TWI593231B - A control device and control method for analog power switch - Google Patents

A control device and control method for analog power switch Download PDF

Info

Publication number
TWI593231B
TWI593231B TW105123297A TW105123297A TWI593231B TW I593231 B TWI593231 B TW I593231B TW 105123297 A TW105123297 A TW 105123297A TW 105123297 A TW105123297 A TW 105123297A TW I593231 B TWI593231 B TW I593231B
Authority
TW
Taiwan
Prior art keywords
switch
capacitor
voltage
control
analog power
Prior art date
Application number
TW105123297A
Other languages
Chinese (zh)
Other versions
TW201801476A (en
Inventor
Miao Li
Qiang Luo
lie-yi Fang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Application granted granted Critical
Publication of TWI593231B publication Critical patent/TWI593231B/en
Publication of TW201801476A publication Critical patent/TW201801476A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/51Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used
    • H03K17/56Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices
    • H03K17/687Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the components used by the use, as active elements, of semiconductor devices the devices being field-effect transistors
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters

Description

一種用於類比功率開關的控制裝置和控制方法 Control device and control method for analog power switch

本發明涉及電路領域,更具體地涉及一種用於類比功率開關的控制裝置和控制方法。 The present invention relates to the field of circuits, and more particularly to a control apparatus and control method for analog power switches.

目前,類比功率開關被廣泛應用在各種電路系統中。在類比功率開關被應用在電路系統中時,可以通過控制該類比功率開關的閘極電壓(Vgate)與源極電壓(Vsource)之間的電壓差值Vgs(Vgate-Vsource)來控制其導通與截止。具體地,當Vgs<Vth時,類比功率開關截止;當VgsVth時,類比功率開關導通,且其導通阻抗隨Vgs的增大而減小,其中Vth是類比功率開關的導通閾值電壓。 At present, analog power switches are widely used in various circuit systems. When the analog power switch is applied in the circuit system, the conduction and the voltage difference Vgs (Vgate-Vsource) between the gate voltage (Vgate) and the source voltage (Vsource) of the analog power switch can be controlled. cutoff. Specifically, when Vgs<Vth, the analog power switch is turned off; when Vgs At Vth, the analog power switch is turned on, and its on-resistance decreases as Vgs increases, where Vth is the turn-on threshold voltage of the analog power switch.

第1圖是類比功率開關(例如,N通道金屬氧化物半導體(N-channel Metal-Oxide-Semiconductor,NMOS)功率電晶體)的示例應用的示意圖。如第1圖所示,NMOS功率電晶體被包括在晶片C中;晶片C具有VIN、VOUT、以及GND三個端子,並且包括NMOS功率電晶體、閘極驅動電路、以及控制電路三部分。其中,NMOS功率電晶體的汲極與VIN端子連接,輸入電壓VIN經由VIN端子被輸入到NMOS功率電晶體的汲極;NMOS功率電晶體的源極與VOUT端子連接,輸出電壓VOUT經由VOUT端子被提供給負載;控制電路生成用以控制NMOS功率電晶體導通與截止的控制信號;閘極驅動電路基於控制電路生成的控制信號生成用以驅動NMOS功率電晶體導通與截止的驅動信號,並將該驅動信號提供給NMOS功率電晶體的閘極。 Figure 1 is a schematic diagram of an exemplary application of an analog power switch, such as an N-channel Metal-Oxide-Semiconductor (NMOS) power transistor. As shown in FIG. 1, an NMOS power transistor is included in the wafer C; the wafer C has three terminals of VIN, VOUT, and GND, and includes three parts of an NMOS power transistor, a gate driving circuit, and a control circuit. The drain of the NMOS power transistor is connected to the VIN terminal, and the input voltage VIN is input to the drain of the NMOS power transistor via the VIN terminal; the source of the NMOS power transistor is connected to the VOUT terminal, and the output voltage VOUT is connected via the VOUT terminal. Provided to the load; the control circuit generates a control signal for controlling the turn-on and turn-off of the NMOS power transistor; the gate driving circuit generates a driving signal for driving the NMOS power transistor to turn on and off based on the control signal generated by the control circuit, and The drive signal is supplied to the gate of the NMOS power transistor.

在NMOS功率電晶體導通之前,VOUT端子接地;當VgsVth時,NMOS功率電晶體導通。由於導通後的NMOS功率電晶體的導通阻抗很小,VOUT端子與VIN端子之間可視為短路,因此在NMOS 功率電晶體導通後輸出電壓VOUT沖高到輸入電壓VIN。為了維持NMOS功率電晶體的導通狀態,閘極驅動電路被配置為控制NMOS功率電晶體的閘極電壓Vgate隨輸出電壓VOUT的沖高而變高,即維持閘極電壓VgateVOUT+Vth,才能確保滿足VgsVth的導通條件。 Before the NMOS power transistor is turned on, the VOUT terminal is grounded; when Vgs At Vth, the NMOS power transistor is turned on. Since the on-resistance of the turned-on NMOS power transistor is small, the VOUT terminal and the VIN terminal can be regarded as a short circuit, so that the output voltage VOUT rises to the input voltage VIN after the NMOS power transistor is turned on. In order to maintain the on state of the NMOS power transistor, the gate driving circuit is configured to control the gate voltage Vgate of the NMOS power transistor to become higher as the output voltage VOUT rises, that is, maintain the gate voltage Vgate VOUT+Vth to ensure that Vgs is met The conduction condition of Vth.

通常,閘極驅動電路通過Bootstrap(自舉)方式和充電泵方式中的任意一種方式來生成驅動信號。但是,Bootstrap方式和充電泵方式一般都需要外接大電容,出於成本考慮,晶片C一般無法集成如此大的電容。 Generally, the gate driving circuit generates a driving signal by any one of a Bootstrap method and a charge pump method. However, the Bootstrap method and the charge pump method generally require an external large capacitor. For cost reasons, the chip C generally cannot integrate such a large capacitor.

本發明提供了一種用於類比功率開關的控制裝置和方法。 The present invention provides a control apparatus and method for an analog power switch.

根據本發明實施例的用於類比功率開關的控制裝置,包括:電容,該電容的上極板經由二極體與類比功率開關的閘極連接並且經由第一開關與輸入電壓連接,該電容的下極板經由第二開關與類比功率開關的源極連接並且經由第三開關與地連接;以及邏輯控制元件,被配置為通過控制第一開關、第二開關、以及第三開關的閉合與斷開來控制電容充電與放電,從而控制類比功率開關導通與截止,其中當第一開關和第三開關閉合、第二開關斷開時電容充電,當第一開關和第三開關斷開、第二開關閉合時電容放電。 A control device for an analog power switch according to an embodiment of the present invention includes: a capacitor, an upper plate of the capacitor is connected to a gate of an analog power switch via a diode and connected to an input voltage via a first switch, the capacitor The lower plate is coupled to the source of the analog power switch via a second switch and to the ground via the third switch; and the logic control element is configured to control the closing and closing of the first switch, the second switch, and the third switch The capacitor is controlled to charge and discharge, thereby controlling the analog power switch to be turned on and off, wherein when the first switch and the third switch are closed, the second switch is turned off, the capacitor is charged, when the first switch and the third switch are turned off, and the second The capacitor discharges when the switch is closed.

根據本發明實施例的用於類比功率開關的控制方法,包括:使電容的上極板經由二極體與類比功率開關的閘極連接並且經由第一開關與輸入電壓連接;使電容的下極板經由第二開關與類比功率開關的源極連接並且經由第三開關與地連接;以及通過控制第一開關、第二開關、以及第三開關的閉合與斷開來控制上述電容充電與放電,從而控制類比功率開關導通與截止,其中當第一開關和第三開關閉合、第二開關斷開時上述電容充電,當第一開關和第三開關斷開、第二開關閉合時上述電容放電。 A control method for an analog power switch according to an embodiment of the present invention includes: connecting an upper plate of a capacitor to a gate of an analog power switch via a diode and connecting to an input voltage via a first switch; The board is connected to the source of the analog power switch via the second switch and to the ground via the third switch; and controlling the charging and discharging of the capacitor by controlling the closing and opening of the first switch, the second switch, and the third switch, Thereby, the analog power switch is controlled to be turned on and off, wherein the capacitor is charged when the first switch and the third switch are closed and the second switch is turned off, and the capacitor is discharged when the first switch and the third switch are turned off and the second switch is closed.

在根據本發明實施例的用於類比功率開關的控制裝置和 方法中,電容的上下極板之間的壓差不大,所以無需採用大電容或級聯電容來實現高耐壓的電容,因此可以有效地降低實現根據本發明實施例的用於類比功率開關的控制裝置和方法的晶片的成本。 Control device for analog power switch and according to an embodiment of the present invention In the method, the voltage difference between the upper and lower plates of the capacitor is not large, so that it is not necessary to use a large capacitor or a cascode capacitor to realize a high withstand voltage capacitor, so that the analog power switch according to the embodiment of the present invention can be effectively reduced. The cost of the control device and method of the wafer.

Vgate‧‧‧閘極電壓 Vgate‧‧‧ gate voltage

MOS_EN‧‧‧開關使能信號 MOS_EN‧‧‧Switch enable signal

Vsource‧‧‧源極電壓 Vsource‧‧‧ source voltage

SST‧‧‧軟啟動信號 SST‧‧‧ soft start signal

Vth‧‧‧導通閾值電壓 Vth‧‧‧ conduction threshold voltage

CLK‧‧‧時鐘信號 CLK‧‧‧ clock signal

C‧‧‧晶片 C‧‧‧ wafer

SD、PA、PB、PC‧‧‧開關控制信號 SD, PA, PB, PC‧‧‧ switch control signals

VIN‧‧‧輸入電壓 VIN‧‧‧ input voltage

PH1、PH2‧‧‧電壓選擇信號 PH1, PH2‧‧‧ voltage selection signal

VOUT‧‧‧輸出電壓 VOUT‧‧‧ output voltage

AVDD‧‧‧恒定電壓 AVDD‧‧‧ Constant voltage

GND、VS‧‧‧端子 GND, VS‧‧‧ terminal

Vramp‧‧‧斜坡電壓 Vramp‧‧‧ ramp voltage

C0、C1、C2、C7‧‧‧電容 C0, C1, C2, C7‧‧‧ capacitor

VCP‧‧‧極板電壓 VCP‧‧‧ plate voltage

C3-C6‧‧‧串聯電容 C3-C6‧‧‧ series capacitor

R1、R2、R3、R4‧‧‧電阻 R1, R2, R3, R4‧‧‧ resistance

410‧‧‧充電泵主電路 410‧‧‧Charging pump main circuit

D0‧‧‧二極體 D0‧‧‧ diode

430‧‧‧邏輯控制電路 430‧‧‧Logic Control Circuit

D1‧‧‧電壓嵌位二極體 D1‧‧‧ voltage clamp diode

Vsel‧‧‧電壓選擇 Vsel‧‧‧Voltage selection

C1p、C2p、C3p、C4p‧‧‧對地電容 C1p, C2p, C3p, C4p‧‧‧ capacitance to ground

P1、P3、N1、N2、N3、N4‧‧‧開關 P1, P3, N1, N2, N3, N4‧‧‧ switch

420‧‧‧電壓選擇(Vsel)電路 420‧‧‧Voltage selection (Vsel) circuit

D‧‧‧功率電力MOS場效電晶體汲極 D‧‧‧Power MOS field effect transistor bungee

G‧‧‧功率電力MOS場效電晶體閘極 G‧‧‧Power MOS field effect transistor gate

S‧‧‧功率電力MOS場效電晶體源極 S‧‧‧Power MOS field effect transistor source

Vgs‧‧‧閘極電壓(Vgate)與源極電壓(Vsource)之間的電壓差值 Voltage difference between Vgs‧‧ ‧ gate voltage (Vgate) and source voltage (Vsource)

通從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中,相似的標號指示相同或功能類似的元件:第1圖是類比功率開關(例如,N通道金屬氧化物半導體(NMOS)功率電晶體)的示例應用的示意圖;第2圖是用在第1圖所示的閘極驅動電路中的傳統充電泵的示例電路圖;第3圖是用在第1圖所示的閘極驅動電路中的採用級聯電容的傳統充電泵的示例電路圖;第4圖是根據本發明實施例的用在第1圖所示的閘極驅動電路中的充電泵的示意圖;第5圖示出了與第4圖中所示的邏輯控制電路有關的信號的時序圖。 The invention may be better understood from the following description of the embodiments of the invention, in which <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Schematic diagram of an exemplary application of a semiconductor (NMOS) power transistor; FIG. 2 is an exemplary circuit diagram of a conventional charge pump used in the gate drive circuit shown in FIG. 1; and FIG. 3 is used in FIG. Example circuit diagram of a conventional charge pump using a cascade capacitor in the illustrated gate drive circuit; FIG. 4 is a schematic diagram of a charge pump used in the gate drive circuit shown in FIG. 1 according to an embodiment of the present invention; Figure 5 shows a timing diagram of signals associated with the logic control circuit shown in Figure 4.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention are described in detail below. In the following detailed description, numerous specific details are set forth However, it will be apparent to those skilled in the art that the present invention may be practiced without some of the details. The following description of the embodiments is merely provided to provide a better understanding of the invention. The present invention is in no way limited to any specific configurations and algorithms presented below, but without departing from the spirit and scope of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessary obscuring the invention.

第2圖是用在第1圖所示的閘極驅動電路中的傳統充電泵的示例電路圖。在第2圖所示的充電泵的高壓應用的情形中,由於電容C1和C2的上下極板的壓差過大,需要通過級聯電容的方式來實現高耐壓 的電容,這會導致晶片C的成本大大增加。 Fig. 2 is a circuit diagram showing an example of a conventional charge pump used in the gate drive circuit shown in Fig. 1. In the case of the high voltage application of the charge pump shown in Fig. 2, since the voltage difference between the upper and lower plates of the capacitors C1 and C2 is too large, it is necessary to realize a high withstand voltage by means of a cascade capacitor. The capacitance, which causes the cost of the wafer C to increase greatly.

第3圖是用在第1圖所示的閘極驅動電路中的採用級聯電容的傳統充電泵的示例電路圖。在第3圖所示的充電泵中,通過採用串聯電容方式解決了電容C1和C2的上下極板的耐壓問題。但是,如第3圖所示,電容C1和C2、以及它們的串聯電容C3-C6共同引入了寄生的對地電容(例如,C1p、C2p、C3p、C4p),這些寄生的對地電容會使得電容C1-C6在工作狀態的等效容值變小。因此,要達到同樣效果需要級聯更多的電容,這會進一步增加晶片C的成本。 Fig. 3 is a circuit diagram showing an example of a conventional charge pump using a cascade capacitor used in the gate drive circuit shown in Fig. 1. In the charge pump shown in Fig. 3, the withstand voltage of the upper and lower plates of the capacitors C1 and C2 is solved by using a series capacitor. However, as shown in Figure 3, capacitors C1 and C2, and their series capacitors C3-C6, together introduce parasitic capacitance to ground (eg, C1p, C2p, C3p, C4p), which can make the parasitic capacitance to ground The equivalent capacitance of the capacitors C1-C6 in the operating state becomes small. Therefore, to achieve the same effect, it is necessary to cascade more capacitors, which further increases the cost of the wafer C.

為了解決結合第2圖和第3圖描述的充電泵中存在的一個或多個問題,提出了一種新穎的用在第1圖所示的閘極驅動電路中的充電泵,以有效地降低晶片C的成本。下面參考附圖,詳細描述根據本發明實施例的用於第1圖所示的閘極驅動電路中的充電泵。 In order to solve one or more problems in the charge pump described in connection with FIGS. 2 and 3, a novel charge pump for use in the gate drive circuit shown in FIG. 1 is proposed to effectively reduce the wafer. The cost of C. A charge pump for use in the gate driving circuit shown in Fig. 1 according to an embodiment of the present invention will be described in detail below with reference to the accompanying drawings.

第4圖是根據本發明實施例的用在第1圖所示的閘極驅動電路中的充電泵的示意圖。如第4圖所示,根據本發明實施例的充電泵包括充電泵主電路410、電壓選擇(Vsel)電路420、和邏輯控制電路430。具體地: Fig. 4 is a schematic view of a charge pump used in the gate driving circuit shown in Fig. 1 according to an embodiment of the present invention. As shown in FIG. 4, a charge pump according to an embodiment of the present invention includes a charge pump main circuit 410, a voltage selection (Vsel) circuit 420, and a logic control circuit 430. specifically:

充電泵主電路410包括開關P1、P3、N1-N4,電容C0,以及二極體D0;充電泵主電路410的VS端子與Vsel電路420的輸出端相連,充電泵主電路410的GATE端子與NMOS功率電晶體的閘極相連,並且充電泵主電路410的VOUT端子與NMOS功率電晶體的源極相連。 The charge pump main circuit 410 includes switches P1, P3, N1-N4, a capacitor C0, and a diode D0; the VS terminal of the charge pump main circuit 410 is connected to the output of the Vsel circuit 420, and the GATE terminal of the charge pump main circuit 410 is The gates of the NMOS power transistors are connected, and the VOUT terminal of the charge pump main circuit 410 is connected to the source of the NMOS power transistor.

邏輯控制電路430接收開關使能信號MOS_EN、軟啟動信號SST、和時鐘信號CLK,基於開關使能信號MOS_EN生成開關控制信號SD,基於開關使能信號MOS_EN和軟啟動信號SST生成電壓選擇信號PH1和PH2,並基於開關使能信號MOS_EN和時鐘信號CLK生成開關控制信號PA、PB、和PC。其中: The logic control circuit 430 receives the switch enable signal MOS_EN, the soft start signal SST, and the clock signal CLK, generates a switch control signal SD based on the switch enable signal MOS_EN, and generates a voltage selection signal PH1 based on the switch enable signal MOS_EN and the soft start signal SST. PH2, and generates switch control signals PA, PB, and PC based on the switch enable signal MOS_EN and the clock signal CLK. among them:

,即當MOS_EN=1時,SD=0;當MOS_EN=0時,SD=1。 That is, when MOS_EN = 1, SD = 0; when MOS_EN = 0, SD = 1.

PH1=SSTMOS_EN,即當MOS_EN= 1時,PH1=SST,;當MOS_EN=0時,PH1=PH2=0。 PH 1= SST . MOS_EN , , that is, when MOS_EN = 1, PH1 = SST, When MOS_EN=0, PH1=PH2=0.

,即當 MOS_EN=1時,PA=PC=CLK,而當MOS_EN=0時,PB=0,PA=PC=1。 , , that is, when MOS_EN=1, , PA = PC = CLK , and when MOS_EN = 0, PB = 0, PA = PC = 1.

第5圖示出了與第4圖中所示的邏輯控制電路有關的信號的時序圖。需要說明的是,由於邏輯控制電路存在一定的延遲,所以開關控制信號PA、PB、和PC的波形不是與時鐘信號CLK嚴格對齊的。 Fig. 5 is a timing chart showing signals related to the logic control circuit shown in Fig. 4. It should be noted that since the logic control circuit has a certain delay, the waveforms of the switch control signals PA, PB, and PC are not strictly aligned with the clock signal CLK.

下面結合第4圖和第5圖,詳細描述以上所述各個信號的作用、以及充電泵主電路410的工作過程: The function of each of the above-described signals and the operation of the charge pump main circuit 410 will be described in detail below with reference to FIGS. 4 and 5:

開關使能信號MOS_EN指示是否啟用NMOS功率電晶體,開關控制信號SD控制開關N4的閉合與斷開從而控制是否啟用NMOS功率電晶體。具體地,當開關使能信號MOS_EN為高位準時,開關控制信號SD為低位準,開關N4斷開,NMOS功率電晶體被啟用;當開關使能信號MOS_EN為低位準時,開關控制信號SD為高位準,開關N4閉合,NMOS功率電晶體的閘極接地,NMOS功率電晶體被禁用。 The switch enable signal MOS_EN indicates whether the NMOS power transistor is enabled, and the switch control signal SD controls the closing and opening of the switch N4 to control whether the NMOS power transistor is enabled. Specifically, when the switch enable signal MOS_EN is at a high level, the switch control signal SD is at a low level, the switch N4 is turned off, and the NMOS power transistor is enabled; when the switch enable signal MOS_EN is at a low level, the switch control signal SD is at a high level. The switch N4 is closed, the gate of the NMOS power transistor is grounded, and the NMOS power transistor is disabled.

軟啟動信號SST指示是否採用軟啟動過程,電壓選擇信號PH1和PH2控制Vsel電路420選擇恒定電壓AVDD和斜坡電壓Vramp中的一者提供給充電泵主電路410(下面為了方便,將所選擇的電壓稱為電壓VS)。具體地,當軟啟動信號SST為高位準時,電壓選擇信號PH1為高位準,電壓選擇信號PH2為低位準,Vsel電路420選擇斜坡電壓Vramp作為電壓VS提供給充電泵主電路410(即,採用軟啟動過程);當軟啟動信號SST為低位準時,電壓選擇信號PH1為低位準,電壓選擇信號PH2為高位準,Vsel電路420選擇恒定電壓AVDD作為電壓VS提供給充電泵主電路410(即,不採用軟啟動過程)。 The soft start signal SST indicates whether a soft start process is employed, and the voltage selection signals PH1 and PH2 control the Vsel circuit 420 to select one of the constant voltage AVDD and the ramp voltage Vramp to be supplied to the charge pump main circuit 410 (hereinafter, the selected voltage is convenient for convenience) Called voltage VS). Specifically, when the soft start signal SST is at a high level, the voltage selection signal PH1 is at a high level, the voltage selection signal PH2 is at a low level, and the Vsel circuit 420 selects the ramp voltage Vramp as a voltage VS to be supplied to the charge pump main circuit 410 (ie, using soft Startup process); when the soft start signal SST is low, the voltage selection signal PH1 is low, the voltage selection signal PH2 is high, and the Vsel circuit 420 selects the constant voltage AVDD as the voltage VS to be supplied to the charge pump main circuit 410 (ie, no Adopt soft start process).

時鐘信號CLK提供一定頻率的時鐘信號。開關控制信號PA控制開關N2的閉合與斷開;開關控制信號PB控制開關N3和P3的閉合與斷開(開關P3與開關N3同時閉合或斷開);開關控制信號PC控制開關N1和P1的閉合與斷開(開關P1與N1同時閉合或斷開)。 The clock signal CLK provides a clock signal of a certain frequency. The switch control signal PA controls the closing and opening of the switch N2; the switch control signal PB controls the closing and opening of the switches N3 and P3 (the switch P3 and the switch N3 are simultaneously closed or opened); the switch control signal PC controls the switches N1 and P1 Closed and open (switches P1 and N1 are closed or open at the same time).

從以上描述可知,在NMOS電晶體被使能的情況下,邏輯控制電路430基於軟啟動信號SST生成電壓選擇信號PH1和PH2,並基於時鐘信號CLK生成開關控制信號PA、PB、和PC。 As apparent from the above description, in the case where the NMOS transistor is enabled, the logic control circuit 430 generates the voltage selection signals PH1 and PH2 based on the soft start signal SST, and generates the switch control signals PA, PB, and PC based on the clock signal CLK.

在NMOS電晶體被使能的情況下,當採用軟啟動過程時,充電泵主電路410在以下所述的第一狀態和第二狀態之間切換,從而實現對NMOS功率電晶體的閘極電壓的控制。具體地: In the case where the NMOS transistor is enabled, when the soft start process is employed, the charge pump main circuit 410 switches between the first state and the second state described below, thereby realizing the gate voltage to the NMOS power transistor. control. specifically:

在第一狀態,N2導通,P1導通,P3斷開,N4斷開,電容C0的下極板接地,電容C0的上極板接電壓VS,此時電容C0進行充電直到電容C0的上下極板之間的電壓達到電壓VS為止。 In the first state, N2 is turned on, P1 is turned on, P1 is turned on, P3 is turned off, N4 is turned off, the lower plate of the capacitor C0 is grounded, and the upper plate of the capacitor C0 is connected to the voltage VS. At this time, the capacitor C0 is charged until the upper and lower plates of the capacitor C0 are charged. The voltage between them reaches the voltage VS.

在第二狀態,N2斷開,P1斷開,P3導通,N4斷開,電容C0的下極板接輸出電壓VOUT;由於電容C0的上下極板之間的電壓不能突變,所以電容C0的上極板電壓VCP瞬間被抬升至VOUT+VS,此時電容C0的上極板電壓VCP通過二極體D0對NMOS功率電晶體的閘極電壓進行充電。 In the second state, N2 is disconnected, P1 is turned off, P3 is turned on, N4 is turned off, and the lower plate of the capacitor C0 is connected to the output voltage VOUT; since the voltage between the upper and lower plates of the capacitor C0 cannot be abrupt, the capacitor C0 is on The plate voltage VCP is instantaneously raised to VOUT+VS, at which time the upper plate voltage VCP of the capacitor C0 charges the gate voltage of the NMOS power transistor through the diode D0.

經過充電泵主電路410在第一狀態和第二狀態之間的多次切換,NMOS功率電晶體的閘極電壓Vgate與源極電壓Vsource之間的電壓差值Vgs逐漸增大到電壓Vramp的峰值(該峰值大於或者等於Vth),NMOS功率電晶體導通。 After a plurality of switching between the first state and the second state by the charge pump main circuit 410, the voltage difference Vgs between the gate voltage Vgate of the NMOS power transistor and the source voltage Vsource gradually increases to the peak value of the voltage Vramp. (The peak is greater than or equal to Vth) and the NMOS power transistor is turned on.

這裡,開關N2、P1、P3的內阻的大小決定了這些開關的開關速度和導通能力,而這些開關的開關速度和導通能力又決定了電容C0充電或放電速度的快慢,所以可以按照所需控制的電容C0的充電或放電速度為這些開關設置適當的內阻;開關N4的內阻的大小決定了開關N4的開關速度和導通能力,而開關N4的開關速度和導通能力又決定了NMOS電晶體閘極的放電速度的快慢,所以可以按照所需控制的NMOS電晶體閘極的放電速度為開關N4設置適當的內阻。也就是說,可根據開關N2、P1、P3、N4各自的開關速度和導通能力按需調配開關N2、P1、P3、N4的內阻。 Here, the internal resistance of the switches N2, P1, P3 determines the switching speed and conduction capability of these switches, and the switching speed and conduction capability of these switches determine the speed of charging or discharging of the capacitor C0, so it can be as needed. The charging or discharging speed of the controlled capacitor C0 sets the appropriate internal resistance for these switches; the internal resistance of the switch N4 determines the switching speed and the conducting capability of the switch N4, and the switching speed and the conducting capability of the switch N4 determine the NMOS power. The discharge speed of the crystal gate is fast, so the appropriate internal resistance can be set for the switch N4 according to the discharge speed of the NMOS transistor gate to be controlled. That is to say, the internal resistances of the switches N2, P1, P3, and N4 can be adjusted as needed according to the respective switching speeds and conduction capacities of the switches N2, P1, P3, and N4.

從以上所述可以看出,在第4圖所示的充電泵中,電容 C0的上下極板之間的壓差不大,所以無需採用大電容或級聯電容來實現高耐壓的電容,因此可以有效地降低晶片C的成本。 As can be seen from the above, in the charge pump shown in Fig. 4, the capacitor The voltage difference between the upper and lower plates of C0 is not large, so it is not necessary to use a large capacitor or a cascode capacitor to achieve a high withstand voltage capacitor, so the cost of the wafer C can be effectively reduced.

在一些實施例中,邏輯控制電路430也可以不接收軟啟動信號SST並且不生成電壓選擇信號PH1和PH2,此時可以僅採用恒定電壓AVDD和斜坡電壓Vramp中的一者作為電壓VS。 In some embodiments, the logic control circuit 430 may also not receive the soft start signal SST and not generate the voltage selection signals PH1 and PH2, in which case only one of the constant voltage AVDD and the ramp voltage Vramp may be employed as the voltage VS.

在採用恒定電壓AVDD作為電壓VS的情況下,在充電泵主電路410處於第二狀態時,電容C0的上極板電壓VCP即刻被抬升至VOUT+AVDD,從而使得NMOS功率電晶體的閘極電壓Vgate迅速增大至VOUT+AVDD。 In the case where the constant voltage AVDD is used as the voltage VS, when the charge pump main circuit 410 is in the second state, the upper plate voltage VCP of the capacitor C0 is immediately raised to VOUT+AVDD, thereby making the gate voltage of the NMOS power transistor Vgate quickly increases to VOUT+AVDD.

在採用斜坡電壓Vramp(例如,從0V到AVDD)作為電壓VS的情況下,經過充電泵主電路410在第一狀態和第二狀態之間的多次切換,電容C0的上極板電壓VCP被逐漸抬升至VOUT+AVDD,使得NMOS功率電晶體的閘極電壓Vgate逐漸增大,從而實現NMOS功率電晶體的軟啟動。 In the case where the ramp voltage Vramp (for example, from 0 V to AVDD) is employed as the voltage VS, the upper plate voltage VCP of the capacitor C0 is passed through the plurality of switching between the first state and the second state by the charge pump main circuit 410. Gradually rising to VOUT+AVDD, the gate voltage Vgate of the NMOS power transistor is gradually increased, thereby achieving soft start of the NMOS power transistor.

在一些實施例中,也可以採用恒定電壓AVDD和斜坡電壓Vramp的組合作為電壓VS(即,不需要軟啟動信號SST、以及電壓選擇信號PH1和PH2)。在這種情況下,可以首先採用斜坡電壓Vramp進行軟啟動,隨後採用恒定電壓AVDD使NMOS功率電晶體的閘極電壓Vgate最終增大至VOUT+AVDD。 In some embodiments, a combination of a constant voltage AVDD and a ramp voltage Vramp may also be employed as the voltage VS (ie, the soft start signal SST, and the voltage selection signals PH1 and PH2 are not required). In this case, the soft start can be first performed using the ramp voltage Vramp, and then the gate voltage Vgate of the NMOS power transistor is finally increased to VOUT+AVDD using the constant voltage AVDD.

在一些實施例中,第4圖中所示的開關P1和P3可以被實現為P通道金屬氧化物半導體(P-channel Metal-Oxide-Semiconductor,PMOS)電晶體,並且開關N1-N4可以被實現為NMOS電晶體。另外,第4圖中所示的二極體D0可以被實現為閘極和源極連接在一起的PMOS電晶體。在另一些實施例中,第4圖中所示的開關也可以使用傳輸門來實現。 In some embodiments, the switches P1 and P3 shown in FIG. 4 can be implemented as a P-channel Metal-Oxide-Semiconductor (PMOS) transistor, and the switches N1-N4 can be implemented. It is an NMOS transistor. In addition, the diode D0 shown in FIG. 4 can be implemented as a PMOS transistor in which the gate and the source are connected together. In other embodiments, the switch shown in Figure 4 can also be implemented using a transfer gate.

結合第1圖至第5圖可以看出,本發明提供了一種用於類比功率開關(例如,NMOS功率電晶體)的控制裝置,包括:電容(例如,電容C0),該電容的上極板經由二極體(例如,二極體D0)與類比 功率開關的閘極連接並且經由第一開關(例如,開關P1)與輸入電壓(例如,恒定電壓AVDD、斜坡電壓Vramp、或者它們的組合)連接,該電容的下極板經由第二開關(例如,開關P3)與類比功率開關的源極連接並且經由第三開關(例如,開關N2)與地連接;以及邏輯控制元件(例如,邏輯控制電路430),被配置為通過控制第一開關、第二開關、以及第三開關的閉合與斷開來控制上述電容充電與放電,從而控制類比功率開關導通與截止,其中當第一開關和第三開關閉合、第二開關斷開時上述電容充電,當第一開關和第三開關斷開、第二開關閉合時上述電容放電。 As can be seen in conjunction with Figures 1 through 5, the present invention provides a control device for an analog power switch (e.g., an NMOS power transistor) comprising: a capacitor (e.g., capacitor C0), the upper plate of the capacitor Analogy via a diode (eg, diode D0) The gate of the power switch is connected and connected to an input voltage (eg, a constant voltage AVDD, a ramp voltage Vramp, or a combination thereof) via a first switch (eg, switch P1), the lower plate of the capacitor being via a second switch (eg, a switch P3) coupled to the source of the analog power switch and coupled to ground via a third switch (eg, switch N2); and a logic control element (eg, logic control circuit 430) configured to control the first switch, The second switch and the third switch are closed and opened to control the charging and discharging of the capacitor, thereby controlling the analog power switch to be turned on and off, wherein the capacitor is charged when the first switch and the third switch are closed and the second switch is turned off. The capacitor discharges when the first switch and the third switch are turned off and the second switch is closed.

換言之,本發明提供了一種用於類比功率開關(例如,NMOS功率電晶體)的控制方法,包括:使電容(例如,電容C0)的上極板經由二極體(例如,二極體D0)與類比功率開關的閘極連接並且經由第一開關(例如,開關P1)與輸入電壓(例如,恒定電壓AVDD、斜坡電壓Vramp、或者它們的組合)連接;使電容的下極板經由第二開關(例如,開關P3)與類比功率開關的源極連接並且經由第三開關(例如,開關N2)與地連接;以及通過控制第一開關、第二開關、以及第三開關的閉合與斷開來控制上述電容充電與放電,從而控制類比功率開關導通與截止,其中當第一開關和第三開關閉合、第二開關斷開時上述電容充電,當第一開關和第三開關斷開、第二開關閉合時上述電容放電。 In other words, the present invention provides a control method for an analog power switch (eg, an NMOS power transistor), including: passing an upper plate of a capacitor (eg, capacitor C0) via a diode (eg, diode D0) Connected to the gate of the analog power switch and connected to the input voltage (eg, constant voltage AVDD, ramp voltage Vramp, or a combination thereof) via the first switch (eg, switch P1); the lower plate of the capacitor is passed through the second switch (eg, switch P3) is coupled to the source of the analog power switch and to ground via a third switch (eg, switch N2); and by controlling the closing and opening of the first switch, the second switch, and the third switch Controlling the charging and discharging of the capacitor, thereby controlling the analog power switch to be turned on and off, wherein the capacitor is charged when the first switch and the third switch are closed, and the second switch is turned off, when the first switch and the third switch are turned off, and the second The above capacitor discharges when the switch is closed.

在根據本發明實施例的用於類比功率開關的控制裝置和方法中,電容的上下極板之間的壓差不大,所以無需採用大電容或級聯電容來實現高耐壓的電容,因此可以有效地降低實現根據本發明實施例的用於類比功率開關的控制裝置和方法的晶片C的成本。 In the control apparatus and method for an analog power switch according to an embodiment of the present invention, the voltage difference between the upper and lower plates of the capacitor is not large, so that it is not necessary to use a large capacitor or a cascade capacitor to realize a high withstand voltage capacitor, The cost of implementing the wafer C for the control apparatus and method for the analog power switch according to an embodiment of the present invention can be effectively reduced.

本發明可以以其他的具體形式實現,而不脫離其精神和本質特徵。例如,特定實施例中所描述的演算法可以被修改,而系統體系結構並不脫離本發明的基本精神。因此,當前的實施例在所有方面都被看作是示例性的而非限定性的,本發明的範圍由所附申請專利範圍而非上述描述定義,並且,落入申請專利範圍的含義和等同物的範圍內的全部改變從而都被包括在本發明的範圍之中。 The invention may be embodied in other specific forms without departing from the spirit and essential characteristics. For example, the algorithms described in the specific embodiments can be modified, and the system architecture does not depart from the basic spirit of the invention. The present embodiments are to be considered in all respects as illustrative and not limiting, and the scope of the invention All changes in the scope of the invention are thus included in the scope of the invention.

VIN‧‧‧輸入電壓 VIN‧‧‧ input voltage

SST‧‧‧軟啟動信號 SST‧‧‧ soft start signal

VOUT‧‧‧輸出電壓 VOUT‧‧‧ output voltage

CLK‧‧‧時鐘信號 CLK‧‧‧ clock signal

GND、VS‧‧‧端子 GND, VS‧‧‧ terminal

SD、PA、PB、PC‧‧‧開關控制信號 SD, PA, PB, PC‧‧‧ switch control signals

C0‧‧‧電容 C0‧‧‧ capacitor

PH1、PH2‧‧‧電壓選擇信號 PH1, PH2‧‧‧ voltage selection signal

Vsel‧‧‧電壓選擇 Vsel‧‧‧Voltage selection

AVDD‧‧‧恒定電壓 AVDD‧‧‧ Constant voltage

410‧‧‧充電泵主電路 410‧‧‧Charging pump main circuit

Vramp‧‧‧斜坡電壓 Vramp‧‧‧ ramp voltage

430‧‧‧邏輯控制電路 430‧‧‧Logic Control Circuit

VCP‧‧‧極板電壓 VCP‧‧‧ plate voltage

D0‧‧‧二極體 D0‧‧‧ diode

R1、R2、R3、R4‧‧‧電阻 R1, R2, R3, R4‧‧‧ resistance

MOS_EN‧‧‧開關使能信號 MOS_EN‧‧‧Switch enable signal

D1‧‧‧電壓嵌位二極體 D1‧‧‧ voltage clamp diode

P1、P3、N1、N2、N3、N4‧‧‧開關 P1, P3, N1, N2, N3, N4‧‧‧ switch

420‧‧‧電壓選擇(Vsel)電路 420‧‧‧Voltage selection (Vsel) circuit

Claims (16)

一種用於類比功率開關的控制裝置,包括:電容,所述電容的上極板經由二極體與所述類比功率開關的閘極連接並且經由第一開關與輸入電壓連接,所述電容的下極板經由第二開關與所述類比功率開關的源極連接並且經由第三開關與地連接;以及邏輯控制元件,被配置為通過控制所述第一開關、所述第二開關、以及所述第三開關的閉合與斷開來控制所述電容充電與放電,從而控制所述類比功率開關導通與截止,其中當所述第一開關和所述第三開關閉合、所述第二開關斷開時所述電容充電,當所述第一開關和所述第三開關斷開、所述第二開關閉合時所述電容放電,其中所述邏輯控制元件基於時鐘信號生成用於控制所述第一開關的閉合與斷開的第一開關控制信號、用於控制所述第二開關的閉合與斷開的第二開關控制信號、以及用於控制所述第三開關的閉合與斷開的第三開關控制信號。 A control device for an analog power switch, comprising: a capacitor, an upper plate of the capacitor being connected to a gate of the analog power switch via a diode and connected to an input voltage via a first switch, under the capacitor a plate connected to a source of the analog power switch via a second switch and to a ground via a third switch; and a logic control element configured to control the first switch, the second switch, and the Closing and opening of the third switch to control charging and discharging of the capacitor, thereby controlling the analog power switch to be turned on and off, wherein when the first switch and the third switch are closed, the second switch is turned off The capacitor is charged, the capacitor is discharged when the first switch and the third switch are turned off, and the second switch is closed, wherein the logic control element generates a control for the first based on a clock signal a first switch control signal for closing and opening of the switch, a second switch control signal for controlling closing and opening of the second switch, and a third switch for controlling the third switch Engaged with the third switching control signal off. 如申請專利範圍第1項所述的控制裝置,其中,所述類比功率開關的閘極經由第四開關與地連接,所述邏輯控制元件通過控制所述第四開關的閉合與斷開來控制所述類比功率開關的使能與禁用。 The control device of claim 1, wherein the gate of the analog power switch is connected to the ground via a fourth switch, and the logic control element is controlled by controlling the closing and opening of the fourth switch. The analog power switch is enabled and disabled. 如申請專利範圍第1項所述的控制裝置,進一步包括:電壓選擇元件,被配置為選擇斜坡電壓和恒定電壓中的一者作為所述輸入電壓。 The control device of claim 1, further comprising: a voltage selection element configured to select one of a ramp voltage and a constant voltage as the input voltage. 如申請專利範圍第3項所述的控制裝置,其中,所述電壓選擇元件在所述邏輯控制元件的控制下選擇所述斜坡電壓和所述恒定電壓中的一者作為所述輸入電壓。 The control device of claim 3, wherein the voltage selection element selects one of the ramp voltage and the constant voltage as the input voltage under control of the logic control element. 如申請專利範圍第1項所述的控制裝置,其中,所述二極體由閘極和源極連接在一起的P溝道金屬氧化物半導體電晶體實現。 The control device of claim 1, wherein the diode is implemented by a P-channel metal oxide semiconductor transistor in which a gate and a source are connected together. 如申請專利範圍第2項所述的控制裝置,其中,所述第一開關和所 述第二開關由P溝道金屬氧化物半導體電晶體實現,所述第三開關和所述第四開關由N溝道金屬氧化物半導體電晶體實現。 The control device of claim 2, wherein the first switch and the The second switch is implemented by a P-channel metal oxide semiconductor transistor, and the third switch and the fourth switch are implemented by an N-channel metal oxide semiconductor transistor. 如申請專利範圍第2項所述的控制裝置,其中,所述第一至第四開關由傳輸門實現。 The control device of claim 2, wherein the first to fourth switches are implemented by a transfer gate. 如申請專利範圍第2項所述的控制裝置,其中,所述第一至第四開關的內阻按它們各自的開關速度和導通能力被調配。 The control device of claim 2, wherein the internal resistances of the first to fourth switches are formulated according to their respective switching speeds and conduction capabilities. 根據申請專利範圍第1項所述的控制裝置,其中,所述輸入電壓是斜坡電壓和恒定電壓中的一者或它們的組合。 The control device according to claim 1, wherein the input voltage is one of a ramp voltage and a constant voltage or a combination thereof. 一種用於類比功率開關的控制方法,包括:使電容的上極板經由二極體與類比功率開關的閘極連接並且經由第一開關與輸入電壓連接;使電容的下極板經由第二開關與所述類比功率開關的源極連接並且經由第三開關與地連接;以及通過控制所述第一開關、所述第二開關、以及所述第三開關的閉合與斷開來控制所述電容充電與放電,從而控制所述類比功率開關導通與截止,其中當所述第一開關和所述第三開關閉合、所述第二開關斷開時所述電容充電,當所述第一開關和所述第三開關斷開、所述第二開關閉合時所述電容放電,其中基於時鐘信號生成用於控制所述第一開關的閉合與斷開的第一開關控制信號、用於控制所述第二開關的閉合與斷開的第二開關控制信號、以及用於控制所述第三開關的閉合與斷開的第三開關控制信號。 A control method for an analog power switch, comprising: connecting an upper plate of a capacitor to a gate of an analog power switch via a diode and connecting with an input voltage via a first switch; and causing a lower plate of the capacitor to pass through the second switch Connected to a source of the analog power switch and connected to ground via a third switch; and control the capacitor by controlling closing and opening of the first switch, the second switch, and the third switch Charging and discharging, thereby controlling the analog power switch to be turned on and off, wherein the capacitor is charged when the first switch and the third switch are closed, and the second switch is turned off, when the first switch and The third switch is turned off, and the capacitor is discharged when the second switch is closed, wherein a first switch control signal for controlling closing and opening of the first switch is generated based on a clock signal for controlling the A second switch control signal for closing and opening of the second switch, and a third switch control signal for controlling closing and opening of the third switch. 如申請專利範圍第10項所述的控制方法,進一步包括:使所述類比功率開關的閘極經由第四開關與地連接;通過控制所述第四開關的閉合與斷開來控制所述類比功率開關的使能與禁用。 The control method of claim 10, further comprising: connecting a gate of the analog power switch to a ground via a fourth switch; controlling the analogy by controlling closing and opening of the fourth switch The power switch is enabled and disabled. 如申請專利範圍第10項所述的控制方法,進一步包括: 使用斜坡電壓和恒定電壓中的一者或它們的組合作為所述輸入電壓。 The control method described in claim 10, further comprising: One of the ramp voltage and the constant voltage or a combination thereof is used as the input voltage. 如申請專利範圍第10項所述的控制方法,其中,使用閘極和源極連接在一起的P溝道金屬氧化物半導體電晶體來實現所述二極體。 The control method of claim 10, wherein the diode is implemented using a P-channel metal oxide semiconductor transistor in which a gate and a source are connected together. 如申請專利範圍第11項所述的控制方法,其中,使用P溝道金屬氧化物半導體電晶體來實現所述第一開關和所述第二開關,並且使用N溝道金屬氧化物半導體電晶體來實現所述第三開關和所述第四開關。 The control method of claim 11, wherein the first switch and the second switch are implemented using a P-channel metal oxide semiconductor transistor, and an N-channel metal oxide semiconductor transistor is used The third switch and the fourth switch are implemented. 如申請專利範圍第11項所述的控制方法,其中,使用傳輸門來實現所述第一至第四開關。 The control method of claim 11, wherein the first to fourth switches are implemented using a transmission gate. 如申請專利範圍第11項所述的控制方法,其中,按照所述第一至第四開關各自的開關速度和導通能力調配它們的內阻。 The control method according to claim 11, wherein the internal resistances of the first to fourth switches are adjusted according to their respective switching speeds and conduction capacities.
TW105123297A 2016-06-23 2016-07-22 A control device and control method for analog power switch TWI593231B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
??201610464952.8 2016-06-23
CN201610464952.8A CN106027013B (en) 2016-06-23 2016-06-23 Control device and control method for analog power switch

Publications (2)

Publication Number Publication Date
TWI593231B true TWI593231B (en) 2017-07-21
TW201801476A TW201801476A (en) 2018-01-01

Family

ID=57086140

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105123297A TWI593231B (en) 2016-06-23 2016-07-22 A control device and control method for analog power switch

Country Status (2)

Country Link
CN (1) CN106027013B (en)
TW (1) TWI593231B (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10224919B2 (en) * 2017-02-06 2019-03-05 Infineon Technologies Ag Power switch control by supply voltage terminal
KR20220109110A (en) * 2021-01-28 2022-08-04 엘지이노텍 주식회사 Battery switch driving circuit

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101345520B (en) * 2008-08-20 2011-09-28 启攀微电子(上海)有限公司 Anti-back flow circuit
WO2010034162A1 (en) * 2008-09-28 2010-04-01 Bosch Power Tools (China) Co., Ltd. Control device for controlling a motor in a low voltage dc power tool and control method thereof
CN101867364A (en) * 2009-04-16 2010-10-20 皓威科技有限公司 Output stage circuit for capacitively loaded driver and control method thereof
US8547272B2 (en) * 2010-08-18 2013-10-01 Analog Devices, Inc. Charge sharing analog computation circuitry and applications
CN102332898B (en) * 2011-08-17 2013-05-01 深圳市英唐数码电器有限公司 Switching circuit with zero standby power consumption
CN102394608B (en) * 2011-09-28 2014-06-04 上海复旦微电子集团股份有限公司 Oscillator circuit
US9483065B2 (en) * 2012-05-23 2016-11-01 Texas Instruments Incorporated Power regulation with load detection
CN102983561B (en) * 2012-11-15 2017-05-31 上海航空电器有限公司 A kind of accumulator of under-voltage surge protection
CN103325338B (en) * 2013-06-18 2015-06-24 京东方科技集团股份有限公司 AMOLED driving circuit, AMOLED driving method and AMOLED display device
CN103985352B (en) * 2014-05-08 2017-03-08 京东方科技集团股份有限公司 Compensation pixel circuit and display device
CN104038072A (en) * 2014-07-01 2014-09-10 浙江海得新能源有限公司 High-voltage input auxiliary power circuit
CN104835474B (en) * 2015-06-02 2017-04-05 京东方科技集团股份有限公司 Voltage output device, gate driver circuit and display device
CN205336626U (en) * 2015-12-01 2016-06-22 科博达技术有限公司 Discharge lamp's control circuit

Also Published As

Publication number Publication date
TW201801476A (en) 2018-01-01
CN106027013A (en) 2016-10-12
CN106027013B (en) 2020-05-12

Similar Documents

Publication Publication Date Title
US10895884B2 (en) Low dropout (LDO) voltage regulator with soft-start circuit
US7061217B2 (en) Integrated power switching circuit
US8754679B2 (en) Low current power-on reset circuit and method
US8860472B2 (en) Power switch driving circuits and switching mode power supply circuits thereof
US10666137B2 (en) Method and circuitry for sensing and controlling a current
US9459639B2 (en) Power supply circuit with control unit
US10270363B2 (en) CMOS inverter circuit that suppresses leakage currents
JP2008182381A (en) High-speed gate drive circuit
JP2019186967A (en) Level shift circuit
US10476383B2 (en) Negative charge pump circuit
US10116292B2 (en) IGBT gate driving circuit
TWI593231B (en) A control device and control method for analog power switch
US20090108884A1 (en) High Side Boosted Gate Drive Circuit
JP4229804B2 (en) Semiconductor output circuit
US20130049847A1 (en) Bootstrapping techniques for control of cmos transistor switches
US20220407406A1 (en) High speed driver for high frequency dcdc converter
JP6208504B2 (en) Output circuit, output transistor drive circuit, electronic equipment
US11646733B2 (en) Digital output driver circuit and method
US9300283B1 (en) Single capacitor, low leakage charge pump
US20080100340A1 (en) Low voltage complementary metal oxide semiconductor process tri-state buffer
US9391597B2 (en) Boost circuit
CN113014240B (en) Control circuit of signal switch tube and analog switch circuit
TW202349878A (en) Switching circuit characterized by using the gate capacitance of the transistor to prevent the generation of impulse current, thereby achieving soft start-up
US7719306B2 (en) Output buffer for an electronic device
JP2023063081A (en) Switching circuit, dc/dc converter, and control circuit for the same