TWI593951B - Sensing chip - Google Patents

Sensing chip Download PDF

Info

Publication number
TWI593951B
TWI593951B TW103119848A TW103119848A TWI593951B TW I593951 B TWI593951 B TW I593951B TW 103119848 A TW103119848 A TW 103119848A TW 103119848 A TW103119848 A TW 103119848A TW I593951 B TWI593951 B TW I593951B
Authority
TW
Taiwan
Prior art keywords
metal layer
sensing wafer
nanostructures
nanostructure
substrate
Prior art date
Application number
TW103119848A
Other languages
Chinese (zh)
Other versions
TW201546437A (en
Inventor
林鼎晸
陳怡萍
陳品誠
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103119848A priority Critical patent/TWI593951B/en
Publication of TW201546437A publication Critical patent/TW201546437A/en
Application granted granted Critical
Publication of TWI593951B publication Critical patent/TWI593951B/en

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Description

感測晶片 Sense wafer

本發明係關於感測晶片,更特別關於其奈米結構的形成方式。 The present invention relates to sensing wafers, and more particularly to the manner in which their nanostructures are formed.

在生醫檢測中,無論是食品安全或是癌症篩檢,目前均以酵素免疫檢測法(Enzyme-linked immunosorbent assay,ELISA)為主。現行ELISA技術雖具有高靈敏度的優點,但其所用的試劑組(ELISA kits)昂貴、檢測步驟繁瑣耗時,且需將目標待測物接上生物標籤(如螢光分子)或接上酵素進行呈色反應,而螢光分子不但會干擾目標分子的活動,且大部分螢光分子會有光漂白(photobleaching)或螢光閃爍(blinking)的問題,造成ELISA法在低濃度量測時容易產生誤差。 In biomedical testing, both food safety and cancer screening are currently based on Enzyme-linked immunosorbent assay (ELISA). Although the current ELISA technology has the advantage of high sensitivity, the reagent kits used are expensive, the detection steps are cumbersome and time consuming, and the target analyte needs to be attached to a biotag (such as a fluorescent molecule) or an enzyme is attached. The color reaction, while the fluorescent molecules not only interfere with the activity of the target molecule, but most of the fluorescent molecules have problems of photobleaching or fluorescent scintillation, which makes the ELISA method easy to produce at low concentration measurement. error.

局部化表面電將共振(Localized Surface Plasmon Resonances,LSPR)原理的晶片可達到免標定與快速檢測的效果,其利用金屬奈米結構的表面電漿共振光譜。由於LSPR對於金屬界面折射率變化很靈敏,可用於偵測吸附在結構表面數十奈米距離內的微量待測物(如抗原或抗體)。在LSPR中,金屬奈米結構的表面電漿共振光譜對環境折射率變化(即△λ/△n)是偵測靈敏度的關鍵因素。此外,當共振光譜的半高寬越窄,光譜的鑑別率(resolution)越高,亦可提升偵測效果。式1為晶片 品質因子的定義(Figure of Merit,FoM)。 The localized Surface Plasmon Resonances (LSPR) principle of the wafer can achieve the effect of calibration-free and fast detection, which utilizes the surface plasma resonance spectrum of the metal nanostructure. Since LSPR is sensitive to changes in the refractive index of the metal interface, it can be used to detect trace analytes (such as antigens or antibodies) adsorbed within a distance of several tens of nanometers from the surface of the structure. In LSPR, the surface plasma resonance spectrum of the metal nanostructure is a key factor in detecting sensitivity to the environmental refractive index change (ie, Δλ/Δn). In addition, when the half-height of the resonance spectrum is narrower, the resolution of the spectrum is higher, and the detection effect can be improved. Formula 1 is a wafer Definition of quality factor (Figure of Merit, FoM).

與現有ELISA技術相比,LSPR技術是一種免螢光標定的檢測方式,可縮短檢測的流程與時間,也不會遇到二次抗體(含螢光分子)接枝的立體空間障礙問題。但目前LSPR晶片和ELISA法相比,其靈敏度尚嫌不足。主要原因除了一般電漿子共振光譜較寬外,對於待測物能否靠近奈米結構上的熱點(hot spot)位置以產生有效的光譜偏移也是一大重點。 Compared with the existing ELISA technology, the LSPR technology is a fluorescence-free cursor-based detection method, which can shorten the detection process and time, and does not encounter the problem of three-dimensional space barrier of grafting of secondary antibodies (including fluorescent molecules). However, the sensitivity of LSPR wafers compared with ELISA is still insufficient. The main reason is that in addition to the general plasmonic resonance spectrum, it is also a major focus on whether the analyte can be close to the hot spot position on the nanostructure to produce an effective spectral shift.

目前亟需新的LSPR結構提升對待測物的靈敏度及提升光譜鑑別率(縮小共振波長的半高寬),進而測得更低濃度的待測物。 There is a need for a new LSPR structure to increase the sensitivity of the object to be measured and to increase the spectral discrimination rate (reducing the full width at half maximum of the resonant wavelength), thereby measuring a lower concentration of the analyte.

本發明一實施例提供感測晶片,包括:基板;以及多個奈米結構,週期性地排列於基板上,其中每一奈米結構包括:底金屬層,位於基板上;中間介電層,位於底金屬層上;以及頂金屬層,位於中間介電層上;其中底金屬層的面積大於頂金屬層的面積。 An embodiment of the invention provides a sensing wafer, comprising: a substrate; and a plurality of nanostructures periodically arranged on the substrate, wherein each nanostructure comprises: a bottom metal layer on the substrate; an intermediate dielectric layer, Located on the bottom metal layer; and the top metal layer on the intermediate dielectric layer; wherein the area of the bottom metal layer is greater than the area of the top metal layer.

上述感測晶片使熱點位置由基板處調高至待測物容易附著的頂金屬層。上述感測晶片上的奈米結構週期,可使結構單元本身的共振模態(LSPR mode)與週期性結構提供的雷利異常模態(Rayleigh anomaly)互相耦合產生菲諾共振模態(Fano resonance mode),以縮小共振峰的半高寬(Full Width Half Maximum,FWHM),進而提升晶片的偵測極限。 The sensing wafer raises the hot spot position from the substrate to a top metal layer to which the object to be tested is easily attached. The nano-structure period on the sensing wafer can mutually couple the resonant mode (LSPR mode) of the structural unit itself with the Rayleigh anomaly provided by the periodic structure to generate a Fino resonance mode (Fano resonance) Mode) to reduce the Full Width Half Maximum (FWHM) of the formant, thereby increasing the detection limit of the wafer.

P‧‧‧週期 P‧‧ cycle

1‧‧‧感測晶片 1‧‧‧Sensor wafer

10‧‧‧基板 10‧‧‧Substrate

11‧‧‧光阻層 11‧‧‧Photoresist layer

13‧‧‧開口 13‧‧‧ openings

15‧‧‧底金屬層 15‧‧‧ bottom metal layer

17‧‧‧中間介電層 17‧‧‧Intermediate dielectric layer

19‧‧‧頂金屬層 19‧‧‧Top metal layer

20‧‧‧奈米結構 20‧‧‧Nano structure

41‧‧‧修飾劑 41‧‧‧Modifier

43‧‧‧待測物 43‧‧‧Test object

61‧‧‧熱點 61‧‧‧ Hotspots

第1A至1D圖係本發明一實施例中,感測晶片的製程剖視圖。 1A to 1D are cross-sectional views showing a process of sensing a wafer in an embodiment of the present invention.

第1E至1G圖係本發明實施例中,奈米結構的剖視圖。 1E to 1G are cross-sectional views of the nanostructure in the embodiment of the present invention.

第2A至2B圖係本發明實施例中,週期性排列之奈米結構的上視圖。 2A to 2B are top views of the periodically arranged nanostructures in the embodiment of the present invention.

第3A至3C圖係本發明實施例中,奈米結構的上視圖。 3A to 3C are top views of the nanostructure in the embodiment of the present invention.

第4圖係本發明實施例中,採用修飾劑使待測物連結至奈米結構之頂金屬層的示意圖。 Fig. 4 is a schematic view showing the use of a modifier to bond a test object to a top metal layer of a nanostructure in the embodiment of the present invention.

第5A與5B圖係本發明實施例中,奈米結構的剖視圖。 5A and 5B are cross-sectional views of the nanostructure in the embodiment of the present invention.

第6A與6B圖係本發明實施例中,待測物於奈米結構上的模擬光譜。 6A and 6B are diagrams showing the simulated spectrum of the analyte on the nanostructure in the embodiment of the present invention.

第7A與7B圖係本發明實施例中,奈米結構的模擬電漿子共振光譜。 7A and 7B are simulated plasmon resonance spectra of a nanostructure in an embodiment of the present invention.

第8圖係本發明實施例中,相同奈米結構於不同介質下的光譜變化。 Figure 8 is a graphical representation of the spectral changes of the same nanostructure in different media in an embodiment of the invention.

第9圖係本發明實施例中,相同介質中具有不同厚度之中間介電層的奈米結構其光譜變化。 Figure 9 is a graph showing the change in the crystal structure of an intermediate dielectric layer having different thicknesses in the same medium in the embodiment of the present invention.

第10A與10B圖係本發明實施例中,奈米結構的剖視圖。 10A and 10B are cross-sectional views of the nanostructure in the embodiment of the present invention.

第1A至1D圖係本發明一實施例中,感測晶片1之製程剖視圖。如第1A圖所示,首先提供基板10,再形成光阻層11於基板10上。基板10可為介電材料如聚對苯二甲酸乙二酯 (PET)、聚甲基丙烯酸甲酯(PMMA)、氧化矽(SiO2)、氧化鋁(Sapphire)、玻璃、或其他常見介電材料。基板10之折射率ns介於1.2至4.5之間。基板10之折射率ns與後述之奈米結構20的電漿子共振波長有關。若基板10之折射率ns過大,則電漿子共振波長紅移到紅外光範圍,會導致光譜儀設備成本增加。 1A to 1D are cross-sectional views showing a process of sensing the wafer 1 in an embodiment of the present invention. As shown in FIG. 1A, the substrate 10 is first provided, and the photoresist layer 11 is formed on the substrate 10. The substrate 10 can be a dielectric material such as polyethylene terephthalate (PET), polymethyl methacrylate (PMMA), yttrium oxide (SiO 2 ), alumina (Sapphire), glass, or other common dielectrics. material. The refractive index n s of the substrate 10 is between 1.2 and 4.5. The refractive index n s of the substrate 10 is related to the plasmon resonance wavelength of the nanostructure 20 to be described later. If the refractive index n s of the substrate 10 is too large, the plasmon resonance wavelength is red-shifted to the infrared light range, which causes an increase in the cost of the spectrometer device.

接著如第1B圖所示,藉由光罩選擇性地曝光光阻11,經過顯影後形成圖案化光阻層11形成週期性排列之開口13。光阻層11可為正光阻或負光阻,並採用對應的光罩。調整製程參數可讓圖案化後的光阻層11其開口13具有下寬上窄(底切)的形狀,且開口13之側壁可為曲面(見第1B圖)或平面(未圖示)。 Next, as shown in FIG. 1B, the photoresist 11 is selectively exposed by a photomask, and after development, the patterned photoresist layer 11 is formed to form a periodically arranged opening 13. The photoresist layer 11 can be a positive photoresist or a negative photoresist, and a corresponding photomask is used. Adjusting the process parameters allows the patterned photoresist layer 11 to have its opening 13 having a lower width and a lower (undercut) shape, and the side walls of the opening 13 may be curved (see FIG. 1B) or planar (not shown).

接著如第1C圖所示,依序沉積底金屬層15、中間介電層17、與頂金屬層19於開口13中及光阻層11上。底金屬層15可為金、銀、鋁、鉻、銅、鈦、或上述之合金。在本發明一實施例中,底金屬層15與頂金屬層19可為相同組成。在本發明一實施例中,底金屬層15之厚度介於1nm至40nm之間。若底金屬層15之厚度過薄,則不容易形成均勻的薄膜。若底金屬層15之厚度過厚,則無法用剝離法(lift-off method)製作微結構。中間介電層17可為氧化鋁、氧化矽、氮化矽、或上述之組合。在本發明一實施例中,中間介電層17之厚度介於1nm至10nm之間。若中間介電層17之厚度過薄,則不容易形成均勻的薄膜。若中間介電層17之厚度過厚,則底金屬層與頂金屬層的表面電漿共振模態耦合效果差,而減損結構光譜的調控性。頂金屬層19可為金、銀、鋁、鉻、銅、鈦、或上述之合金。在本發明一 實施例中,頂金屬層15之厚度介於2nm至40nm之間。若頂金屬層15之厚度過薄,則不容易形成均勻的薄膜。若頂金屬層15之厚度過厚,則無法用剝離法(lift-off method)製作微結構。 Next, as shown in FIG. 1C, the bottom metal layer 15, the intermediate dielectric layer 17, and the top metal layer 19 are sequentially deposited in the opening 13 and the photoresist layer 11. The bottom metal layer 15 may be gold, silver, aluminum, chromium, copper, titanium, or an alloy of the above. In an embodiment of the invention, the bottom metal layer 15 and the top metal layer 19 may have the same composition. In an embodiment of the invention, the bottom metal layer 15 has a thickness between 1 nm and 40 nm. If the thickness of the bottom metal layer 15 is too thin, it is not easy to form a uniform film. If the thickness of the bottom metal layer 15 is too thick, the microstructure cannot be produced by a lift-off method. The intermediate dielectric layer 17 can be aluminum oxide, tantalum oxide, tantalum nitride, or a combination thereof. In an embodiment of the invention, the intermediate dielectric layer 17 has a thickness between 1 nm and 10 nm. If the thickness of the intermediate dielectric layer 17 is too thin, it is not easy to form a uniform film. If the thickness of the intermediate dielectric layer 17 is too thick, the surface plasmon resonance mode coupling effect of the bottom metal layer and the top metal layer is poor, and the regulation of the structure spectrum is degraded. The top metal layer 19 can be gold, silver, aluminum, chromium, copper, titanium, or an alloy of the foregoing. In the present invention In an embodiment, the top metal layer 15 has a thickness between 2 nm and 40 nm. If the thickness of the top metal layer 15 is too thin, it is not easy to form a uniform film. If the thickness of the top metal layer 15 is too thick, the microstructure cannot be produced by a lift-off method.

接著如第1D圖所示,剝除光阻層11與沉積其上的材料,保留開口13中底金屬層15、中間介電層17、與頂金屬層19堆疊之奈米結構20。在本發明一實施例中,奈米結構20之寬度介於50nm至1000nm之間。若奈米結構20之寬度過小,則結構尺寸均勻性不易控制。若奈米結構20之寬度過大,則共振光譜落在紅外光波長,造成光譜儀成本提升。在本發明一實施例中,奈米結構20之寬度大於或等於奈米結構20之高度(底金屬層15、中間介電層17、與頂金屬層19的總厚度)。若奈米結構20之高度大於奈米結構20之寬度,則高寬比過大造成製程困難。 Next, as shown in FIG. 1D, the photoresist layer 11 and the material deposited thereon are stripped, and the bottom metal layer 15, the intermediate dielectric layer 17, and the nanostructure 20 stacked with the top metal layer 19 are left in the opening 13. In an embodiment of the invention, the nanostructure 20 has a width between 50 nm and 1000 nm. If the width of the nanostructure 20 is too small, structural uniformity is not easily controlled. If the width of the nanostructure 20 is too large, the resonance spectrum falls at the wavelength of the infrared light, resulting in an increase in the cost of the spectrometer. In an embodiment of the invention, the width of the nanostructure 20 is greater than or equal to the height of the nanostructure 20 (the total thickness of the bottom metal layer 15, the intermediate dielectric layer 17, and the top metal layer 19). If the height of the nanostructure 20 is greater than the width of the nanostructure 20, the aspect ratio is too large to cause difficulty in the process.

由於光阻層11之開口13呈週期性排列,對應之奈米結構20亦呈週期性排列,且週期P介於100nm至2000nm之間。若週期P過大,則對應的Rayleigh ananomy發生位置落在紅外光範圍。若週期P過小,則對應的Rayleigh ananomy發生位置落在紫外光範圍且尺寸過小不容易製作。上述奈米結構20之週期性排列的上視圖可為六角形排列如第2A圖所示,矩形排列如第2B圖所示、或其他合適的排列方式。此外,奈米結構20之上視形狀可為圓形如第3A圖所示、方形如第3B圖所示、三角形如第3C圖所示、或其他合適的上視形狀。週期性排列之奈米結構20的電漿子共振波長λLSP介於0.85ns×P至1.15ns×P之間。若電漿子共振波長λLSP不在此區間,則會導致共振光譜變 寬,而降低感測晶片的光譜鑑別率。 Since the openings 13 of the photoresist layer 11 are periodically arranged, the corresponding nanostructures 20 are also periodically arranged, and the period P is between 100 nm and 2000 nm. If the period P is too large, the corresponding Rayleigh ananomy occurs in the infrared range. If the period P is too small, the corresponding Rayleigh ananomy occurs in the ultraviolet range and is too small to be easily fabricated. The top view of the periodic arrangement of the nanostructures 20 described above may be a hexagonal arrangement as shown in Figure 2A, a rectangular arrangement as shown in Figure 2B, or other suitable arrangement. In addition, the top view of the nanostructure 20 may be circular as shown in FIG. 3A, square as shown in FIG. 3B, triangular as shown in FIG. 3C, or other suitable top view. The plasmon resonance wavelength λ LSP of the periodically arranged nanostructure 20 is between 0.85 n s × P and 1.15 n s × P. If the plasmon resonance wavelength λ LSP is not in this interval, the resonance spectrum is broadened, and the spectral discrimination rate of the sensing wafer is lowered.

如第1D圖所示,底金屬層15之面積大於頂金屬層19之面積。在本發明一實施例中,底金屬層15之寬度介於50nm至1000nm之間。若底金屬層15之寬度過大,則電漿子共振波長紅移到紅外光範圍,會導致光譜儀設備成本增加。若底金屬層15之寬度過小,則結構尺寸均勻性不易控制。在本發明一實施例中,中間介電層17之寬度介於40nm至800nm之間。若中間介電層17之寬度過大或過小,則結構製作不易。在本發明一實施例中,頂金屬層19之寬度介於10nm至700nm之間。若頂金屬層19之寬度過大,則電漿子共振波長紅移到紅外光範圍,會導致光譜儀設備成本增加。若頂金屬層19之寬度過小,則結構尺寸均勻性不易控制。 As shown in FIG. 1D, the area of the bottom metal layer 15 is larger than the area of the top metal layer 19. In an embodiment of the invention, the bottom metal layer 15 has a width between 50 nm and 1000 nm. If the width of the bottom metal layer 15 is too large, the plasmon resonance wavelength is red-shifted to the infrared range, which may result in an increase in spectrometer equipment cost. If the width of the bottom metal layer 15 is too small, structural uniformity is not easily controlled. In an embodiment of the invention, the width of the intermediate dielectric layer 17 is between 40 nm and 800 nm. If the width of the intermediate dielectric layer 17 is too large or too small, the structure is not easy to fabricate. In an embodiment of the invention, the width of the top metal layer 19 is between 10 nm and 700 nm. If the width of the top metal layer 19 is too large, the plasmon resonance wavelength is red-shifted to the infrared range, which may result in an increase in the cost of the spectrometer device. If the width of the top metal layer 19 is too small, structural uniformity is not easily controlled.

雖然在第1D圖中的奈米結構20其側視形狀為錐狀,但其側視形狀亦可為山丘狀如第1E圖所示、階梯狀如第1F圖所示、或其他合適的側視形狀。可以理解的是,雖然圖式中的奈米結構20具有弧面側壁,但亦可平直側壁如第1G圖所示。在本發明一實施例中,奈米結構20的頂部可為圓潤的弧形而非平頂。 Although the side view shape of the nanostructure 20 in Fig. 1D is tapered, the side view shape may be a hill shape as shown in Fig. 1E, a stepped shape as shown in Fig. 1F, or other suitable ones. Side view shape. It will be understood that although the nanostructure 20 in the drawings has curved side walls, the flat side walls may also be as shown in FIG. 1G. In an embodiment of the invention, the top of the nanostructure 20 may be a rounded arc rather than a flat top.

上述感測晶片1可直接置於含有待測物質的介質(如水或空氣)中,藉由奈米結構20之表面與待測物之間的作用力(如凡得瓦力或物理吸附)使待測物固定於奈米結構20上,再量測晶片在不同介質中的吸收光譜峰值偏移,即可定量待測物的等效折射率,並依此計算待測物濃度。在本發明一實施例中,可進一步將修飾劑41鍵結於頂金屬層19之表面,使待測物 43經由修飾劑41連結至頂金屬層19之表面,如第4圖所示。修飾劑的種類與頂金屬層19及待測物43的種類有關。舉例來說,當頂金屬層19為金,且待測物43為抗體(antibody)時,修飾劑41可為一端帶有硫醇鍵,另一端帶有羧基(-COOH)或胺基(-NH2)的小分子,如半胱胺(cysteamine)、11-巰基十一酸(11-mercaptoundecanoic acid,11-MUA)、或巰基-十一胺鹽酸鹽(11-Amino-1-undecanethiol hydrochloride)等。 The sensing wafer 1 can be directly placed in a medium (such as water or air) containing a substance to be tested, and is subjected to a force (such as van der Waals force or physical adsorption) between the surface of the nanostructure 20 and the object to be tested. The object is fixed on the nanostructure 20, and then the peak shift of the absorption spectrum of the wafer in different media is measured, and the equivalent refractive index of the analyte is quantified, and the concentration of the analyte is calculated accordingly. In an embodiment of the present invention, the modifier 41 may be further bonded to the surface of the top metal layer 19 to make the object to be tested. 43 is bonded to the surface of the top metal layer 19 via the modifier 41 as shown in FIG. The kind of the modifier is related to the types of the top metal layer 19 and the object to be tested 43. For example, when the top metal layer 19 is gold and the analyte 43 is an antibody, the modifier 41 may have a thiol bond at one end and a carboxyl group (-COOH) or an amine group at the other end (- Small molecules of NH2), such as cysteamine, 11-mercaptoundecanoic acid (11-MUA), or 11-Amino-1-undecanethiol hydrochloride Wait.

為了讓本發明之上述和其他目的、特徵、和優點能更明顯易懂,下文特舉數實施例配合所附圖示,作詳細說明如下: The above and other objects, features, and advantages of the present invention will become more apparent and understood.

實施例 Example 實施例1 Example 1

在氧化矽基板上形成金/氧化鋁/金的奈米結構(MIM)如第5A圖所示,並在另一氧化矽基板上形成單層金奈米結構如第5B圖所示,並比較兩者結構之熱點61的分佈。第5A圖之奈米結構中,底金屬層(金)的厚度為10nm,中間介電層(氧化鋁)的厚度為20nm,頂金屬層(金)的厚度為40nm。第5A圖之奈米結構的寬度為200nm,且排列週期為650nm。第5B圖之單層金奈米結構之厚度為70nm。第5B圖之奈米結構的寬度為200nm,且排列週期為650nm。 A nanostructure (MIM) for forming gold/alumina/gold on a ruthenium oxide substrate is shown in FIG. 5A, and a single-layered gold nanostructure is formed on another ruthenium oxide substrate as shown in FIG. 5B, and compared. The distribution of hotspots 61 of both structures. In the nanostructure of Fig. 5A, the thickness of the bottom metal layer (gold) is 10 nm, the thickness of the intermediate dielectric layer (alumina) is 20 nm, and the thickness of the top metal layer (gold) is 40 nm. The nanostructure of Fig. 5A has a width of 200 nm and an arrangement period of 650 nm. The thickness of the single-layered gold nanostructure of Fig. 5B is 70 nm. The nanostructure of Fig. 5B has a width of 200 nm and an arrangement period of 650 nm.

第5B圖之單層金屬奈米結構的熱點主要位於氧化矽基板和金奈米結構接合的尖端地方。第5A圖之MIM奈米結構的熱點除了分佈在氧化矽基板和奈米結構接合的尖端地方,其頂金屬層(金)與中間介電層(氧化鋁)接合的尖端地方有另一個 強度更強的熱點分佈。 The hot spot of the single-layer metal nanostructure of Fig. 5B is mainly located at the tip end of the yttrium oxide substrate and the gold nanostructure. The hot spot of the MIM nanostructure of Fig. 5A is distributed at the tip end of the yttrium oxide substrate and the nanostructure junction, and the tip metal layer (gold) and the intermediate dielectric layer (alumina) are joined to each other at the tip end. More intense hotspot distribution.

接著以有限時域差分法(Finite Difference Time Domain,FDTD)模擬上述奈米結構對應待測物的特徵光譜。緩衝液(介質)折射率設定為1.33,待測物(抗體)折射率設定為1.5,且待測物以20nm的厚度均勻鋪設在奈米結構的表層,模擬光譜如第6A與6B圖所示。從第6A與6B圖之比較可知,MIM奈米結構可有效提升晶片靈敏度(約6.7倍)。 Then, the characteristic spectrum of the above-mentioned nanostructure corresponding to the object to be tested is simulated by the Finite Difference Time Domain (FDTD). The refractive index of the buffer (medium) was set to 1.33, the refractive index of the analyte (antibody) was set to 1.5, and the analyte was uniformly deposited on the surface of the nanostructure at a thickness of 20 nm, and the simulated spectrum was as shown in FIGS. 6A and 6B. . From the comparison of Figures 6A and 6B, the MIM nanostructure can effectively improve the sensitivity of the wafer (about 6.7 times).

進一步分析MIM結構對於待測物分布的影響,有約75%的光譜變化來自接枝於奈米結構上半部之待測物貢獻。相較之下,接枝於金奈米單層結構上半部的待測物貢獻僅佔20%。由於抗體在實際接枝過程中,液體中的抗體以布朗運動隨機碰撞奈米結構,先接枝於奈米結構上半部的抗體會形成立體障礙阻擋抗體接近較奈米結構下半部。因此將熱點位置從奈米結構底部調整到奈米結構上半部(比如頂金屬層與中間介電層之間),可有效增加待測物附著在熱點位置的機率,進而提升待測物的偵測極限。由上述可知,與單層金屬奈米結構相較,MIM奈米結構在同樣分佈密度與尺寸下具有較高的偵測靈敏度與偵測極限。 Further analysis of the influence of the MIM structure on the distribution of the analyte, about 75% of the spectral change comes from the contribution of the analyte grafted to the upper half of the nanostructure. In contrast, the contribution of the analyte grafted to the upper half of the single layer of the gold nanostructure is only 20%. Since the antibody in the liquid is randomly collided with the nanostructure by Brownian motion during the actual grafting process, the antibody grafted to the upper half of the nanostructure first forms a steric barrier antibody close to the lower half of the nanostructure. Therefore, adjusting the hot spot position from the bottom of the nanostructure to the upper half of the nanostructure (such as between the top metal layer and the intermediate dielectric layer) can effectively increase the probability of the object to be tested attached to the hot spot, thereby improving the object to be tested. Detection limit. It can be seen from the above that the MIM nanostructure has higher detection sensitivity and detection limit at the same distribution density and size than the single-layer metal nanostructure.

實施例2 Example 2

取實施例1之MIM奈米結構,調整其週期並模擬電漿子共振光譜,如第7A圖所示。模擬結果顯示當週期越大時,其共振峰的半高寬越小,此情形是因為當週期越大時,結構單元的電漿子共振模態(LSPR mode)與週期性結構繞射所造成的Rayleigh anomaly mode兩個條件互相靠近而耦合所致,如第7B 圖所示。由第7B圖可知,上述奈米結構之最佳週期為約650nm。 The MIM nanostructure of Example 1 was taken, the period was adjusted and the plasmon resonance spectrum was simulated as shown in Fig. 7A. The simulation results show that the larger the half-height of the formant is, the smaller the period is. This is because the LSPR mode of the structural unit is diffracted by the periodic structure when the period is larger. Rayleigh anomaly mode two conditions are close to each other and coupled, as in 7B The figure shows. As can be seen from Fig. 7B, the optimum period of the above nanostructure is about 650 nm.

實施例3 Example 3

奈米結構在介質為空氣(n=1)和水(n=1.33)兩種環境下的光譜變化如第8圖所示,從圖中可看到光譜有兩個特徵峰值(mode1、mode2),其中mode1對於環境折射率變化的敏感度較mode2高。第9圖係在空氣中固定奈米結構的頂金屬層厚度(15nm)與底金屬層厚度(15nm),並改變奈米結構的中間介電層厚度,以確認中間介電層厚度對特徵光譜的影響。由模擬結果可知介電層厚度越厚,兩個特徵光譜距離越近,最後甚至於會重疊。反之當介電層厚度越薄,因為上下兩金屬層的表面電漿耦合強而造成光譜分離。由於感測器只用到mode1,為了避免mode 2的干擾,故中間介電層厚度不可太大(最好小於10nm),才不會因mode1與mode2重疊而干擾特徵光譜位置的判斷。 The spectral change of the nanostructure in the environment of air (n=1) and water (n=1.33) is shown in Fig. 8. It can be seen from the figure that the spectrum has two characteristic peaks (mode1, mode2). , mode1 is more sensitive to environmental refractive index changes than mode2. Figure 9 shows the thickness of the top metal layer (15 nm) and the thickness of the bottom metal layer (15 nm) of the nanostructure in air, and the thickness of the intermediate dielectric layer of the nanostructure is changed to confirm the thickness of the intermediate dielectric layer to the characteristic spectrum. Impact. It can be seen from the simulation results that the thicker the dielectric layer is, the closer the spectral distances of the two features are, and finally even overlap. On the contrary, when the thickness of the dielectric layer is thinner, spectral separation occurs due to strong surface plasma coupling of the upper and lower metal layers. Since the sensor only uses mode1, in order to avoid the interference of mode 2, the thickness of the intermediate dielectric layer is not too large (preferably less than 10 nm), so that the discrimination of the characteristic spectral position is not disturbed due to the overlap of mode1 and mode2.

實施例4 Example 4

在氧化矽基板上形成金/氧化鋁/金的奈米結構(MIM)如第10A圖所示,並在另一氧化矽基板上形成金/氧化鋁/金的奈米結構(MIM)如第10B圖所示,兩者之底金屬層(金)的厚度均為10nm,中間介電層(氧化鋁)的厚度均為25nm,頂金屬層(金)的厚度均為10nm。第10A圖與第10B圖之奈米結構的寬度均為200nm,且排列週期均為600nm。如第10A與10B圖所示,兩個MIM奈米結構的差異在於第10A圖之剖面形狀為半橢圓形,即頂金屬層之面積(寬度為140nm)小於底金屬層之面積(寬度為200nm),而第10B圖之剖面形狀為矩形,即頂金屬層之面積與底金屬層之面積相等。以不同環境折射率下的共振波長計算 晶片對於折射率變化的靈敏度分別為269nm/RIU與288nm/RIU,可知第10B圖之奈米結構的靈敏度比第10A圖之奈米結構靈敏度高約7%。上述奈米結構之性質比較如第1表所示。 A nanostructure (MIM) of gold/alumina/gold formed on a ruthenium oxide substrate is shown in FIG. 10A, and a gold/alumina/gold nanostructure (MIM) is formed on another ruthenium oxide substrate. As shown in Fig. 10B, the thickness of the bottom metal layer (gold) is 10 nm, the thickness of the intermediate dielectric layer (alumina) is 25 nm, and the thickness of the top metal layer (gold) is 10 nm. The nanostructures of FIGS. 10A and 10B have a width of 200 nm and an arrangement period of 600 nm. As shown in Figures 10A and 10B, the difference between the two MIM nanostructures is that the cross-sectional shape of Figure 10A is semi-elliptical, that is, the area of the top metal layer (width is 140 nm) is smaller than the area of the bottom metal layer (width is 200 nm). And the cross-sectional shape of FIG. 10B is a rectangle, that is, the area of the top metal layer is equal to the area of the bottom metal layer. Calculated at resonance wavelengths at different refractive indices The sensitivity of the wafer to the change in refractive index was 269 nm/RIU and 288 nm/RIU, respectively, and it was found that the sensitivity of the nanostructure of Fig. 10B was about 7% higher than that of the nanostructure of Fig. 10A. The properties of the above nanostructures are compared as shown in Table 1.

由第1表可知,底金屬層之面積大於頂金屬層之面積的奈米結構,具有較高的靈敏度。 As can be seen from the first table, the nanostructure having a larger area of the underlying metal layer than the area of the top metal layer has high sensitivity.

P‧‧‧週期 P‧‧ cycle

1‧‧‧感測晶片 1‧‧‧Sensor wafer

10‧‧‧基板 10‧‧‧Substrate

15‧‧‧底金屬層 15‧‧‧ bottom metal layer

17‧‧‧中間介電層 17‧‧‧Intermediate dielectric layer

19‧‧‧頂金屬層 19‧‧‧Top metal layer

20‧‧‧奈米結構 20‧‧‧Nano structure

Claims (13)

一種感測晶片,包括:一基板;以及多個奈米結構,週期性地排列於該基板上,其中每一該些奈米結構包括:一底金屬層,位於該基板上;一中間介電層,位於該底金屬層上;以及一頂金屬層,位於該中間介電層上;其中該頂金屬層的面積小於該底金屬層的面積,其中不同奈米結構之底金屬層不相連,且不同奈米結構之中間介電層不相連,其中該中間介電層之厚度介於1nm至小於10nm之間。 A sensing wafer includes: a substrate; and a plurality of nanostructures periodically arranged on the substrate, wherein each of the nanostructures comprises: a bottom metal layer on the substrate; an intermediate dielectric a layer on the bottom metal layer; and a top metal layer on the intermediate dielectric layer; wherein the top metal layer has an area smaller than an area of the bottom metal layer, wherein the bottom metal layers of different nano structures are not connected, And the intermediate dielectric layers of the different nanostructures are not connected, wherein the intermediate dielectric layer has a thickness of between 1 nm and less than 10 nm. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構具有一電漿子共振波長λLSP與排列的週期P,該基板具有一折射率ns,週期P介於100nm至2000nm之間,折射率ns介於1.2至4.5之間,且λLSP介於0.85ns×P至1.15ns×P之間。 The sensing wafer of claim 1, wherein the nanostructures have a plasmon resonance wavelength λ LSP and an aligned period P, the substrate having a refractive index n s and a period P between 100 nm and Between 2000 nm, the refractive index n s is between 1.2 and 4.5, and the λ LSP is between 0.85 n s × P and 1.15 n s × P. 如申請專利範圍第1項所述之感測晶片,其中該基板包括一介電材料。 The sensing wafer of claim 1, wherein the substrate comprises a dielectric material. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構的週期性排列包括矩形排列或六邊形排列。 The sensing wafer of claim 1, wherein the periodic arrangement of the nanostructures comprises a rectangular arrangement or a hexagonal arrangement. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構的上視形狀包括圓形、方形、或三角形。 The sensing wafer of claim 1, wherein the top view shape of the nanostructures comprises a circle, a square, or a triangle. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構的側視形狀包括錐狀、山丘狀、或階梯狀。 The sensing wafer of claim 1, wherein the side views of the nanostructures comprise a cone shape, a hill shape, or a step shape. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構之寬度介於50nm至1000nm之間。 The sensing wafer of claim 1, wherein the nanostructures have a width of between 50 nm and 1000 nm. 如申請專利範圍第1項所述之感測晶片,其中該些奈米結構之寬度大於或等於該些奈米結構之高度。 The sensing wafer of claim 1, wherein the width of the nanostructures is greater than or equal to the height of the nanostructures. 如申請專利範圍第1項所述之感測晶片,其中該中間介電層包括氧化鋁、氧化矽、氮化矽、或上述之組合。 The sensing wafer of claim 1, wherein the intermediate dielectric layer comprises aluminum oxide, tantalum oxide, tantalum nitride, or a combination thereof. 如申請專利範圍第1項所述之感測晶片,其中該頂金屬層與該底金屬層各自包括金、銀、鋁、鉻、銅、鈦、或上述之合金。 The sensing wafer of claim 1, wherein the top metal layer and the bottom metal layer each comprise gold, silver, aluminum, chromium, copper, titanium, or an alloy thereof. 如申請專利範圍第1項所述之感測晶片,其中該頂金屬層之厚度介於1nm至50nm之間。 The sensing wafer of claim 1, wherein the top metal layer has a thickness of between 1 nm and 50 nm. 如申請專利範圍第1項所述之感測晶片,其中該底金屬層之厚度介於1至50nm之間。 The sensing wafer of claim 1, wherein the bottom metal layer has a thickness of between 1 and 50 nm. 如申請專利範圍第1項所述之感測晶片,更包括一修飾劑鍵結於該頂金屬層之表面,使一待測物經由該修飾劑連結至該頂金屬層之表面。 The sensing wafer of claim 1, further comprising a modifying agent bonded to the surface of the top metal layer, such that a test object is bonded to the surface of the top metal layer via the modifying agent.
TW103119848A 2014-06-09 2014-06-09 Sensing chip TWI593951B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW103119848A TWI593951B (en) 2014-06-09 2014-06-09 Sensing chip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103119848A TWI593951B (en) 2014-06-09 2014-06-09 Sensing chip

Publications (2)

Publication Number Publication Date
TW201546437A TW201546437A (en) 2015-12-16
TWI593951B true TWI593951B (en) 2017-08-01

Family

ID=55407472

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103119848A TWI593951B (en) 2014-06-09 2014-06-09 Sensing chip

Country Status (1)

Country Link
TW (1) TWI593951B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI582403B (en) 2015-12-24 2017-05-11 財團法人工業技術研究院 Sensing chip

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201329436A (en) * 2012-01-12 2013-07-16 Phansco Corp Metal nanopillars for surface-enhanced Raman spectroscopy (SERS) substrate and method for preparing same

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201329436A (en) * 2012-01-12 2013-07-16 Phansco Corp Metal nanopillars for surface-enhanced Raman spectroscopy (SERS) substrate and method for preparing same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Andrea Cattoni, Petru Ghenuche, Anne-Marie Haghiri-Gosnet, Dominique Decanini, Jing Chen, Jean-Luc Pelouard, Stephane Collin,"λ3/1000 Plasmonic Nanocavities for Biosensing Fabricated by Soft UV Nanoimprint Lithography", Nano Lett. 11, P3557–P3563,2011.08.01 *
W. Paige Hall, Salome N. Ngatia, Richard P. Van Duyne,"LSPR Biosensor Signal Enhancement Using Nanoparticle-Antibody Conjugates", J. Phys. Chem., 2011. 115: P1410-P1414,2011.01.10 *

Also Published As

Publication number Publication date
TW201546437A (en) 2015-12-16

Similar Documents

Publication Publication Date Title
Minopoli et al. Nanostructured surfaces as plasmonic biosensors: A review
JP5820929B2 (en) SPR sensor device with nanostructure
Guillot et al. Lithographied nanostructures as nanosensors
US9778183B2 (en) Sensing chip
US9019494B2 (en) Surface-enhanced Raman scattering substrate and a trace detection method of a biological and chemical analyte using the same
US20080212102A1 (en) Multispectral plasmonic crystal sensors
Kurt et al. Nanoplasmonic biosensors: Theory, structure, design, and review of recent applications
Song et al. Imprinted gold 2D nanoarray for highly sensitive and convenient PSA detection via plasmon excited quantum dots
KR101279419B1 (en) High sensitivity localized surface plasmon resonance sensor and sensor system using same
US20090181857A1 (en) System and method for producing a label-free micro-array biochip
WO2006098446A1 (en) Sensing device, sensing apparatus, and sensing method
WO2011014282A2 (en) High magnification spectral reflectance biosensing with discrete light sources
Jin et al. Large-area nanogap plasmon resonator arrays for plasmonics applications
TWI537550B (en) Label-free detection system and applications thereof
KR100480340B1 (en) Apparatus of localized surface plasmon sensor using ordered nano-sized metal structures and method manufacturing the same
Olkhov et al. Whole serum BSA antibody screening using a label-free biophotonic nanoparticle array
TWI593951B (en) Sensing chip
JP4921213B2 (en) Detection element, detection element device, and detection method
CN102954950A (en) Biosensor based on periodic nano-medium particles and preparation method thereof
US7829349B2 (en) Base carrier for detecting target substance, element for detecting target substance, method for detecting target substance using the element, and kit for detecting target substance
JP4759732B2 (en) DNA detection method, DNA detection metal structure and DNA detection apparatus
Knoben et al. Metal-induced fluorescence enhancement as a new detection mechanism for vapor sensing
JP2015215178A (en) Electric field enhancement element, analyzing device and electronic apparatus
KR101501245B1 (en) Microtiter plate and detection method of antigen-antibody reaction using thereof
JP6373553B2 (en) Measuring device using array type sensor