other, but also alternately arranged with each other, and each of the extension electrodes 222 has a different length. For example, in FIG. 7, the extension electrode 222 extending from the two busbar electrodes 221 on the most lateral side has a length longer than the extension electrode 222 extending from the central bus bar electrode 221. Thereby, different electrical extraction rates can be obtained. In a preferred embodiment, the area of the first area A1 and the second area A2 on both sides of each of the bus bar electrodes 221 in FIG. 7 is the same as that described in the foregoing embodiments.
第8圖係繪示本發明中使用三匯流排電極221之太陽能電池200一實施例結構示意圖;第9圖係繪示依據第8圖之太陽能電池200之另一實施例結構示意圖。於第8圖及第9圖中,類似的結構將不再另述。第8圖及第9圖中,可以視得太陽能電池200具有六匯流排電極221。其中,每三個匯流排電極221可視為一個單元,而將整個頂面電極220分為二單元U1、U2。於第8圖及第9圖中,於各單元U1、U2中之三個匯流排電極221分別延伸出之延伸電極222彼此互相連接,且於單元U1中,旁側之兩匯流排電極221所延伸之最外側延伸電極222與單元U2中,旁側之兩匯流排電極221所延伸之最外側延伸電極222互相連接。藉此,可對電取出率及吸光量之調配達到更為精確之控制。於一最佳例中,第8圖及第9圖於各單元U1、U2之各匯流排電極221兩側之第一區域A1及第二區域A2之面積限定分別同於前述實施例中所述及。 FIG. 8 is a schematic structural view showing an embodiment of a solar cell 200 using a three-bus bar electrode 221 in the present invention; and FIG. 9 is a schematic structural view showing another embodiment of the solar cell 200 according to FIG. In Figures 8 and 9, similar structures will not be described again. In Figs. 8 and 9, it can be seen that the solar cell 200 has six bus bar electrodes 221. Each of the three bus bar electrodes 221 can be regarded as one unit, and the entire top surface electrode 220 is divided into two units U1 and U2. In the eighth and ninth diagrams, the extension electrodes 222 extending from the three busbar electrodes 221 of the respective units U1 and U2 are connected to each other, and in the unit U1, the two busbar electrodes 221 on the side are connected. The extended outermost extension electrode 222 and the unit U2 are connected to each other by the outermost extension electrode 222 extending from the two busbar electrodes 221 on the side. Thereby, the adjustment of the electric extraction rate and the light absorption amount can be achieved to achieve more precise control. In a preferred embodiment, the areas of the first area A1 and the second area A2 on both sides of each of the bus bar electrodes 221 of the respective units U1 and U2 in FIGS. 8 and 9 are respectively the same as those described in the foregoing embodiments. and.
上述已以各實施例,說明本發明中太陽能電池100、200之頂面電極120、220之各式配置變化。後續,將說明如何以上述之太 陽能電池100、200,形成各式太陽能電池模組300。請續參照第10圖至第16圖,其係繪製太陽能電池模組300之各式結構。 The various configurations of the top electrodes 120 and 220 of the solar cells 100 and 200 of the present invention have been described above in the respective embodiments. Follow-up, will explain how to use the above The solar cells 100 and 200 form various solar cell modules 300. Referring to FIG. 10 to FIG. 16 , the various structures of the solar cell module 300 are drawn.
太陽能電池模組300包含一背板310、一太陽能電池200、一封裝材料320、一透光件330以及一擴光結構340。 The solar cell module 300 includes a backplane 310, a solar cell 200, a package material 320, a light transmissive member 330, and a light-enhancing structure 340.
太陽能電池200係設置於背板310上,其結構如上述第5A圖至第9圖中之實施例所繪示,此不再贅述。 The solar cell 200 is disposed on the backplane 310, and its structure is as shown in the embodiments in FIGS. 5A to 9 and will not be described again.
封裝材料320係包覆太陽能電池200,其材質可為乙烯-醋酸乙烯酯共聚物(Ethylene-Vinyl Acetate Copolymer,EVA)或聚乙烯醇縮丁醛(Poly-Vinyl Butyral,PVB)。 The encapsulating material 320 is coated with the solar cell 200 and may be made of Ethylene-Vinyl Acetate Copolymer (EVA) or Poly-Vinyl Butyral (PVB).
透光件330覆蓋於封裝材料320上,其材質可為透光玻璃(Glass)或壓克力。 The light transmissive member 330 is covered on the encapsulating material 320 and may be made of glass or acryl.
擴光結構340形成於對應太陽能電池200之匯流排電極221位置上。於第10圖中,太陽能電池模組300吸收入射光線L後,透過擴光結構340,可令於對應匯流排電極221位置之入射光線L擴散,進而更增加匯流排電極221旁側之第一區域A1之吸光量(太陽能電池200之匯流排電極221及第一區域A1之結構請見上述第5A至第9圖中各實施例,於此不再另述)。於第10圖中,擴光結構340係以多層反射膜方式形成於封裝材料320下方。需提及的是,亦可直接使用多層封裝材料320本身形成多層反射膜,無需再以額外結構。 The light-expanding structure 340 is formed at a position corresponding to the bus bar electrode 221 of the solar cell 200. In FIG. 10, after the solar cell module 300 absorbs the incident light L, the light-expanding structure 340 can diffuse the incident light L at the position corresponding to the bus bar electrode 221, thereby further increasing the first side of the bus bar electrode 221. The amount of light absorbed by the area A1 (for the structure of the bus bar electrode 221 and the first area A1 of the solar cell 200, see the respective embodiments in the above-mentioned 5A to 9th drawings, which will not be described herein). In FIG. 10, the light-enhancing structure 340 is formed under the package material 320 in a multilayer reflective film. It should be mentioned that the multilayer encapsulation material 320 itself can also be directly used to form a multilayer reflective film without further structure.
以下續述及擴光結構340之各式配置變化。 The various configuration changes of the light-emitting structure 340 are described below.
第11圖中,擴光結構340係以複數粒子P摻雜於封裝材料320內形成。擴光結構340位置對應匯流排電極221位置。 In Fig. 11, the light-expanding structure 340 is formed by doping the plurality of particles P in the encapsulating material 320. The position of the light-enhancing structure 340 corresponds to the position of the bus bar electrode 221.
第12圖中,擴光結構340係以複數粒子P摻雜於透光件330內形成。擴光結構340位置對應匯流排電極221位置。 In Fig. 12, the light-expanding structure 340 is formed by doping the plurality of particles P into the light-transmitting member 330. The position of the light-enhancing structure 340 corresponds to the position of the bus bar electrode 221.
第13圖中,擴光結構340係形成於透光件330表面,其可具有多種變化,且擴光結構340表面可呈規則或不規則狀。舉例而言,第13圖中,擴光結構340係於對應匯流排電極221位置以單一內凹面形成。第14圖中,擴光結構340係於對應匯流排電極221位置以多個透鏡341形成於透光件330表面上。第15圖中,擴光結構340係於對應匯流排電極221位置以多個角柱342形成於透光件330表面上。需知上述之多個透鏡341或多個角柱342,亦可形成於對應匯流排電極221位置之封裝材料320表面上。此外,擴光結構340亦可於對應匯流排電極221位置之封裝材料320表面或透光件330表面上,以化學蝕刻或物理蝕刻等方式形成之粗化面為之。第15圖中,係直接於匯流排電極221上形成以多個角柱342排列之擴光結構340。此多個角柱342可以是規則或不規則排列,或是其大小尺寸亦可各自變化。 In Fig. 13, the light-expanding structure 340 is formed on the surface of the light-transmitting member 330, which can have various changes, and the surface of the light-expanding structure 340 can be regular or irregular. For example, in FIG. 13, the light-expanding structure 340 is formed at a position corresponding to the bus bar electrode 221 with a single concave surface. In Fig. 14, the light-expanding structure 340 is formed on the surface of the light-transmitting member 330 by a plurality of lenses 341 at positions corresponding to the bus bar electrodes 221 . In Fig. 15, the light-expanding structure 340 is formed on the surface of the light-transmitting member 330 by a plurality of corner posts 342 at positions corresponding to the bus bar electrodes 221 . It is to be noted that the plurality of lenses 341 or the plurality of corner posts 342 may be formed on the surface of the encapsulation material 320 corresponding to the position of the bus bar electrode 221 . In addition, the light-enhancing structure 340 may also be formed on the surface of the encapsulating material 320 corresponding to the position of the bus bar electrode 221 or the surface of the light-transmitting member 330 by chemical etching or physical etching. In Fig. 15, a light-enhancing structure 340 arranged in a plurality of corner posts 342 is formed directly on the bus bar electrode 221. The plurality of corner posts 342 may be arranged in a regular or irregular manner, or may vary in size and size.
於第16圖中,擴光結構340亦可直接以帶狀(ribbon)形成於匯流排電極221上,例如其可用貼合或焊接等方式形成於匯流排電極221表面上。藉此,當入射光線L入射至擴光結構340上不同位置時,可形成不同角度散射而使入射光線L形成多個散射光線,如散射光線L1及散射光線L2。當散射光線L1或散射光線L2穿過封裝材料320而發射至透光件330之表面時,為透光件330反射而增加了於匯流排電極221附近區域(如前述之第一區域A1)之吸光量。上述對入射光線L之散射亦可直接於匯流排電極221表面形成規則或不規則粗化面而達到。 In FIG. 16, the light-expanding structure 340 may be formed directly on the bus bar electrode 221 in a ribbon shape, for example, it may be formed on the surface of the bus bar electrode 221 by bonding or soldering. Thereby, when the incident light L is incident on different positions on the light-enhancing structure 340, different angular scattering can be formed to form the incident light L into a plurality of scattered light, such as the scattered light L1 and the scattered light L2. When the scattered light L1 or the scattered light L2 is emitted to the surface of the light transmitting member 330 through the encapsulating material 320, the light transmitting member 330 is reflected and increased in the vicinity of the bus bar electrode 221 (such as the first region A1 described above). The amount of light absorbed. The scattering of the incident light L can also be achieved by forming a regular or irregular roughened surface directly on the surface of the bus bar electrode 221.
綜上,本發明所揭示的太陽能電池與太陽能電池模組,透過太陽能電池上頂面電極之匯流排電極及延伸電極之各式配置,可獲致良好之吸光量及電取出率。並且,再搭配於封裝材料、透光件或匯流排電極內部或表面上所形成之擴光結構,可再增加吸光量,有效提昇光電轉換效率。 In summary, the solar cell and the solar cell module disclosed in the present invention can achieve good light absorption and electric extraction rate through various configurations of the bus bar electrode and the extension electrode of the top electrode on the solar cell. Moreover, in combination with the light-expanding structure formed on the inside or on the surface of the packaging material, the light-transmitting member or the bus bar electrode, the amount of light absorption can be further increased, thereby effectively improving the photoelectric conversion efficiency.
雖然本發明已以實施方式揭露如上,然其並非用以限定本發明,任何熟習此技藝者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾,因此本發明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and the present invention can be modified and modified without departing from the spirit and scope of the present invention. The scope is subject to the definition of the scope of the patent application attached.
200‧‧‧太陽能電池 200‧‧‧ solar cells
210‧‧‧基板 210‧‧‧Substrate
211‧‧‧頂面 211‧‧‧ top surface
220‧‧‧頂面電極 220‧‧‧ top electrode
221‧‧‧匯流排電極 221‧‧‧ bus bar electrode
222‧‧‧延伸電極 222‧‧‧Extended electrode
A1‧‧‧第一區域 A1‧‧‧ first area
A2‧‧‧第二區域 A2‧‧‧Second area
Claims (24)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105108496A TWI599057B (en) | 2016-03-18 | 2016-03-18 | Solar cell and solar cell module |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105108496A TWI599057B (en) | 2016-03-18 | 2016-03-18 | Solar cell and solar cell module |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI599057B true TWI599057B (en) | 2017-09-11 |
TW201735381A TW201735381A (en) | 2017-10-01 |
Family
ID=60719656
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105108496A TWI599057B (en) | 2016-03-18 | 2016-03-18 | Solar cell and solar cell module |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI599057B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI770647B (en) * | 2020-10-23 | 2022-07-11 | 友達光電股份有限公司 | Solar module |
-
2016
- 2016-03-18 TW TW105108496A patent/TWI599057B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
TW201735381A (en) | 2017-10-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10340412B2 (en) | Solar cell | |
JP6321666B2 (en) | Double-sided solar cell module with back reflector | |
JP6526774B2 (en) | Solar cell module | |
TW201607067A (en) | Solar panel and method of manufacturing such a solar panel | |
JP6986357B2 (en) | Solar cell module | |
TWI398007B (en) | Lighting type solar module | |
JP5999571B2 (en) | Solar cell module | |
TWI539613B (en) | High power solar cell module | |
TWI398010B (en) | Lighting type solar module | |
KR20130067130A (en) | Solar cell module | |
KR20190000222U (en) | Solar power generation component | |
US20170194525A1 (en) | High power solar cell module | |
TWI599057B (en) | Solar cell and solar cell module | |
KR20190120301A (en) | Optical shield for photocell | |
TWM502963U (en) | Solar cell module | |
WO2014132516A1 (en) | Solar cell, solar cell module, and production method for solar cell | |
KR102483125B1 (en) | Transparent solar cell | |
US10629763B2 (en) | Solar cell module | |
KR102000063B1 (en) | Solar cell module | |
KR101979271B1 (en) | Solar cell module | |
TWM504356U (en) | Four-bus-bar solar cell | |
JP6224696B2 (en) | Solar cell module | |
JPWO2016031231A1 (en) | Solar cell module | |
WO2024058021A1 (en) | Solar cell element and solar cell module | |
KR101336061B1 (en) | Solar cells having horizontal arrayed photovoltaic cells and manufacturing method of the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |