TWI577073B - Composition for photoelectric conversion layer and photoelectric conversion element - Google Patents

Composition for photoelectric conversion layer and photoelectric conversion element Download PDF

Info

Publication number
TWI577073B
TWI577073B TW102126803A TW102126803A TWI577073B TW I577073 B TWI577073 B TW I577073B TW 102126803 A TW102126803 A TW 102126803A TW 102126803 A TW102126803 A TW 102126803A TW I577073 B TWI577073 B TW I577073B
Authority
TW
Taiwan
Prior art keywords
semiconductor
photoelectric conversion
composition
polymer
weight
Prior art date
Application number
TW102126803A
Other languages
Chinese (zh)
Other versions
TW201414050A (en
Inventor
Kazuhisa Fukui
Mami Nobutani
Original Assignee
Daicel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Corp filed Critical Daicel Corp
Publication of TW201414050A publication Critical patent/TW201414050A/en
Application granted granted Critical
Publication of TWI577073B publication Critical patent/TWI577073B/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09BORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
    • C09B57/00Other synthetic dyes of known constitution
    • C09B57/10Metal complexes of organic compounds not being dyes in uncomplexed form
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/80Constructional details
    • H10K30/81Electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2004Light-sensitive devices characterised by the electrolyte, e.g. comprising an organic electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2022Light-sensitive devices characterized by he counter electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • H10K30/15Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2
    • H10K30/151Sensitised wide-bandgap semiconductor devices, e.g. dye-sensitised TiO2 the wide bandgap semiconductor comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/451Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising a metal-semiconductor-metal [m-s-m] structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/15Deposition of organic active material using liquid deposition, e.g. spin coating characterised by the solvent used
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/40Thermal treatment, e.g. annealing in the presence of a solvent vapour
    • H10K71/441Thermal treatment, e.g. annealing in the presence of a solvent vapour in the presence of solvent vapors, e.g. solvent vapour annealing
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

光電轉換層用組成物及光電轉換元件 Composition for photoelectric conversion layer and photoelectric conversion element

本發明係關於一種有用於形成光電轉換層之組成物,而該光電轉換層係構成太陽能電池(尤其,色素增感太陽能電池)等之光電轉換元件,使用該組成物之電極(光電極)及具備該電極之光電轉換元件。 The present invention relates to a composition for forming a photoelectric conversion layer, which constitutes a photoelectric conversion element such as a solar cell (particularly, a dye-sensitized solar cell), and an electrode (photoelectrode) using the composition and A photoelectric conversion element having the electrode.

太陽能電池作為環境負荷小的綠色能源正受到矚目,實際上已被實用化。現在,使用結晶矽之太陽能電池已被廣泛使用,但有由於使用高純度之矽,發電成本高,又,對室內等微弱光之轉換效率為小等之課題。 As a green energy source with a small environmental load, solar cells are attracting attention and have actually been put into practical use. At present, a solar cell using a crystalline ruthenium has been widely used. However, since high-purity enthalpy is used, the power generation cost is high, and the conversion efficiency to weak light such as indoors is small.

為了解決該課題,已極力開發將有機材料使用於光電轉換部位之太陽能電池,其中,色素增感太陽能電池正受到矚目。色素增感太陽能電池係由瑞士Lausanne工科大學之Graetzel等所開發[例如,日本專利第2664194號公報(專利文獻1)],具有將金屬氧化物半導體(氧化鈦等)與增感色素使用於光電轉換部位之重要特徵。 In order to solve this problem, solar cells using organic materials for photoelectric conversion sites have been vigorously developed, and dye-sensitized solar cells are attracting attention. The dye-sensitized solar cell is developed by Graetzel et al., of the University of Technology, Lausanne, Switzerland. For example, Japanese Patent No. 2664194 (Patent Document 1) has a metal oxide semiconductor (such as titanium oxide) and a sensitizing dye used in photovoltaics. Important features of the transition site.

而且,共通於習知之太陽能電池,將有關於電力穩定供應之問題:僅光被照射之期間發電,於夜間等則不發揮作為電池之功能,又,按照光之強度而使輸出變動等。為了解決該問題,將有太陽能電池與蓄電裝置一併使用之情形。 Further, in the conventional solar battery, there is a problem in that the power supply is stably supplied: only the period during which the light is irradiated is generated, and at night, the function as a battery is not exhibited, and the output is varied in accordance with the intensity of the light. In order to solve this problem, there will be a case where a solar cell is used together with a power storage device.

也於色素增感太陽能電池中,有人正嘗試兼具該蓄電功能,例如於日本專利第4757433號公報(專利文獻2)揭示一種能充電之太陽能電池,其係使陽離子交換膜介於中間,存在第1電解質溶液與第2電解質溶液,上述第1電解質溶液與上述第2電解質溶液隔絕外界空氣,上述第1電解質溶液含有碘與碘化合物,上述第2電解質溶液含有非碘化合物,上述第1電解質溶液之構成成分係與上述第2電解質溶液之構成成分不同,於上述第1電解質溶液之中存在光陽極與對極,上述第2電解質溶液之中存在電荷蓄積電極,上述光陽極與上述電荷蓄電極係被上述陽離子交換膜所分隔。 Also, in a dye-sensitized solar cell, an attempt has been made to combine the power storage function. For example, Japanese Patent No. 4475433 (Patent Document 2) discloses a rechargeable solar cell in which a cation exchange membrane is interposed and exists. The first electrolyte solution and the second electrolyte solution, the first electrolyte solution and the second electrolyte solution are separated from the outside air, the first electrolyte solution contains iodine and an iodine compound, and the second electrolyte solution contains a non-iodine compound, and the first electrolyte The constituent components of the solution are different from the constituent components of the second electrolyte solution, and a photoanode and a counter electrode are present in the first electrolyte solution, and a charge storage electrode is present in the second electrolyte solution, and the photoanode and the charge storage are The electrode system is separated by the above cation exchange membrane.

但是,於該文獻之色素增感太陽能電池中,為了賦予蓄電功能而有使用組成不同的2種電解液之必要,又,由於增加新的電極,必須作成非常複雜的單元構造。又,由於將聚吡咯等用於正極,使內部電阻變大,成為色素增感太陽能電池之輸出降低主因。加上,由於在來自於太陽能電池之輸出與來自於電雙層電容器之輸出(放電)所用之電極不同,有利用外部電路而控制之必要,成為複雜之電路構造。 However, in the dye-sensitized solar cell of this document, in order to provide a storage function, it is necessary to use two types of electrolytes having different compositions, and it is necessary to create a very complicated unit structure by adding a new electrode. Further, since polypyrrole or the like is used for the positive electrode, the internal resistance is increased, and the output of the dye-sensitized solar cell is mainly reduced. In addition, since the output from the solar cell is different from the electrode used for the output (discharge) from the electric double layer capacitor, it is necessary to control by an external circuit, and it becomes a complicated circuit structure.

另一方面,在色素增感太陽能電池中,由於光電轉換係在金屬氧化物半導體與增感色素之接觸界面發生,為了提高效率,期望增大金屬氧化物半導體之表面積。因此,於色素增感太陽能電池中,藉由將奈米尺寸之金屬氧化物半導體使用於電極,相對於表觀面積而言,已擴大有效面積。 On the other hand, in the dye-sensitized solar cell, since the photoelectric conversion system occurs at the contact interface between the metal oxide semiconductor and the sensitizing dye, it is desirable to increase the surface area of the metal oxide semiconductor in order to improve the efficiency. Therefore, in the dye-sensitized solar cell, by using a nano-sized metal oxide semiconductor for the electrode, the effective area is enlarged with respect to the apparent area.

若該金屬氧化物奈米粒子僅單純地塗布於基板上的話,因些微之衝擊將會容易地從基板剝離,便無法發揮作為電極之功能。又,由於粒子間之電阻大,無法效率佳地取出所得之電而使轉換效率降低。因此,於塗布氧化鈦奈米粒子後,藉由在高溫(450℃左右)中熱處理,使氧化鈦粒子間熔融接合而解決了上述問題。 When the metal oxide nanoparticles are simply applied to the substrate, the impact is easily peeled off from the substrate, and the function as an electrode cannot be exhibited. Further, since the electric resistance between the particles is large, the obtained electric power cannot be efficiently extracted, and the conversion efficiency is lowered. Therefore, after the titanium oxide nanoparticles are coated, the above problems are solved by heat-treating at a high temperature (about 450 ° C) to melt-bond the titanium oxide particles.

但是,由於利用上述手法則有將基板曝露於高溫之必要,實質上能夠使用的基板係受玻璃等之無機材料所限定,無法製作使用塑膠基板之可撓性色素增感太陽能電池。 However, in the above method, it is necessary to expose the substrate to a high temperature, and the substrate that can be used substantially is limited by an inorganic material such as glass, and it is not possible to produce a flexible dye-sensitized solar cell using a plastic substrate.

又,由於在燒結過程中將會熱分解,無法預先使色素吸附於塗布前之金屬氧化物半導體,於燒結過程後,使色素吸附之過程變得必要,包含燒結過程,全體而言,繁雜的製程為必要,也成為製造成本上升之主因。 Moreover, since it is thermally decomposed during the sintering process, it is impossible to adsorb the dye to the metal oxide semiconductor before coating, and after the sintering process, the process of dye adsorption becomes necessary, including the sintering process, and the whole is complicated. Process is necessary and also the main cause of rising manufacturing costs.

還有,在日本特開2005-251426號公報(專利文獻3)中,揭示如下之方法:使色素鍵結於能使色素對導電性基板上之鍵結及所鍵結之色素游離的方式來將金屬氧化物、金屬硫化物、金屬氮化物、金屬團簇物或其合金固定化於該基板上之物,測定藉由對其照射光所生成的電流量,並從其電流量測定所鍵結之色素量。而且,於該文獻中,記載作為用以能使色素游離的方式來固定化之方法,較佳為使用高分子電解質之方法,於實施例中,記載將Nafion(Nafion(R)、Aldrich公司製、商品名:Nafion 117、平均分子量1000)懸浮於1ml之乙醇中,將 20.5%氧化鈦微粒子水溶液(TAYCA公司製、商品名:TKS-203、粒徑約6nm)400ml添加於其中,使用經由均勻分散所得之氧化鈦Nafion溶膠分散液,製作氧化鈦修飾ITO電極。 Japanese Patent Laid-Open Publication No. 2005-251426 (Patent Document 3) discloses a method in which a dye is bonded to a method in which a dye can be bonded to a conductive substrate and a bonded dye is released. A metal oxide, a metal sulfide, a metal nitride, a metal cluster or an alloy thereof is immobilized on the substrate, and the amount of current generated by irradiating the light is measured, and the amount of current is measured from the amount of the current. The amount of pigment in the knot. Further, in this document, a method for immobilizing a dye to release a dye is described, and a method using a polymer electrolyte is preferred. In the examples, Nafion (Nafion (R), Aldrich Co., Ltd.) is described. , trade name: Nafion 117, average molecular weight 1000) suspended in 1ml of ethanol, will A 20.5% titanium oxide fine particle aqueous solution (manufactured by TAYCA Co., Ltd., trade name: TKS-203, particle size: about 6 nm) was added in an amount of 400 ml, and a titanium oxide-modified ITO electrode was prepared by using a titanium oxide Nafion sol dispersion obtained by uniform dispersion.

先前技術文獻 Prior technical literature 專利文獻 Patent literature

專利文獻1 日本專利第2664194號公報(申請專利範圍) Patent Document 1 Japanese Patent No. 2664194 (Application Patent Range)

專利文獻2 日本專利第4757433號公報(申請專利範圍、實施例) Patent Document 2 Japanese Patent No. 4475433 (Application Patent Range, Examples)

專利文獻3 日本特開2005-251426號公報(申請專利範圍、段落[0011]至[0012]、實施例) Patent Document 3 Japanese Laid-Open Patent Publication No. 2005-251426 (Patent Application, Paragraph [0011] to [0012], and Examples)

因而,本發明之目的係在於提供一種能夠形成具備蓄電功能之光電轉換層的組成物、利用該組成物所形成的光電轉換層之電極(積層體)及其製造方法、以及具備該電極之光電轉換元件。 Therefore, an object of the present invention is to provide an electrode (layered body) capable of forming a photoelectric conversion layer having a storage function, a photoelectric conversion layer formed using the composition, a method for producing the same, and a photovoltaic having the electrode Conversion component.

本發明之另一目的係在於提供一種不經歷燒結步驟而能夠形成具有優越之光電轉換特性之光電轉換層的組成物、藉由該組成物所形成的光電轉換層之積層體(電極)及其製造方法、以及具備該積層體之光電轉換元件。 Another object of the present invention is to provide a composition capable of forming a photoelectric conversion layer having excellent photoelectric conversion characteristics without undergoing a sintering step, a laminate (electrode) of a photoelectric conversion layer formed by the composition, and A manufacturing method and a photoelectric conversion element including the laminate.

本發明人等為了解決該問題而鑽研之結果,發現:藉由在光電轉換層中,對於半導體(例如,氧化鈦粒子等),使用較多量之離子性聚合物(例如,強酸性離子交換樹脂等)或選擇半導體與離子性聚合物之組合(例如,組合n型半導體與陰離子性聚合物等)而意外可獲得具備由於為相反之功能而所欲兼具的光電轉換功能與蓄電功能之光電轉換元件(太陽能電池等),又,即使不燒結也能夠形成具優越之光電轉換特性的光電轉換層,於是完成了本發明。 As a result of intensive studies to solve this problem, the present inventors have found that a large amount of an ionic polymer (for example, a strongly acidic ion exchange resin) is used for a semiconductor (for example, titanium oxide particles or the like) in a photoelectric conversion layer. Or) or a combination of a semiconductor and an ionic polymer (for example, a combination of an n-type semiconductor and an anionic polymer), and unexpectedly obtain a photoelectric device having a photoelectric conversion function and a storage function which are both desirable for the opposite function. Further, the conversion element (solar battery or the like) can form a photoelectric conversion layer having excellent photoelectric conversion characteristics even without sintering, and thus the present invention has been completed.

亦即,本發明之組成物(光電轉換層用組成物)係用以形成光電轉換層之組成物,含有半導體及離子性聚合物。以該組成物所形成的光電轉換層通常亦可具備蓄電功能。又,於該組成物中,相對於半導體1重量份而言,離子性聚合物之比例通常可為0.05重量份以上(例如,0.05至100重量份、較佳可為0.1至10重量份)。 That is, the composition of the present invention (composition for a photoelectric conversion layer) is a composition for forming a photoelectric conversion layer, and contains a semiconductor and an ionic polymer. The photoelectric conversion layer formed of the composition may usually have a storage function. Further, in the composition, the ratio of the ionic polymer may be usually 0.05 parts by weight or more (for example, 0.05 to 100 parts by weight, preferably 0.1 to 10 parts by weight) based on 1 part by weight of the semiconductor.

在本發明之組成物中,半導體亦可為金屬氧化物(例如,氧化鈦)。半導體之尺寸可為奈米尺寸,半導體之形狀亦可為粒子狀。在較佳的半導體中,含有氧化鈦奈米粒子。 In the composition of the present invention, the semiconductor may also be a metal oxide (e.g., titanium oxide). The size of the semiconductor can be a nanometer size, and the shape of the semiconductor can also be a particle shape. In a preferred semiconductor, titanium oxide nanoparticles are included.

在本發明之組成物中,代表性而言,半導體與離子性聚合物之組合亦可為(i)n型半導體與包含陰離子性聚合物之離子性聚合物的組合、或(ii)p型半導體與包含陽離子性聚合物之離子性聚合物的組合。若利用該組合而選擇半導體與離子性聚合物時(還有,相對於半導 體而使用較多量之離子性聚合物的量時),能夠獲得具備效率佳的蓄電功能之光電轉換層。 In the composition of the present invention, typically, the combination of the semiconductor and the ionic polymer may be (i) a combination of an n-type semiconductor and an ionic polymer comprising an anionic polymer, or (ii) a p-type. A combination of a semiconductor and an ionic polymer comprising a cationic polymer. When using this combination to select a semiconductor and an ionic polymer (also, relative to semiconducting) When the amount of the ionic polymer is used in a large amount, a photoelectric conversion layer having an excellent storage function can be obtained.

尤其,半導體與離子性聚合物之組合亦可為組合(i)。於該組合中,作為n型半導體亦可適於使用包含氧化鈦粒子之半導體(n型半導體)等。 In particular, the combination of the semiconductor and the ionic polymer may also be a combination (i). In this combination, a semiconductor (n-type semiconductor) containing titanium oxide particles or the like can be suitably used as the n-type semiconductor.

於該組合(i)中,陰離子性聚合物例如亦可為強酸性離子交換樹脂。又,陰離子性聚合物在25℃下之pH亦可小於7。 In the combination (i), the anionic polymer may, for example, be a strongly acidic ion exchange resin. Further, the pH of the anionic polymer at 25 ° C may also be less than 7.

於代表性之本發明之組成物中,半導體包含氧化鈦奈米粒子,離子性聚合物為包含具有磺酸基之含氟樹脂的pH 3以下之離子性聚合物,且相對於半導體1重量份而言,離子性聚合物之比例為0.2至1重量份之組成物等。 In a representative composition of the present invention, the semiconductor comprises titanium oxide nanoparticles, and the ionic polymer is an ionic polymer having a pH of 3 or less containing a fluorine-containing resin having a sulfonic acid group, and is 1 part by weight relative to the semiconductor. The ratio of the ionic polymer is 0.2 to 1 part by weight of the composition or the like.

本發明之組成物亦可更含有色素(例如,釕錯合物色素)。 The composition of the present invention may further contain a pigment (for example, a ruthenium complex dye).

於本發明中,一種積層體(電極),其係包含導電性基板與積層在該基板上之光電轉換層,光電轉換層也含有利用該組成物所形成的積層體。例如,該導電性基板亦可為形成有導電體層(或導電層)的塑膠基板。又,於該積層體中,例如光電轉換層之厚度亦可為0.1至100μm左右。 In the present invention, a laminate (electrode) includes a conductive substrate and a photoelectric conversion layer laminated on the substrate, and the photoelectric conversion layer also includes a laminate formed using the composition. For example, the conductive substrate may be a plastic substrate on which a conductor layer (or a conductive layer) is formed. Further, in the laminate, for example, the thickness of the photoelectric conversion layer may be about 0.1 to 100 μm.

於本發明中,也含有將該組成物塗布於導電性基板上而製造該積層體之方法。於該方法中,通常於塗布後,並不會使半導體(或該組成物)燒結(或不經歷燒結步驟)而能製造該積層體。 In the present invention, a method of producing the laminate by applying the composition onto a conductive substrate is also included. In this method, the laminate can be produced usually after sintering without causing the semiconductor (or the composition) to be sintered (or not subjected to a sintering step).

於本發明中,還有也含有具備該積層體(電極)之光電轉換元件。該光電轉換元件通常含有對極。於代表性之光電轉換元件中,具備作為電極之該積層體的太陽能電池,例如含有下列構造之色素增感太陽能電池等:積層體,包含作為電極之含有色素的光電轉換層;對極,對向於該電極所配置;及電解質層,使其介於該等電極中間,且已被密封處理。於該光電轉換元件(或色素增感太陽能電池)中,對極亦可為特別具有多孔質層(尤其多孔質觸媒層)之對極(電極)。 In the present invention, a photoelectric conversion element including the laminate (electrode) is also contained. The photoelectric conversion element usually has a counter electrode. In a typical solar-electric conversion element, a solar cell including the laminate as an electrode includes, for example, a dye-sensitized solar cell having the following structure: a laminate including a photoelectric conversion layer containing a dye as an electrode; The electrode is disposed; and the electrolyte layer is interposed between the electrodes and has been sealed. In the photoelectric conversion element (or dye-sensitized solar cell), the counter electrode may be a counter electrode (electrode) particularly having a porous layer (particularly a porous catalyst layer).

本發明之組成物係如上所述,能夠利用作為用以形成具備蓄電功能之光電轉換層之組成物。因此,於本發明中,也包含將蓄電功能賦予光電轉換層之方法。該方法亦可為使含有半導體之光電轉換層中含有離子注入而將蓄電功能賦予光電轉換層(含有半導體之光電轉換層)(或製造具有蓄電功能之光電轉換層、或是提高或改善光電轉換層之蓄電功能)之方法。還有,於該方法中,半導體或離子性聚合物之種類或比例等係含有較佳的形態,與該組成物相同。例如,於該方法中,離子性聚合物之比例(含有比例)亦可為與上述同樣的比例[亦即,相對於半導體1重量份而言,0.05重量份以上(例如,0.05至100重量份)]。 As described above, the composition of the present invention can be used as a composition for forming a photoelectric conversion layer having a storage function. Therefore, in the present invention, a method of imparting a storage function to the photoelectric conversion layer is also included. In the method, the photoelectric conversion layer containing the semiconductor may be ion-implanted to impart a storage function to the photoelectric conversion layer (the photoelectric conversion layer containing the semiconductor) (or to manufacture a photoelectric conversion layer having a storage function, or to improve or improve photoelectric conversion). The method of storage function of the layer). Further, in this method, the type or ratio of the semiconductor or the ionic polymer contains a preferred form, and is the same as the composition. For example, in the method, the ratio (content ratio) of the ionic polymer may be the same ratio as described above [that is, 0.05 parts by weight or more (for example, 0.05 to 100 parts by weight) based on 1 part by weight of the semiconductor. )].

於本發明之組成物中,能夠形成具備蓄電功能之光電轉換層。又,不經歷燒結步驟而能夠形成具有優越之光電轉換特性的光電轉換層。因此,於本發明中, 不將基板曝露於高溫中,也能夠將塑膠基板作為基板使用。一旦使用該塑膠基板時,能夠獲得可撓性之電極或光電轉換元件。還有,由於並不經歷燒結步驟,能簡化光電轉換層之製程,尤其形成色素增感型光電轉換層之情形下,由於能夠使色素預先附著或吸附於半導體,對簡化製程之效果上非常優越。 In the composition of the present invention, a photoelectric conversion layer having a storage function can be formed. Further, a photoelectric conversion layer having superior photoelectric conversion characteristics can be formed without undergoing a sintering step. Therefore, in the present invention, The plastic substrate can also be used as a substrate without exposing the substrate to high temperatures. When the plastic substrate is used, a flexible electrode or a photoelectric conversion element can be obtained. Further, since the sintering step is not subjected to the sintering step, the process of the photoelectric conversion layer can be simplified, and in particular, in the case of forming the dye-sensitized photoelectric conversion layer, since the dye can be attached or adsorbed to the semiconductor in advance, the effect of simplifying the process is excellent. .

第1圖係顯示實施例所得之色素增感太陽能電池輸出特性的圖形。 Fig. 1 is a graph showing the output characteristics of the dye-sensitized solar cell obtained in the examples.

第2圖係顯示實施例所得之色素增感太陽能電池的遮光後之開放電壓變化的圖形。 Fig. 2 is a graph showing changes in open voltage after shading of the dye-sensitized solar cell obtained in the examples.

[實施發明之形態] [Formation of the Invention] [光電轉換層用組成物] [Composition for photoelectric conversion layer]

本發明之組成物至少含有半導體及離子性聚合物。如後所述,該組成物係作為用以形成構成電極之光電轉換層(或構成電極之光電轉換層)之組成物特別有用。 The composition of the present invention contains at least a semiconductor and an ionic polymer. As will be described later, this composition is particularly useful as a composition for forming a photoelectric conversion layer (or a photoelectric conversion layer constituting an electrode) constituting an electrode.

(半導體) (semiconductor)

作為半導體,能大致區分為無機半導體、有機半導體,於本發明中,能夠適於使用無機半導體。作為無機半導體,若為具有半導體特性之無機物的話即可,按照用途而能適宜選擇,例如,可舉出金屬單體、金屬化合物(金屬氧化物、金屬硫化物、金屬氮化物等)。 The semiconductor can be roughly classified into an inorganic semiconductor or an organic semiconductor, and in the present invention, an inorganic semiconductor can be suitably used. The inorganic semiconductor may be appropriately selected according to the use, and may be, for example, a metal monomer or a metal compound (metal oxide, metal sulfide, metal nitride, or the like).

作為構成無機半導體之金屬,例如,可舉出週期表第2族金屬(例如,鈣、鍶等)、週期表第3族金屬(例如,鈧、釔、鑭等)、週期表第4族金屬(例如,鈦、鋯、鉿等)、週期表第5族金屬(例如,釩、鈮、鉭等)、週期表第6族金屬(例如,鉻、鉬、鎢等)、週期表第7族金屬(例如,錳等)、週期表第8族金屬(例如,鐵等)、週期表第9族金屬(例如,鈷等)、週期表第10族金屬(例如,鎳等)、週期表第11族金屬(例如,銅等)、週期表第12族金屬(例如,鋅、鎘等)、週期表第13族金屬(例如,鋁、鎵、銦、鉈等)、週期表第14族金屬(例如,鍺、錫等)、週期表第15族金屬(例如,砷、銻、鉍等)、週期表第16族金屬(例如,碲等)等。 Examples of the metal constituting the inorganic semiconductor include metals of Group 2 of the periodic table (for example, calcium, barium, etc.), metals of Group 3 of the periodic table (for example, ruthenium, osmium, iridium, etc.), and metals of Group 4 of the periodic table. (eg, titanium, zirconium, hafnium, etc.), Group 5 metals of the periodic table (eg, vanadium, niobium, tantalum, etc.), Group 6 metals of the periodic table (eg, chromium, molybdenum, tungsten, etc.), Group 7 of the periodic table Metal (for example, manganese, etc.), Group 8 metal of the periodic table (for example, iron, etc.), Group 9 metal of the periodic table (for example, cobalt, etc.), Group 10 metal of the periodic table (for example, nickel, etc.), periodic table Group 11 metals (eg, copper, etc.), Group 12 metals of the periodic table (eg, zinc, cadmium, etc.), Group 13 metals of the periodic table (eg, aluminum, gallium, indium, antimony, etc.), Group 14 metals of the periodic table (for example, antimony, tin, etc.), Group 15 metals of the periodic table (for example, arsenic, antimony, antimony, etc.), Group 16 metals of the periodic table (for example, antimony, etc.), and the like.

半導體可為單獨地含有該等金屬之化合物,亦可為含有組合複數種之化合物。例如,半導體可為合金,金屬氧化物亦可為複合氧化物。又,半導體亦可含有組合上述金屬與其他金屬(鹼金屬等)。 The semiconductor may be a compound containing the metals alone or a compound containing a plurality of combinations. For example, the semiconductor may be an alloy, and the metal oxide may also be a composite oxide. Further, the semiconductor may contain a combination of the above metal and another metal (alkali metal or the like).

作為具體的半導體,例如,可舉出金屬氧化物{例如,過渡金屬氧化物[例如,週期表第3族金屬氧化物(氧化釔、氧化鈰等)、週期表第4族金屬氧化物(氧化鈦、氧化鋯、鈦酸鈣、鈦酸鍶等)、週期表第5族金屬氧化物(氧化釩、氧化鈮、氧化鉭(五氧化二鉭等)等)、週期表第6族金屬氧化物(氧化鉻、氧化鎢等)、週期表第7族金屬氧化物(氧化錳等)、週期表第8族金屬氧化物(氧化鐵、氧化釕等)、週期表第9族金屬氧化物(氧化鈷、氧化銥、鈷與鈉之複合氧化物等)、週期表第10族金屬 氧化物(氧化鎳等)、週期表第11族金屬氧化物(氧化銅等)、週期表第12族金屬氧化物(氧化鋅等)等]、典型金屬氧化物[例如,週期表第2族金屬氧化物(氧化鍶等)、週期表第13族金屬氧化物(氧化鎵、氧化銦等)、週期表第14族金屬氧化物(氧化矽、氧化錫等)、週期表第15族金屬氧化物(氧化鉍等)等]、包含複數種該等金屬之複合氧化物[例如,週期表第11族金屬與過渡金屬(週期表第11族金屬以外之過渡金屬)之複合氧化物(例如,CuYO2等之銅與週期表第3族金屬之複合氧化物)、週期表第11族金屬與典型金屬之複合氧化物(例如,CuAlO2、CuGaO2、CuInO2等之銅與週期表第13族金屬之複合氧化物;SrCu2O2等之銅與週期表第2族金屬之複合氧化物;AgInO2等之銀與週期表第13族金屬之複合氧化物等)等]、該等複數種金屬及含有氧以外之週期表第16族元素之氧化物[例如,週期表第11族金屬與過渡金屬(週期表第11族金屬以外之過渡金屬)之複合氧硫化物(例如,LaCuOS等之銅與週期表第3族金屬之複合氧硫化物)、週期表第11族金屬與過渡金屬(週期表第11族金屬以外之過渡金屬)之複合氧硒化物(例如,LaCuOSe等之銅與週期表第3族金屬之複合氧硒化物)等]等}、金屬氮化物(氮化鉈等)、金屬磷化物(InP等)、金屬硫化物{例如,CdS、硫化銅(CuS、Cu2S)、複合硫化物[例如,週期表第11族金屬與典型金屬之複合硫化物(例如,CuGaS2、CuInS2等之銅與週期表第13族金屬之複合硫化物)等]}、金屬硒化物(CdSe、ZnSe等)、金屬鹵化物 (CuCl、CuBr等)、週期表第13族金屬-第15族金屬化合物(GaAs、InSb等)、週期表第12族金屬-第16族金屬化合物(CdTe等)等之金屬化合物(或合金);金屬單體(例如,鈀、鉑、銀、金、矽、鍺)等。 Specific examples of the semiconductor include metal oxides (for example, transition metal oxides [for example, metal oxides of Group 3 of the periodic table (cerium oxide, cerium oxide, etc.), metal oxides of Group 4 of the periodic table (oxidation) Titanium, zirconia, calcium titanate, barium titanate, etc.), Group 5 metal oxides of the periodic table (vanadium oxide, antimony oxide, antimony oxide (bismuth pentoxide, etc.), etc.), Group 6 metal oxides of the periodic table (Chromium oxide, tungsten oxide, etc.), Group 7 metal oxides of the periodic table (manganese oxide, etc.), Group 8 metal oxides of the periodic table (iron oxide, cerium oxide, etc.), Group 9 metal oxides of the periodic table (oxidation) Cobalt, cerium oxide, composite oxide of cobalt and sodium, etc., metal oxide of Group 10 of the periodic table (nickel oxide, etc.), metal oxide of Group 11 of the periodic table (copper oxide, etc.), metal oxidation of Group 12 of the periodic table (zinc oxide, etc.), etc., typical metal oxides [for example, metal oxides of the second group of the periodic table (such as cerium oxide), metal oxides of Group 13 of the periodic table (gallium oxide, indium oxide, etc.), periodic table Group 14 metal oxides (yttria, tin oxide, etc.), Group 15 metal oxides of the periodic table (yttria, etc.), etc. a composite oxide containing a plurality of such metals [for example, a composite oxide of a metal of Group 11 of the periodic table and a transition metal (a transition metal other than a metal of Group 11 of the periodic table) (for example, copper of CuYO 2 or the like) a composite oxide of a Group 3 metal), a composite oxide of a Group 11 metal of a periodic table and a typical metal (for example, a composite oxide of copper such as CuAlO 2 , CuGaO 2 , CuInO 2 , etc. and a Group 13 metal of the periodic table; SrCu 2 ; a composite oxide of O 2 or the like and a metal of a Group 2 metal of the periodic table; a composite oxide of AgInO 2 or the like and a metal of a Group 13 metal of the periodic table, etc.), the plurality of metals, and a periodic table other than oxygen Oxides of Group 16 elements [eg, complex oxysulfides of Group 11 metals of the Periodic Table and transition metals (transition metals other than Group 11 metals of the Periodic Table) (eg, copper such as LaCuOS and metals of Group 3 of the periodic table) Complex oxysulfide), composite oxylyzide of Group 11 metal of the periodic table and transition metal (transition metal other than Group 11 metal of the periodic table) (for example, composite oxygen of copper such as LaCuOSe and metal of Group 3 of the periodic table) Selenide), etc.], metal nitride (tantalum nitride, etc.) ), metal phosphide (InP, etc.), metal sulfide {eg, CdS, copper sulfide (CuS, Cu 2 S), composite sulfide [eg, composite sulfide of Group 11 metal and typical metal of the periodic table (for example, CuGaS 2 , CuInS 2 and other composite sulfides of metals of the 13th group of the periodic table), metal selenides (CdSe, ZnSe, etc.), metal halides (CuCl, CuBr, etc.), metals of Group 13 of the periodic table - a metal compound (or alloy) of a Group 15 metal compound (GaAs, InSb, etc.), a Group 12 metal of a periodic table, a Group 16 metal compound (CdTe, etc.), or the like; a metal monomer (for example, palladium, platinum, silver, Gold, 矽, 锗) and so on.

還有,半導體亦可為摻雜其他元素之半導體。 Also, the semiconductor may be a semiconductor doped with other elements.

半導體可為n型半導體,亦可為p型半導體。於本發明中,尤其所後述的離子性聚合物之中,亦可適當組合對於n型半導體之陰離子性聚合物、對於p型半導體之陽離子性聚合物。藉由該組合而能夠形成具備效率佳的蓄電功能之光電轉換層。 The semiconductor can be an n-type semiconductor or a p-type semiconductor. In the present invention, among the ionic polymers described later, an anionic polymer for an n-type semiconductor and a cationic polymer for a p-type semiconductor may be appropriately combined. By this combination, a photoelectric conversion layer having an efficient storage function can be formed.

上述舉例說明的半導體(尤其無機半導體)之中,作為代表性之n型半導體,例如,可舉出週期表第4族金屬氧化物(氧化鈦等)、週期表第5族金屬氧化物(氧化鈮、氧化鉭等)、週期表第12族金屬氧化物(氧化鋅等)等]、週期表第13族金屬氧化物(氧化鎵、氧化銦等)、週期表第14族金屬氧化物(氧化錫等)等。 Among the semiconductors (especially inorganic semiconductors) exemplified above, examples of the n-type semiconductors include, for example, metal oxides of Group 4 of the periodic table (such as titanium oxide) and metal oxides of Group 5 of the periodic table (oxidation).铌, yttrium oxide, etc.), Group 12 metal oxides (zinc oxide, etc.) of the periodic table, etc., Group 13 metal oxides of the periodic table (gallium oxide, indium oxide, etc.), Group 14 metal oxides of the periodic table (oxidation) Tin, etc.).

又,作為代表性之p型半導體,例如,可舉出週期表第6族金屬氧化物(氧化鉻等)、週期表第7族金屬氧化物(氧化錳等)、週期表第8族金屬氧化物(氧化鐵等)、週期表第9族金屬氧化物(氧化鈷、氧化銥等)、週期表第10族金屬氧化物(氧化鎳等)、週期表第11族金屬氧化物(氧化銅等)、週期表第15族金屬(氧化鉍等)等]、週期表第11族金屬與過渡金屬或典型金屬之複合氧化物(例如,CuYO2、CuAlO2、CuGaO2、CuInO2、 SrCu2O2、AgInO2等)、週期表第11族金屬與過渡金屬之複合氧硫化物(例如,LaCuOS等)、週期表第11族金屬與過渡金屬之複合氧硒化物(例如,LaCuOSe等)、週期表第11族金屬與典型金屬之複合硫化物(例如,CuGaS2、CuInS2等)等。 In addition, examples of the p-type semiconductor include a metal oxide of a Group 6 of the periodic table (such as chromium oxide), a metal oxide of Group 7 of the periodic table (manganese oxide or the like), and oxidation of a metal of Group 8 of the periodic table. (iron oxide, etc.), metal oxide of Group 9 of the periodic table (cobalt oxide, antimony oxide, etc.), metal oxide of Group 10 of the periodic table (nickel oxide, etc.), metal oxide of Group 11 of the periodic table (copper oxide, etc.) ), Group 15 metal of the periodic table (antimony oxide, etc. ) , composite oxide of Group 11 metal and transition metal or typical metal of the periodic table (for example, CuYO 2 , CuAlO 2 , CuGaO 2 , CuInO 2 , SrCu 2 O 2 , AgInO 2, etc., composite oxysulfide of Group 11 metal and transition metal of the periodic table (for example, LaCuOS, etc.), composite oxyselele of metal of Group 11 and transition metal of the periodic table (for example, LaCuOSe, etc.), cycle A composite sulfide of a Group 11 metal and a typical metal (for example, CuGaS 2 , CuInS 2 , etc.) or the like.

該等之半導體可單獨或組合2種以上。 These semiconductors may be used alone or in combination of two or more.

該等之中,於較佳的半導體中,含有金屬氧化物,特佳為透明金屬氧化物(具有透明性之金屬氧化物)。作為該金屬氧化物,可舉出氧化鈦(TiO2)、氧化鋅(ZnO)、氧化錫(SnO2)、氧化銦(In2O3)、氧化鎵(Ga2O3)、銅-鋁氧化物(CuAlO2)、氧化銥(IrO)、氧化鎳(NiO)、該等金屬氧化之摻雜體等。 Among these, a preferred semiconductor contains a metal oxide, and particularly preferably a transparent metal oxide (metal oxide having transparency). Examples of the metal oxide include titanium oxide (TiO 2 ), zinc oxide (ZnO), tin oxide (SnO 2 ), indium oxide (In 2 O 3 ), gallium oxide (Ga 2 O 3 ), and copper-aluminum. Oxide (CuAlO 2 ), yttrium oxide (IrO), nickel oxide (NiO), dopants of such metal oxidation, and the like.

又,半導體之中,從電子傳導性等之觀點,亦可適於使用n型半導體。尤其,於本發明中,適於使用氧化鈦(TiO2)等之n型金屬氧化物半導體。 Further, among semiconductors, an n-type semiconductor can be suitably used from the viewpoint of electron conductivity and the like. In particular, in the present invention, an n-type metal oxide semiconductor such as titanium oxide (TiO 2 ) is suitably used.

氧化鈦之結晶形(結晶型)亦可為金紅石型、銳鈦礦型(銳錐石型)、板鈦型(板鈦石型)中任一種。於本發明中,能夠適於使用金紅石型或銳鈦礦型氧化鈦,特佳為銳鈦礦型氧化鈦。另一方面,由於金紅石型氧化鈦容易定向、能使更擴大氧化鈦間之接觸面積,從導電性或耐久性方面,亦可適於使用。 The crystal form (crystalline form) of titanium oxide may be any of rutile type, anatase type (anatase type), and plate titanium type (brookite type). In the present invention, rutile-type or anatase-type titanium oxide can be suitably used, and an anatase-type titanium oxide is particularly preferable. On the other hand, since the rutile-type titanium oxide is easily oriented and the contact area between the titanium oxides can be further enlarged, it is also suitable for use in terms of electrical conductivity and durability.

半導體(例如,氧化鈦等之金屬氧化物)之形狀並未被特別限定,亦可為粒子狀、纖維狀(或針狀、棒狀)、板狀等。較佳的形狀為粒子狀或針狀,特佳為粒子狀之半導體(半導體粒子)。 The shape of the semiconductor (for example, a metal oxide such as titanium oxide) is not particularly limited, and may be a particulate form, a fibrous form (or a needle shape, a rod shape), a plate shape or the like. The preferred shape is a particle shape or a needle shape, and particularly preferably a particulate semiconductor (semiconductor particle).

半導體粒子之平均粒徑(平均一次粒徑)能夠從1至1000nm(例如,1至700nm)左右之範圍,通常可為奈米尺寸,例如可為1至500nm(例如,2至400nm),較佳可為3至300nm(例如,4至200nm),進一步較佳可為5至100nm(例如,6至70nm),特佳可為50nm以下[例如,1至50nm(例如,2至40nm),較佳為3至30nm(例如,4至25nm),進一步較佳為5至20nm(例如,6至15nm),通常為10至50nm]。 The average particle diameter (average primary particle diameter) of the semiconductor particles can range from about 1 to 1000 nm (for example, from 1 to 700 nm), and can be usually a nanometer size, for example, from 1 to 500 nm (for example, from 2 to 400 nm). It may be 3 to 300 nm (for example, 4 to 200 nm), further preferably 5 to 100 nm (for example, 6 to 70 nm), and particularly preferably 50 nm or less [for example, 1 to 50 nm (for example, 2 to 40 nm), It is preferably 3 to 30 nm (for example, 4 to 25 nm), further preferably 5 to 20 nm (for example, 6 to 15 nm), and usually 10 to 50 nm].

又,於針狀(或纖維狀)之半導體中,例如平均纖維徑可為1至300nm,較佳可為10至200nm,進一步較佳亦可為50至100nm左右。又,於針狀半導體中,平均纖維長度可為10至2000nm,較佳可為50至1000nm,進一步較佳為100至500nm左右。於針狀之半導體中,例如縱橫比可為2至200,較佳可為5至100,進一步較佳可為20至40左右。 Further, in the acicular (or fibrous) semiconductor, for example, the average fiber diameter may be from 1 to 300 nm, preferably from 10 to 200 nm, and more preferably from 50 to 100 nm. Further, in the acicular semiconductor, the average fiber length may be from 10 to 2,000 nm, preferably from 50 to 1,000 nm, and further preferably from about 100 to 500 nm. In the acicular semiconductor, for example, the aspect ratio may be from 2 to 200, preferably from 5 to 100, and further preferably from about 20 to about 40.

半導體(例如,纖維狀或粒子狀之半導體)的比表面積係視形狀等而定,例如可為1至600m2/g、較佳可為2至500m2/g、進一步較佳可為3至400m2/g左右。 The specific surface area of the semiconductor (for example, a fibrous or particulate semiconductor) depends on the shape and the like, and may be, for example, 1 to 600 m 2 /g, preferably 2 to 500 m 2 /g, and more preferably 3 to 400m 2 /g or so.

尤其,例如半導體粒子之比表面積可為5至600m2/g(例如,7至550m2/g)、較佳可為10至500m2/g(例如,15至450m2/g)、進一步較佳可為20至400m2/g(例如,30至350m2/g)、特佳可為50m2/g以上[例如為50至500m2/g、較佳為70至450m2/g、進一步較佳為100至400m2/g、特佳為150至350m2/g(例如,200至350m2/g)]。 In particular, for example, the specific surface area of the semiconductor particles may be from 5 to 600m 2 / g (e.g., 7 to 550m 2 / g), may be preferably 10 to 500m 2 / g (e.g., 15 to 450m 2 / g), more than It may be 20 to 400 m 2 /g (for example, 30 to 350 m 2 /g), particularly preferably 50 m 2 /g or more (for example, 50 to 500 m 2 /g, preferably 70 to 450 m 2 /g, further) It is preferably 100 to 400 m 2 /g, particularly preferably 150 to 350 m 2 /g (for example, 200 to 350 m 2 /g)].

還有,纖維狀或針狀的半導體之比表面積可為1至100m2/g、較佳可為2至70m2/g、進一步較佳可為3至50m2/g(例如,4至30m2/g)左右。 Further, the fibrous or needle-shaped semiconductor may have a specific surface area of from 1 to 100 m 2 /g, preferably from 2 to 70 m 2 /g, further preferably from 3 to 50 m 2 /g (for example, from 4 to 30 m) 2 / g) or so.

還有,半導體(氧化鈦等)可作成分散液(水分散液等)亦可與離子性聚合物(及後述之色素)混合。又,半導體可利用市售品,亦可使用以習用之方法所合成者。例如,氧化鈦之分散液係依照在日本專利第4522886號公報等記載之方法而能夠獲得。 Further, a semiconductor (such as titanium oxide) can be used as a dispersion (such as an aqueous dispersion) and can be mixed with an ionic polymer (and a dye described later). Further, the semiconductor can be commercially available, and those synthesized by a conventional method can also be used. For example, a dispersion of titanium oxide can be obtained by the method described in Japanese Patent No. 4522886 or the like.

(離子性聚合物) (ionic polymer)

本發明係具有組合半導體與離子性聚合物(複合化)之特徵。藉由該組合而能夠形成兼具光電轉換功能與蓄電功能之光電轉換層(所謂電雙層或作為電容器之功能的光電轉換層)。又,由於離子性聚合物發揮黏著劑之作用,或即使不燒結半導體(氧化鈦奈米粒子等)也能夠形成具優越之光電轉換特性的光電轉換層。雖然該理由尚未確定,但認為藉由既定量之離子性聚合物與半導體[尤其,奈米尺寸之半導體粒子(半導體奈米粒子)]之組合,能夠提高半導體之分散安定性,能夠有效發揮半導體特性,或根據離子性聚合物之種類,離子性聚合物本身也發揮作為輸送依照光電轉換所發生的電荷之電解質(固體電解質)之功能等。 The present invention is characterized by a combination of a semiconductor and an ionic polymer (composite). By this combination, a photoelectric conversion layer (a so-called electric double layer or a photoelectric conversion layer functioning as a capacitor) having both a photoelectric conversion function and a storage function can be formed. Further, the ionic polymer functions as an adhesive or can form a photoelectric conversion layer having excellent photoelectric conversion characteristics even without sintering a semiconductor (such as titanium oxide nanoparticles). Although this reason has not yet been determined, it is considered that the combination of an ionic polymer and a semiconductor [in particular, a semiconductor particle of a nanometer size (semiconductor nanoparticle)] can improve the dispersion stability of the semiconductor and can effectively exhibit the semiconductor. The ionic polymer itself also functions as an electrolyte (solid electrolyte) for transporting electric charges generated in accordance with photoelectric conversion, or the like, depending on the type of the ionic polymer.

若離子性聚合物(離子性高分子)為具有離子性(電解質性)之聚合物(亦即,高分子電解質)的話即可,亦可為陰離子性聚合物、陽離子聚合物、兩性聚合物(具有羧基與胺基二者之聚合物等)中任一種。 When the ionic polymer (ionic polymer) is an ionic (electrolytic) polymer (that is, a polymer electrolyte), it may be an anionic polymer, a cationic polymer, or an amphoteric polymer ( Any of a polymer having a carboxyl group and an amine group, and the like.

於本發明中,代表性而言,亦可按照半導體之種類而選擇離子性聚合物。亦即,(i)半導體為n型半導體時,亦可選擇包含陰離子性聚合物之離子性聚合物,(ii)半導體為p型半導體時,亦可選擇包含陽離子性聚合物之離子性聚合物。藉由該半導體與離子性聚合物之組合,雖然理由尚未確定,但能將優越之蓄電功能效率佳地賦予光電轉換層。 In the present invention, representatively, an ionic polymer may be selected depending on the type of semiconductor. That is, (i) when the semiconductor is an n-type semiconductor, an ionic polymer containing an anionic polymer may be selected, and (ii) when the semiconductor is a p-type semiconductor, an ionic polymer containing a cationic polymer may also be selected. . The combination of the semiconductor and the ionic polymer, although not yet determined, can provide a superior charge storage function to the photoelectric conversion layer with high efficiency.

尤其,於本發明中,通常能夠適於使用陰離子性聚合物或陽離子性聚合物,特別適於使用陰離子性聚合物(尤其,亦可選擇n型半導體與包含陰離子性聚合物之離子性聚合物的組合)。由於陰離子性聚合物或陽離子性聚合物係對半導體(氧化鈦等)之表面進行鍵結(化學鍵結、氫鍵結等)而容易被固定化,或使其適於發揮作為黏著劑之作用。尤其,離子性聚合物亦可為離子交換樹脂(或離子交換物或固體高分子電解質)。 In particular, in the present invention, it is generally suitable to use an anionic polymer or a cationic polymer, and it is particularly suitable to use an anionic polymer (in particular, an n-type semiconductor and an ionic polymer containing an anionic polymer may also be selected. The combination). The anionic polymer or the cationic polymer is easily bonded to the surface of a semiconductor (titanium oxide or the like) by bonding (chemical bonding, hydrogen bonding, or the like), or is suitable for functioning as an adhesive. In particular, the ionic polymer may also be an ion exchange resin (or ion exchange or solid polymer electrolyte).

陰離子性聚合物通常為具有酸基[羧基、磺酸基等]之聚合物。陰離子性聚合物亦可具有單獨之酸基(或酸性基)或組合2種以上。還有,酸基亦可中和其一部分或全部。 The anionic polymer is usually a polymer having an acid group [carboxy group, sulfonic acid group, etc.]. The anionic polymer may have a single acid group (or an acidic group) or a combination of two or more. Also, the acid group may neutralize part or all of it.

作為代表性之陰離子性聚合物[或陽離子性交換樹脂(陽離子型離子交換樹脂、酸型離子交換樹脂)],例如,可舉出強酸性陽離子交換樹脂、弱酸性陽離子交換樹脂{例如,具有羧基之離子交換樹脂[例如,(甲基)丙烯酸聚合物(例如,聚(甲基)丙烯酸;甲基丙烯酸-二乙烯基苯共聚物、丙烯酸-二乙烯基苯共聚物等之 (甲基)丙烯酸與其他共聚合性單體(交聯性單體等)之共聚物等)、具有羧基之含氟樹脂(過氟羧酸樹脂)等]}等。 Typical examples of the anionic polymer [or a cationic exchange resin (cationic ion exchange resin, acid type ion exchange resin)] include a strongly acidic cation exchange resin and a weakly acidic cation exchange resin {for example, having a carboxyl group. An ion exchange resin [for example, a (meth)acrylic polymer (for example, poly(meth)acrylic acid; methacrylic acid-divinylbenzene copolymer, acrylic acid-divinylbenzene copolymer, etc.) a copolymer of (meth)acrylic acid and another copolymerizable monomer (crosslinkable monomer, etc.), a fluorine-containing resin having a carboxyl group (perfluorocarboxylic acid resin), and the like].

其中,於較佳的陰離子性聚合物中,包含強酸性陽離子交換樹脂。作為強酸性陽離子交換樹脂,例如,可舉出具有磺酸基之含氟樹脂{例如,氟烯與磺酸基氟烷基-氟乙烯基醚之共聚物[例如,四氟乙烯-[2-(2-磺酸基四氟乙氧基)六氟丙氧基]三氟乙烯共聚物(例如,接枝共聚物)等]等之氟磺酸樹脂(尤其,過氟磺酸樹脂)等}、具有磺酸基之苯乙烯系樹脂[例如,聚苯乙烯磺酸、交聯苯乙烯系聚合物之碸化物(例如,苯乙烯-二乙烯基苯共聚物之碸化物等)等]等。 Among them, among the preferred anionic polymers, a strongly acidic cation exchange resin is contained. As the strongly acidic cation exchange resin, for example, a fluorine-containing resin having a sulfonic acid group {for example, a copolymer of fluoroolefin and a sulfonic acid fluoroalkyl-fluorovinyl ether [for example, tetrafluoroethylene-[2- a fluorosulfonic acid resin (especially, a perfluorosulfonic acid resin) such as a (2-sulfonic acid tetrafluoroethoxy) hexafluoropropoxy]trifluoroethylene copolymer (for example, a graft copolymer) or the like] A styrene-based resin having a sulfonic acid group (for example, a telluride of a polystyrenesulfonic acid or a crosslinked styrene-based polymer (for example, a telluride such as a styrene-divinylbenzene copolymer) or the like].

還有,具有磺酸基之含氟樹脂係從DuPont公司作成商品名「Nafion」系列等而可取得。 Further, a fluorine-containing resin having a sulfonic acid group is available from DuPont Co., Ltd. under the trade name "Nafion" series.

陰離子性聚合物亦可為酸性、中性、鹼性中任一種。尤其,於本發明中,亦可適於使用pH較小的陰離子性聚合物。若pH為小時,與半導體(尤其n型半導體)之組合中,由於可能在電解液中容易形成電雙層,大多變得容易獲得充分之蓄電功能。雖然該理由尚未確定,但認為由於豐富之質子,使電荷變得容易停留於半導體上也為其一原因。該陰離子性聚合物(例如,強酸性陽離子交換樹脂)或是包含陰離子性聚合物的離子性聚合物之pH(25℃)係從10以下(例如,0.1至8)之範圍而能夠選擇,例如小於7(例如,0.15至6.5),較佳為6以下(例如,0.2至5),進一步較佳為4以下(例如,0.3至3),特佳為2以下(例如,0.5至1.5),通常亦可為3以下(例 如,1至3)。還有,pH亦可為在離子性聚合物之水溶液或水分散液之值(或在含水之溶劑中之值)。換言之,在25℃下,上述pH亦可為使離子性聚合物溶解或分散於水或含水之溶劑中之時而在溶液(水溶液等)或分散液(水分散液等)之值(pH)。 The anionic polymer may be any of acidic, neutral, and basic. In particular, in the present invention, an anionic polymer having a small pH can also be suitably used. When the pH is small, in combination with a semiconductor (especially an n-type semiconductor), since an electric double layer may be easily formed in an electrolytic solution, it is easy to obtain a sufficient electric storage function. Although the reason has not yet been determined, it is considered that the reason why the charge is easily retained on the semiconductor due to the abundant protons is also a cause. The pH of the anionic polymer (for example, strongly acidic cation exchange resin) or the ionic polymer containing an anionic polymer (25 ° C) can be selected from the range of 10 or less (for example, 0.1 to 8), for example, Less than 7 (for example, 0.15 to 6.5), preferably 6 or less (for example, 0.2 to 5), further preferably 4 or less (for example, 0.3 to 3), particularly preferably 2 or less (for example, 0.5 to 1.5), Usually also 3 or less (example For example, 1 to 3). Also, the pH may be a value in an aqueous solution or an aqueous dispersion of an ionic polymer (or a value in a solvent containing water). In other words, at 25 ° C, the pH may be a value (pH) of a solution (aqueous solution, etc.) or a dispersion (aqueous dispersion, etc.) when the ionic polymer is dissolved or dispersed in water or an aqueous solvent. .

還有,pH係藉由習用之方法(例如,利用適當的鹼基中和酸基之方法等)而能夠調整。還有,中和酸基之情形,在被中和之酸基中,作為相對離子並未被特別限定,例如亦可為鹼金屬(例如,鈉、鉀等)。 Further, the pH can be adjusted by a conventional method (for example, a method of neutralizing an acid group with an appropriate base). Further, in the case of neutralizing the acid group, the relative ion is not particularly limited in the neutralized acid group, and may be, for example, an alkali metal (for example, sodium, potassium, or the like).

還有,利用陰離子性聚合物構成離子性聚合物之情形,亦可僅利用陰離子性聚合物構成離子性聚合物,亦可組合陰離子性聚合物與其他離子性聚合物(例如,兩性聚合物等)。該情形下,陰離子性聚合物對離子性聚合物全體之比例例如為30重量%以上(例如,40至99重量%),較佳為50重量%以上(例如,60至98重量%),進一步較佳為70重量%以上(例如,80至97重量%)。 Further, in the case where the anionic polymer is used as the ionic polymer, the ionic polymer may be formed only by the anionic polymer, and the anionic polymer and other ionic polymers (for example, an amphoteric polymer or the like may be combined. ). In this case, the ratio of the anionic polymer to the entire ionic polymer is, for example, 30% by weight or more (for example, 40 to 99% by weight), preferably 50% by weight or more (for example, 60 to 98% by weight), and further. It is preferably 70% by weight or more (for example, 80 to 97% by weight).

陽離子性聚合物通常為具有鹼基性基(鹼性基)之聚合物。作為鹼基性基,例如,可舉出胺基[例如,胺基、取代胺基(例如,二甲基胺基等之單或二烷基胺基)等之第1級、第2級或第3級胺基]、亞胺基(-NH、-N<)、第4級銨鹼基(例如,三甲基銨鹼基等之三烷基銨鹼基)等。陽離子性聚合物亦可具有單獨之該等鹼基性基或組合2種以上。還有,鹼基性基亦可中和其一部分或全部。 The cationic polymer is usually a polymer having a basic group (basic group). Examples of the base group include an amine group [for example, an amine group, a substituted amine group (for example, a mono- or dialkylamino group such as a dimethylamino group), or the like, and the first or second stage or A third amino group, an imido group (-NH, -N<), a fourth-order ammonium base (for example, a trialkylammonium base such as a trimethylammonium base), or the like. The cationic polymer may have two or more of these basic groups alone or in combination. Further, the base group may also neutralize a part or all of it.

作為代表性之陽離子性聚合物[或陰離子交換樹脂(陰離子型離子交換樹脂、鹼基型離子交換樹脂],例如,可舉出胺系聚合物{例如,烯丙基胺系聚合物[聚烯丙基胺、烯丙基胺-二甲基烯丙基胺共聚物、二烯丙基胺-二氧化硫共聚物等之烯丙基胺系單體(例如,烯丙基胺、二烯丙基胺、二烯丙基烷基胺(二烯丙基甲基胺、二烯丙基乙基胺等)等)之單獨或共聚物(不僅複數之烯丙基胺系單體之共聚物,也包含烯丙基胺系單體與共聚合性單體之共聚物,以下,於同樣之表示中相同)]、乙烯胺系聚合物(例如,聚乙烯胺等之單獨的乙烯胺系單體或共聚物)、具有胺基之(甲基)丙烯酸系聚合物[例如,(甲基)丙烯酸胺基烷酯(例如,(甲基)丙烯酸-N,N-二甲基胺基乙酯、(甲基)丙烯酸-N,N-二甲基胺基丙酯等之(甲基)丙烯酸-N-單或二烷基胺基C1-4烷酯)、胺基烷基(甲基)丙烯酸醯胺(例如,N,N-二甲基胺基乙基(甲基)丙烯酸醯胺等之N-單或二烷基胺基C1-4烷基(甲基)丙烯酸醯胺)等之具有胺基單獨的(甲基)丙烯酸系單體或共聚物等]、雜環式胺系聚合物[例如,咪唑系聚合物(例如,聚乙烯咪唑等)、吡啶系聚合物(例如,聚乙烯吡啶等)、吡咯啶酮系聚合物(例如,聚乙烯吡咯啶酮)等]、胺改性環氧樹脂、胺改性矽氧烷樹脂等}、亞胺系聚合物[例如,聚伸烷基亞胺(例如,聚伸乙基亞胺等)等之單獨的亞胺系單體或共聚物]、含有第4級銨鹼基之聚合物等。 Specific examples of the cationic polymer [or anion exchange resin (anionic ion exchange resin, base type ion exchange resin) include, for example, an amine polymer {for example, an allylamine polymer [polyene] Allylamine-based monomer such as propylamine, allylamine-dimethylallylamine copolymer, diallylamine-sulphur dioxide copolymer (for example, allylamine, diallylamine) a copolymer or a copolymer of diallylalkylamine (diallylmethylamine, diallylethylamine, etc.) or the like (not only a copolymer of a plurality of allylamine monomers but also A copolymer of an allylamine-based monomer and a copolymerizable monomer, which is the same as in the following description), a vinylamine-based polymer (for example, a vinylamine-based monomer or copolymerization of a polyvinylamine or the like). (meth)acrylic polymer having an amine group [for example, aminoalkyl (meth) acrylate (for example, (meth)acrylic acid-N,N-dimethylaminoethyl ester, (A) (meth)acrylic acid-N,N-dimethylaminopropyl (meth)acrylic acid-N-mono or dialkylamino C 1-4 alkyl ester), aminoalkyl (meth) acrylate Amine , N, N- dimethylaminoethyl (meth) acrylate, etc. Amides N- mono- or dialkylamino C 1-4 alkyl (meth) acrylate, acyl amine), etc. having amine alone (meth)acrylic monomer or copolymer, etc.], heterocyclic amine polymer [for example, an imidazole polymer (for example, polyvinylimidazole) or a pyridine polymer (for example, polyvinylpyridine) , pyrrolidone-based polymer (for example, polyvinylpyrrolidone), etc., amine-modified epoxy resin, amine-modified decane resin, etc., imine-based polymer [for example, polyalkyleneimine (e.g., a single imine monomer or copolymer such as polyethylenimine or the like), a polymer containing a fourth-order ammonium base, or the like.

於含有第4級銨鹼基之聚合物中,作為鹽並未被特別限定,例如鹵化物鹽(例如,氯化物、溴化物、 碘化物等)、羧酸鹽(例如,乙酸鹽等之烷酸鹽)、磺酸鹽等。 In the polymer containing a fourth-order ammonium base, the salt is not particularly limited, for example, a halide salt (for example, chloride, bromide, Iodide or the like), a carboxylate (for example, an alkanoate such as acetate), a sulfonate or the like.

作為含有第4級銨鹼基之聚合物,例如,可舉出使上述舉例說明之胺系聚合物或亞胺系聚合物之胺基或亞胺基予以第4級銨鹼基化的聚合物{例如,單獨之N,N,N-三烷基-N-(甲基)丙烯醯氧烷基銨鹽[例如,三甲基-2-(甲基)丙烯醯氧乙基氯化銨、N,N-二甲基-N-乙基-2-(甲基)丙烯醯氧乙基氯化銨等之三C1-10烷基(甲基)丙烯醯氧基C2-4烷基銨鹽]或共聚物},還有,乙烯基芳烷基銨鹽系聚合物{例如,單獨之乙烯基芳烷基銨鹽[例如,N,N,N-三烷基-N-(乙烯基芳烷基)銨鹽(例如,三甲基-對-乙烯基苄基氯化銨、N,N-二甲基-N-乙基-對-乙烯基苄基氯化銨、N,N-二乙基-N-甲基-N-2-(4-乙烯基苯基)乙基氯化銨等之三C1-10烷基(乙烯基-C6-10芳基C1-4烷基)銨鹽)、N,N-二烷基-N-芳烷基-N-(乙烯基芳烷基)銨鹽(例如,N,N-二甲基-N-苄基-對-乙烯基苄基氯化銨等之N,N-二C1-10烷基-N-C6-10芳基C1-4烷基-N-(乙烯基-C6-10芳基C1-4烷基)銨鹽)]或共聚物等}、陽離子化纖維素[例如,含有羥基之纖維素衍生物(例如,羥乙基纖維素等之羥基C2-4烷基纖維素)與具有第4級銨鹽(例如,三烷基銨鹼基等)之環氧化合物(例如,N,N,N-三烷基-N-環氧丙基銨鹽)之反應物]、將第4級銨鹼基導入苯乙烯-二乙烯基苯共聚物的聚合物等。 Examples of the polymer containing a fourth-order ammonium base include a polymer in which the amine group or the imine group of the amine-based polymer or the imine polymer exemplified above is subjected to the fourth-stage ammonium grouping. {For example, N,N,N-trialkyl-N-(methyl)propenyloxyalkylammonium salt alone [eg, trimethyl-2-(methyl)propene oxiranyl ammonium chloride, Tri-C 1-10 alkyl (meth) propylene oxirane C 2-4 alkyl group such as N,N-dimethyl-N-ethyl-2-(methyl) propylene oxiranyl ammonium chloride An ammonium salt] or a copolymer}, and also a vinyl aralkyl ammonium salt-based polymer {for example, a vinyl aralkyl ammonium salt alone [for example, N, N, N-trialkyl-N-(ethylene) Alkylalkyl)ammonium salt (for example, trimethyl-p-vinylbenzylammonium chloride, N,N-dimethyl-N-ethyl-p-vinylbenzylammonium chloride, N,N 3-C 1-10 alkyl group such as diethyl-N-methyl-N-2-(4-vinylphenyl)ethylammonium chloride (vinyl-C 6-10 aryl C 1-4 Alkyl) ammonium salt), N,N-dialkyl-N-aralkyl-N-(vinyl aralkyl) ammonium salt (eg, N,N-dimethyl-N-benzyl-p- N,N-di-C 1-10 alkyl-NC 6-10 aryl C 1-4 alkyl-N-(vinyl-C) such as vinyl benzyl ammonium chloride 6-10 aryl C 1-4 alkyl) ammonium salt)] or copolymer, etc.}, cationized cellulose [for example, a cellulose derivative containing a hydroxyl group (for example, a hydroxyl group C 2- of hydroxyethyl cellulose or the like) 4- alkyl cellulose) and an epoxy compound having a fourth-order ammonium salt (for example, a trialkylammonium base or the like) (for example, N, N, N-trialkyl-N-epoxypropyl ammonium salt) The reactant] is a polymer obtained by introducing a fourth-order ammonium base into a styrene-divinylbenzene copolymer.

還有,陽離子性纖維素(陽離子化纖維素)能夠從Daicel股份有限公司之商品名「JELLNER」取得, 聚烯丙基胺能夠從Nittobo Medical股份有限公司之商品名「PAA」系列取得,胺改性矽氧烷樹脂能夠從信越化學工業股份有限公司之商品名「KF」系列等取得。 Further, cationic cellulose (cationized cellulose) can be obtained from Daicel Co., Ltd. under the trade name "JELLNER". The polyallylamine can be obtained from the product name "PAA" series of Nittobo Medical Co., Ltd., and the amine-modified siloxane resin can be obtained from the trade name "KF" series of Shin-Etsu Chemical Co., Ltd.

較佳的陽離子性聚合物可舉出含有第4級銨鹼基之聚合物等之強鹼基性之陽離子性聚合物(陰離子性交換樹脂)。 A preferred cationic polymer is a cationic polymer (anionic exchange resin) having a strong base property such as a polymer of a fourth-order ammonium base.

陽離子性聚合物亦可為酸性、中性、鹼性中任一種。尤其,於本發明中,於與p型半導體之組合中,亦可適於使用pH較大的陽離子性聚合物。包含該陽離子性聚合物(例如,強鹼性陰離子交換樹脂)或陽離子性聚合物的離子性聚合物之pH(25℃)能夠從5以上(例如,6至14)之範圍選出,例如可為7以上(例如,7.5至14),較佳可為8以上(例如,8.5至14),進一步較佳可為9以上(例如,9.5至13.5),特佳可為10以上(例如,10.5至13)。還有,pH值亦可為在離子性聚合物之水溶液或水分散液之值(或含水之溶劑中之值)。換言之,上述pH係在25℃下,使離子性聚合物溶解或分散於水或含水之溶劑中之時的溶液(水溶液等)或分散液(水分散液等)之值(pH)。還有,pH能夠藉由習用方法(例如,利用適當的酸基中和鹼基性基之方法等)而調整。 The cationic polymer may be any of acidic, neutral, and basic. In particular, in the present invention, in combination with a p-type semiconductor, a cationic polymer having a relatively high pH can also be suitably used. The pH (25 ° C) of the ionic polymer containing the cationic polymer (for example, a strongly basic anion exchange resin) or a cationic polymer can be selected from the range of 5 or more (for example, 6 to 14), for example, 7 or more (for example, 7.5 to 14), preferably 8 or more (for example, 8.5 to 14), further preferably 9 or more (for example, 9.5 to 13.5), and particularly preferably 10 or more (for example, 10.5 to 13). Further, the pH may be a value in an aqueous solution or an aqueous dispersion of an ionic polymer (or a value in an aqueous solvent). In other words, the pH is a value (pH) of a solution (aqueous solution or the like) or a dispersion (aqueous dispersion or the like) when the ionic polymer is dissolved or dispersed in water or an aqueous solvent at 25 ° C. Further, the pH can be adjusted by a conventional method (for example, a method of neutralizing a base group with an appropriate acid group).

還有,以陽離子性聚合物構成離子性聚合物之情形,可以僅利用陽離子性聚合物構成離子性聚合物,亦可組合陽離子性聚合物與其他離子性聚合物(例如,兩性聚合物等)。該情形下,例如陽離子性聚合物對離子性聚合物全體之比例可為30重量%以上(例如,40 至99重量%),較佳可為50重量%以上(例如,60至98重量%),進一步較佳可為70重量%以上(例如,80至97重量%)。 Further, in the case where the cationic polymer is used as the ionic polymer, the ionic polymer may be formed only by the cationic polymer, or the cationic polymer and other ionic polymers (for example, an amphoteric polymer) may be combined. . In this case, for example, the ratio of the cationic polymer to the entire ionic polymer may be 30% by weight or more (for example, 40) To 99% by weight, preferably 50% by weight or more (for example, 60 to 98% by weight), further preferably 70% by weight or more (for example, 80 to 97% by weight).

離子性聚合物(陰離子性聚合物、陽離子性聚合物等)亦可具有交聯結構(例如,該舉例說明之(甲基)丙烯酸-二乙烯基苯共聚物或苯乙烯系聚合物之碸化物等)、亦可不具有交聯結構。於本發明中,特佳適於使用不具有交聯結構(或交聯度非常低的)離子性聚合物。 The ionic polymer (an anionic polymer, a cationic polymer, etc.) may also have a crosslinked structure (for example, the exemplified (meth)acrylic acid-divinylbenzene copolymer or a styrene polymer telluride) Etc.), or may not have a crosslinked structure. In the present invention, it is particularly preferable to use an ionic polymer which does not have a crosslinked structure (or a very low degree of crosslinking).

於離子性聚合物(離子交換樹脂)中,離子交換容量可為0.1至5.0meq/g(例如,0.15至4.0meq/g),較佳可為0.2至3.0meq/g(例如,0.3至2.0meq/g),進一步較佳可為0.4至1.5meq/g,特佳可為0.5至1.0meq/g左右。 In the ionic polymer (ion exchange resin), the ion exchange capacity may be from 0.1 to 5.0 meq/g (for example, from 0.15 to 4.0 meq/g), preferably from 0.2 to 3.0 meq/g (for example, from 0.3 to 2.0). Further preferably, the meq/g) may be from 0.4 to 1.5 meq/g, and particularly preferably from about 0.5 to 1.0 meq/g.

還有,若離子性聚合物之分子量為對溶劑能溶解或分散之範圍的話,並未被特別限制。 Further, the molecular weight of the ionic polymer is not particularly limited as long as it is in a range in which the solvent can be dissolved or dispersed.

離子性聚合物可單獨或組合2種以上。 The ionic polymer may be used alone or in combination of two or more.

相對於半導體1重量份而言,離子性聚合物之比例能夠從0.05重量份以上(例如,0.07至100重量份)之範圍加以選擇,例如可為0.1重量份以上(例如,0.1至50重量份),較佳可為0.15重量份以上(例如,0.15至30重量份),進一步較佳可為0.2重量份以上(例如,0.2至20重量份),通常可為0.1至10重量份[例如,0.1至8重量份(例如,0.1至7重量份),較佳可為0.15至5重量份(例如,0.15至3重量份),進一步較佳可為0.2至2重量份(例如,0.2至1重量份)]左右。藉由以如上 述之比例組合半導體與離子性聚合物(進一步,如上所述來選擇半導體與離子性聚合物之組合),能夠效率佳地獲得具有蓄電功能之光電轉換層。 The ratio of the ionic polymer can be selected from the range of 0.05 parts by weight or more (for example, 0.07 to 100 parts by weight) with respect to 1 part by weight of the semiconductor, and for example, may be 0.1 part by weight or more (for example, 0.1 to 50 parts by weight) It may preferably be 0.15 parts by weight or more (for example, 0.15 to 30 parts by weight), further preferably 0.2 parts by weight or more (for example, 0.2 to 20 parts by weight), and usually 0.1 to 10 parts by weight [for example, 0.1 to 8 parts by weight (for example, 0.1 to 7 parts by weight), preferably 0.15 to 5 parts by weight (for example, 0.15 to 3 parts by weight), further preferably 0.2 to 2 parts by weight (for example, 0.2 to 1 part by weight) Parts by weight)]. By as above The ratio of the semiconductor to the ionic polymer (further, the combination of the semiconductor and the ionic polymer is selected as described above) can efficiently obtain a photoelectric conversion layer having a storage function.

(色素) (pigment)

本發明之組成物亦可更含有色素。藉由使其含有色素,能夠效率佳地形成色素增感型之光電轉換層或色素增感型之光電轉換元件(色素增感太陽能電池等)。 The composition of the present invention may further contain a pigment. By containing a dye, it is possible to efficiently form a dye-sensitized photoelectric conversion layer or a dye-sensitized photoelectric conversion element (such as a dye-sensitized solar cell).

作為色素(染料、顏料),若為發揮作為增感劑(增感色素、光增感色素)之功能的成分(或顯示增感作用之成分)的話,並未被特別限定,例如,可舉出有機色素、無機色素(例如,碳系顏料、鉻酸鹽系顏料、鎘系顏料、亞鐵氰化物系顏料、金屬氧化物系顏料、矽酸鹽系顏料、磷酸鹽系顏料等)等。色素可單獨或組合2種以上。 The dye (dye, pigment) is not particularly limited as long as it exhibits a function as a sensitizer (sensitizing dye or photosensitizing dye) (or a component exhibiting a sensitizing effect), and for example, An organic dye or an inorganic dye (for example, a carbon pigment, a chromate pigment, a cadmium pigment, a ferrocyanide pigment, a metal oxide pigment, a citrate pigment, a phosphate pigment, or the like) is used. The pigments may be used alone or in combination of two or more.

作為有機色素(有機染料或有機顏料),例如,可舉出釕錯合物色素{例如,釕之二吡啶錯合物[例如,順-雙(異氰酸基)雙(2,2’-二吡啶-4,4’-二羧根基)釕(II)雙四丁基銨(別名:N719)、順-雙(異氰酸基)(2,2’-二吡啶-4,4’-二羧根基)(2,2’-二吡啶-4,4’-二壬基)釕(II)、順-雙(異氰酸基)雙(2,2’-二吡啶-4,4’-二羧根基)釕(II)、順-雙(氰基)(2,2’-二吡啶-4,4’-二羧根基)釕(II)、三(2,2’-二吡啶-4,4’-二羧根基)二氯化釕(II)等]、釕之聯三吡啶錯合物[例如,三(異氰酸基)釕(II)-2,2’:6’,2”-聯三吡啶-4,4’,4”-三羧酸三(四丁基)銨鹽等]等之釕的吡啶系錯合物}、鋨錯合物色素、卟啉系色素(鎂卟啉、鋅卟啉等)、 葉綠酸系色素(葉綠酸等)、呫噸酮系色素(若丹明B、紅黴素等)、花青素系色素(部花青素、喹花青素、隱花青素等)、酞青素系色素、偶氮系色素、苝系色素、芘酮系色素、香豆素系色素、醌系色素、蒽醌系色素、方酸系色素、甲亞胺系色素、喹啉黃系色素、喹吖酮系色素、異吲哚系色素、亞硝基系色素、吡咯并吡咯系色素、鹼基性色素(亞甲藍等)等。 As the organic dye (organic dye or organic pigment), for example, a ruthenium complex dye {for example, a ruthenium dipyridine complex [for example, cis-bis(isocyanato) bis (2, 2'-) can be mentioned. Bipyridine-4,4'-dicarboxyl) ruthenium (II) bistetrabutylammonium (alias: N719), cis-bis(isocyanato) (2,2'-dipyridine-4,4'- Dicarboxyl)(2,2'-bipyridine-4,4'-diindenyl)ruthenium(II), cis-bis(isocyanato)bis(2,2'-bipyridine-4,4' -dicarboxylated) ruthenium (II), cis-bis(cyano)(2,2'-bipyridine-4,4'-dicarboxylate) ruthenium (II), tris(2,2'-bipyridine- 4,4'-dicarboxylated) ruthenium (II) chloride, etc.], hydrazine-linked tripyridine complex [for example, tris(isocyanato) ruthenium (II)-2, 2':6', a pyridine-based complex of 2"-bitripyridine-4,4',4"-tricarboxylic acid tri(tetrabutyl)ammonium salt or the like], a ruthenium complex dye, or a porphyrin dye ( Magnesium porphyrin, zinc porphyrin, etc.) A chlorophyll-based pigment (such as chlorophyllin), a xanthone-based pigment (such as rhodamine B, erythromycin, etc.), an anthocyanin-based pigment (anthocyanin, quinocyanin, cryptocyanidin, etc.) ), anthraquinone-based pigment, azo-based pigment, anthraquinone-based pigment, anthrone-based pigment, coumarin-based pigment, anthraquinone-based pigment, anthraquinone-based pigment, squaric acid-based pigment, azomethine-based pigment, quinoline A yellow pigment, a quinophthalone dye, an isoindole dye, a nitroso dye, a pyrrolopyrrole dye, a base dye (methylene blue, etc.), or the like.

該等色素之中,較佳為有機色素,其中,較佳為釕錯合物色素。又,也較佳為將羧基、酯基、磺酸基等之官能基作為配位基之色素(例如,N719等之具有羧基之釕色素)。具有該配位基之色素,由於與氧化鈦等之半導體表面容易鍵結、難以脫離,故為適合。 Among these pigments, an organic dye is preferred, and among them, a ruthenium complex dye is preferred. Further, a dye having a functional group such as a carboxyl group, an ester group or a sulfonic acid group as a ligand (for example, an anthracene dye having a carboxyl group such as N719) is also preferable. The dye having such a ligand is suitable because it is easily bonded to a semiconductor surface such as titanium oxide and is difficult to be detached.

還有,色素通常以附著於半導體(或半導體表面)(或被固定化)之形態下而於光電轉換層(光電轉換元件)中含有。作為附著(或固定化)之形態,可舉出吸附(物理吸附)、化學鍵結等。因此,色素亦適於選擇對半導體容易附著的色素。 Further, the dye is usually contained in the photoelectric conversion layer (photoelectric conversion element) in a state of being attached to (or being fixed to) a semiconductor (or a semiconductor surface). Examples of the form of adhesion (or immobilization) include adsorption (physical adsorption), chemical bonding, and the like. Therefore, the coloring matter is also suitable for selecting a pigment which is easy to adhere to a semiconductor.

色素之比例(附著或吸附比例)並未被特別限定,例如與半導體及離子性聚合物有關,亦可成為下式範圍的方式來選擇。 The ratio of the pigment (adhesion or adsorption ratio) is not particularly limited, and is, for example, related to a semiconductor or an ionic polymer, and may be selected as a range of the following formula.

0<(IA×IS+DA×DS)/SS 1 0<(I A ×I S +D A ×D S )/S S 1

(式中,IA係表示離子性聚合物中之離子性基的數目、IS係表示每1個離子性基的佔有面積、DA係表示色素(色素分子)的數目、DS係表示每1個色素的佔有面積、SS係表示半導體之表面積。) (In the formula, I A represents the number of ionic groups in the ionic polymer, I S represents the occupied area per ionic group, D A represents the number of pigments (pigment molecules), and D S represents The area occupied by each pigment and the S S system represent the surface area of the semiconductor.)

於上式中,IA係離子性基之總數,例如藉由離子性聚合物之離子交換容量(meq/g)乘以離子性聚合物之重量(g)及亞佛加厥常數(Avogadro number)而能夠求出,通常為IA×IS<SS。IS、DS分別為1個離子性基之佔有面積(m2)、1分子色素之佔有面積(m2),能夠使用使面積成為最大的方式來投影之時的值。 In the above formula, the total number of I A- based ionic groups, for example, the ion exchange capacity (meq/g) of the ionic polymer multiplied by the weight of the ionic polymer (g) and the Avogadro number (Avogadro number) It can be found, usually I A × I S <S S . I S, D S is an area occupied by each ionic group of (m 2), an area occupied by one molecule of dye (m 2), can be used when the value of the largest area that the projection of the way.

相對於半導體1重量份而言,例如,具體之色素比例可為0.001至1重量份(例如,0.003至0.7重量份)、較佳可為0.005至0.5重量份(例如,0.007至0.3重量份)、進一步較佳可為0.01至0.2重量份(例如,0.02至0.1重量份)左右。 With respect to 1 part by weight of the semiconductor, for example, the specific pigment ratio may be 0.001 to 1 part by weight (for example, 0.003 to 0.7 part by weight), preferably 0.005 to 0.5 part by weight (for example, 0.007 to 0.3 part by weight). Further, it is further preferably from about 0.01 to 0.2 parts by weight (for example, from 0.02 to 0.1 parts by weight).

本發明之組成物亦可為含有溶劑之組成物(塗布組成物)。作為溶劑,並未被特別限定,有機溶劑[例如,醇系溶劑(例如,甲醇、乙醇、異丙醇、丁醇等之烷醇類)、芳香族系溶劑(例如,甲苯、二甲苯等之芳香族烴類)、酯系溶劑(例如,乙酸乙酯、乙酸丁酯、丙二醇一甲基醚一乙酸酯等之乙酸乙酯類)、酮系溶劑(例如,丙酮等之鏈狀酮類;環己酮類等之環狀酮類)、醚系溶劑(例如,丙二醇一甲基醚、二乙二醇二甲基醚等之鏈狀醚;二烷、四氫呋喃等之環狀醚類)、鹵系溶劑(例如,二氯甲烷、氯仿等之鹵烷類)、腈系溶劑(例如,乙腈、苯甲腈等)、硝基系溶劑(例如,硝基苯等)等]、水等。溶劑可單獨或組合2種以上。 The composition of the present invention may also be a composition containing a solvent (coating composition). The solvent is not particularly limited, and is an organic solvent (for example, an alcohol solvent (for example, an alkanol such as methanol, ethanol, isopropanol or butanol) or an aromatic solvent (for example, toluene or xylene). An aromatic hydrocarbon), an ester solvent (for example, ethyl acetate such as ethyl acetate, butyl acetate, propylene glycol monomethyl ether monoacetate) or a ketone solvent (for example, a chain ketone such as acetone) a cyclic ketone such as cyclohexanone or an ether solvent (for example, a chain ether such as propylene glycol monomethyl ether or diethylene glycol dimethyl ether; a cyclic ether such as an alkane or a tetrahydrofuran), a halogen solvent (for example, a halogenated product such as dichloromethane or chloroform), a nitrile solvent (for example, acetonitrile or benzonitrile), or a nitro solvent (for example, Nitrobenzene, etc.), water, etc. The solvent may be used alone or in combination of two or more.

於含有溶劑之組成物中,固形物(或不揮發性成分)之比例係按照形成光電轉換層之際的塗布方法等 而能適宜選擇,例如可為0.1至90重量%(例如,0.5至70重量%),較佳可為1至50重量%(例如,5至40重量%),進一步較佳可為10至30重量%左右。於本發明中,因為能更為增大離子性聚合物之比例,即使含有半導體之固形物為高濃度,也能充分確保半導體之分散安定性。 In the composition containing a solvent, the ratio of the solid matter (or the nonvolatile component) is a coating method at the time of forming the photoelectric conversion layer, etc. Suitably, for example, it may be 0.1 to 90% by weight (for example, 0.5 to 70% by weight), preferably 1 to 50% by weight (for example, 5 to 40% by weight), and further preferably 10 to 30% by weight. About weight%. In the present invention, since the ratio of the ionic polymer can be further increased, even if the solid content containing the semiconductor is high, the dispersion stability of the semiconductor can be sufficiently ensured.

又,含有溶劑之組成物的pH並未被特別限定,如上所述,按照離子性聚合物之種類、或與半導體之離子性聚合物的組合,亦可選擇適當的範圍。例如,利用陰離子性聚合物構成離子性聚合物之情形,含有溶劑之組成物的pH(25℃)能夠從10以下(例如,0.1至8)之範圍加以選擇,例如可為小於7(例如,0.15至6.5),較佳可為6以下(例如,0.2至5),進一步較佳可為4以下(例如,0.3至3),特佳可為2以下(例如,0.5至1.5),通常可為3以下(例如,1至3)。 Further, the pH of the composition containing the solvent is not particularly limited, and as described above, an appropriate range may be selected depending on the type of the ionic polymer or the combination with the ionic polymer of the semiconductor. For example, in the case where an anionic polymer is used to constitute the ionic polymer, the pH (25 ° C) of the composition containing the solvent can be selected from the range of 10 or less (for example, 0.1 to 8), for example, may be less than 7 (for example, 0.15 to 6.5), preferably 6 or less (for example, 0.2 to 5), further preferably 4 or less (for example, 0.3 to 3), and particularly preferably 2 or less (for example, 0.5 to 1.5), usually It is 3 or less (for example, 1 to 3).

又,利用陽離子性聚合物構成離子性聚合物之情形,含有溶劑之組成物的pH(25℃)能夠從5以上(例如,6至14)之範圍加以選擇,例如可為7以上(例如,7.5至14),較佳可為8以上(例如,8.5至14),進一步較佳可為9以上(例如,9.5至13.5),特佳可為10以上(例如,10.5至13)。 Further, in the case where the cationic polymer is used as the ionic polymer, the pH of the composition containing the solvent (25 ° C) can be selected from the range of 5 or more (for example, 6 to 14), and for example, it can be 7 or more (for example, 7.5 to 14), preferably 8 or more (for example, 8.5 to 14), further preferably 9 or more (for example, 9.5 to 13.5), and particularly preferably 10 or more (for example, 10.5 to 13).

本發明之組成物係藉由混合各成分(半導體、離子性聚合物、視需要之色素等)而能夠獲得。例如,含有溶劑之組成物可藉由在溶劑中混合各成分而調製,亦可於預先混合各成分(例如,半導體及離子性聚合物)後,使其混合(或分散)於溶劑中而調製。還有,如上所 述,氧化鈦等之半導體亦可於預先使其分散於溶劑中之分散液的形態下,與離子性聚合物(及色素)混合。還有,如上所述,調整組成物的pH之情形,pH之調整能夠在適當的階段下進行,例如預先使其成為上述範圍的方式來調整半導體的分散液中之pH,可與離子性聚合物(及色素)混合,亦可在半導體(或其分散液)與離子性聚合物(及色素)之混合系中調整組成物之pH。 The composition of the present invention can be obtained by mixing the respective components (semiconductor, ionic polymer, optional dye, etc.). For example, the solvent-containing composition may be prepared by mixing the components in a solvent, or may be prepared by mixing (or dispersing) the components (for example, a semiconductor and an ionic polymer) in a solvent. . Also, as above In addition, a semiconductor such as titanium oxide may be mixed with an ionic polymer (and a dye) in a form of a dispersion in which it is dispersed in a solvent in advance. Further, as described above, when the pH of the composition is adjusted, the adjustment of the pH can be carried out at an appropriate stage, for example, by adjusting the pH in the dispersion of the semiconductor in such a manner as to be in the above range, and the ionic polymerization can be carried out. The substance (and the pigment) may be mixed, and the pH of the composition may be adjusted in a mixed system of a semiconductor (or a dispersion thereof) and an ionic polymer (and a pigment).

又,色素亦可預先混合半導體及離子性聚合物,也能夠使色素塗布(附著)於已將含有半導體及離子性聚合物之組成物塗布於基板所形成的塗膜上。於本發明中,如後所述,由於並無使半導體燒結(煅燒)之必要,預先與半導體及離子性聚合物混合為可能。 Further, the dye may be mixed with a semiconductor or an ionic polymer in advance, and the dye may be applied (adhered) to a coating film formed by applying a composition containing a semiconductor and an ionic polymer to a substrate. In the present invention, as described later, since it is not necessary to sinter (calcinate) the semiconductor, it is possible to mix with the semiconductor and the ionic polymer in advance.

本發明之組成物係作為用以形成光電轉換層(或構成光電轉換元件之光電轉換層)之組成物為有用。該光電轉換層通常形成於基板上。亦即,光電轉換層係一併構成基板與積層體。以下,針對光電轉換層及其製法而詳加說明。 The composition of the present invention is useful as a composition for forming a photoelectric conversion layer (or a photoelectric conversion layer constituting a photoelectric conversion element). The photoelectric conversion layer is usually formed on a substrate. That is, the photoelectric conversion layer collectively constitutes a substrate and a laminate. Hereinafter, the photoelectric conversion layer and its preparation method will be described in detail.

[積層體及其製造方法] [Laminated body and its manufacturing method]

本發明之積層體(電極)係包含基板、與該基板上所積層的光電轉換層(利用該組成物所形成的光電轉換層)。 The laminate (electrode) of the present invention comprises a substrate and a photoelectric conversion layer (a photoelectric conversion layer formed using the composition) laminated on the substrate.

基板係視用途而定,通常亦可為導電性基板。導電性基板通常僅由導電體(或導電體層)構成,通常可舉出成為基底之基板(基底基板)上形成有導電體層(或是導電層或導電膜)之基板等。還有,該情形下,光電轉換層係形成於導電體層上。 The substrate may be a conductive substrate, depending on the application. The conductive substrate is usually composed only of a conductor (or a conductor layer), and generally, a substrate on which a conductor layer (or a conductive layer or a conductive film) is formed on a substrate (base substrate) to be a base is used. Also, in this case, the photoelectric conversion layer is formed on the conductor layer.

作為導電體(導電劑)係按照用途而能適當選擇,例如,可舉出導電性金屬氧化物[例如,氧化錫、氧化銦、氧化鋅、摻雜銻之金屬氧化物(摻雜銻之氧化錫等)、摻雜錫之金屬氧化物(摻雜錫之氧化銦等)、摻雜鋁之金屬氧化物(摻雜鋁之氧化鋅等)、摻雜鎵之金屬氧化物(摻雜鎵之氧化鋅等)、摻雜氟之金屬氧化物(摻雜氟之氧化錫等)等]等之導電體。該等之導電體可單獨或組合2種以上。還有,導電體通常亦可為透明導電體。 The conductor (conductive agent) can be appropriately selected depending on the application, and examples thereof include conductive metal oxides (for example, tin oxide, indium oxide, zinc oxide, and lanthanum-doped metal oxides) Tin, etc., tin-doped metal oxide (tin-doped indium oxide, etc.), aluminum-doped metal oxide (doped aluminum-doped zinc oxide, etc.), gallium-doped metal oxide (doped with gallium) An electric conductor such as zinc oxide or the like, a metal oxide doped with fluorine (such as fluorine-doped tin oxide), or the like. These conductors may be used alone or in combination of two or more. Also, the electrical conductors can generally be transparent conductors.

作為基底基板,可舉出無機基板(例如,玻璃等)、有機基板[例如,聚酯系樹脂(例如,聚對苯二甲酸乙二酯、聚萘二甲酸乙二酯)、聚碳酸酯樹脂、環烯烴系樹脂、聚丙烯系樹脂、纖維素系樹脂(纖維素三乙酸酯等)、聚醚系樹脂(聚醚碸等)、聚硫醚系樹脂(聚苯硫醚等)、聚醯亞胺樹脂等之利用塑膠所形成的基板或薄膜(塑膠基板或塑膠膜)等]等。於本發明中,由於不需要半導體之燒結步驟,能夠將塑膠基板(塑膠膜)作為基底基板使用為可能。 Examples of the base substrate include an inorganic substrate (for example, glass) and an organic substrate [for example, a polyester resin (for example, polyethylene terephthalate or polyethylene naphthalate), and a polycarbonate resin. , a cycloolefin resin, a polypropylene resin, a cellulose resin (such as cellulose triacetate), a polyether resin (such as polyether oxime), a polysulfide resin (such as polyphenylene sulfide), or a poly A substrate or a film (a plastic substrate or a plastic film) formed of a plastic such as a quinone imide resin. In the present invention, since a sintering step of a semiconductor is not required, it is possible to use a plastic substrate (plastic film) as a base substrate.

光電轉換層係藉由將該組成物塗布於基板(導電體層)上而能夠形成。作為塗布方法,並未被特別限定,例如,可舉出氣刀塗布法、輥塗布法、照相凹版塗布法、葉片塗布法、刮刀法、刮墨輥法、浸漬塗布法、噴霧法、旋轉塗布法、噴墨印刷法等。於塗布後,在既定之溫度(例如,室溫至150℃左右)下使其乾燥。 The photoelectric conversion layer can be formed by applying the composition onto a substrate (conductor layer). The coating method is not particularly limited, and examples thereof include an air knife coating method, a roll coating method, a gravure coating method, a blade coating method, a doctor blade method, a doctor roll method, a dip coating method, a spray method, and a spin coating method. Method, inkjet printing method, etc. After coating, it is dried at a predetermined temperature (for example, from room temperature to about 150 ° C).

還有,色素係如上所述,藉由將半導體及離子性聚合物塗布於基板上後,使色素附著於含有半導體 及離子性聚合物之塗膜而含有於光電轉換層中。作為使色素附著的方法,可舉出將含有色素之溶液噴霧至塗膜上之方法、將形成塗膜之基板浸漬於含有色素之溶液中之方法等。還有,亦可於噴霧或浸漬後,與上述同樣地使其乾燥。 Further, as described above, the dye is adhered to the semiconductor containing semiconductor by applying the semiconductor and the ionic polymer to the substrate. And a coating film of an ionic polymer is contained in the photoelectric conversion layer. Examples of the method for adhering the dye include a method of spraying a solution containing a dye onto a coating film, a method of immersing a substrate on which a coating film is formed, and a solution containing a dye. Further, it may be dried in the same manner as described above after spraying or immersion.

還有,於本發明中,於將組成物塗布於基板上後,不使半導體燒結(或煅燒)[或不在高溫(例如,400℃以上)下加熱處理]而形成光電轉換層。於本發明中,即使不經歷該燒結步驟,也能夠形成具有優越之光電轉換特性之光電轉換層。而且,雖然藉由燒結而使半導體之比表面積變小,如上所述,於本發明中,因為即使不燒結也能夠形成光電轉換層,故能夠維持源自半導體之表面積,故為適合。 Further, in the present invention, after the composition is applied onto the substrate, the semiconductor is not sintered (or calcined) [or is not subjected to heat treatment at a high temperature (for example, 400 ° C or higher)] to form a photoelectric conversion layer. In the present invention, a photoelectric conversion layer having superior photoelectric conversion characteristics can be formed without undergoing the sintering step. Further, although the specific surface area of the semiconductor is reduced by sintering, as described above, in the present invention, since the photoelectric conversion layer can be formed even without sintering, it is possible to maintain the surface area derived from the semiconductor.

進行如上方式,在基板(導電性基板)上形成有光電轉換層,可獲得電極(積層體)。例如,電極之厚度可為0.1至100μm(例如,0.3至70μm),較佳可為0.5至50μm(例如,0.7至40μm),進一步較佳可為1至30μm左右。又,例如光電轉換層之厚度可為0.1至100μm(例如,0.3至70μm),較佳可為0.5至50μm(例如,1至30μm),進一步較佳可為3至20μm左右。 In the above manner, a photoelectric conversion layer is formed on a substrate (conductive substrate), and an electrode (layered body) can be obtained. For example, the thickness of the electrode may be from 0.1 to 100 μm (for example, from 0.3 to 70 μm), preferably from 0.5 to 50 μm (for example, from 0.7 to 40 μm), and further preferably from about 1 to 30 μm. Further, for example, the thickness of the photoelectric conversion layer may be from 0.1 to 100 μm (for example, from 0.3 to 70 μm), preferably from 0.5 to 50 μm (for example, from 1 to 30 μm), and further preferably from about 3 to 20 μm.

進行如上方式,所得之積層體係具有導電體層與光電轉換層,能夠作為構成光電轉換元件之電極利用。以下,針對光電轉換元件而詳加說明。 In the above manner, the obtained laminated system has a conductor layer and a photoelectric conversion layer, and can be utilized as an electrode constituting the photoelectric conversion element. Hereinafter, the photoelectric conversion element will be described in detail.

[光電轉換元件] [Photoelectric Conversion Element]

光電轉換元件係具備該積層體(電極)。亦即,光電轉換元件(電池)係具備該電極、相對於該電極之對極。作為代表性之光電轉換元件之一例,可舉出太陽能電池。尤其,光電轉換層含有色素之情形,光電轉換元件係形成色素增感太陽能電池。 The photoelectric conversion element includes the laminate (electrode). That is, the photoelectric conversion element (battery) includes the electrode and the counter electrode with respect to the electrode. An example of a representative photoelectric conversion element is a solar battery. In particular, in the case where the photoelectric conversion layer contains a dye, the photoelectric conversion element forms a dye-sensitized solar cell.

例如,太陽能電池係包含作為電極之積層體、對向於該電極(電極之光電轉換層側)所配置的對極、與介於該等電極中間且已被密封處理之電解質層。亦即,電解質層(或電解質)係介於(或密封於)藉由利用密封材[例如,包含熱塑性樹脂(離子鍵聚合物樹脂等)、熱硬化性樹脂(環氧樹脂、矽氧烷樹脂等)等之密封材]密封處理兩電極(或其邊緣)所形成的空間或空隙內。 For example, a solar cell includes a laminate as an electrode, a counter electrode disposed opposite to the electrode (the photoelectric conversion layer side of the electrode), and an electrolyte layer interposed between the electrodes and sealed. That is, the electrolyte layer (or electrolyte) is interposed (or sealed) by using a sealing material [for example, comprising a thermoplastic resin (ionomer resin, etc.), a thermosetting resin (epoxy resin, a siloxane resin). The sealing material, etc., seals the space or void formed by the two electrodes (or their edges).

還有,對極係根據構成電極(或積層體)之半導體的種類而成為正極或負極。亦即,半導體為n型半導體時,對極形成正極(積層體為負極);半導體為p型半導體時,對極形成負極(積層體為正極)。 Further, the counter electrode is a positive electrode or a negative electrode depending on the type of the semiconductor constituting the electrode (or the laminated body). That is, when the semiconductor is an n-type semiconductor, the positive electrode is formed on the counter electrode (the laminate is the negative electrode); and when the semiconductor is a p-type semiconductor, the negative electrode is formed on the counter electrode (the laminated body is the positive electrode).

對極係與該積層體相同,包含導電性基板、在該導電性基板上(或導電性基板之導電體層上)所形成的觸媒層(正極觸媒層或負極觸媒層)。還有,導電體層除了導電性之外也具有還原能力之情形,並無必定設置觸媒層之必要。還有,對極係使導電體層或觸媒層之面與積層體(或電極)對向。在對極,導電性基板除了與上述同樣的基板之外,如後所述,亦可為基底基板上形成兼具導電體層與觸媒層二層(導電觸媒層)的基板等。 又,觸媒層(正極觸媒層或負極觸媒層)並未被特別限定,能夠利用導電性金屬(金、鉑等)、碳等而形成。 Similarly to the laminate, the counter electrode includes a conductive substrate and a catalyst layer (positive catalyst layer or negative catalyst layer) formed on the conductive substrate (or on the conductor layer of the conductive substrate). Further, the conductor layer has a reducing ability in addition to conductivity, and it is not necessary to provide a catalyst layer. Further, the surface of the conductor layer or the catalyst layer is opposed to the laminate (or electrode). In the counter electrode, the conductive substrate may have a substrate having a conductor layer and a catalyst layer (conductive catalyst layer) formed on the base substrate, in addition to the substrate similar to the above. Further, the catalyst layer (positive electrode catalyst layer or negative electrode catalyst layer) is not particularly limited, and can be formed using a conductive metal (gold, platinum, or the like), carbon, or the like.

觸媒層可為非多孔質層(或非多孔性層),亦可為具有多孔質構造之層(多孔質層)。對極特佳為具有多孔質層之電極(詳言之,在最外表面具有多孔質層之電極)者。若組合具備該多孔質層之電極與該光電轉換層時,能夠效率佳地使蓄電功能發揮,容易獲得蓄電容量大的光電轉換元件。 The catalyst layer may be a non-porous layer (or a non-porous layer) or a layer having a porous structure (porous layer). The electrode is preferably an electrode having a porous layer (in detail, an electrode having a porous layer on the outermost surface). When the electrode including the porous layer and the photoelectric conversion layer are combined, the storage function can be efficiently performed, and the photoelectric conversion element having a large storage capacity can be easily obtained.

在該電極(對極)中,多孔質層大多通常為發揮作為觸媒層(正極觸媒層或負極觸媒層)之功能的層(多孔質觸媒層)之情形。該多孔質觸媒層可包含多孔性觸媒成分(多孔質觸媒成分),亦可包含多孔性成分(多孔質成分)與被該多孔性成分所載持的觸媒成分,亦可包含組合該等。亦即,多孔性觸媒成分係具有多孔性的同時,也為發揮作為觸媒成分之功能的成分(兼具多孔性與觸媒功能之成分)。還有,於後者之形態中,多孔性成分亦可具備觸媒功能。 In the electrode (counter electrode), the porous layer is usually a layer (porous catalyst layer) which functions as a catalyst layer (positive electrode catalyst layer or negative electrode catalyst layer). The porous catalyst layer may include a porous catalyst component (porous catalyst component), or may include a porous component (porous component) and a catalyst component held by the porous component, or may contain a combination These are the same. In other words, the porous catalyst component is porous and exhibits a function as a catalyst component (a component having both a porous property and a catalytic function). Further, in the latter form, the porous component may have a catalytic function.

作為多孔性觸媒成分,例如,可舉出金屬微粒子(例如,鉑黑等)、多孔質碳[活性碳、石墨、Ketjen黑、爐黑、乙炔黑等之碳黑(碳黑聚集體)、碳奈米管(碳奈米管聚集體)等]等。該等之成分可單獨或組合2種以上。多孔性觸媒成分之中,能夠適於使用活性碳等。 Examples of the porous catalyst component include metal fine particles (for example, platinum black), and porous carbon [carbon black (carbon black aggregate) such as activated carbon, graphite, Ketjen black, furnace black, and acetylene black, Carbon nanotubes (carbon nanotube aggregates), etc.]. These components may be used alone or in combination of two or more. Among the porous catalyst components, activated carbon or the like can be suitably used.

作為多孔性成分,除了上述多孔質碳之外,可舉出金屬化合物粒子[例如,上述舉例說明之導電性金屬氧化物(例如,摻雜錫之氧化銦等)之粒子(微粒子)等] 等。該等之成分可單獨或組合2種以上。又,作為觸媒成分,可舉出導電性金屬(例如,金、鉑)等。 Examples of the porous component include metal compound particles (for example, particles (microparticles) of the above-exemplified conductive metal oxide (for example, tin-doped indium oxide), etc.] Wait. These components may be used alone or in combination of two or more. Further, examples of the catalyst component include a conductive metal (for example, gold or platinum).

多孔性觸媒成分及多孔性成分之形狀(或形態)並未被特別限定,可為粒子狀、纖維狀等,較佳為粒子狀。 The shape (or form) of the porous catalyst component and the porous component is not particularly limited, and may be particulate, fibrous or the like, and is preferably particulate.

例如,該粒子狀多孔性觸媒成分及多孔性成分(多孔性粒子)之平均粒徑可為1至1000μm(例如,5至700μm),較佳可為10至500μm(例如,20至400μm),進一步較佳可為30至300μm(例如,40至200μm),特佳可為50至150μm(例如,70至100μm)左右。 For example, the particulate porous catalyst component and the porous component (porous particle) may have an average particle diameter of 1 to 1000 μm (for example, 5 to 700 μm), preferably 10 to 500 μm (for example, 20 to 400 μm). Further preferably, it may be 30 to 300 μm (for example, 40 to 200 μm), and particularly preferably 50 to 150 μm (for example, 70 to 100 μm).

例如,多孔性觸媒成分及多孔性成分之比表面積可為1至4000m2/g(例如,10至3500m2/g),較佳可為20至3000m2/g(例如,30至2500m2/g),進一步較佳可為50至2000m2/g(例如,100至1500m2/g),特佳可為200至1000m2/g(例如,300至500m2/g)左右。 For example, the porous catalyst component and the porous component may have a specific surface area of 1 to 4000 m 2 /g (for example, 10 to 3500 m 2 /g), preferably 20 to 3000 m 2 /g (for example, 30 to 2500 m 2 ) Further, it is preferably 50 to 2000 m 2 /g (for example, 100 to 1500 m 2 /g), and particularly preferably 200 to 1000 m 2 /g (for example, 300 to 500 m 2 /g).

還有,多孔質層(多孔質觸媒層)必要時亦可含有黏著劑成分{例如,樹脂成分[例如,纖維素衍生物(甲基纖維素)等之熱塑性樹脂;環氧樹脂等之熱硬化性樹脂]}等。 Further, the porous layer (porous catalyst layer) may further contain an adhesive component (for example, a resin component such as a thermoplastic resin such as a cellulose derivative (methylcellulose); or a heat of an epoxy resin or the like. Curable resin]}.

相對於多孔質層(多孔質觸媒層)全部而言,例如黏著劑成分之比例可為0.1至50重量%,較佳可為0.5至40重量%,進一步較佳可為1至30重量%(例如,3至20重量%)左右。 The proportion of the adhesive component may be, for example, 0.1 to 50% by weight, preferably 0.5 to 40% by weight, and further preferably 1 to 30% by weight, based on the entire porous layer (porous catalyst layer). (for example, 3 to 20% by weight).

若具有多孔質層之電極為至少具備多孔質層的話即可,通常至少包含基板(亦可為導電性基板之基板) 與多孔質觸媒層。具有代表性之多孔質層的電極,可舉出:(i)電極(或積層體)係包含導電性基板(在基底基板上形成有導電體層之基板、該舉例說明之導電性基板等)、與在該導電性基板(或導電體層)上所形成的以多孔性觸媒成分所構成的多孔質觸媒層;(ii)電極(或積層體)係包含基底基板(上述舉例說明之基底基板等)、與在該基底基板上所形成的以多孔性成分及觸媒成分(例如,載持有觸媒成分之多孔性成分)所構成的多孔質觸媒層等。 The electrode having the porous layer may have at least a porous layer, and usually includes at least a substrate (which may also be a substrate of a conductive substrate). With a porous catalyst layer. Examples of the electrode of the representative porous layer include: (i) an electrode (or a laminate) comprising a conductive substrate (a substrate on which a conductor layer is formed on a base substrate, a conductive substrate as exemplified), a porous catalyst layer composed of a porous catalyst component formed on the conductive substrate (or a conductor layer); (ii) an electrode (or laminate) comprising a base substrate (the base substrate described above) And a porous catalyst layer formed of a porous component and a catalyst component (for example, a porous component carrying a catalyst component) formed on the base substrate.

例如,多孔質層(多孔質觸媒層)之厚度可為0.1至100μm(例如,0.3至70μm),較佳可為0.5至50μm(例如,0.7至40μm),進一步較佳可為1至30μm左右。 For example, the porous layer (porous catalyst layer) may have a thickness of 0.1 to 100 μm (for example, 0.3 to 70 μm), preferably 0.5 to 50 μm (for example, 0.7 to 40 μm), and further preferably 1 to 30 μm. about.

電解質層可利用含有電解質與溶劑之電解液形成,亦可利用含有電解質之固體層(或凝膠)形成。作為構成電解液之電解質並未被特別限定,可舉出泛用之電解質,例如鹵素(鹵素分子)與鹵化物鹽之組合[例如,溴與溴化物鹽之組合、碘與碘化物鹽之組合等]等。作為構成鹵化物鹽之相對離子(陽離子)可舉出金屬離子[例如,鹼金屬離子(例如,鋰離子、鈉離子、鉀離子、銫離子等)、鹼土金屬離子(例如,鎂離子、鈣離子等)等]、第4級銨離子[四烷基銨鹽、吡啶鎓鹽、咪唑鎓鹽(例如,1,2-二甲基-3-丙基咪唑鎓鹽)等]等。電解質可單獨或組合2種以上。 The electrolyte layer may be formed using an electrolyte containing an electrolyte and a solvent, or may be formed using a solid layer (or gel) containing an electrolyte. The electrolyte constituting the electrolytic solution is not particularly limited, and examples thereof include a general-purpose electrolyte such as a combination of a halogen (halogen molecule) and a halide salt [for example, a combination of a bromine and a bromide salt, and a combination of an iodine and an iodide salt. and many more. Examples of the relative ions (cations) constituting the halide salt include metal ions [for example, alkali metal ions (for example, lithium ions, sodium ions, potassium ions, cesium ions, etc.), alkaline earth metal ions (for example, magnesium ions, calcium ions). Etc., etc.], a fourth-order ammonium ion [tetraalkylammonium salt, pyridinium salt, imidazolium salt (for example, 1,2-dimethyl-3-propylimidazolium salt), etc.]. The electrolyte may be used alone or in combination of two or more.

該等之中,於較佳的電解質中,可舉出碘與碘化物鹽之組合,尤其碘與碘化金屬鹽[例如,鹼金屬鹽(碘化鋰、碘化鈉、碘化鉀等)、第4級銨鹽等]之組合。 Among these, among the preferable electrolytes, a combination of iodine and an iodide salt, particularly iodine and a metal iodide salt [for example, an alkali metal salt (lithium iodide, sodium iodide, potassium iodide, etc.), A combination of a grade 4 ammonium salt or the like].

作為構成電解液之溶劑,並未被特別限定,能夠使用泛用之溶劑,例如,可舉出醇類(例如,甲醇、乙醇、丁醇等之烷醇類;乙二醇、二乙二醇、聚乙二醇等之二醇類)、腈類(乙腈、甲氧基乙腈、丙腈、3-甲氧基丙腈、苯甲腈等)、碳酸酯類(乙烯碳酸酯、丙烯碳酸酯、二乙基碳酸酯等)、內酯類(γ-丁內酯等)、醚類(1,2-二甲氧基乙烷、二甲基醚、二乙基醚等之鏈狀醚類;四氫呋喃、2-甲基四氫呋喃、二、4-甲基二等之環狀醚類)、環丁碸類(環丁碸等)、亞碸類(二甲基亞碸類)、醯胺類(N,N-二甲基甲醯胺、N,N-二甲基乙醯胺等)、水等。溶劑亦可單獨或組合2種以上。 The solvent constituting the electrolytic solution is not particularly limited, and a general-purpose solvent can be used, and examples thereof include alcohols (for example, alkanols such as methanol, ethanol, and butanol; ethylene glycol and diethylene glycol; , glycols such as polyethylene glycol), nitriles (acetonitrile, methoxyacetonitrile, propionitrile, 3-methoxypropionitrile, benzonitrile, etc.), carbonates (ethylene carbonate, propylene carbonate) , diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.) ; tetrahydrofuran, 2-methyltetrahydrofuran, two 4-methyl two Such as cyclic ethers), cyclobutyl hydrazines (cyclobutyl hydrazine, etc.), fluorenes (dimethyl hydrazines), guanamines (N, N-dimethylformamide, N, N- Dimethylacetamide, etc.), water, and the like. The solvent may be used alone or in combination of two or more.

還有,於光電轉換元件中,離子性聚合物與電解液接觸(或離子性聚合物存在於電解液中),如上所述,調整離子性聚合物的pH之情形,於光電轉換元件中也較佳維持離子性聚合物之pH。具體而言,利用陰離子性聚合物構成離子性聚合物之情形,電解液(電解液中之離子性聚合物)之pH(25℃)也能夠從10以下(例如,0.1至8)之範圍選擇,例如可為小於7(例如,0.15至6.5),較佳可為6以下(例如,0.2至5),進一步較佳可為4以下(例如,0.3至3),特佳可為2以下(例如,0.5至1.5),通常可為3以下(例如,1至3)。 Further, in the photoelectric conversion element, the ionic polymer is in contact with the electrolytic solution (or the ionic polymer is present in the electrolytic solution), and as described above, the pH of the ionic polymer is adjusted, and the photoelectric conversion element is also used. It is preferred to maintain the pH of the ionic polymer. Specifically, in the case where an anionic polymer is used as the ionic polymer, the pH (25 ° C) of the electrolytic solution (the ionic polymer in the electrolytic solution) can also be selected from the range of 10 or less (for example, 0.1 to 8). For example, it may be less than 7 (for example, 0.15 to 6.5), preferably 6 or less (for example, 0.2 to 5), further preferably 4 or less (for example, 0.3 to 3), and particularly preferably 2 or less ( For example, 0.5 to 1.5), usually 3 or less (for example, 1 to 3).

又,利用陽離子性聚合物構成離子性聚合物之情形,電解液(或電解液中之離子性聚合物)之pH(25℃)也能夠從5以上(例如,6至10)之範圍選擇,例如可為7以上(例如,7.5至14),較佳可為8以上(例如,8.5至 14),進一步較佳可為9以上(例如,9.5至13.5),特佳可為10以上(例如,10.5至13)。 Further, in the case where the cationic polymer is used as the ionic polymer, the pH (25 ° C) of the electrolytic solution (or the ionic polymer in the electrolytic solution) can be selected from the range of 5 or more (for example, 6 to 10). For example, it may be 7 or more (for example, 7.5 to 14), preferably 8 or more (for example, 8.5 to 14), further preferably 9 or more (for example, 9.5 to 13.5), and particularly preferably 10 or more (for example, 10.5 to 13).

從該pH調整之觀點,構成電解液之成分亦可適於使用不影響pH調整之成分。例如,利用陰離子性聚合物構成離子性聚合物之情形,亦可將中性溶劑或非鹼基性溶劑(例如,非胺系溶劑)適於作為電解液使用。另一方面,利用陽離子性聚合物構成離子性聚合物之情形,亦可適於將中性溶劑或非酸性溶劑(或非質子性溶劑)作為電解液使用。 From the viewpoint of pH adjustment, the components constituting the electrolytic solution may be suitably used as components which do not affect the pH adjustment. For example, in the case where the ionic polymer is composed of an anionic polymer, a neutral solvent or a non-base solvent (for example, a non-amine solvent) may be suitably used as the electrolyte. On the other hand, in the case where the cationic polymer is used to constitute the ionic polymer, a neutral solvent or a non-acid solvent (or an aprotic solvent) may be suitably used as the electrolyte.

還有,於電解液中,例如電解質之濃度可為0.01至10M,較佳可為0.03至8M,進一步較佳為可為0.05至5M左右。又,組合鹵素(碘等)與鹵化物鹽(碘化物鹽等)之情形,該等之比例可為鹵素/鹵化物鹽(莫耳比)=1/0.5至1/100,較佳可為1/1至1/50,進一步較佳可為1/2至1/30左右。 Further, the concentration of the electrolyte in the electrolyte may be, for example, 0.01 to 10 M, preferably 0.03 to 8 M, and more preferably 0.05 to 5 M. Further, in the case of combining a halogen (iodine or the like) with a halide salt (such as an iodide salt), the ratio may be a halogen/halide salt (mol ratio) of 1/0.5 to 1/100, preferably Further preferably, from 1/1 to 1/50, it may be from about 1/2 to 1/30.

又,作為構成含有電解質之固體層的電解質,除了上述舉例說明的電解質之外,可舉出固體狀電解質{例如,樹脂成分[例如,噻吩系聚合物(例如,聚噻吩等)、咔唑系聚合物(例如,聚(N-乙烯基咔唑)等)等]、低分子有機成分(例如,萘、蒽、酞青素等)等之有機固體成分;碘化銀等之無機固體成分等}等。該等之成分可單獨或組合2種以上。 In addition, examples of the electrolyte constituting the solid layer containing the electrolyte include a solid electrolyte (for example, a resin component [for example, a thiophene-based polymer (for example, polythiophene) or the like) and an oxazole system. a polymer (for example, poly(N-vinylcarbazole) or the like), an organic solid component such as a low molecular organic component (for example, naphthalene, anthraquinone, anthraquinone, etc.), an inorganic solid component such as silver iodide, etc. . These components may be used alone or in combination of two or more.

還有,固體層亦可使該電解質或電解液保持於凝膠基材[例如,熱塑性樹脂(聚乙二醇、聚甲基丙烯酸甲酯等)、熱硬化性樹脂(環氧樹脂等)等]之固體層。 Further, the solid layer may hold the electrolyte or the electrolytic solution on the gel substrate [for example, a thermoplastic resin (polyethylene glycol, polymethyl methacrylate, etc.), a thermosetting resin (epoxy resin, etc.), etc. The solid layer.

實施例 Example

以下,根據實施例而更詳細說明本發明,但本發明並非受該等實施例所限定者。 Hereinafter, the present invention will be described in more detail based on the examples, but the present invention is not limited by the examples.

(實施例1) (Example 1)

混合氧化鈦粒子(石原產業股份有限公司製、「ST-01」、平均一次粒徑7nm、比表面積300m2/g、銳鈦礦型結晶)10重量份、含有陰離子性聚合物之分散液(Aldrich公司製「 Nafion 117」、以20%之比例所含之水及1-丙醇分散液、離子交換容量0.95至1.03meq/g、pH(25℃)=1、每1分子之佔有面積約0.024nm2)25重量份(亦即,陰離子性聚合物5重量份)、色素(N719、東京化成工業股份有限公司製、分子量1188.57、每1分子之佔有面積約1nm2)0.1重量份及甲醇65重量份而調製氧化鈦分散液。 10 parts by weight of a mixture of titanium oxide particles ("ST-01", average primary particle diameter: 7 nm, specific surface area: 300 m 2 /g, anatase crystal), and an anionic polymer-containing dispersion ( "Nafion 117" manufactured by Aldrich Co., Ltd., water and 1-propanol dispersion contained in a ratio of 20%, ion exchange capacity of 0.95 to 1.03 meq/g, pH (25 ° C) = 1, and the area occupied per molecule 0.024 nm 2 ) 25 parts by weight (that is, 5 parts by weight of an anionic polymer), a pigment (N719, manufactured by Tokyo Chemical Industry Co., Ltd., molecular weight 1188.57, and an occupied area of about 1 nm 2 per molecule) 0.1 part by weight and methanol The titanium oxide dispersion was prepared in an amount of 65 parts by weight.

利用刮墨輥法,將所得之氧化鈦粒子分散液塗布於附ITO之玻璃基板(Luminescence Technology公司製、尺寸25mm×25mm、ITO層之厚度0.14μm)之ITO層側後,在空氣中、70℃下使其乾燥,獲得吸附色素的氧化鈦電極(負極)之基板(乾燥後塗膜的厚度5μm)。 The obtained titanium oxide particle dispersion liquid was applied onto the ITO layer side of an ITO-attached glass substrate (manufactured by Luminescence Technology Co., Ltd., size: 25 mm × 25 mm, thickness of ITO layer: 0.14 μm) by a doctor blade method, and then air, 70 The mixture was dried at ° C to obtain a substrate of a titanium oxide electrode (negative electrode) to which a dye was adsorbed (the thickness of the coating film after drying was 5 μm).

以50μm之間隔,使所得之吸附色素的氧化鈦電極之ITO層側(色素吸附側)、與具有多孔質層之對極[該電極包含附ITO之玻璃基板(Luminescence Technology公司製、尺寸25mm×25mm、ITO層之厚度0.14μm)、與藉由以刮墨輥法將含有活性碳粉末(東京化 成工業股份有限公司製)之漿體(相對於活性碳粉末1重量份,含有甲基纖維素(東京化成工業股份有限公司製)0.1重量份之10重量%水分散液)塗布於該ITO層上]之ITO層側(活性碳觸媒層側)對向,使各基板(或各電極或各ITO層側)之周圍相互結合的方式來利用密封材或間隔物(三井DuPont Polychemical製、「Himilan」)密封,將電解液填充於兩基板(或兩電極)間所形成的空隙(或利用密封材所密封的空間)內而製作色素增感太陽能電池。還有,於電解液中,使用含有0.5M之碘化鋰、0.05M之碘的乙腈溶液。 The ITO layer side (dye adsorption side) of the titanium oxide electrode to which the dye was adsorbed and the counter electrode having the porous layer were formed at intervals of 50 μm. [The electrode includes a glass substrate with ITO (manufactured by Luminescence Technology Co., Ltd., size 25 mm ×) 25 mm, thickness of ITO layer 0.14 μm), and activated carbon powder by using a doctor blade method (Tokyo A slurry (10% by weight of an aqueous dispersion containing methylcellulose (manufactured by Tokyo Chemical Industry Co., Ltd.) in an amount of 0.1 part by weight based on 1 part by weight of the activated carbon powder) was applied to the ITO. The ITO layer side (on the side of the activated carbon catalyst layer) on the layer is opposed to each other, and the sealing material or the spacer is used to bond the periphery of each substrate (or each electrode or each ITO layer side) (manufactured by Mitsui DuPont Polychemical Co., Ltd. "Himilan" is sealed, and a dye-sensitized solar cell is produced by filling an electrolyte solution in a space formed between two substrates (or two electrodes) (or a space sealed by a sealing material). Further, in the electrolytic solution, an acetonitrile solution containing 0.5 M of lithium iodide and 0.05 M of iodine was used.

然後,利用陽光模擬器(三永電機製作所股份有限公司製「XES-301S+EL-100」),以AM 1.5、100mW/cm2、25℃之條件下評估所得之色素增感太陽能電池。 Then, the obtained dye-sensitized solar cell was evaluated under the conditions of AM 1.5, 100 mW/cm 2 , and 25 ° C using a sunlight simulator ("XES-301S+EL-100" manufactured by Sanyo Electric Co., Ltd.).

(實施例2) (Example 2)

作為具有多孔質層之對極,除了使用如下之電極之外,與實施例1同樣地進行而製作色素增感太陽能電池,並評估;該電極係包含附ITO之玻璃基板、與藉由將含有ITO粉末(Aldrich股份有限公司製、粒徑<50nm、比表面積27m2/g)之漿體(相對於ITO粉末1重量份,含有甲基纖維素(東京化成工業股份有限公司製)0.1重量份之10重量%水分散液)塗布於該ITO層上所形成的多孔質層(厚度5μm)之基板上,進一步使用依照濺鍍法而以3.5nm之厚度被覆鉑的電極。 A dye-sensitized solar cell was produced and evaluated in the same manner as in Example 1 except that the electrode having the porous layer was used. The electrode was made of a glass substrate with ITO and contained therein. a slurry of ITO powder (manufactured by Aldrich Co., Ltd., having a particle diameter of <50 nm and a specific surface area of 27 m 2 /g) (containing 0.1 part by weight of methyl cellulose (manufactured by Tokyo Chemical Industry Co., Ltd.) in an amount of 1 part by weight of the ITO powder) The 10% by weight aqueous dispersion was applied onto a substrate of a porous layer (thickness: 5 μm) formed on the ITO layer, and an electrode coated with platinum at a thickness of 3.5 nm in accordance with a sputtering method was further used.

(實施例3) (Example 3)

作為具有多孔質層之對極,除了使用如下之電極之外,與實施例1同樣地進行而製作色素增感太陽能電池,並評估;該電極係包含附ITO之玻璃基板、與藉由將含有載持鉑之碳粉末(石福金屬興業股份有限公司製、IFPC40-1I)之漿體(相對於載持鉑之碳粉末1重量份,含有甲基纖維素(東京化成工業股份有限公司製)0.1重量份之10重量%水分散液)塗布於該ITO層上所形成的多孔質層(厚度5μm)之基板上的電極。 A dye-sensitized solar cell was produced and evaluated in the same manner as in Example 1 except that the electrode having the porous layer was used. The electrode was made of a glass substrate with ITO and contained therein. A slurry of platinum-coated carbon powder (made by Shifu Metal Industrial Co., Ltd., IFPC40-1I) (containing 1 part by weight of platinum-loaded carbon powder, containing methyl cellulose (Tokyo Chemical Industry Co., Ltd.) 0.1 part by weight of a 10% by weight aqueous dispersion) an electrode coated on a substrate of a porous layer (thickness 5 μm) formed on the ITO layer.

(實施例4) (Example 4)

於實施例1,作為對極,除了使用如下之電極之外,與實施例1同樣地進行而製作色素增感太陽能電池,並評估;該電極係包含非多孔質構造之電極[附ITO之玻璃基板(Luminescence Technology公司製、尺寸25mm×25mm、ITO層之厚度0.14μm)、與利用濺鍍法而在該ITO層上所形成的鉑層(鉑層厚度3.5nm、電極面積6.25cm2/g)的電極]。 In the first embodiment, a dye-sensitized solar cell was produced and evaluated in the same manner as in Example 1 except that the electrode was used as the counter electrode. The electrode was a non-porous structure electrode [with ITO glass] A substrate (manufactured by Luminescence Technology Co., Ltd., size: 25 mm × 25 mm, thickness of the ITO layer: 0.14 μm), and a platinum layer formed on the ITO layer by a sputtering method (platinum layer thickness: 3.5 nm, electrode area: 6.25 cm 2 /g) ) of the electrode].

針對實施例所得之各色素增感太陽能電池,將輸出特性顯示於第1圖,將遮光後之開放電壓變化顯示於第2圖。還有,遮光係藉由關閉陽光模擬器之燈泡而進行。由圖可明確得知,在實施例中具備光電轉換特性與蓄電功能。其中,於將具有多孔質層之電極作為對極使用之色素增感太陽能電池(實施例1至3)中,得知具有高的蓄電功能。 For each of the dye-sensitized solar cells obtained in the examples, the output characteristics are shown in Fig. 1, and the change in the open voltage after the light-shielding is shown in Fig. 2 . Also, the shading is performed by turning off the bulb of the sunlight simulator. As is clear from the figure, in the embodiment, photoelectric conversion characteristics and power storage functions are provided. Among them, in the dye-sensitized solar cell (Examples 1 to 3) in which the electrode having the porous layer was used as the counter electrode, it was found to have a high power storage function.

[產業上利用之可能性] [Possibility of industrial use]

本發明之組成物係有用於形成光電轉換層或光電轉換元件。尤其於本發明中,不僅光電轉換特性,也能夠形成具備蓄電功能之光電轉換層。而且,因為不會使其燒結而能夠形成該光電轉換層,也能夠在塑膠基板上等,形成光電轉換層。使用該組成物所得之光電轉換元件係適於作為太陽能電池(尤其,色素增感太陽能電池)等之光電池。 The composition of the present invention is used to form a photoelectric conversion layer or a photoelectric conversion element. In particular, in the present invention, a photoelectric conversion layer having a storage function can be formed not only by photoelectric conversion characteristics. Further, since the photoelectric conversion layer can be formed without sintering, a photoelectric conversion layer can be formed on a plastic substrate or the like. The photoelectric conversion element obtained by using the composition is suitable as a photovoltaic cell such as a solar cell (particularly, a dye-sensitized solar cell).

Claims (18)

一種光電轉換層用組成物,其係用以形成具備蓄電功能的光電轉換層之組成物,含有半導體與離子性聚合物,且相對於該半導體1重量份而言,該離子性聚合物之比例為0.05至100重量份,其中該離子性聚合物為強酸性離子交換樹脂。 A composition for a photoelectric conversion layer for forming a composition of a photoelectric conversion layer having a storage function, comprising a semiconductor and an ionic polymer, and the ratio of the ionic polymer to 1 part by weight of the semiconductor It is 0.05 to 100 parts by weight, wherein the ionic polymer is a strongly acidic ion exchange resin. 如請求項1之組成物,其中該半導體為金屬氧化物。 The composition of claim 1, wherein the semiconductor is a metal oxide. 如請求項1之組成物,其中該半導體與該離子性聚合物之組合為(i)n型半導體與包含陰離子性聚合物之離子性聚合物的組合、或(ii)p型半導體與包含陽離子性聚合物之離子性聚合物的組合。 The composition of claim 1, wherein the combination of the semiconductor and the ionic polymer is (i) a combination of an n-type semiconductor and an ionic polymer comprising an anionic polymer, or (ii) a p-type semiconductor and a cation-containing compound. A combination of ionic polymers of a polymeric polymer. 如請求項3之組成物,其中該半導體與該離子性聚合物之組合為組合(i)n型半導體包含氧化鈦粒子。 The composition of claim 3, wherein the combination of the semiconductor and the ionic polymer is a combination (i) the n-type semiconductor comprises titanium oxide particles. 如請求項3或4之組成物,其中該陰離子性聚合物具有磺酸基。 The composition of claim 3 or 4, wherein the anionic polymer has a sulfonic acid group. 如請求項3或4之組成物,其中該陰離子性聚合物之水溶液或水分散液之pH在25℃下小於7。 The composition of claim 3 or 4, wherein the pH of the aqueous solution or aqueous dispersion of the anionic polymer is less than 7 at 25 °C. 如請求項1至4中任一項之組成物,其中相對於該半導體1重量份而言,該離子性聚合物之比例為0.1至10重量份。 The composition of any one of claims 1 to 4, wherein the ratio of the ionic polymer is from 0.1 to 10 parts by weight relative to 1 part by weight of the semiconductor. 如請求項1至4中任一項之組成物,其中該半導體包含氧化鈦奈米粒子,該離子性聚合物為包含具有磺酸基之含氟樹脂的pH 3以下之離子性聚合物,且相對於該半導體1重量份而言,該離子性聚合物之比例為0.2至1重量份。 The composition of any one of claims 1 to 4, wherein the semiconductor comprises titanium oxide nanoparticles, which is an ionic polymer having a pH of 3 or less containing a fluorine-containing resin having a sulfonic acid group, and The ratio of the ionic polymer is from 0.2 to 1 part by weight with respect to 1 part by weight of the semiconductor. 如請求項1至4中任一項之組成物,其更含有色素。 The composition of any one of claims 1 to 4, which further contains a pigment. 如請求項9之組成物,其中該色素為釕錯合物色素。 The composition of claim 9, wherein the pigment is a ruthenium complex pigment. 一種積層體,其係包含導電性基板與積層在該基板上之光電轉換層的積層體,該光電轉換層為由如請求項1至10中任一項之組成物所形成。 A laminate comprising a laminate of a conductive substrate and a photoelectric conversion layer laminated on the substrate, the photoelectric conversion layer being formed of the composition according to any one of claims 1 to 10. 如請求項11之積層體,其中該導電性基板為形成有導電體層的塑膠基板。 The laminate according to claim 11, wherein the conductive substrate is a plastic substrate on which a conductor layer is formed. 如請求項11或12之積層體,其中該光電轉換層之厚度為0.1至100μm。 The laminate of claim 11 or 12, wherein the photoelectric conversion layer has a thickness of 0.1 to 100 μm. 一種製造如請求項11至13中任一項之積層體之方法,其係將如請求項1至10中任一項之組成物塗布於導電性基板上,不使半導體燒結地進行製造。 A method of producing a laminate according to any one of claims 1 to 10, which is characterized in that the composition according to any one of claims 1 to 10 is applied onto a conductive substrate without causing the semiconductor to be sintered. 一種光電轉換元件,其係具備如請求項11至13中任一項之積層體。 A photoelectric conversion element comprising the laminate according to any one of claims 11 to 13. 如請求項15之光電轉換元件,其係包含下列構造之色素增感太陽能電池:積層體,包含作為電極之含有色素的光電轉換層;對極,對向於該電極所配置的對極;與電解質層,使其介於該等電極中間,且已被密封處理。 The photoelectric conversion element according to claim 15, which comprises a dye-sensitized solar cell having a structure comprising a photoelectric conversion layer containing a pigment as an electrode; and a counter electrode disposed opposite to the electrode; The electrolyte layer is interposed between the electrodes and has been sealed. 如請求項16之光電轉換元件,其中該對極含有多孔質層。 The photoelectric conversion element of claim 16, wherein the counter electrode contains a porous layer. 一種將蓄電功能賦予光電轉換層之方法,其係於含有半導體之光電轉換層中,使其相對於半導體1重量份而言,以0.05至100重量份之比例含有離子性聚合物。 A method of imparting a storage function to a photoelectric conversion layer, which is contained in a photoelectric conversion layer containing a semiconductor, and contains an ionic polymer in a ratio of 0.05 to 100 parts by weight based on 1 part by weight of the semiconductor.
TW102126803A 2012-07-27 2013-07-26 Composition for photoelectric conversion layer and photoelectric conversion element TWI577073B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012167204 2012-07-27

Publications (2)

Publication Number Publication Date
TW201414050A TW201414050A (en) 2014-04-01
TWI577073B true TWI577073B (en) 2017-04-01

Family

ID=49997344

Family Applications (1)

Application Number Title Priority Date Filing Date
TW102126803A TWI577073B (en) 2012-07-27 2013-07-26 Composition for photoelectric conversion layer and photoelectric conversion element

Country Status (7)

Country Link
US (1) US10270050B2 (en)
EP (1) EP2879230A4 (en)
JP (1) JP6082006B2 (en)
CN (1) CN104508774B (en)
CA (1) CA2879197C (en)
TW (1) TWI577073B (en)
WO (1) WO2014017535A1 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3013719B1 (en) * 2013-11-26 2018-01-12 Commissariat A L'energie Atomique Et Aux Energies Alternatives INK FOR FORMING P-LAYERS IN ORGANIC ELECTRONIC DEVICES
JP6487218B2 (en) * 2015-01-15 2019-03-20 株式会社ダイセル Photoelectric conversion layer and photoelectric conversion element provided with the same
JP6194084B1 (en) * 2016-08-31 2017-09-06 株式会社フジクラ Photoelectric conversion device
KR102143185B1 (en) 2019-05-30 2020-08-10 서울대학교산학협력단 Ion diode

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069313A (en) * 1995-10-31 2000-05-30 Ecole Polytechnique Federale De Lausanne Battery of photovoltaic cells and process for manufacturing same
US20050005963A1 (en) * 2003-07-11 2005-01-13 Qinbai Fan Photoelectrolysis of water using proton exchange membranes
US20060107994A1 (en) * 2003-01-08 2006-05-25 Masahiro Morooka Photoelectric conversion element and process for fabricating the same, electronic device and process for fabricating the same

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (en) 1988-02-12 1990-06-15 Sulzer Ag
JP2001085077A (en) * 1999-09-14 2001-03-30 Fuji Xerox Co Ltd Photoelectric transducer element and its manufacture
WO2003107471A1 (en) * 2002-06-14 2003-12-24 日立マクセル株式会社 Photoelectric transducer and its manufacturing method
JP4757433B2 (en) 2003-03-24 2011-08-24 独立行政法人科学技術振興機構 Solar cell
JP2005135799A (en) * 2003-10-31 2005-05-26 Tomoegawa Paper Co Ltd Electrode for photocell and manufacturing method of the same, and photocell using the same
JP2005251426A (en) 2004-03-01 2005-09-15 Wako Pure Chem Ind Ltd Measuring method of amount of colorant using photoelectric conversion element
KR101159567B1 (en) * 2004-10-13 2012-06-26 데이진 가부시키가이샤 Multilayer body for dye-sensitized solar cell, electrode for dye-sensitized solar cell and method for producing same
JP4522886B2 (en) 2005-02-25 2010-08-11 株式会社ピアレックス・テクノロジーズ Photocatalyst paint, steel sheet coated with the paint, and tent
CN101789317B (en) * 2010-03-12 2011-11-30 华中科技大学 Dye sensitization solar battery and preparation method thereof
KR101223734B1 (en) * 2011-04-06 2013-01-21 삼성에스디아이 주식회사 Electrolyte for Dye sensitized solar cell and Dye sensitized solar cell including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6069313A (en) * 1995-10-31 2000-05-30 Ecole Polytechnique Federale De Lausanne Battery of photovoltaic cells and process for manufacturing same
US20060107994A1 (en) * 2003-01-08 2006-05-25 Masahiro Morooka Photoelectric conversion element and process for fabricating the same, electronic device and process for fabricating the same
US20050005963A1 (en) * 2003-07-11 2005-01-13 Qinbai Fan Photoelectrolysis of water using proton exchange membranes

Also Published As

Publication number Publication date
US10270050B2 (en) 2019-04-23
EP2879230A4 (en) 2015-10-28
TW201414050A (en) 2014-04-01
CA2879197A1 (en) 2014-01-30
CN104508774B (en) 2017-09-22
JPWO2014017535A1 (en) 2016-07-11
US20150171355A1 (en) 2015-06-18
CA2879197C (en) 2020-09-15
JP6082006B2 (en) 2017-02-15
EP2879230A1 (en) 2015-06-03
CN104508774A (en) 2015-04-08
WO2014017535A1 (en) 2014-01-30

Similar Documents

Publication Publication Date Title
TWI597748B (en) A composition for a photoelectric conversion layer, a laminated body, a method of manufacturing the same, a photoelectric conversion element, and a method of improving the adhesion between the photoelectric conversion layer and the substrate
JP5380851B2 (en) Method for producing dye-sensitized solar cell and method for producing dye-sensitized solar cell module
TWI577073B (en) Composition for photoelectric conversion layer and photoelectric conversion element
JP6310178B2 (en) Composition for photoelectric conversion element and photoelectric conversion element
WO2016021308A1 (en) Photoelectric conversion layer and photoelectric conversion element provided with same
JP7219078B2 (en) Separator composition, separator, and production method and use thereof
KR101409067B1 (en) Dye sensitized solar cell and its manufacturing method
US20090266417A1 (en) Dye sensitized solar cell
JP6487218B2 (en) Photoelectric conversion layer and photoelectric conversion element provided with the same
KR101208852B1 (en) A polymer electrolyte composition gelated by chemical crosslinking, a method for preparation thereof and a dye-sensitized solar cell comprising the same
JP5191631B2 (en) Method for manufacturing counter electrode and method for manufacturing photoelectric conversion element
KR101539410B1 (en) Solar cell having pattern reflecting layer and method of thereof
KR101212101B1 (en) Dye sensitized solar cell and method for manufacturing the same
JP2011065852A (en) Photoelectric conversion element
JP2014220164A (en) Dye-sensitized solar cell