TWI598168B - Control method for screw tap - Google Patents
Control method for screw tap Download PDFInfo
- Publication number
- TWI598168B TWI598168B TW105135671A TW105135671A TWI598168B TW I598168 B TWI598168 B TW I598168B TW 105135671 A TW105135671 A TW 105135671A TW 105135671 A TW105135671 A TW 105135671A TW I598168 B TWI598168 B TW I598168B
- Authority
- TW
- Taiwan
- Prior art keywords
- rotating shaft
- acceleration
- mode
- deceleration
- maximum allowable
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/416—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control of velocity, acceleration or deceleration
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/34—Director, elements to supervisory
- G05B2219/34391—Synchronize axis movement and tool action, delay action, simulation inertia
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Automatic Control Of Machine Tools (AREA)
- Numerical Control (AREA)
Description
本發明係有關於一種攻牙刀具之控制方法,特別係關於一種可調整轉軸的加減速模式之攻牙刀具控制方法。 The invention relates to a control method of a tapping tool, in particular to a tapping tool control method capable of adjusting an acceleration/deceleration mode of a rotating shaft.
近代工業經常藉由工具機的攻牙系統進行加工,普遍使用的攻牙系統多半著重於追求最小的誤差或是最小的加工時間。在習知的攻牙系統中,操作人員需決定轉軸的轉速和加速度,使得轉軸移動時間相對於預設的轉軸旋轉量為最小,以縮短整個攻牙過程中所需的時間。 Modern industry is often processed by the tapping system of the machine tool. The commonly used tapping system mostly focuses on the pursuit of minimum error or minimum processing time. In conventional tapping systems, the operator has to determine the speed and acceleration of the shaft so that the shaft movement time is minimized relative to the preset shaft rotation to reduce the time required for the entire tapping process.
然而,當欲準確地調整轉軸的轉速和加速度等相關參數時,往往需要依賴有經驗且對於攻牙系統熟練的操作者,對於一般的操作人員而言是困難且複雜的工作。此外,在攻牙過程中,也容易因為轉軸之轉矩過大而導致刀具損耗甚至是斷刀。 However, when it is desired to accurately adjust the relevant parameters such as the rotational speed and acceleration of the rotating shaft, it is often necessary to rely on an experienced and skilled operator of the tapping system, which is a difficult and complicated task for a general operator. In addition, during the tapping process, it is also easy to cause tool loss or even broken tool because the torque of the rotating shaft is too large.
為了克服前述習知的問題,本發明提供了一種攻牙刀具控制方法,用以控制該刀具之一轉軸的轉速,包括:根據該刀具之一加工條件建立一專家資料庫,其中該專家資料庫包含該轉軸之一最大容許轉矩值;取得操作中之該轉軸之轉矩;比較該 轉軸之該轉矩與該專家資料庫中之該最大容許轉矩值,其中當該轉軸之該轉矩大於該最大容許轉矩值時,則使該轉軸之加減速模式處於一S曲線模式。 In order to overcome the above-mentioned conventional problems, the present invention provides a tapping tool control method for controlling the rotational speed of a shaft of the tool, comprising: establishing an expert database according to processing conditions of the tool, wherein the expert database Include one of the maximum allowable torque values of the rotating shaft; obtain the torque of the rotating shaft during operation; compare the The torque of the rotating shaft and the maximum allowable torque value in the expert database, wherein when the torque of the rotating shaft is greater than the maximum allowable torque value, the acceleration/deceleration mode of the rotating shaft is in an S-curve mode.
100、200‧‧‧攻牙刀具控制方法 100,200‧‧‧Tapping tool control method
S11-S14、S21-S27、S261、S262、S271、S272‧‧‧步驟 S11-S14, S21-S27, S261, S262, S271, S272‧‧ steps
第1A圖為一梯形模式之轉速對時間關係圖。 Figure 1A is a plot of speed vs. time for a trapezoidal mode.
第1B圖為一S曲線模式之轉速對時間關係圖。 Figure 1B is a plot of speed vs. time for an S-curve mode.
第2圖為本發明一實施例之攻牙刀具控制方法的示意圖。 Fig. 2 is a schematic view showing a method of controlling a tapping tool according to an embodiment of the present invention.
第3A圖為本發明另一實施例之攻牙刀具控制方法的示意圖。 3A is a schematic view showing a method of controlling a tapping tool according to another embodiment of the present invention.
第3B圖表示由梯形模式切換到S曲線模式的轉速對時間關係圖。 Fig. 3B is a diagram showing the relationship of the rotational speed versus time from the trapezoidal mode to the S-curve mode.
有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is for the purpose of illustration and not limitation.
首先請參閱第1A、1B圖,其中第1A圖為一梯形模式(trapezoidal mode)之轉速對時間關係圖,第1B圖則為一S曲線模式(S-curve mode)之轉速對時間關係圖。前述梯形模式以及S曲線模式分別為一種加減速模式,用以控制轉軸於加速或減速期間之加速度。如第1A圖所示,梯形模式係一種加速度於加速或減速期間為定值的加減速模式,當一般攻牙機以梯形模式進行加工時,例如加工一直徑為1mm以下的螺孔時,由於加速以及減速過程較 快且加速度不變,因此攻牙過程時間可縮短,但也往往容易發生攻牙刀具耗損或是斷刀的情況。如第1B圖所示,S曲線模式為一種加速度於加速或減速期間包含一指數函數的加減速模式,由於S曲線模式的加速以及減速較平緩且運算精度高,因此若將轉軸加減速模式保持在S曲線模式下,則攻牙過程時間雖較長,但也較不易產生斷刀的風險。 First, please refer to Figures 1A and 1B. Figure 1A shows the speed versus time of a trapezoidal mode, and Figure 1B shows the speed versus time of an S-curve mode. The aforementioned trapezoidal mode and the S-curve mode are respectively an acceleration/deceleration mode for controlling the acceleration of the rotating shaft during acceleration or deceleration. As shown in Fig. 1A, the trapezoidal mode is an acceleration/deceleration mode in which the acceleration is constant during acceleration or deceleration. When the general tapping machine is processed in a trapezoidal mode, for example, when a screw hole having a diameter of 1 mm or less is machined, Acceleration and deceleration process Fast and constant acceleration, so the time of the tapping process can be shortened, but it is often prone to wear or break of the tapping tool. As shown in Fig. 1B, the S-curve mode is an acceleration/deceleration mode in which the acceleration includes an exponential function during acceleration or deceleration. Since the acceleration and deceleration of the S-curve mode are gentle and the calculation accuracy is high, if the acceleration/deceleration mode is maintained In the S-curve mode, although the tapping process time is longer, it is less likely to cause a risk of breaking the knife.
接著請參閱第2圖,該圖表示本發明一實施例之攻牙刀具控制方法100,用以控制攻牙刀具之轉軸的轉速,以減少刀具耗損並可避免斷刀的情形發生。如第2圖所示,本實施例之攻牙刀具控制方法100開始於步驟S11。在步驟S11中,可先根據刀具之加工條件(processing conditions)建立一專家資料庫,其中該專家資料庫至少包含有刀具之轉軸的最大容許轉矩值Tmax(maximum permissible torque)或自訂容許值等預設參數,前述刀具的加工條件則例如刀具直徑、材質以及被加工件的材質等。 Next, referring to FIG. 2, the figure shows a tapping tool control method 100 according to an embodiment of the present invention for controlling the rotational speed of the rotating shaft of the tapping tool to reduce tool wear and avoid the occurrence of the broken knife. As shown in Fig. 2, the tapping tool control method 100 of the present embodiment starts at step S11. In step S11, an expert database may be first established according to processing conditions of the tool, wherein the expert database includes at least a maximum permissible torque value (Tmax) or a custom allowable value of the rotating shaft of the tool. Such as the preset parameters, the processing conditions of the aforementioned tool are, for example, the tool diameter, the material, and the material of the workpiece.
接著,如步驟S12所示,可根據前述加工條件預先計算在不同轉速命令下,於攻牙期間內轉軸所需的旋轉量、加速距離及減速距離等運動資訊,其中旋轉量為刀具起始點到孔底的距離與螺距之比值。然後,在步驟S13中,可藉由一量測單元取得操作中之該刀具的轉軸之轉矩T;舉例而言,前述量測單元可透過乙太網控制自動化技術(EtherCAT)以即時地監控並將刀具之前述轉軸資訊,例如轉軸驅動馬達之電流值,傳送至一電腦裝置進行轉換與分析。 Then, as shown in step S12, motion information such as the amount of rotation, the acceleration distance, and the deceleration distance required for the rotation axis during the tapping period under different rotation speed commands may be pre-calculated according to the foregoing processing conditions, wherein the rotation amount is the tool starting point. The ratio of the distance to the bottom of the hole to the pitch. Then, in step S13, the torque T of the rotating shaft of the tool in operation can be obtained by a measuring unit; for example, the measuring unit can be monitored instantaneously through Ethernet control automation technology (EtherCAT). The aforementioned shaft information of the tool, such as the current value of the shaft drive motor, is transmitted to a computer device for conversion and analysis.
最後,在步驟S14中,可藉由一速度曲線調變單元(例如一處理器)比較轉軸之轉矩T與專家資料庫中之最大容許轉矩值 Tmax,其中當轉軸之轉矩T大於最大容許轉矩值Tmax時,或是自訂之一容許值時,可藉由前述速度曲線調變單元強制使得轉軸之加減速模式處於一S曲線模式,以執行一較平滑的加減速曲線,並有效地抑制轉軸的振動量。如此一來,不僅可提升攻牙過程中轉軸的穩定度及整體效率,同時可有效降低刀具耗損或斷刀的情形發生。 Finally, in step S14, the torque T of the rotating shaft and the maximum allowable torque value in the expert database can be compared by a speed curve modulation unit (for example, a processor). Tmax, wherein when the torque T of the rotating shaft is greater than the maximum allowable torque value Tmax, or when one of the allowable values is customized, the acceleration and deceleration mode of the rotating shaft can be forced to be in an S-curve mode by the speed curve modulation unit. In order to perform a smoother acceleration and deceleration curve, and effectively suppress the amount of vibration of the rotating shaft. In this way, not only can the stability of the shaft and the overall efficiency during the tapping process be improved, but also the situation of tool wear or broken knife can be effectively reduced.
再請參閱第3A圖,該圖為本發明另一實施例之攻牙刀具控制方法200的示意圖。如第3A圖所示,本實施例之攻牙刀具控制方法200開始於步驟S21,根據刀具之加工條件(例如刀具直徑、材質以及被加工件的材質等)建立一專家資料庫,其中該專家資料庫至少包含刀具之轉軸之最大容許轉矩值Tmax、驅動馬達之最大容許驅動電流值Imax、最大容許轉矩變化量dTmax、最大容許轉速值Vmax以及最大容許急跳度(Jerk)值Jmax等預設參數,或針對以上各值之自訂容許值或容許量。接著,在步驟S22中,可根據刀具之加工條件預先計算在不同轉速命令下,於攻牙期間內轉軸所需的旋轉量、加速距離及減速距離等運動資訊。 Referring to FIG. 3A again, the figure is a schematic diagram of a tapping tool control method 200 according to another embodiment of the present invention. As shown in FIG. 3A, the tapping tool control method 200 of the present embodiment starts in step S21, and an expert database is established according to the processing conditions of the tool (such as the tool diameter, the material, and the material of the workpiece, etc.), wherein the expert The database includes at least the maximum allowable torque value Tmax of the tool shaft, the maximum allowable drive current value Imax of the drive motor, the maximum allowable torque change amount dTmax, the maximum allowable speed value Vmax, and the maximum allowable jerk value (Jerk) value Jmax, etc. Preset parameters, or custom tolerances or tolerances for each of the above values. Next, in step S22, motion information such as the amount of rotation, the acceleration distance, and the deceleration distance required for the rotation of the shaft during the tapping period under different rotation speed commands may be calculated in advance according to the machining condition of the tool.
然後,在步驟S23中,可藉由一量測單元取得轉軸之轉矩T、驅動電流值I、轉矩變化量dT、轉速V及急跳度值J等資料,其中前述量測單元可透過乙太網控制自動化技術(EtherCAT)以即時地監控並將刀具之前述轉軸資訊傳送至一電腦裝置進行處理。在步驟S24中,可透過一速度曲線調變單元(例如一處理器)接受來自專家資料庫以及量測單元的資料,並分別比較前述轉軸之轉矩T與最大容許轉矩值Tmax、驅動電流值I與最大容許驅動電流值Imax、轉矩變化量dT與最大容許轉矩變化量dTmax、轉速V與最 大容許轉速值Vmax,及急跳度值J與最大容許急跳度值Jmax的數值大小關係。 Then, in step S23, data such as the torque T of the rotating shaft, the driving current value I, the torque variation amount dT, the rotational speed V, and the jerk value J can be obtained by a measuring unit, wherein the measuring unit is permeable. Ethernet Control Automation Technology (EtherCAT) monitors and transmits the aforementioned spindle information to a computer device for processing. In step S24, the data from the expert database and the measuring unit can be accepted by a speed curve modulation unit (for example, a processor), and the torque T and the maximum allowable torque value Tmax and the driving current of the rotating shaft are respectively compared. The value I and the maximum allowable drive current value Imax, the torque change amount dT and the maximum allowable torque change amount dTmax, the rotational speed V and the most The large allowable rotational speed value Vmax, and the magnitude relationship between the jerk value J and the maximum allowable jerk value Jmax.
如步驟S25所示,透過前述速度曲線調變單元可分別判斷操作中之攻牙刀具的轉軸轉矩T、驅動電流值I、轉矩變化量dT、轉速V及急跳度值J是否分別大於最大容許轉矩值Tmax、最大容許驅動電流值Imax、最大容許轉矩變化量dTmax、最大容許轉速值Vmax以及最大容許急跳度值Jmax,若T>Tmax、I>Imax、dT>dTmax、V>Vmax或J>Jmax之其中任何一種情況成立時,則執行步驟S26。 As shown in step S25, the speed curve adjusting unit can determine whether the rotating shaft torque T, the driving current value I, the torque variation amount dT, the rotational speed V, and the rapid jump value J of the tapping tool in operation are respectively greater than or greater than Maximum allowable torque value Tmax, maximum allowable drive current value Imax, maximum allowable torque change amount dTmax, maximum allowable rotational speed value Vmax, and maximum allowable jerk value Jmax, if T>Tmax, I>Imax, dT>dTmax, V When any of the cases of >Vmax or J>Jmax is established, step S26 is performed.
在步驟S26中,可判斷操作中之刀具之轉軸的加減速模式是否處於梯形模式,若轉軸之加減速模式已處於梯形模式,則強制將轉軸之加減速模式切換至S曲線模式(步驟S261);反之,若轉軸之加減速模式不是處於梯形模式而是處於S曲線模式,則繼續維持轉軸之加減速模式於S曲線模式(步驟S262),藉此可確保刀具不致於在操作過程中斷裂或損壞。 In step S26, it can be determined whether the acceleration/deceleration mode of the rotating shaft of the tool in operation is in the trapezoidal mode, and if the acceleration/deceleration mode of the rotating shaft is already in the trapezoidal mode, the acceleration/deceleration mode of the rotating shaft is forcibly switched to the S-curve mode (step S261) On the other hand, if the acceleration/deceleration mode of the rotating shaft is not in the trapezoidal mode but in the S-curve mode, the acceleration/deceleration mode of the rotating shaft is maintained in the S-curve mode (step S262), thereby ensuring that the tool does not break during the operation or damage.
另一方面,當T≦Tmax、I≦Imax、dT≦dTmax、V≦Vmax,或J≦Jmax時,意即前述步驟S25之不等式皆不成立時的情況則執行步驟S27。在步驟S27中,可判斷操作中之刀具的轉軸加減速模式是否處於S曲線模式,若轉軸之加減速模式是處於S曲線模式,則強制切換轉軸之加減速模式至梯形模式(步驟S271);反之,若轉軸之加減速模式不是處於S曲線模式,則維持轉軸之加減速模式於梯形模式(步驟S272),藉此可使刀具在操作過程中維持轉速穩定且可有效降低斷刀風險。 On the other hand, when T≦Tmax, I≦Imax, dT≦dTmax, V≦Vmax, or J≦Jmax, that is, if the inequality of the above step S25 is not satisfied, step S27 is executed. In step S27, it can be determined whether the rotating shaft acceleration/deceleration mode of the tool in operation is in the S curve mode, and if the acceleration/deceleration mode of the rotating shaft is in the S curve mode, forcibly switching the acceleration/deceleration mode of the rotating shaft to the trapezoidal mode (step S271); On the other hand, if the acceleration/deceleration mode of the rotating shaft is not in the S-curve mode, the acceleration/deceleration mode of the rotating shaft is maintained in the trapezoidal mode (step S272), whereby the tool can maintain the rotational speed stable during the operation and can effectively reduce the risk of the cutting.
在進行完步驟S261、步驟S262、步驟S271或步驟S272 之後,於一預設期間內會回到步驟S23並開始再次進行以下步驟(如第3A圖所示)。如此一來,可在攻牙過程中即時監控並自動地調整刀具之加減速模式,當刀具之轉軸處於梯形模式時可快速地加工,但在刀具有損耗或斷刀風險時,則可即時地調整轉軸加減速模式至S曲線模式,以避免因刀具損壞必須更換而導致生產效率下降及增加製造成本等問題。 After performing step S261, step S262, step S271 or step S272 Thereafter, in a predetermined period, the process returns to step S23 and the following steps are started again (as shown in FIG. 3A). In this way, the acceleration/deceleration mode of the tool can be monitored and automatically adjusted during the tapping process. When the tool axis is in the trapezoidal mode, the tool can be processed quickly, but when the tool has the risk of loss or breakage, it can be instantly Adjust the shaft acceleration/deceleration mode to the S-curve mode to avoid problems such as reduced productivity and increased manufacturing costs due to tool damage that must be replaced.
如第3B圖所示,假設初始的轉軸加減速模式為梯形模式,則當轉軸之轉速V大於最大容許轉速值Vmax時,可藉由前述控制方法將轉軸之加減速模式自動切換為S曲線模式,以避免刀具耗損或斷刀,惟在S曲線模式下仍可透過量測並即時監控轉軸的轉矩T、驅動電流值I、轉矩變化量dT、轉速V或急跳度值J等參數,而於攻牙過程中再度回復到梯形模式,以同時兼顧生產效率與刀具損壞的風險。 As shown in FIG. 3B, assuming that the initial shaft acceleration/deceleration mode is a trapezoidal mode, when the rotational speed V of the rotating shaft is greater than the maximum allowable rotational speed value Vmax, the acceleration/deceleration mode of the rotating shaft can be automatically switched to the S-curve mode by the aforementioned control method. In order to avoid tool wear or broken knife, but in the S-curve mode, it can still measure and instantly monitor the torque T of the rotating shaft, the driving current value I, the torque variation dT, the rotational speed V or the jerk value J and other parameters. In the process of tapping, it returns to the trapezoidal mode again, taking into account the risk of production efficiency and tool damage.
綜上所陳,本發明提供一種攻牙刀具之控制方法,用以控制刀具之一轉軸的轉速,其主要包括根據刀具之加工條件建立一專家資料庫,該專家資料庫包含刀具轉軸之至少一種狀態參數的最大容許值,接著可於操作過程中即時取得轉軸的狀態參數,並比較轉軸之前述狀態參數與相對應的最大容許值。舉例而言,當該轉軸之轉矩大於最大容許轉矩值或自訂容許值時,可強制使該轉軸之加減速模式處於一S曲線模式(S-curve mode),以確保刀具不致於在操作過程中斷裂或損壞。 In summary, the present invention provides a control method for a tapping tool for controlling the rotational speed of one of the shafts of the tool, which mainly includes establishing an expert database according to the processing conditions of the tool, and the expert database includes at least one of the tool shafts. The maximum allowable value of the state parameter, and then the state parameter of the rotating shaft can be obtained immediately during the operation, and the aforementioned state parameter of the rotating shaft and the corresponding maximum allowable value are compared. For example, when the torque of the rotating shaft is greater than the maximum allowable torque value or the custom allowable value, the acceleration/deceleration mode of the rotating shaft can be forced to be in an S-curve mode to ensure that the tool is not in the Broken or damaged during operation.
雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可做些許之更動與潤飾。因此本發 明之保護範圍當視後附之申請專利範圍所界定者為準。 Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. Those skilled in the art having the ordinary skill in the art can make some modifications and refinements without departing from the spirit and scope of the invention. Therefore, this hair The scope of protection of the Ming Dynasty shall be subject to the definition of the scope of the patent application attached.
100‧‧‧攻牙刀具控制方法 100‧‧‧Tapping tool control method
S11-S14‧‧‧步驟 S11-S14‧‧‧Steps
Claims (10)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135671A TWI598168B (en) | 2016-11-03 | 2016-11-03 | Control method for screw tap |
CN201611069971.7A CN108021102B (en) | 2016-11-03 | 2016-11-29 | The control method of tapping cutter |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105135671A TWI598168B (en) | 2016-11-03 | 2016-11-03 | Control method for screw tap |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI598168B true TWI598168B (en) | 2017-09-11 |
TW201817520A TW201817520A (en) | 2018-05-16 |
Family
ID=60719581
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105135671A TWI598168B (en) | 2016-11-03 | 2016-11-03 | Control method for screw tap |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN108021102B (en) |
TW (1) | TWI598168B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111198561B (en) * | 2019-12-05 | 2021-10-22 | 浙江大华技术股份有限公司 | Motion control method and device for target tracking, computer equipment and storage medium |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010286A (en) * | 1987-09-14 | 1991-04-23 | Fanuc Ltd. | Method of synchronous control of spindle motor and feed motor |
US6551033B2 (en) * | 2000-01-31 | 2003-04-22 | Yoshiaki Kakino | Tapping apparatus and method |
TW201024941A (en) * | 2008-12-23 | 2010-07-01 | Syntec Inc | Numerical control device and the method thereof |
TW201304901A (en) * | 2011-07-27 | 2013-02-01 | Nat Univ Chung Cheng | Locally reinforced learning control method for rigid tapping |
CN104380218A (en) * | 2012-06-05 | 2015-02-25 | 三菱电机株式会社 | Numeric control device |
CN106020130A (en) * | 2015-03-30 | 2016-10-12 | 发那科株式会社 | Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN2792675Y (en) * | 2005-06-15 | 2006-07-05 | 远瞻动力科技有限公司 | Tooth tapping device |
CN1971457A (en) * | 2005-11-25 | 2007-05-30 | 中国科学院沈阳计算技术研究所有限公司 | Speed control method used for numerical control machine |
US7479751B2 (en) * | 2007-01-29 | 2009-01-20 | Rockwell Automation Technologies, Inc. | Elimination of unintended velocity reversals in s-curve velocity profiles |
-
2016
- 2016-11-03 TW TW105135671A patent/TWI598168B/en active
- 2016-11-29 CN CN201611069971.7A patent/CN108021102B/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5010286A (en) * | 1987-09-14 | 1991-04-23 | Fanuc Ltd. | Method of synchronous control of spindle motor and feed motor |
US6551033B2 (en) * | 2000-01-31 | 2003-04-22 | Yoshiaki Kakino | Tapping apparatus and method |
TW201024941A (en) * | 2008-12-23 | 2010-07-01 | Syntec Inc | Numerical control device and the method thereof |
TW201304901A (en) * | 2011-07-27 | 2013-02-01 | Nat Univ Chung Cheng | Locally reinforced learning control method for rigid tapping |
CN104380218A (en) * | 2012-06-05 | 2015-02-25 | 三菱电机株式会社 | Numeric control device |
CN106020130A (en) * | 2015-03-30 | 2016-10-12 | 发那科株式会社 | Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis |
Also Published As
Publication number | Publication date |
---|---|
CN108021102A (en) | 2018-05-11 |
TW201817520A (en) | 2018-05-16 |
CN108021102B (en) | 2019-11-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP3156865B1 (en) | Process monitoring and adaptive control of a machine tool | |
US9910426B2 (en) | Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis | |
US10599123B2 (en) | Machine tool with function to automatically modify cutting conditions | |
JP4261470B2 (en) | Control device | |
US20150115514A1 (en) | Control device for machine tool including rotary indexing device | |
WO2012133222A1 (en) | Machine tool and machining control device | |
US9459598B2 (en) | Motor control device | |
JP6407810B2 (en) | Machining system that adjusts machining tool rotation speed and workpiece feed speed | |
US11254007B2 (en) | Machine tool | |
US20170028490A1 (en) | Device and method of controlling machine tool, to control synchronized operation of spindle axis and feed axis | |
US20210069849A1 (en) | Control device and control system for machine tool | |
US20160161936A1 (en) | Method for setting feed rate of rotating cutting tool in real time and control device | |
US9921556B2 (en) | Machine controller and power consumption control of machine tool peripherals | |
US9983567B2 (en) | Numerical controller capable of avoiding overheat of spindle | |
US20200133236A1 (en) | Numerical controller | |
US11193987B2 (en) | Control system of industrial machine | |
TWI598168B (en) | Control method for screw tap | |
US10088828B2 (en) | Controlling load ratio induced shut-down conditions in numerical control devices | |
US20210311454A1 (en) | Maintenance support system, numerical controller, and control method of maintenance support system | |
JP2007105809A (en) | Method of detecting slip of main spindle driving belt of machine tool | |
US11340587B2 (en) | Numerical controller | |
JP6490520B2 (en) | Motor drive control device and machine tool equipped with the same | |
KR20140051693A (en) | Apparatus for controlling workhead of machine tool | |
JP2017021472A (en) | Machining device and machining method | |
US20240198473A1 (en) | Vibration detection device |