TWI594472B - Dye-sensitized solar cell and method for manufacturing thereof - Google Patents

Dye-sensitized solar cell and method for manufacturing thereof Download PDF

Info

Publication number
TWI594472B
TWI594472B TW105135712A TW105135712A TWI594472B TW I594472 B TWI594472 B TW I594472B TW 105135712 A TW105135712 A TW 105135712A TW 105135712 A TW105135712 A TW 105135712A TW I594472 B TWI594472 B TW I594472B
Authority
TW
Taiwan
Prior art keywords
graphene
dye
sensitized solar
solar cell
counter electrode
Prior art date
Application number
TW105135712A
Other languages
Chinese (zh)
Other versions
TW201818577A (en
Inventor
鄭憲徽
伍得
顏銘佑
Original Assignee
武漢市三選科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武漢市三選科技有限公司 filed Critical 武漢市三選科技有限公司
Priority to TW105135712A priority Critical patent/TWI594472B/en
Application granted granted Critical
Publication of TWI594472B publication Critical patent/TWI594472B/en
Publication of TW201818577A publication Critical patent/TW201818577A/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

染料敏化太陽能電池及其製造方法 Dye sensitized solar cell and method of manufacturing same

本發明提供一種染料敏化太陽能電池及其製造方法,包含具有高傳導性之複合對電極,其具有多孔隙石墨烯層設置在鉑金層之上,以增加電子傳遞用之孔隙。 The present invention provides a dye-sensitized solar cell and a method of manufacturing the same, comprising a composite counter electrode having high conductivity, wherein a porous graphene layer is disposed on a platinum layer to increase pores for electron transfer.

染料敏化太陽能電池具有環保、製造成本低、不受高溫環境影響、具有透明性及能作為可撓性電池之優勢,已被廣泛應用且係產業上積極發展的一項技術。 Dye-sensitized solar cells have been widely used and are actively developed in the industry because of their environmental protection, low manufacturing cost, high temperature resistance, transparency, and the advantages of being a flexible battery.

染料敏化太陽能電池主要結構包含工作電極、電解質及對電極依序設置在二透明導電基板之間。其中,光敏化劑(或稱光染料)係吸附於工作電極上,以吸收光能並轉變為電能。而如何能有效增加染料敏化太陽能電池的光電轉換效率及穩定性,基板、工作電極、電解質及對電極之材質及結構特性則為決定性的因素。 The main structure of the dye-sensitized solar cell comprises a working electrode, an electrolyte and a counter electrode arranged in sequence between two transparent conductive substrates. Among them, a photosensitizer (or light dye) is adsorbed on the working electrode to absorb light energy and convert it into electric energy. How to effectively increase the photoelectric conversion efficiency and stability of the dye-sensitized solar cell, the material and structural characteristics of the substrate, the working electrode, the electrolyte and the counter electrode are decisive factors.

基本上,工作電極為半導體奈米材料,常見如二氧化鈦(TiO2)、氧化鋅(ZnO)及氧化錫(SnO2)。由於光敏化劑分布於該半導體奈米材料之中,因此若該半導體奈米材料之表面積若越高,則吸附光的光敏化劑則越多;而若透明導電基板之穿透度越高,入射的光線越多,則可轉換的電能則越高。另外,常見對電極之材料包含有碳黑、鉑(Pt)及導電高分子, 例如PEDOT等材料可選擇。 Basically, the working electrode is a semiconductor nanomaterial, such as titanium dioxide (TiO 2 ), zinc oxide (ZnO), and tin oxide (SnO 2 ). Since the photosensitizer is distributed in the semiconductor nanomaterial, if the surface area of the semiconductor nanomaterial is higher, the photosensitizer for adsorbing light is more; and if the transmittance of the transparent conductive substrate is higher, The more light that is incident, the higher the convertible power. In addition, common counter electrode materials include carbon black, platinum (Pt) and conductive polymers, such as PEDOT and other materials.

目前,已有將石墨烯用於太陽能電池之技術領域。由於石墨烯為二維的碳材料,原子間相互連結形成蜂巢似的結構,並富含有電子,具有電子特性,可讓電子於層內自由遷移,因此具有良好的導電性。而將石墨烯用於染料敏化太陽能電池,便可有效提升光電轉換效率。 At present, graphene has been used in the technical field of solar cells. Since graphene is a two-dimensional carbon material, atoms are connected to each other to form a honeycomb-like structure, and are rich in electrons and have electronic characteristics, which allow electrons to migrate freely within the layer, and thus have good electrical conductivity. The use of graphene in dye-sensitized solar cells can effectively improve the photoelectric conversion efficiency.

本發明者發現,石墨烯雖已被用於太陽能電池之領域,但石墨烯通常係以直接塗覆於太陽能電池之層間,形成一薄膜層,藉由其本身的孔洞進行電子傳輸。 The present inventors have found that although graphene has been used in the field of solar cells, graphene is usually applied directly between layers of a solar cell to form a thin film layer, and electron transport is performed by its own pores.

然而,本發明者發現,若進一步將石墨烯以交疊方式形成於太陽能電池之層間,則不僅能藉由石墨烯本身的孔洞提供更高的反應表面積,提高光電流,更能藉由石墨烯交疊之間的接觸點形成完整電子通路,可加速電子傳輸,進而有效提升光電轉換效率。 However, the inventors have found that if the graphene is further formed in an overlapping manner between the layers of the solar cell, it can not only provide a higher reaction surface area by the pores of the graphene itself, but also increase the photocurrent, and more by graphene. The contact points between the overlaps form a complete electronic path, which accelerates electron transport and thus effectively improves photoelectric conversion efficiency.

即,本發明提供一種染料敏化太陽能電池,包含:一複合對電極,包含一鉑金層以及設置於該鉑金層上之多孔隙石墨烯層;一工作電極,其中該多孔隙石墨烯層位於該鉑金層與該工作電極之間;以及一電解質,位於該工作電極與該複合對電極之間。 That is, the present invention provides a dye-sensitized solar cell comprising: a composite counter electrode comprising a platinum layer and a porous graphene layer disposed on the platinum layer; a working electrode, wherein the porous graphene layer is located Between the platinum layer and the working electrode; and an electrolyte between the working electrode and the composite counter electrode.

於較佳實施例中,該黏著劑為聚偏二氟乙烯(PVDF)、纖維素或其等之混合物。 In a preferred embodiment, the adhesive is a mixture of polyvinylidene fluoride (PVDF), cellulose, or the like.

於較佳實施例中,該多孔隙石墨烯層內之孔隙大小為25~500nm。 In a preferred embodiment, the pore size in the porous graphene layer is 25 to 500 nm.

於較佳實施例中,該複數個石墨烯之中空孔洞大小為之孔洞 為1nm~10μm。 In a preferred embodiment, the plurality of graphene holes have a hole size of a hole It is 1 nm to 10 μm.

於較佳實施例中,其中該工作電極係TiO2、SnO2及ZnO。 In a preferred embodiment, the working electrode is TiO 2 , SnO 2 and ZnO.

於較佳實施例中,其中該多孔隙石墨烯層之厚度為1~50μm。 In a preferred embodiment, the porous graphene layer has a thickness of 1 to 50 μm.

本發明提供一種製備如上述之染料敏化太陽能電池用之複合對電極之方法,其包含:(a)提供一鉑金層;(b)將複數個石墨烯與一黏著劑混合得到石墨烯漿液;以及(c)將該石墨烯漿液塗覆至該鉑金層上後,烘乾該石墨烯漿液得到一多孔隙石墨烯層形成於該鉑金層上,形成該複合對電極。 The invention provides a method for preparing a composite counter electrode for a dye-sensitized solar cell as described above, which comprises: (a) providing a platinum layer; (b) mixing a plurality of graphenes with an adhesive to obtain a graphene slurry; And (c) applying the graphene slurry to the platinum layer, drying the graphene slurry to obtain a porous graphene layer formed on the platinum layer to form the composite counter electrode.

於較佳實施例中,該複數個石墨烯與該黏著劑係透過超音波混合。 In a preferred embodiment, the plurality of graphenes are mixed with the adhesive by ultrasonic waves.

於較佳實施例中,該石墨烯漿液中,該複數個石墨烯之濃度為0.01~10wt%。 In a preferred embodiment, the concentration of the plurality of graphene in the graphene slurry is 0.01 to 10 wt%.

本發明提供一種染料敏化太陽能電池的製造方法,包含:(a)以本發明之方法製備一複合對電極;(b)提供一工作電極,其中該多孔性石墨烯層位於該鉑金層與該工作電極之間;以及(c)提供一電解質於該工作電極與該複合對電極之間。 The present invention provides a method of fabricating a dye-sensitized solar cell comprising: (a) preparing a composite counter electrode by the method of the present invention; (b) providing a working electrode, wherein the porous graphene layer is located in the platinum layer and Between the working electrodes; and (c) providing an electrolyte between the working electrode and the composite counter electrode.

1‧‧‧複合對電極 1‧‧‧Composite counter electrode

3‧‧‧多孔隙石墨烯層 3‧‧‧Porous graphene layer

5‧‧‧鉑金層 5‧‧‧ Platinum layer

7‧‧‧石墨烯 7‧‧‧ Graphene

9‧‧‧孔隙 9‧‧‧ pores

11‧‧‧黏著劑 11‧‧‧Adhesive

13‧‧‧石墨烯漿液 13‧‧‧ Graphene slurry

15‧‧‧導電基板 15‧‧‧Electrical substrate

17‧‧‧工作電極 17‧‧‧Working electrode

19‧‧‧電解質 19‧‧‧ Electrolytes

圖1為本發明之染料敏化太陽能電池。 Figure 1 is a dye-sensitized solar cell of the present invention.

圖2為本發明之複合對電極。 Figure 2 is a composite counter electrode of the present invention.

圖3為本發明之製備染料敏化太陽能電池用之複合對電極之方法。 3 is a method of preparing a composite counter electrode for a dye-sensitized solar cell of the present invention.

本發明提供一種染料敏化太陽能電池,包含:一複合對電極,包含一鉑金層以及設置於該鉑金層上之多孔隙石墨烯層;一工作電極,其中該多孔隙石墨烯層位於該鉑金層與該工作電極之間;以及一電解質,位於該工作電極與該複合對電極之間。如圖1所示,二導電基板15之間設有本發明之染料敏化太陽能電池,其包含複合對電極1、電解質19及工作電極17;其中,複合對電極1包含石墨烯層3及鉑金層5,且該石墨烯層3係具有多孔隙之特性。 The present invention provides a dye-sensitized solar cell comprising: a composite counter electrode comprising a platinum layer and a porous graphene layer disposed on the platinum layer; a working electrode, wherein the porous graphene layer is located in the platinum layer And the working electrode; and an electrolyte between the working electrode and the composite counter electrode. As shown in FIG. 1 , a dye-sensitized solar cell of the present invention is provided between two conductive substrates 15 , which comprises a composite counter electrode 1 , an electrolyte 19 and a working electrode 17 ; wherein the composite counter electrode 1 comprises a graphene layer 3 and platinum Layer 5, and the graphene layer 3 has the property of being porous.

上述之多孔隙石墨烯層3係透過黏著劑將複數個石墨烯彼此交疊黏附於該鉑金層5上。如圖2所示,複數個石墨烯7係彼此交疊黏附於該鉑金層5上,由黏著劑11所固定,複數個石墨烯7彼此之間有孔隙9,該孔隙9大小為25~500nm,例如25nm、30nm、50nm、80nm、100nm、150nm、200nm、250nm、300nm、350nm、400nm、450nm、或500nm;若該孔隙大小過小,則石墨烯7露出的催化活性中心過少而不佳;若石墨烯7孔隙果大,反而造成導電性低,因此石墨烯7之孔隙應以上述範圍為佳,才能提供較大的電解質吸附面積,並增加電子的傳遞效率,有效提升光電轉換效率。 The above-mentioned porous graphene layer 3 is formed by adhering a plurality of graphenes to each other on the platinum layer 5 through an adhesive. As shown in FIG. 2, a plurality of graphenes 7 are adhered to each other on the platinum layer 5, and are fixed by an adhesive 11, and a plurality of graphenes 7 have pores 9 therebetween. The size of the pores 9 is 25 to 500 nm. For example, 25 nm, 30 nm, 50 nm, 80 nm, 100 nm, 150 nm, 200 nm, 250 nm, 300 nm, 350 nm, 400 nm, 450 nm, or 500 nm; if the pore size is too small, the catalytic active center exposed by the graphene 7 is too small; The graphene 7 has a large pore size, which in turn causes low conductivity. Therefore, the pores of the graphene 7 should be in the above range to provide a large electrolyte adsorption area, increase the electron transfer efficiency, and effectively improve the photoelectric conversion efficiency.

上述之黏著劑為聚偏二氟乙烯(PVDF)、纖維素或其等之混合物。由於聚偏二氟乙烯(PVDF)及纖維素為用於製備多孔膜之材料,利於形成多孔隙的材質。此外,經發明人實驗發現,相較於使用其他聚合物,使用聚偏二氟乙烯(PVDF)及纖維素與石墨烯混合時,可製備出如上所定義 孔隙大小之石墨烯層,以利於電子傳遞。聚偏二氟乙烯(PVDF)及纖維素可混合搭配其他溶劑使用,例如水、N-甲基-2-吡咯啶酮(NMP)、二甲基亞碸、N,N-二甲基乙醯胺(DMAc)、N,N-二甲基甲醯胺(DMF)、甲基乙基酮、丙酮、四氫呋喃、四甲基脲、磷酸三甲酯、己烷、戊烷、苯、甲苯、甲醇、乙醇、四氯化碳、鄰-二氯苯、三氯乙烯、低分子量的聚乙二醇等脂肪族碳化氫、芳香族碳化氫、氯化碳化氫、或其他氯化有機液體等。 The above adhesive is a mixture of polyvinylidene fluoride (PVDF), cellulose or the like. Since polyvinylidene fluoride (PVDF) and cellulose are materials for preparing a porous film, it is advantageous to form a porous material. In addition, it has been experimentally found by the inventors that the use of polyvinylidene fluoride (PVDF) and cellulose in combination with graphene can be prepared as defined above. A graphene layer of pore size to facilitate electron transport. Polyvinylidene fluoride (PVDF) and cellulose can be mixed and used in other solvents, such as water, N-methyl-2-pyrrolidone (NMP), dimethyl hydrazine, N,N-dimethyl acetamidine. Amine (DMAc), N,N-dimethylformamide (DMF), methyl ethyl ketone, acetone, tetrahydrofuran, tetramethylurea, trimethyl phosphate, hexane, pentane, benzene, toluene, methanol Aliphatic hydrocarbons such as ethanol, carbon tetrachloride, o-dichlorobenzene, trichloroethylene, low molecular weight polyethylene glycol, aromatic hydrocarbons, chlorinated hydrocarbons, or other chlorinated organic liquids.

上述之複數個石墨烯之長度及寬度0.02~10μm,厚度約2~10nm,孔洞1nm~10μm及比表面積10m2/g~1000m2/g。該石墨烯之長度及寬度可例如0.02μm、1μm、3μm、5μm、7μm、或10μm。該石墨烯之厚度可例如2nm、3nm、4nm、5nm、6nm、7nm、8nm、9nm或10nm。該石墨烯上之孔洞可例如1nm、5nm、10nm、50nm、100nm、200nm、300nm、400nm、500nm、600nm、700nm、800nm、900nm、1000nm、1.5μm、2μm、3μm、4μm、5μm、6μm、7μm、8μm、9μm或10μm;比表面積可例如10m2/g、20m2/g、50m2/g、70m2/g、100m2/g、150m2/g、200m2/g、250m2/g、300m2/g、350m2/g、400m2/g、450m2/g、500m2/g、550m2/g、600m2/g、650m2/g、700m2/g、750m2/g、800m2/g、850m2/g、900m2/g、950m2/g或1000m2/g。 The plurality of graphenes have a length and a width of 0.02 to 10 μm, a thickness of about 2 to 10 nm, a pore size of 1 nm to 10 μm, and a specific surface area of 10 m 2 /g to 1000 m 2 /g. The length and width of the graphene may be, for example, 0.02 μm, 1 μm, 3 μm, 5 μm, 7 μm, or 10 μm. The thickness of the graphene may be, for example, 2 nm, 3 nm, 4 nm, 5 nm, 6 nm, 7 nm, 8 nm, 9 nm or 10 nm. The pores on the graphene may be, for example, 1 nm, 5 nm, 10 nm, 50 nm, 100 nm, 200 nm, 300 nm, 400 nm, 500 nm, 600 nm, 700 nm, 800 nm, 900 nm, 1000 nm, 1.5 μm, 2 μm, 3 μm, 4 μm, 5 μm, 6 μm, 7 μm. , 8μm, 9μm or 10 m; specific surface area may be, for example, 10m 2 / g, 20m 2 / g, 50m 2 / g, 70m 2 / g, 100m 2 / g, 150m 2 / g, 200m 2 / g, 250m 2 / g 300m 2 /g, 350m 2 /g, 400m 2 /g, 450m 2 /g, 500m 2 /g, 550m 2 /g, 600m 2 /g, 650m 2 /g, 700m 2 /g, 750m 2 /g , 800m 2 / g, 850m 2 / g, 900m 2 / g, 950m 2 / g or 1000m 2 / g.

上述之工作電極可為TiO2、ZnO、SnO2、Nb2O5、In2O3、CdS、ZnS、CdSe、GaP、CdTe、MoSe2、WO3、KTaO3、ZrO2、SrTiO3、WSe2、SiO2、CdS或其之组合,並以TiO2、SnO2及ZnO為佳。此外,該工作電極添加有光敏化劑,其包含有機金屬錯合物,例如有機釕金屬系列或紫質系列,或吲哚系列、香豆素系列、花青系列或羅丹明的有機染料。 The above working electrode may be TiO 2 , ZnO, SnO 2 , Nb 2 O 5 , In 2 O 3 , CdS, ZnS, CdSe, GaP, CdTe, MoSe 2 , WO 3 , KTaO 3 , ZrO 2 , SrTiO 3 , WSe 2 , SiO 2 , CdS or a combination thereof, and preferably TiO 2 , SnO 2 and ZnO. Further, the working electrode is added with a photosensitizer comprising an organometallic complex such as an organic ruthenium series or a purple series, or an oxime series, a coumarin series, a cyanine series or a rhodamine organic dye.

上述之電解質可為通用的電解質,其包含液態電解質、膠態電解質或固態電解質。其中,電解質係使用氧化還原電解質,例如碘、鐵、錫、溴、鉻、蒽醌等氧化還原離子對霍奇等之組合,較佳為碘系及溴系電解質,例如碘化鉀、碘化二甲基丙基咪唑鎓、碘化鋰等或碘之混合物。本發明之電解液包含腈類、醯胺類、醚類、碳酸酯內酯、或其等之組合,例如乙腈、甲氧基乙腈、丙腈、3-甲氧基丙腈、苯甲腈、二乙醚、1,2-二甲氧基乙烷、四氫呋喃、N,N-二甲基甲醯胺、N,N-二甲基乙醯胺、碳酸乙二酯、碳酸丙二酯、γ-丁內酯、或γ-戊內酯。另外,凝膠狀電解質係利用電解液中可添加凝膠化劑、聚合物等,呈現凝膠狀電解質;而固體電解質係使用氧化還原性的電解液搭配聚環氧乙烷衍生物等聚合物。 The above electrolyte may be a general-purpose electrolyte comprising a liquid electrolyte, a colloidal electrolyte or a solid electrolyte. The electrolyte is a redox electrolyte, for example, a combination of redox ions such as iodine, iron, tin, bromine, chromium, ruthenium, etc., Hodge, etc., preferably an iodine-based or bromine-based electrolyte, such as potassium iodide or dimethyl iodide. A mixture of propyl imidazolium, lithium iodide, or the like or iodine. The electrolyte of the present invention comprises a nitrile, a guanamine, an ether, a carbonate lactone, or a combination thereof, such as acetonitrile, methoxyacetonitrile, propionitrile, 3-methoxypropionitrile, benzonitrile, Diethyl ether, 1,2-dimethoxyethane, tetrahydrofuran, N,N-dimethylformamide, N,N-dimethylacetamide, ethylene carbonate, propylene carbonate, γ- Butyrolactone, or γ-valerolactone. Further, the gel electrolyte is a gelled electrolyte by adding a gelling agent or a polymer to the electrolytic solution, and the solid electrolyte is a redox electrolyte solution and a polymer such as a polyethylene oxide derivative. .

上述之該多孔隙石墨烯層之厚度為1~50μm,例如1μm、5μm、10μm、15μm、20μm、25μm、30μm、35μm、40μm、45μm或50μm。當該多孔隙石墨烯層之厚度低於10nm,無法有效產生孔隙,無法幫助電子傳輸,而高於200nm,由於石墨烯層過厚,則會降低電子傳輸,二者都會降低轉換效率。 The above porous graphene layer has a thickness of 1 to 50 μm, for example, 1 μm, 5 μm, 10 μm, 15 μm, 20 μm, 25 μm, 30 μm, 35 μm, 40 μm, 45 μm or 50 μm. When the thickness of the porous graphene layer is less than 10 nm, pores cannot be effectively produced and electron transport cannot be assisted. Above 200 nm, since the graphene layer is too thick, electron transport is reduced, and both of them lower the conversion efficiency.

本發明之製備上述之染料敏化太陽能電池用之複合對電極之方法,其包含:(a)提供一鉑金層;(b)將複數個石墨烯與一黏著劑混合得到石墨烯漿液;以及(c)將該石墨烯漿液塗覆至該鉑金層上後,烘乾該石墨烯漿液得到一多孔隙石墨烯層形成於該鉑金層上,形成該複合對電極。如圖3所示,複數個石墨烯7置入於黏著劑11混合形成石墨烯漿液13,該石墨烯漿液13經塗覆至鉑金層5,烘乾形成石墨烯層3。 The method for preparing the composite counter electrode for a dye-sensitized solar cell of the present invention comprises: (a) providing a platinum layer; (b) mixing a plurality of graphenes with an adhesive to obtain a graphene slurry; c) after coating the graphene slurry onto the platinum layer, drying the graphene slurry to obtain a porous graphene layer formed on the platinum layer to form the composite counter electrode. As shown in FIG. 3, a plurality of graphenes 7 are placed in the adhesive 11 to form a graphene slurry 13, which is applied to the platinum layer 5 and dried to form a graphene layer 3.

上述之步驟(b)中,該石墨烯漿液之混合方式可使用超音波 混合或攪拌機,以超音波混合為較佳。 In the above step (b), the method of mixing the graphene slurry can use ultrasonic waves. Mixing or blending, ultrasonic mixing is preferred.

上述之步驟(c)中,該石墨烯漿液之塗覆方式包含旋轉塗覆法、棒狀塗覆法或刮刀塗覆法等方法,以旋轉塗覆法為佳。而烘乾該石墨烯漿液之溫度為100~500℃及時間10~60分鐘,例如100℃、150℃、200℃、250℃、300℃、350℃、400℃、450℃、500℃;10分、20分、30分、40分、50分或60分。 In the above step (c), the coating method of the graphene slurry comprises a spin coating method, a rod coating method or a knife coating method, and the spin coating method is preferred. And drying the graphene slurry at a temperature of 100 to 500 ° C and a time of 10 to 60 minutes, such as 100 ° C, 150 ° C, 200 ° C, 250 ° C, 300 ° C, 350 ° C, 400 ° C, 450 ° C, 500 ° C; Points, 20 points, 30 points, 40 points, 50 points or 60 points.

上述之石墨烯漿液中,該複數個石墨烯之濃度為0.01~10wt%,例如0.01wt%、1wt%、2wt%、3wt%、4wt%、5wt%、6wt%、7wt%、8wt%、9wt%、或10wt%。當石墨烯漿液中,石墨烯濃度低於0.01wt%,由於缺少石墨烯,石墨烯之密度過低,因此難以產生交疊,進而難以產生孔隙;而當高於10wt%,石墨烯彼此交疊的密度過高,則可能會使石墨烯產生堆疊現象,亦難以產生孔隙,此二種情況都會降低染料敏化太陽能電池之轉換效率。 In the above graphene slurry, the concentration of the plurality of graphene is 0.01 to 10 wt%, for example, 0.01 wt%, 1 wt%, 2 wt%, 3 wt%, 4 wt%, 5 wt%, 6 wt%, 7 wt%, 8 wt%, 9 wt%. %, or 10wt%. When the graphene concentration is less than 0.01% by weight in the graphene slurry, the density of the graphene is too low due to the lack of graphene, so that it is difficult to cause overlap, and thus it is difficult to generate pores; and when it is higher than 10% by weight, the graphene overlaps each other. Too high a density may cause stacking of graphene and difficulty in generating pores, both of which reduce the conversion efficiency of dye-sensitized solar cells.

一種染料敏化太陽能電池的製造方法,包含:(a)以上述之製備方法製備一複合對電極;(b)提供一工作電極,其中該多孔隙石墨烯層位於該鉑金層與該工作電極之間;以及(c)提供一電解質於該工作電極與該複合對電極之間。其中,該製造方法中之工作電極及電解質之種類同上所述之工作電極及電解質。 A method for manufacturing a dye-sensitized solar cell, comprising: (a) preparing a composite counter electrode by the above preparation method; (b) providing a working electrode, wherein the porous graphene layer is located at the platinum layer and the working electrode And (c) providing an electrolyte between the working electrode and the composite counter electrode. Among them, the working electrode and the electrolyte in the manufacturing method are the same as the working electrode and the electrolyte described above.

本發明之染料敏化太陽能電池由於具有多孔隙石墨烯之複合對電極,因此可加速電子傳遞,提升光電轉換效率。 Since the dye-sensitized solar cell of the present invention has a composite counter electrode of porous graphene, it can accelerate electron transfer and improve photoelectric conversion efficiency.

[具體實施例][Specific embodiment]

在下文中,將利用具體實施例特別描寫本發明所揭示之內容。然而,本發明所揭示之內容不限制於下列範例。 In the following, the disclosure of the invention will be specifically described using specific embodiments. However, the disclosure of the present invention is not limited to the following examples.

實施例1-製備複合對電極1Example 1 - Preparation of Composite Counter Electrode 1

將複數個石墨烯(長度及寬度約5μm;厚度約2~10nm;比表面積20~40m2/g)置入聚偏二氟乙烯(PVDF)中,形成石墨烯漿液,使石墨烯之濃度為0.05wt%。利用超音波震盪均勻混合60分鐘後,利用旋轉塗覆機將該石墨烯漿液塗覆至厚度約100μm鉑金層之上,形成厚度約10μm石墨烯層,於溫度100℃ 60分鐘下烘乾,形成複合對電極1。 A plurality of graphenes (length and width of about 5 μm; thickness of about 2 to 10 nm; specific surface area of 20 to 40 m 2 /g) are placed in polyvinylidene fluoride (PVDF) to form a graphene slurry, so that the concentration of graphene is 0.05 wt%. After uniformly mixing for 60 minutes by ultrasonic vibration, the graphene slurry was applied onto a platinum layer having a thickness of about 100 μm by a spin coater to form a graphene layer having a thickness of about 10 μm, and dried at a temperature of 100 ° C for 60 minutes to form a graphene layer. Composite counter electrode 1.

實施例2-製備複合對電極2Example 2 - Preparation of composite counter electrode 2

製備複合對電極2,其製造方法同實施例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為1.00wt%。 The composite counter electrode 2 was prepared in the same manner as in Example 1 except that the concentration of graphene in the graphene slurry was 1.00 wt%.

實施例3-製備複合對電極3Example 3 - Preparation of composite counter electrode 3

製備複合對電極3,其製造方法同實施例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為5.00wt%。 The composite counter electrode 3 was prepared in the same manner as in Example 1 except that the concentration of graphene in the graphene slurry was 5.00 wt%.

實施例4-製備複合對電極4Example 4 - Preparation of composite counter electrode 4

製備複合對電極4,其製造方法同實施例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為7.00wt%。 The composite counter electrode 4 was prepared in the same manner as in Example 1, except that the concentration of graphene in the graphene slurry disposed was 7.00 wt%.

實施例5-製備複合對電極5Example 5 - Preparation of Composite Counter Electrode 5

製備複合對電極5,其製造方法同實施例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為10.00wt%。 The composite counter electrode 5 was prepared in the same manner as in Example 1 except that the concentration of graphene in the graphene slurry disposed was 10.00% by weight.

比較製備例1-製備複合對電極6Comparative Preparation Example 1 - Preparation of Composite Counter Electrode 6

製備複合對電極6,其製造方法同實施例1,差異在於所配置 之石墨烯漿液中,石墨烯之濃度為0.005wt%。 The composite counter electrode 6 is prepared in the same manner as in the first embodiment, and the difference lies in the configuration. In the graphene slurry, the concentration of graphene was 0.005 wt%.

比較製備例2-製備複合對電極7Comparative Preparation Example 2 - Preparation of Composite Counter Electrode 7

製備複合對電極7,其製造方法同實施例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為20wt%。 The composite counter electrode 7 was prepared in the same manner as in Example 1 except that the concentration of graphene in the graphene slurry disposed was 20% by weight.

比較製備例3-製備複合對電極8Comparative Preparation Example 3 - Preparation of Composite Counter Electrode 8

將複數個石墨烯(長度及寬度約5μm;厚度約2~10nm;比表面積20~40m2/g)置入異丙醇中,形成石墨烯漿液,其石墨烯之濃度為0.05wt%。利用超音波震盪均勻混合60分鐘後,利用旋轉塗覆機將該石墨烯漿液塗覆至厚度約100μm鉑金層之上,形成厚度約25μm石墨烯層,於溫度100℃ 60分鐘烘乾,形成複合對電極6。 A plurality of graphenes (length and width of about 5 μm; thickness of about 2 to 10 nm; specific surface area of 20 to 40 m 2 /g) were placed in isopropyl alcohol to form a graphene slurry having a graphene concentration of 0.05% by weight. After uniformly mixing for 60 minutes by ultrasonic vibration, the graphene slurry was applied onto a platinum layer having a thickness of about 100 μm by a spin coater to form a graphene layer having a thickness of about 25 μm, and dried at a temperature of 100 ° C for 60 minutes to form a composite. Counter electrode 6.

比較製備例4-製備複合對電極9Comparative Preparation Example 4 - Preparation of Composite Counter Electrode 9

製備複合對電極9,其製造方法同比較製備例1,差異在於所配置之石墨烯漿液中,石墨烯之濃度為5wt%。 The composite counter electrode 9 was prepared in the same manner as in Comparative Preparation Example 1, except that the concentration of graphene in the graphene slurry disposed was 5% by weight.

實施例6至10-製備染料敏化太陽能電池1至5Examples 6 to 10 - Preparation of dye-sensitized solar cells 1 to 5

分別使用實施例6至10之對電極與工作電極(健鼎科技Tripod tech)之間設置封裝膜,經過熱壓封裝後,將電解液(永光化學,膠態電解液EL-300)注入,形成染料敏化太陽能電池1至5,其等之效能測試結果分別如表1所示。 An encapsulation film is disposed between the counter electrode of Examples 6 to 10 and the working electrode (Tripod tech), and after hot pressing, the electrolyte (Yongguang Chemical, colloidal electrolyte EL-300) is injected to form a dye. The sensitized solar cells 1 to 5, and their performance test results are shown in Table 1, respectively.

比較例1至5-製備染料敏化太陽能電池6至10Comparative Examples 1 to 5 - Preparation of Dye-Sensitized Solar Cells 6 to 10

分別將比較製備例1至4之對電極、鉑金層與一工作電極(健鼎科技Tripod tech)之間設置封裝膜,經過熱壓封裝後,將電解液(永光化學,膠態電解液EL-300)注入,形成染料敏化太陽能電池6至10,其等之效 能測試結果分別如表1所示。 An encapsulation film is provided between the counter electrode of the preparation examples 1 to 4, the platinum layer and a working electrode (Tripod tech), and after hot-press encapsulation, the electrolyte (Yongguang Chemical, colloidal electrolyte EL-300) Injection, forming dye-sensitized solar cells 6 to 10, etc. The test results are shown in Table 1.

如表1所示,比較例1及2與實施例1至5比較可得知,當石墨烯濃度為0.05~10wt%之間時,染料敏化太陽能電池之轉換效率較佳。比較例3及4與實施例1至5比較可得知,當使用異丙醇做為黏著劑時,石墨烯層之孔隙則無法達到10~500nm之間,致使染料敏化太陽能電池之轉換效率不佳。比較例10與實施例1至5比較可得知,當鉑金層不具有石墨烯層之時,染料敏化太陽能電池之轉換效率則較低。 As shown in Table 1, Comparative Examples 1 and 2 were compared with Examples 1 to 5 to show that the conversion efficiency of the dye-sensitized solar cell was better when the graphene concentration was between 0.05 and 10% by weight. Comparing Comparative Examples 3 and 4 with Examples 1 to 5, it can be seen that when isopropyl alcohol is used as the adhesive, the pores of the graphene layer cannot reach between 10 and 500 nm, resulting in conversion efficiency of the dye-sensitized solar cell. Not good. Comparing Comparative Example 10 with Examples 1 to 5, it can be seen that when the platinum layer does not have a graphene layer, the conversion efficiency of the dye-sensitized solar cell is low.

1‧‧‧複合對電極 1‧‧‧Composite counter electrode

3‧‧‧多孔隙石墨烯層 3‧‧‧Porous graphene layer

5‧‧‧鉑金層 5‧‧‧ Platinum layer

7‧‧‧石墨烯 7‧‧‧ Graphene

9‧‧‧孔隙 9‧‧‧ pores

11‧‧‧黏著劑 11‧‧‧Adhesive

Claims (10)

一種染料敏化太陽能電池,包含:一複合對電極,包含一鉑金層以及設置於該鉑金層上之多孔隙石墨烯層;一工作電極,其中該多孔隙石墨烯層位於該鉑金層與該工作電極之間;以及一電解質,位於該工作電極與該複合對電極之間。 A dye-sensitized solar cell comprising: a composite counter electrode comprising a platinum layer and a porous graphene layer disposed on the platinum layer; a working electrode, wherein the porous graphene layer is located in the platinum layer and the work Between the electrodes; and an electrolyte between the working electrode and the composite counter electrode. 如請求項2之染料敏化太陽能電池,其中該黏著劑係聚偏二氟乙烯(PVDF)、纖維素或其等之混合物。 A dye-sensitized solar cell according to claim 2, wherein the adhesive is a mixture of polyvinylidene fluoride (PVDF), cellulose or the like. 如請求項1之染料敏化太陽能電池,其中該多孔隙石墨烯層係由複數個石墨烯彼此交疊而成,並具有孔隙大小為25~500nm。 The dye-sensitized solar cell of claim 1, wherein the porous graphene layer is formed by overlapping a plurality of graphenes and has a pore size of 25 to 500 nm. 如請求項3之染料敏化太陽能電池,其中該複數個石墨烯之中空孔洞大小為1nm~10μm。 The dye-sensitized solar cell of claim 3, wherein the plurality of graphenes have a hollow pore size of 1 nm to 10 μm. 如請求項1之染料敏化太陽能電池,其中該工作電極係TiO2、SnO2及ZnO。 The dye-sensitized solar cell of claim 1, wherein the working electrode is TiO 2 , SnO 2 and ZnO. 如請求項1之染料敏化太陽能電池,其中該多孔隙石墨烯層之厚度為1~50μm。 The dye-sensitized solar cell of claim 1, wherein the porous graphene layer has a thickness of 1 to 50 μm. 一種製備如請求項1之染料敏化太陽能電池用之複合對電極之方法,其包含:(a)提供一鉑金層;(b)將複數個石墨烯與一黏著劑混合得到石墨烯漿液;以及(c)將該石墨烯漿液塗覆至該鉑金層上後,烘乾該石墨烯漿液得到一多孔隙石墨烯層形成於該鉑金層上,形成該複合對電極。 A method for preparing a composite counter electrode for a dye-sensitized solar cell according to claim 1, comprising: (a) providing a platinum layer; (b) mixing a plurality of graphenes with an adhesive to obtain a graphene slurry; (c) After the graphene slurry is applied onto the platinum layer, the graphene slurry is dried to obtain a porous graphene layer formed on the platinum layer to form the composite counter electrode. 如請求項7之方法,其中該複數個石墨烯與該黏著劑係透過超音波混合。 The method of claim 7, wherein the plurality of graphenes are mixed with the adhesive by ultrasonic waves. 如請求項7之方法,其中該石墨烯漿液中,該複數個石墨烯之濃度為0.01~10wt%。 The method of claim 7, wherein the concentration of the plurality of graphene in the graphene slurry is 0.01 to 10% by weight. 一種染料敏化太陽能電池的製造方法,包含:(a)以請求項7之方法製備一複合對電極;(b)提供一工作電極,其中該多孔隙石墨烯層位於該鉑金層與該工作電極之間;以及(c)提供一電解質於該工作電極與該複合對電極之間。 A method for manufacturing a dye-sensitized solar cell, comprising: (a) preparing a composite counter electrode by the method of claim 7; (b) providing a working electrode, wherein the porous graphene layer is located at the platinum layer and the working electrode And (c) providing an electrolyte between the working electrode and the composite counter electrode.
TW105135712A 2016-11-03 2016-11-03 Dye-sensitized solar cell and method for manufacturing thereof TWI594472B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW105135712A TWI594472B (en) 2016-11-03 2016-11-03 Dye-sensitized solar cell and method for manufacturing thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105135712A TWI594472B (en) 2016-11-03 2016-11-03 Dye-sensitized solar cell and method for manufacturing thereof

Publications (2)

Publication Number Publication Date
TWI594472B true TWI594472B (en) 2017-08-01
TW201818577A TW201818577A (en) 2018-05-16

Family

ID=60189200

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105135712A TWI594472B (en) 2016-11-03 2016-11-03 Dye-sensitized solar cell and method for manufacturing thereof

Country Status (1)

Country Link
TW (1) TWI594472B (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232794A (en) * 2010-10-26 2012-08-01 Dongjin Semichem Co Ltd Dye-sensitized solar cell and manufacturing method thereof
CN102148099B (en) * 2010-12-20 2012-09-12 电子科技大学 Graphene dye sensitized solar cell and production method thereof
US20140127568A1 (en) * 2012-11-07 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device
TWM485505U (en) * 2014-03-21 2014-09-01 Univ Hsiuping Sci & Tech Flexible solar working electrode assembly structure of solar cell
WO2014184379A1 (en) * 2013-05-17 2014-11-20 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
TW201526262A (en) * 2013-12-24 2015-07-01 Ind Tech Res Inst Dye-sensitized solar cell and method for fabricating the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201232794A (en) * 2010-10-26 2012-08-01 Dongjin Semichem Co Ltd Dye-sensitized solar cell and manufacturing method thereof
CN102148099B (en) * 2010-12-20 2012-09-12 电子科技大学 Graphene dye sensitized solar cell and production method thereof
US20140127568A1 (en) * 2012-11-07 2014-05-08 Semiconductor Energy Laboratory Co., Ltd. Positive electrode for nonaqueous secondary battery, method for forming the same, nonaqueous secondary battery, and electrical device
WO2014184379A1 (en) * 2013-05-17 2014-11-20 Exeger Sweden Ab A dye-sensitized solar cell and a method for manufacturing the solar cell
TW201526262A (en) * 2013-12-24 2015-07-01 Ind Tech Res Inst Dye-sensitized solar cell and method for fabricating the same
TWM485505U (en) * 2014-03-21 2014-09-01 Univ Hsiuping Sci & Tech Flexible solar working electrode assembly structure of solar cell

Also Published As

Publication number Publication date
TW201818577A (en) 2018-05-16

Similar Documents

Publication Publication Date Title
Priya et al. High-performance quasi-solid-state dye-sensitized solar cell based on an electrospun PVdF− HFP membrane electrolyte
JP5191647B2 (en) Titanium oxide film, titanium oxide film electrode film structure, and dye-sensitized solar cell
Murugadoss et al. Development of electrospun PAN/CoS nanocomposite membrane electrolyte for high-performance DSSC
Singh et al. Effect of nano‐TiO2 dispersion on PEO polymer electrolyte property
Zhang et al. Recent applications of graphene in dye-sensitized solar cells
US20100313938A1 (en) Counter electrode and photoelectric conversion element including the counter electrode
Dissanayake et al. An innovative TiO2 nanoparticle/nanofibre/nanoparticle, three layer composite photoanode for efficiency enhancement in dye-sensitized solar cells
Prabakaran et al. Solid state metal-free eosin-Y dye sensitized solar cell based on PVdF-HFP electrolytes: combined effect of surface modified TiO 2 and plasticizer on electrochemical and photovoltaic properties
JP6082007B2 (en) Composition for photoelectric conversion layer and photoelectric conversion element
JP2004111216A (en) Dye-sensitized solar cell and nano-carbon electrode
JP4665426B2 (en) Dye-sensitized solar cell and method for producing the same
Lee et al. Enhanced light harvesting in dye-sensitized solar cells with highly reflective TCO-and Pt-less counter electrodes
JP2009238571A (en) Electrolyte for dye-sensitized solar cell
JP2009048946A (en) Dye-sensitized photoelectric conversion element
JP2005336573A (en) Metal oxide film and production method therefor
TWI577073B (en) Composition for photoelectric conversion layer and photoelectric conversion element
JP2012204418A (en) Photovoltaic chargeable electric double-layer capacitor
Bavir et al. An investigation and simulation of the graphene performance in dye-sensitized solar cell
Du Pasquier An approach to laminated flexible Dye sensitized solar cells
TWI594472B (en) Dye-sensitized solar cell and method for manufacturing thereof
CN206726965U (en) Dssc
JP7219078B2 (en) Separator composition, separator, and production method and use thereof
JP5882598B2 (en) Electrochemical capacitor
TW201606827A (en) Photoelectric conversion layer and photoelectric conversion element provided with same
JP2006012517A (en) Metal oxide structure, and dye sensitized solar battery

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees