TWI592488B - Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation - Google Patents

Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation Download PDF

Info

Publication number
TWI592488B
TWI592488B TW104141803A TW104141803A TWI592488B TW I592488 B TWI592488 B TW I592488B TW 104141803 A TW104141803 A TW 104141803A TW 104141803 A TW104141803 A TW 104141803A TW I592488 B TWI592488 B TW I592488B
Authority
TW
Taiwan
Prior art keywords
mtam
poly
fermentation
yeast
cells
Prior art date
Application number
TW104141803A
Other languages
Chinese (zh)
Other versions
TW201720923A (en
Inventor
陳建中
林泓廷
Original Assignee
臺北醫學大學
國立臺灣海洋大學
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 臺北醫學大學, 國立臺灣海洋大學 filed Critical 臺北醫學大學
Priority to TW104141803A priority Critical patent/TWI592488B/en
Publication of TW201720923A publication Critical patent/TW201720923A/en
Application granted granted Critical
Publication of TWI592488B publication Critical patent/TWI592488B/en

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Description

用於生物乙醇發酵之聚-L-乳酸(PLLA)微管陣列膜-固定化酵母細胞 Poly-L-lactic acid (PLLA) microtubule array membrane for bioethanol fermentation - immobilized yeast cells

本發明係關於用於發酵的固定之酵母細胞。尤其本發明提供一種固定於可再生聚-1-乳酸(PLLA)微管陣列膜(MTAM)之酵母細胞及其在生物乙醇發酵中的應用。 The present invention relates to immobilized yeast cells for fermentation. In particular, the present invention provides a yeast cell immobilized on a regenerable poly-1-lactic acid (PLLA) microtubule array membrane (MTAM) and its use in bioethanol fermentation.

化石燃料價格及環境問題驅使搜尋可再生能源。生物乙醇為可經由生物質量之發酵生產的生物燃料類型。第一代生物乙醇生產利用來自作為原料之農作物的糖及澱粉。遇到諸如食品價格上漲及可耕地稀缺多個挑戰,導致迫切需要替代解決方案。第三代生物乙醇生產使用藻類,且要求生物質量經預處理且水解以用於糖化以及生成由其他微生物使用的可發酵糖,以便經由發酵生產生物乙醇。然而,生物質量之預處理及水解經常伴隨生成抑制劑,其嚴重地妨礙生產生物乙醇的後續微生物發酵。因此,與此能量來源相關的關鍵挑戰涉及在不與糧食作物供應及可耕地競爭的情況下更有效生產生物乙醇的能力。 Fossil fuel prices and environmental issues are driving search for renewable energy. Bioethanol is a type of biofuel that can be produced by fermentation of biological quality. The first generation of bioethanol production utilizes sugar and starch from crops as raw materials. Challenges such as rising food prices and scarcity of arable land have led to an urgent need for alternative solutions. Third generation bioethanol production uses algae and requires biomass to be pretreated and hydrolyzed for saccharification and to produce fermentable sugars for use by other microorganisms to produce bioethanol via fermentation. However, pretreatment and hydrolysis of biomass is often accompanied by the formation of inhibitors that severely hamper the subsequent microbial fermentation of bioethanol production. Therefore, the key challenges associated with this energy source relate to the ability to produce bioethanol more efficiently without competing with food crop supplies and arable land.

固定為在某一空間中分離或定位完整細胞且維持其催化活性的方法。固定細胞可針對微生物之連續或分批進給發酵有效地減少抑制劑之負面效應及接種物製備之處理成本。固定技術可分類如下:(1) 在固體載體表面上固定,(2)在多孔基質內捕獲,(3)在障壁後方的機械圍阻及(4)細胞絮凝(集合)。使用固定細胞的生物乙醇發酵可增加細胞密度,縮短發酵時間,增加乙醇及抑制劑耐受性且改良使用連續發酵之可行性,導致更有效的生物乙醇生產。當海藻酸鈉珠粒用於釀酒酵母(Saccharomyces cerevisiae)固定用於生物乙醇發酵時,發現在分批發酵期間固定酵母細胞比游離酵母細胞更有效將葡萄糖轉化成醇,且珠粒固定之酵母細胞可再用於5次連續分批操作。另外,使用多孔無菌絲瓜海綿或蟬繭用於馬克斯克魯維酵母(Kluyveromyces marxianus)固定與使用游離細胞相比促進乙醇發酵。另外,在稻稈上固定之釀酒酵母VS3增強生物乙醇發酵且可再用於8次連續分批操作(A.K.Chandel,M.L.Narasu,G.Chandrasekhar,A.Manikyam,L.V.Rao,Use of Saccharum spontaneum(wild sugarcane)as biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3,Bioresour.Technol.100(2009)2404-2410)。 Fixed to a method of isolating or localizing intact cells in a space and maintaining their catalytic activity. The fixed cells can effectively reduce the negative effects of the inhibitor and the processing cost of the inoculum preparation for continuous or batch fed fermentation of the microorganisms. Fixation techniques can be classified as follows: (1) immobilization on the surface of a solid support, (2) capture in a porous matrix, (3) mechanical containment behind the barrier and (4) cell flocculation (assembly). Bioethanol fermentation using fixed cells increases cell density, shortens fermentation time, increases ethanol and inhibitor tolerance, and improves the feasibility of using continuous fermentation, resulting in more efficient bioethanol production. When sodium alginate beads were used for Saccharomyces cerevisiae immobilization for bioethanol fermentation, it was found that immobilized yeast cells were more efficiently converted to alcohol than free yeast cells during batch fermentation, and the beads were fixed in yeast cells. Can be reused for 5 consecutive batch operations. In addition, the use of a porous sterile loofah sponge or mash for Kluyveromyces marxianus fixation promotes ethanol fermentation compared to the use of free cells. In addition, Saccharomyces cerevisiae VS3 immobilized on rice straw enhances bioethanol fermentation and can be reused for 8 consecutive batch operations (AKChandel, MLNarasu, G. Chandrasekhar, A. Manikyam, LVRao, Use of Saccharum spontaneum (wild sugarcane) as Biomaterial for cell immobilization and modulated ethanol production by thermotolerant Saccharomyces cerevisiae VS3, Bioresour. Technol. 100 (2009) 2404-2410).

當前固定細胞的技術具有若干缺陷。使用化學鍵聯劑(諸如戊二醛)的細胞之表面附著可不適用於生產乙醇或飲料。另外,因為在溶液與細胞之間不存在障壁,因此細胞脫離及重定位可污染產物。另一細胞固定的方法為使用多孔凝膠基質,諸如海藻酸鈣,以捕獲細胞,且獲得用於發酵的高生物質量負載量;然而,珠粒結構可在酸或擴散受限氣體(諸如乙醇發酵中的CO2)存在下去穩定化,從而導致珠粒破裂。細胞絮凝視為相對較低成本方法;然而,一些酵母之絮凝受所存在糖(諸如葡萄糖)及乙醇的抑制。當需要無細胞產物時,使用諸如用於微孔膜過濾器的在障壁後方圍阻之方法用於細胞固定為最適合的。然而,存在固有問題,諸如可能的膜積垢、高成本及容器再循環問題(D.J.O'Brien,L.H.Roth,A.J.McAloon,Ethanol production by continuous fermentation-pervaporation:a preliminary economic analysis,J.Membr.Sci.166(2000)105-111)。 Current techniques for immobilizing cells have several drawbacks. Surface attachment of cells using chemical bonding agents such as glutaraldehyde may not be suitable for the production of ethanol or beverages. In addition, cell detachment and relocation can contaminate the product because there are no barriers between the solution and the cells. Another method of cell fixation is to use a porous gel matrix, such as calcium alginate, to capture cells and obtain a high biomass mass loading for fermentation; however, the bead structure can be in acid or diffusion-limited gases such as ethanol The presence of CO 2 in the fermentation is stabilized, resulting in cracking of the beads. Cell flocculation is considered a relatively low cost method; however, some yeast flocculation is inhibited by the presence of sugars such as glucose and ethanol. When a cell-free product is desired, a method such as a barrier behind the barrier for a microporous membrane filter for cell fixation is most suitable. However, there are inherent problems such as possible membrane fouling, high cost and container recycling problems (DJO'Brien, LHRoth, AJ McAloon, Ethanol production by continuous fermentation-pervaporation: a preliminary economic analysis, J. Membr. Sci. 166 ( 2000) 105-111).

藉由酵母之醇發酵將一莫耳蔗糖轉化成兩莫耳乙醇及兩莫耳二氧化碳。由於在醇發酵期間的CO2產生,所產生氣體可破壞凝膠基質固定之酵母的凝膠結構,且因此引起該等凝膠固定之酵母穩定性的問題。本發明使用MTAM固定酵母,且用於醇發酵的固定酵母具有較高穩定性及產量。本發明提供一種酵母細胞與多孔微管陣列膜(MTAM)之組合,其中該等酵母細胞在MTAM中固定,且其中酵母囊封效率超過60%。在一些實施例中,該酵母囊封效率超過65%。在一些實施例中,該酵母囊封效率為約60%至約75%、約65%至約75%或約65%至約70%。 One mole of sucrose is converted to two moles of ethanol and two moles of carbon dioxide by yeast alcohol fermentation. Due to the CO 2 production during the alcohol fermentation, the gas produced can destroy the gel structure of the gel-fixed yeast and thus cause problems with the stability of the gel-fixed yeast. The present invention uses MTAM to immobilize yeast, and the fixed yeast for alcohol fermentation has high stability and yield. The present invention provides a combination of a yeast cell and a porous microtubule array membrane (MTAM), wherein the yeast cells are fixed in MTAM, and wherein the yeast encapsulation efficiency exceeds 60%. In some embodiments, the yeast encapsulation efficiency exceeds 65%. In some embodiments, the yeast encapsulation efficiency is from about 60% to about 75%, from about 65% to about 75%, or from about 65% to about 70%.

在一些實施例中,該酵母細胞為馬克斯克魯維酵母、乳酸克魯維酵母(Kluyveromyces lactis)、解脂克魯維酵母(Kluyveromyces lipolytica)釀酒酵母或粟酒裂殖酵母(Schizosaccharomyces pombe)In some embodiments, the yeast cell is K. marxianus, Kluyveromyces lactis , Kluyveromyces lipolytica Saccharomyces cerevisiae or Schizosaccharomyces pombe .

在一些實施例中,該MTAM為高度對準且緊密填充之纖維總成,其中纖維填充在一起以形成單層,且該等纖維之定向不大於+/- 5°。在一個實施例中,該等纖維可為中空的或實體的。在一些實施例中,MTAM之孔徑的直徑在約20nm至約40nm、約25nm至約40nm、約30nm至約40nm、約20nm至約35nm、約20nm至約30nm或約28nm至約32nm範圍內。在一些實施例中,該MTAM由生物可降解性及/或生物可吸收性聚合物組成。 In some embodiments, the MTAM is a highly aligned and closely packed fiber assembly wherein the fibers are filled together to form a single layer and the fibers are oriented no more than +/- 5°. In one embodiment, the fibers can be hollow or solid. In some embodiments, the diameter of the pore size of the MTAM ranges from about 20 nm to about 40 nm, from about 25 nm to about 40 nm, from about 30 nm to about 40 nm, from about 20 nm to about 35 nm, from about 20 nm to about 30 nm, or from about 28 nm to about 32 nm. In some embodiments, the MTAM consists of a biodegradable and/or bioabsorbable polymer.

本發明亦提供一種用於生物乙醇發酵的方法,其包含以下步驟:(a)藉由原位製備或虹吸管製備來固定MTAM中約107至約109細胞數目(CFU/mL)之酵母細胞,將該等酵母細胞以超過60%囊封效率囊封 至MTAM中;及(b)藉由分批發酵用所得MTAM發酵糖以生產乙醇。 The present invention also provides a process for bioethanol fermentation, comprising the steps of: (a) preparing or number from about 107 to about 109 cells in a fixed MTAM (CFU / mL) prepared by siphon of yeast cells in situ The yeast cells are encapsulated into the MTAM with an encapsulation efficiency of more than 60%; and (b) the resulting MTAM is used to ferment sugar by batch fermentation to produce ethanol.

在一些實施例中,該等酵母細胞之細胞數目為約108CFU/mL;該糖為葡萄糖、果糖或蔗糖;且該分批發酵為重複分批發酵。 In some embodiments, the number of cells of the yeast cells is about 10 8 CFU/mL; the sugar is glucose, fructose or sucrose; and the batch fermentation is repeated batch fermentation.

圖1(A)至(C)展示(A)MTAM之SEM部分影像以及(B)游離馬克斯克魯維酵母及(C)利用原位方法製備之MTAM固定馬克斯克魯維酵母的光顯微法影像。 Figure 1 (A) to (C) show (A) SEM partial image of MTAM and (B) Free K. marxianus and (C) Light microscopy of immobilized Marker's yeast using MTAM prepared by in situ method image.

圖2(A)及(B)展示(A)糖用量以及(B)在使用游離及固定馬克斯克魯維酵母的YPD之分批發酵中之生物乙醇生產。含有5%(w/v)葡萄糖之YPD介質的分批發酵在42℃下以200rpm之振盪培育。資料表示為平均值±SD(n=3)。 Figures 2 (A) and (B) show (A) the amount of sugar and (B) bioethanol production in a batch fermentation using YPD free and fixed K. marxianus. Batch fermentation of YPD medium containing 5% (w/v) glucose was incubated at 42 ° C with shaking at 200 rpm. Data are expressed as mean ± SD (n = 3).

圖3(A)及(B)展示(A)糖用量及(B)在使用固定馬克斯克魯維酵母的YPD之重複分批發酵中之生物乙醇生產。含有5%(w/v)葡萄糖之YPD介質的重複分批發酵在42℃下以200rpm之振盪培育。資料表示為平均值±SD(n=3)。 Figures 3 (A) and (B) show (A) the amount of sugar and (B) bioethanol production in repeated batch fermentation of YPD using immobilized K. marxianus. Repeated batch fermentation of YPD medium containing 5% (w/v) glucose was incubated at 42 ° C with shaking at 200 rpm. Data are expressed as mean ± SD (n = 3).

本發明使用高度多孔微管陣列膜(MTAM)以固定用於生物乙醇發酵的酵母細胞。MTAM在工業規模上充當固定用於發酵方法之酵母的極佳基板。 The present invention uses a highly porous microtubule array membrane (MTAM) to immobilize yeast cells for bioethanol fermentation. MTAM acts as an excellent substrate for immobilizing yeast for fermentation processes on an industrial scale.

儘管本文中所用諸多詞語、術語及標題為在傳統醫學及科學內容內常用且常規上理解的,但一些術語及特定名稱、命名、稱號或稱呼的概述描述及定義提供如下。此等描述及定義用於輔助識別及鑒賞意欲在本發明方法之範疇內包括之應用的正確變體及範圍。 Although many of the words, terms, and headings used herein are commonly used and conventionally understood within traditional medical and scientific content, some of the terms and descriptions and definitions of specific names, naming, designations, or designations are provided as follows. These descriptions and definitions are used to assist in the identification and appreciation of the correct variations and ranges of applications that are intended to be included within the scope of the method of the invention.

在本說明書之說明書及申請專利範圍中,詞語「包含(comprise)」及該詞語之其他形式(諸如「包含(comprising)」及「包含 (comprises)」)意謂包括(但不限於),且並不意欲排除例如其他添加劑、組分、整數或步驟。 In the specification and patent application of this specification, the words "comprise" and other forms of the word (such as "comprising" and "including" (comprises)") is meant to include, but is not limited to, and is not intended to exclude such additional additives, components, integers or steps.

除非上下文另外明確規定,否則如本文所用,單數形式「一(a/an)」及「該(the)」包括複數個參照物。 As used herein, the singular forms "a", "the" and "the"

範圍在本文中可表示為「約(about)」一個特定值及/或至「約」另一特定值。當表示該範圍時,另一態樣包括自一個特定值及/或至另一個特定值。類似地,當藉由使用前綴「約」將值表示為近似值時,應理解特定值形成另一態樣。進一步應理解,範圍中之每一者的端點在相對於其他端點及獨立於其他端點時均為重要的。亦應理解,許多值揭示於本文中,且各值亦在本文中揭示為「約」除值自身以外的特定值。舉例而言,若揭示值「5」,則亦揭示「約5」。亦應理解,當揭示值時,如熟習此項技術者所適當理解,則亦揭示「小於或等於該值」、「大於或等於該值」及在值之間可能的範圍。舉例而言,若揭示值「5」,則亦揭示「小於或等於5」以及「大於或等於5」。亦應理解,在本申請案中,以多個不同形式提供資料且此等資料代表端點及起點以及該等資料點之任何組合之範圍。舉例而言,若揭示特定資料點「5」及特定資料點「10」,應理解,視為揭示大於、大於或等於、小於、小於或等於及等於5及10以及在5與10之間。亦應理解,亦揭示在兩個特定單位之間之各單位。舉例而言,若揭示5及10,則亦揭示6、7、8及9。 Ranges may be expressed herein as "about" a particular value and/or to "about" another particular value. When the range is expressed, another aspect includes from a particular value and/or to another particular value. Similarly, when values are expressed as approximations by using the prefix "about", it should be understood that the particular values form another aspect. It is further understood that the endpoints of each of the ranges are important relative to the other endpoints and independent of the other endpoints. It should also be understood that a number of values are disclosed herein, and that values are also disclosed herein as "about" a particular value other than the value itself. For example, if the value "5" is revealed, "about 5" is also revealed. It should also be understood that when a value is disclosed, as is well understood by those skilled in the art, "less than or equal to the value", "greater than or equal to the value" and the possible range between the values are also disclosed. For example, if the value "5" is revealed, "less than or equal to 5" and "greater than or equal to 5" are also revealed. It is also to be understood that in the present application, information is provided in a number of different forms and such information represents the endpoints and starting points and the scope of any combination of such data points. For example, if a specific data point "5" and a specific data point "10" are disclosed, it should be understood that the disclosure is greater than, greater than or equal to, less than, less than or equal to, and equal to 5 and 10 and between 5 and 10. It should also be understood that each unit between two specific units is also disclosed. For example, if 5 and 10 are disclosed, 6, 7, 8, and 9 are also disclosed.

如本文所用,術語「囊封」為將一個事物包括在另一事物內,因此所包括事物不顯而易見。在本發明中,「囊封」表示酵母細胞包括在多孔微管陣列膜內。 As used herein, the term "encapsulated" is used to include one thing in another, and thus the things included are not obvious. In the present invention, "encapsulated" means that the yeast cells are included in the porous microtubule array membrane.

如本文所用,術語「固定」表示連接至惰性、不可溶載體的物質。 As used herein, the term "fixed" refers to a substance that is attached to an inert, insoluble carrier.

如本文所用,術語「電紡」係指使用在流體動力與帶電表面之 間的相互作用自溶液生產稱為電紡纖維之奈米尺寸纖維的技術。一般而言,電紡纖維之形成涉及提供溶液至具有電壓源之電通信中物體中的孔,其中電力協助形成在表面上沈積的細纖維,該表面可接地或者在低於該物體的電壓下。在電紡中,將自一或多種針、狹槽或其他孔提供的聚合溶液或熔融物饋入相對於聚集柵格的高電壓。電力克服表面張力,且引起聚合溶液或熔融物朝向接地或帶相反電荷聚集柵格移動的精細噴射。 As used herein, the term "electrospun" refers to the use of fluid power and charged surfaces. The interaction between the two polymers of electrospun fibers is known from the solution. In general, the formation of electrospun fibers involves providing a solution to a hole in an object in electrical communication with a voltage source, wherein the electrical power assists in the formation of fine fibers deposited on the surface that can be grounded or at a voltage below the object. . In electrospinning, a polymerization solution or melt provided from one or more needles, slots or other holes is fed into a high voltage relative to the collection grid. The power overcomes the surface tension and causes a fine spray of the polymerization solution or melt toward the ground or the oppositely charged accumulation grid.

如本文所用,術語「聚合物」係指且一般包括(但不限於)均聚物、共聚物,諸如嵌段、接枝、無規及交替共聚物、三元共聚物等及其摻合物及變體。較佳地,其可包括(但不限於)聚乳酸交酯、聚乳酸、聚烯烴、聚丙烯腈、聚胺基甲酸酯、聚碳酸酯、聚己內酯、聚乙烯醇(PVA)、纖維素、聚葡萄胺糖耐綸(例如,耐綸6、耐綸406、耐綸6-6等)、聚苯乙烯、蛋白質及其類似物或其組合。除非另外特定地限制,否則術語「聚合物」意欲包括材料之所有可能幾何組態。此等組態包括(但不限於)等規、間規及無規對稱。用於各聚合物的適合之溶劑可選自熟習此項技術者已知之溶劑,其包括(但不限於)硫酸、甲酸、三氯甲烷、四氫呋喃、二甲基甲醯胺、水、丙酮及其組合。 As used herein, the term "polymer" means and generally includes, but is not limited to, homopolymers, copolymers such as block, graft, random and alternating copolymers, terpolymers, and the like, and blends thereof. And variants. Preferably, it may include, but is not limited to, polylactide, polylactic acid, polyolefin, polyacrylonitrile, polyurethane, polycarbonate, polycaprolactone, polyvinyl alcohol (PVA), Cellulose, polyglucosamine (for example, nylon 6, nylon 406, nylon 6-6, etc.), polystyrene, proteins, and the like, or combinations thereof. Unless specifically limited otherwise, the term "polymer" is intended to include all possible geometric configurations of the material. Such configurations include, but are not limited to, isotactic, syndiotactic, and random symmetry. Suitable solvents for each polymer may be selected from solvents known to those skilled in the art including, but not limited to, sulfuric acid, formic acid, chloroform, tetrahydrofuran, dimethylformamide, water, acetone, and the like. combination.

如本文所用,術語「奈米尺寸纖維」或「奈米纖維」係指具有不超過約1500奈米(nm)之平均直徑的極小直徑纖維。奈米纖維一般理解為其纖維直徑在約10至約1500nm、更特定言之約10至約1000nm、又更特定言之約20至約500nm且最特定地約20至約400nm範圍內。其他例示性範圍包括約50至約500nm、約100至500nm或約40至約200nm。在個例中,其中微粒存在且非均勻地分佈於奈米纖維上,奈米纖維之平均直徑可使用已知技術(例如,和電顯微法聯合的影像分析工具)量測,但排除藉由相對於纖維之粒子游離部分所存在之添加粒子實質上擴大的纖維部分。 As used herein, the term "nano-sized fibers" or "nanofibers" refers to very small diameter fibers having an average diameter of no more than about 1500 nanometers (nm). Nanofibers are generally understood to have a fiber diameter in the range of from about 10 to about 1500 nm, more specifically from about 10 to about 1000 nm, still more specifically from about 20 to about 500 nm, and most specifically from about 20 to about 400 nm. Other exemplary ranges include from about 50 to about 500 nm, from about 100 to 500 nm, or from about 40 to about 200 nm. In a case where particles are present and non-uniformly distributed on the nanofibers, the average diameter of the nanofibers can be measured using known techniques (for example, image analysis tools combined with electromicroscopy), but excluding A portion of the fiber that is substantially enlarged by the addition of particles relative to the free portion of the particles of the fiber.

如本文所用,術語「定向纖維」指示在特定結構或陣列中的實質上所有纖維以縱向方向(「單向定向」)或以界限分明的三維網(「三維定向」)彼此平行排列。換言之,纖維相對於彼此在空間上不無規排列。在大多數個例中,本文中描述之纖維以相對於支撐基板表面的大體上垂直方向生長,且若存在,則存在極少個別分枝纖維股。 As used herein, the term "oriented fiber" indicates that substantially all of the fibers in a particular structure or array are arranged in parallel with one another in a longitudinal direction ("unidirectional orientation") or in a well-defined three-dimensional network ("three-dimensional orientation"). In other words, the fibers are spatially non-randomly aligned with respect to each other. In most instances, the fibers described herein are grown in a substantially vertical direction relative to the surface of the support substrate, and if present, there are few individual branched fiber strands.

如本文所用,術語「材料之單層」或「單層材料」係指由厚度可變化之單層組成的材料。 As used herein, the term "single layer of material" or "single layer material" means a material consisting of a single layer of varying thickness.

如本文所用,術語「複數個層」或「多層材料」係指單層材料之「堆疊」。 As used herein, the term "plurality of layers" or "multilayer material" refers to a "stack" of a single layer of material.

在一個態樣中,本發明提供一種酵母細胞與多孔微管陣列膜(MTAM)之組合,其中該等酵母細胞固定於該MTAM中,且其中酵母囊封效率超過60%。較佳地,該酵母囊封效率超過65%。更佳地,該酵母囊封效率約60%至約75%、約65%至約75%或約65%至約70%。 In one aspect, the invention provides a combination of a yeast cell and a porous microtubule array membrane (MTAM), wherein the yeast cells are immobilized in the MTAM, and wherein the yeast encapsulation efficiency exceeds 60%. Preferably, the yeast encapsulation efficiency exceeds 65%. More preferably, the yeast encapsulation efficiency is from about 60% to about 75%, from about 65% to about 75%, or from about 65% to about 70%.

在一些實施例中,酵母細胞為馬克斯克魯維酵母、乳酸克魯維酵母、解脂克魯維酵母、釀酒酵母或粟酒裂殖酵母。較佳地,酵母細胞為馬克斯克魯維酵母。 In some embodiments, the yeast cell is K. marxianus, Kluyveromyces lactis, Kluyveromyces cerevisiae, Saccharomyces cerevisiae or Schizosaccharomyces pombe. Preferably, the yeast cell is K. marxianus.

在一些實施例中,MTAM為高度對準且緊密填充之纖維總成,其中纖維填充在一起以形成單層,且纖維之定向不大於+/- 5°。在一個實施例中,纖維可為中空或實體的。較佳地,MTAM為中空的。更佳地,MTAM為具有中空管的單層。較佳地,管之直徑在約30pm至約50pm、約35pm至約50pm、約40pm至約50pm、約30pm至約45pm、約30pm至約40pm、約35pm至約45pm或約38pm至約42pm範圍內。更佳地,管之直徑為約40pm。 In some embodiments, the MTAM is a highly aligned and closely packed fiber assembly in which the fibers are filled together to form a single layer and the fibers are oriented no more than +/- 5°. In one embodiment, the fibers can be hollow or solid. Preferably, the MTAM is hollow. More preferably, the MTAM is a single layer having a hollow tube. Preferably, the diameter of the tube ranges from about 30 pm to about 50 pm, from about 35 pm to about 50 pm, from about 40 pm to about 50 pm, from about 30 pm to about 45 pm, from about 30 pm to about 40 pm, from about 35 pm to about 45 pm, or from about 38 pm to about 42 pm. Inside. More preferably, the tube has a diameter of about 40 pm.

在一些實施例中,MTAM之孔徑的直徑在約20nm至約40nm、約25nm至約40nm、約30nm至約40nm、約20nm至約35nm、約20nm至約30nm或約28nm至約32nm範圍內。較佳地,MTAM之孔徑的直 徑為約30nm。 In some embodiments, the diameter of the pore size of the MTAM ranges from about 20 nm to about 40 nm, from about 25 nm to about 40 nm, from about 30 nm to about 40 nm, from about 20 nm to about 35 nm, from about 20 nm to about 30 nm, or from about 28 nm to about 32 nm. Preferably, the aperture of the MTAM is straight The diameter is about 30 nm.

在一些實施例中,MTAM由選自以下之生物可降解性及/或生物可吸收性的聚合物組成:環氧乙烷、聚氧化乙烯(PEO)、乙二醇、聚乙二醇(PEG)、聚(乳酸)(PLA)、聚(乙醇酸)(PGA)、聚(乳酸-共-乙醇酸)(PLGA)、聚(氧化乙烯)(PEO)、耐綸、聚酯、聚醯胺、聚(醚胺酸)、聚醯亞胺、聚醚、聚酮、聚胺基甲酸酯、聚己內酯、聚丙烯腈、芳族聚醯胺、共軛聚合物諸如電致發光聚合物、聚(2-甲氧基,5乙基(2'己氧基)對伸苯基乙烯)(MEH-PPV)、聚伸苯基乙烯、聚伸芳基乙烯、聚伸噻吩基乙烯、聚吡咯-乙烯、聚伸雜芳基乙烯、聚苯胺、聚苯、聚伸芳基化合物、聚噻吩、聚吡咯、聚伸雜芳基化合物、聚伸苯基-乙炔、聚伸芳基-乙炔、聚噻吩-乙炔、聚伸雜芳基-乙炔及其混合物。較佳地,聚合物為PLA。 In some embodiments, the MTAM consists of a biodegradable and/or bioabsorbable polymer selected from the group consisting of ethylene oxide, polyethylene oxide (PEO), ethylene glycol, polyethylene glycol (PEG) ), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene oxide) (PEO), nylon, polyester, polyamide , poly(etheramine acid), polyimine, polyether, polyketone, polyurethane, polycaprolactone, polyacrylonitrile, aromatic polyamine, conjugated polymer such as electroluminescent polymerization , poly(2-methoxy, 5 ethyl(2'hexyloxy)p-phenylene vinyl) (MEH-PPV), polyphenylenevinylene, poly(arylene), polythiophenevinyl, Polypyrrole-ethylene, poly(arylene), polyaniline, polyphenylene, poly(arylene) compound, polythiophene, polypyrrole, polyheteroaryl compound, polyphenylene-acetylene, poly(arylene)-acetylene , polythiophene-acetylene, polyheteroaryl-acetylene and mixtures thereof. Preferably, the polymer is PLA.

MTAM之製備係指K.L.Ou,C.S.Chen,L.H.Lin,J.C.Lu,Y.C.Shu,W.C.Tseng,J.C.Yang,S.Y.Lee,C.C.Chen,Membranes of epitaxial-like packed,super aligned electrospun micron hollow poly(L-lactic acid)(PLLA)fibers,Eur.Polym.J.47(2011)882-892;J.S.Jang,Y.Cho,G.T.Jeong,S.K.Kim,Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation(SSF)from seaweed,Saccharina japonica,Bioprocess Biosyst.Eng.35(2012)11-18.;J.C.Yang,S.Y.Lee,W.C.Tseng,Y.C.Shu,J.C.Lu,H.S.Shie,C.C.Chen,Formation of highly aigned,single-layered,hollow fibrous assemblies and the fabrication of large pieces of PLLA Membranes,Macromol.Mater.Eng.297(2012)115-122.;及L.C.Lin,Y.C.Shu,J.C.Yang,H.S.Shie,S.Y.Lee,C.C.Chen,Nano-porous poly-L-lactic acid microtube array membranes,Curr.Nanosci.10(2014)227-234。 The preparation of MTAM refers to KLOu, CSChen, LHLin, JCLu, YCShu, WCTseng, JCYang, SYLee, CCChen, Membranes of epitaxial-like packed, super aligned electrospun micron hollow poly (L-lactic acid (PLLA)fibers, Eur. Polym. J. 47 (2011) 882-892; JSJang, Y.Cho, GTJeong, SKKim, Optimization of saccharification and ethanol production by simultaneous saccharification and fermentation (SSF) from seaweed, Saccharina japonica, Bioprocess Biosyst.Eng.35(2012)11-18.;JCYang,SYLee,WCTseng,YCShu,JCLu,HSShie,CCChen,Formation of highly aigned,single-layered,hollow fibrous assemblies And the fabrication of large pieces of PLLA Membranes, Macromol. Mater. Eng. 297 (2012) 115-122.; and LCLin, YCShu, JCYang, HSShie, SYLee, CCChen, Nano-porous poly-L -lactic acid microtube array membranes, Curr. Nanosci. 10 (2014) 227-234.

本發明使用高度多孔MTAM以固定用於生物乙醇發酵之酵母細胞,係首次用於生物乙醇生產。MTAM具有類似但優於中空纖維的結構,且使用同軸電紡研發。與典型中空纖維相比,MTAM的直徑縮小1-2數量級且管壁變薄>2數量級;最驚人地為其可自組裝成單一膜板。MTAM藉由在表面上使用造孔劑建立奈米孔且接著瀝濾出製程進一步功能化。伴隨此等結構特徵,MTAM提供每單位體積之較大表面積及較短擴散距離,而具有自行支撐之障壁功能。其操控容易且成本較低。MTAM在工業規模中充當固定用於發酵方法之酵母的極佳基板。 The present invention uses highly porous MTAM to immobilize yeast cells for bioethanol fermentation, for the first time for bioethanol production. MTAM has a similar but superior structure to hollow fibers and was developed using coaxial electrospinning. Compared to typical hollow fibers, the diameter of the MTAM is reduced by 1-2 orders of magnitude and the wall thickness is >2 orders of magnitude; most surprisingly it can be self-assembled into a single diaphragm. The MTAM is further functionalized by establishing a nanopore using a pore former on the surface and then leaching out the process. Along with these structural features, the MTAM provides a large surface area per unit volume and a short diffusion distance, and has a self-supporting barrier function. It is easy to handle and low in cost. MTAM acts as an excellent substrate for immobilizing yeast for fermentation processes on an industrial scale.

在一個態樣中,本發明提供一種用於生物乙醇發酵的方法,其包含以下步驟:(a)藉由原位製備或虹吸管製備來固定MTAM中約107至約109細胞數目(CFU/mL)之酵母細胞,將該等酵母細胞以超過60%囊封效率囊封至MTAM中;及(b)藉由分批發酵用所得MTAM發酵糖以生產乙醇。 In one aspect, the invention provides a method for bioethanol fermentation comprising the steps of: (a) immobilizing from about 10 7 to about 109 cells in MTAM by in situ preparation or siphon preparation (CFU/ The yeast cells of mL) are encapsulated into the MTAM with an encapsulation efficiency of more than 60%; and (b) the resulting MTAM is used to ferment sugar by batch fermentation to produce ethanol.

較佳地,酵母細胞之細胞數目為約108CFU/mL。 Preferably, the number of cells of the yeast cell is about 10 8 CFU/mL.

較佳地,糖為葡萄糖、果糖或蔗糖。更佳地,糖為濃度在約40g/L至約60g/L範圍內的葡萄糖。更佳地,葡萄糖之濃度為約50g/L。 Preferably, the sugar is glucose, fructose or sucrose. More preferably, the sugar is glucose having a concentration ranging from about 40 g/L to about 60 g/L. More preferably, the concentration of glucose is about 50 g/L.

較佳地,分批發酵為重複分批發酵。更佳地,重複分批發酵為2至7或2至6批次。更佳地,重複分批發酵為3至5批次。 Preferably, the batch fermentation is a repeated batch fermentation. More preferably, the batch fermentation is repeated in 2 to 7 or 2 to 6 batches. More preferably, the batch fermentation is repeated in 3 to 5 batches.

此處描述囊封效率及MTAM之實施例。 Embodiments of encapsulation efficiency and MTAM are described herein.

本發明亦優化製備MTAM固定細胞的條件,且評估其用於分批生物乙醇發酵的潛力。 The present invention also optimizes the conditions for preparing MTAM-fixed cells and evaluates their potential for batch bioethanol fermentation.

實例Instance 材料及方法 Materials and methods 馬克斯克魯維酵母之來源Source of Mark Skrvest's yeast

馬克斯克魯維酵母(BCRC 21363)購自臺灣位於Hsinchu的Bioresources Collection and Research Center(BCRC)。 Kluyveromyces cerevisiae (BCRC 21363) was purchased from the Bioresources Collection and Research Center (BCRC) in Hsinchu, Taiwan.

PLLA MTAM固定馬克斯克魯維酵母的製備Preparation of PLLA MTAM-fixed K. marxianus

馬克斯克魯維酵母在YPD介質(1%酵母萃取物,2%細菌蛋白腖及2%右旋糖)中在42℃下培養以達到用於固定的108及109cfu/mL之細胞密度。所用材料為PLLA(BioTechOne,Taiwan)、聚乙二醇/聚氧化乙烯(PEG/PEO;Sigma-Aldrich)、N,N-二甲基甲醯胺(DMF;Tedia,USA)及二氯甲烷(DCM;Mallinckrodt,USA)。為了製備電紡紡絲原液(dope),PLLA在室溫下溶解於混合DCM/DMF(8/2)中,獲得10%溶液。PEG添加至PLLA溶液中,獲得如先前所述之PEG/PLLA(30/70)溶液。 K. marxianus was cultured in YPD medium (1% yeast extract, 2% bacterial peptone and 2% dextrose) at 42 ° C to achieve a cell density of 10 8 and 10 9 cfu/mL for immobilization. The materials used were PLLA (BioTech One, Taiwan), polyethylene glycol/polyethylene oxide (PEG/PEO; Sigma-Aldrich), N,N-dimethylformamide (DMF; Tedia, USA) and dichloromethane ( DCM; Mallinckrodt, USA). To prepare an electrospun spinning dope, PLLA was dissolved in mixed DCM/DMF (8/2) at room temperature to obtain a 10% solution. PEG was added to the PLLA solution to obtain a PEG/PLLA (30/70) solution as previously described.

靜電充電器(ChargeMaster,Simco-Ion,Alameda,CA,USA)或電力供應器單元(You-Shang Co.,Fongshan市,Taiwan)用作靜電來源。典型地,電紡藉由用注射泵(KDS-100,KD Scientific,Holliston,MA,USA)以4-9mL/h之速率、5-7kV施加電壓及距轉鼓收集器3-5cm距離來傳遞PLLA(外殼)及PEG(核心)溶液通過室內製得之共中軸型紡絲頭進行。所有電紡程序在室內在50±5%之相對濕度及25±1℃之溫度下進行。奈米多孔PLLA MTAM藉由洗滌以移除核心組分PEG,接著乾燥獲得。含酵母之PLLA MTAM的原位製備藉由使用具有與上文所述類似之參數的典型MTAM電紡方法,以酵母細胞(108mL-1及109mL-1之細胞密度)介質溶液及PEG溶液(1:9體積)之混合溶液的內部溶液完成。所得MTAM樣品接著切割成3cm×0.5cm×0.0004cm之尺寸,且兩端均藉由加熱之塗覆金屬密封。含虹吸酵母細胞之PLLA MTAM藉由僅將乾燥PLLA-MTAM之一個開放端置放至固定體積(10μL)之酵母細胞介質溶液(108mL-1及109mL-1之細胞密度)中製備。在毛細力向上虹吸溶液遍及MTAM之後,兩端均藉由加熱之 塗覆金屬密封。 An electrostatic charger (ChargeMaster, Simco-Ion, Alameda, CA, USA) or a power supply unit (You-Shang Co., Fongshan, Taiwan) was used as a source of static electricity. Typically, electrospinning is delivered by a syringe pump (KDS-100, KD Scientific, Holliston, MA, USA) at a rate of 4-9 mL/h, a voltage of 5-7 kV, and a distance of 3-5 cm from the drum collector. The PLLA (shell) and PEG (core) solutions were carried out through a co-axial spindle spinning head made in the chamber. All electrospinning procedures were carried out indoors at a relative humidity of 50 ± 5% and a temperature of 25 ± 1 °C. The nanoporous PLLA MTAM is obtained by washing to remove the core component PEG, followed by drying. In situ preparation of yeast-containing PLLA MTAM by using a typical MTAM electrospinning method having parameters similar to those described above, using yeast cells (cell density of 10 8 mL -1 and 109 mL -1 ) medium solution and The internal solution of the mixed solution of the PEG solution (1:9 volume) was completed. The resulting MTAM sample was then cut to a size of 3 cm x 0.5 cm x 0.0004 cm and both ends were sealed by a heated coating metal. PLLA MTAM containing siphon yeast cells was prepared by placing only one open end of the dried PLLA-MTAM into a fixed volume (10 μL) of yeast cell medium solution (cell density of 10 8 mL -1 and 10 9 mL -1 ) . After the capillary force up the siphon solution throughout the MTAM, both ends are sealed by a heated coating metal.

在多種rpm及乙醇濃度下PLLA MTAM之穩定性測試Stability testing of PLLA MTAM at various rpm and ethanol concentrations

PLLA MTAM如先前所述製得,且在4℃下儲存於0.1%(w/v)蛋白腖水中。對於在多種乙醇濃度下的PLLA MTAM之穩定性測試,將所製備MTAM在室溫下置放至濃度分別為3%、6%、9%、12%及15%(v/v)的乙醇溶液中在各乙醇濃度下的PLLA MTAM結構藉由裸眼及顯微鏡觀測任何斷裂。對於PLLA MTAM之穩定性測試,所製備PLLA MTAM在0.1%(w/v)蛋白腖水中分別在100、200、300、400及500rpm下在室溫下培育。在各乙醇濃度下的PLLA MTAM結構藉由裸眼及顯微鏡觀測任何斷裂。 PLLA MTAM was prepared as previously described and stored in 0.1% (w/v) peptone water at 4 °C. For the stability test of PLLA MTAM at various ethanol concentrations, the prepared MTAM was placed at room temperature to ethanol solutions at concentrations of 3%, 6%, 9%, 12%, and 15% (v/v), respectively. The PLLA MTAM structure at each ethanol concentration was observed for any fracture by naked eye and microscope. For the stability test of PLLA MTAM, the prepared PLLA MTAM was incubated in 0.1% (w/v) peptone water at 100, 200, 300, 400 and 500 rpm, respectively, at room temperature. The PLLA MTAM structure at each ethanol concentration was observed for any break by naked eye and microscope.

囊封效率之分析Analysis of encapsulation efficiency

PLLA MTAM固定馬克斯克魯維酵母藉由使用剪刀撕扯,且浸泡於0.1%(w/v)蛋白腖中。混合物經充分地渦旋以釋放固定之細胞至蛋白腖中。混合物接著經稀釋,且塗覆至YPD盤上,且該等盤在42℃下培育24h。計算群落,獲得固定之酵母的實際細胞計數。實際細胞計數除以固定之酵母的理論細胞計數,獲得囊封效率。 PLLA MTAM-fixed K. marxianus was torn by using scissors and immersed in 0.1% (w/v) peptone. The mixture is vortexed sufficiently to release the fixed cells into the peptone. The mixture was then diluted and applied to a YPD pan and the plates were incubated at 42 °C for 24 h. The community is calculated and the actual cell count of the fixed yeast is obtained. The actual cell count was divided by the theoretical cell count of the fixed yeast to obtain encapsulation efficiency.

使用固定之馬克斯克魯維酵母的分批及重複分批生物乙醇發酵Batch and repeated batch bioethanol fermentation using fixed K. marxianus

對於生物乙醇發酵,PLLA MTAM固定馬克斯克魯維酵母在42℃下以200rpm之振盪置放至100mL含5%葡萄糖之YPD介質(1%酵母萃取物、2%細菌蛋白腖及5%葡萄糖)中。在分批發酵中的葡萄糖用量及乙醇生產藉由使用HPLC分析在0、6、9、12、15及24h時監測。觀測實現最多乙醇生產的最優分批發酵時間,且應用於重複分批發酵中。隨後重複分批生物乙醇發酵用與分批發酵相同的生長條件完成。在各發酵循環結束時,PLLA MTAM固定馬克斯克魯維酵母細胞用無菌蛋白腖水洗滌,且接著轉移至相同體積的含5%葡萄糖之新製YPD介質中以用於隨後發酵循環。一直重複循環直至生物乙醇之生產不再有 效。葡萄糖及生物乙醇發酵在發酵之各循環期間在0、3、6、9、12h時量測。用於生物乙醇發酵的參數以CEtOH(乙醇濃度)、r PEtOH(初始乙醇生產速率)及Max.Y P/S (最大乙醇產量)[5]展示。CEtOH(g/L)為在發酵期間應達成的最大乙醇濃度;r PEtOH(g/L h)為除以達到CEtOH所消耗時間(h)的CEtOH;Max.YP/S(g/g)藉由除以在發酵期間的總體產生之乙醇獲得。 For bioethanol fermentation, PLLA MTAM-fixed K. marxianus was placed in a 100 mL 5% glucose-containing YPD medium (1% yeast extract, 2% bacterial peptone, and 5% dextrose) at 200 °C with shaking at 200 rpm. The amount of glucose used in the batch fermentation and ethanol production were monitored at 0, 6, 9, 12, 15 and 24 h by HPLC analysis. Observe the optimal batch fermentation time for maximum ethanol production and apply it to repeated batch fermentations. Subsequent repeated batches of bioethanol fermentation were completed using the same growth conditions as batch fermentation. At the end of each fermentation cycle, PLLA MTAM-fixed K. marxianus cells were washed with sterile peptone water and then transferred to the same volume of 5% glucose-containing fresh YPD medium for subsequent fermentation cycles. The cycle is repeated until the production of bioethanol is no longer effective. Glucose and bioethanol fermentation were measured at 0, 3, 6, 9, 12 h during each cycle of fermentation. The parameters used for bioethanol fermentation are shown as C EtOH (ethanol concentration), r P EtOH (initial ethanol production rate), and Max. Y P/S (maximum ethanol production) [5]. C EtOH (g/L) is the maximum ethanol concentration that should be achieved during fermentation; r P EtOH (g/L h) is C EtOH divided by the time (h) taken to reach C EtOH ; Max.Y P/S ( g/g) is obtained by dividing by the total ethanol produced during the fermentation.

使用HPLC的葡萄糖及乙醇之分析Analysis of glucose and ethanol using HPLC

葡萄糖(g)及乙醇(g)使用Aminex HPX-87H管柱(Bio-Rad,Sunnyvale,CA,USA)以及折射率偵測器以5mM H2SO4溶離劑以0.6mL/min之流動速率在60℃下均經分析。所有測試樣品在HPLC分析之前均經由0.22μm膜過濾器過濾。 Glucose (g) and ethanol (g) were flowed at a flow rate of 0.6 mL/min with a 5 mM H 2 SO 4 eliminator using an Aminex HPX-87H column (Bio-Rad, Sunnyvale, CA, USA) and a refractive index detector. All were analyzed at 60 °C. All test samples were filtered through a 0.22 [mu]m membrane filter prior to HPLC analysis.

統計分析Statistical Analysis

資料使用SPSS版本12.0(SPSS Inc.,Chicago,IL,USA)以統計方式分析。方差(ANOVA)之單向分析用於測定在樣品構件之間的統計差異,其中顯著性水準設定在P<0.05。構件之多個比較藉由圖克(Tukey)測試完成。所有資料表示為平均值±SD。 Data were analyzed statistically using SPSS version 12.0 (SPSS Inc., Chicago, IL, USA). One-way analysis of variance (ANOVA) was used to determine statistical differences between sample components, with a significance level set at P < 0.05. Multiple comparisons of components were done by Tukey testing. All data are expressed as mean ± SD.

實例1馬克斯克魯維酵母在PLLA MTAM中之囊封Example 1 Encapsulation of Kluyveromyces cerevisiae in PLLA MTAM

MTAM之掃描電子顯微鏡(SEM)部分影像展示於圖1(A)中。MTAM由直徑為約40μm的單層中空管及約30nm之中空管壁孔隙直徑組成。游離馬克斯克魯維酵母細胞及MTAM固定馬克斯克魯維酵母細胞展示於圖1(B)及(C)中。PLLA-MTAM捕獲用於固定的酵母細胞以在發酵中獲得高生物質量負載量。在對映異構性上,純PLLA為玻璃轉移溫度為約55℃及熔點為約180℃(Prog.Polym.Sci.27(2002)1123-1163)的半晶質聚合物,表明PLLA-MTAM在所有已知生物乙醇發酵溫度上為熱穩定的。另外,PLLA不溶於水,且其在溶劑中的溶解度高度取決於莫耳質量及結晶度(Prog.Polym.Sci.27(2002)1123-1163)。 A partial scanning electron microscope (SEM) image of MTAM is shown in Figure 1 (A). The MTAM consists of a single-layer hollow tube having a diameter of about 40 μm and a hollow tube wall pore diameter of about 30 nm. Free K. marxianus cells and MTAM-fixed K. marxianus cells are shown in Figures 1 (B) and (C). PLLA-MTAM captures yeast cells for immobilization to achieve high biomass mass loading in fermentation. In terms of enantioselectivity, pure PLLA is a semicrystalline polymer having a glass transition temperature of about 55 ° C and a melting point of about 180 ° C ( Prog. Polym. Sci. 27 (2002) 1123-1163) , indicating PLLA-MTAM It is thermally stable at all known bioethanol fermentation temperatures. In addition, PLLA is insoluble in water, and its solubility in a solvent is highly dependent on the molar mass and crystallinity ( Prog. Polym. Sci. 27 (2002) 1123-1163).

實例2乙醇及攪拌在MTAM之穩定性上之效應Example 2 Effect of Ethanol and Stirring on the Stability of MTAM

為了測定攪拌及乙醇之效應,MTAM固定馬克斯克魯維酵母在不同rpm設置及乙醇濃度下培育。如表1中所示,MTAM在3%、6%、9%、12%及15%(v/v)乙醇下持續超過5週(840h)(未展示資料)保持恆定的穩固性。吾等資料指示,MTAM在15%(v/v)乙醇下為穩定的持續超過840h,且細胞固定可適用於重複分批及連續發酵。攪拌(100、200、300、400及500rpm)在MTAM上之效應使用2種不同方法、旋轉震盪器及具有葉輪的發酵槽測定。如表1中所示,MTAM在旋轉震盪器上以200rpm在72-96h之培育時間時開始撕裂。隨著rpm降低,在MTAM上出現的任何撕裂所需時間增加。在50及100之rpm設置下,MTAM在600h(25天)內未展示撕裂。MTAM在100rpm下持續至多60h及在200rpm下持續至多36h未展示顯而易見的撕裂。資料表明,當前PLLA-MTAM適用於在振盪下的厭氧及好氧發酵。 To determine the effect of agitation and ethanol, MTAM-fixed K. marxianus was incubated at different rpm settings and ethanol concentrations. As shown in Table 1, MTAM maintained constant stability over 5%, 6%, 9%, 12%, and 15% (v/v) ethanol for more than 5 weeks (840 h) (data not shown). Our data indicate that MTAM is stable for more than 840 hours at 15% (v/v) ethanol, and cell fixation is suitable for repeated batch and continuous fermentation. The effects of agitation (100, 200, 300, 400 and 500 rpm) on the MTAM were determined using two different methods, a rotary shaker and a fermenter with an impeller. As shown in Table 1, the MTAM began to tear at 200 rpm at a incubation time of 72-96 h on a rotary shaker. As the rpm decreases, the time required for any tearing that occurs on the MTAM increases. At 50 and 100 rpm settings, MTAM did not show tears within 600h (25 days). The MTAM did not exhibit an apparent tear at 100 rpm for up to 60 h and at 200 rpm for up to 36 h. The data indicates that the current PLLA-MTAM is suitable for anaerobic and aerobic fermentation under shaking.

實例3囊封方法及細胞數目在囊封效率上之效應Example 3 encapsulation method and the effect of cell number on encapsulation efficiency

吾等評估用於2種囊封方法、原位製備及虹吸管製備的酵母馬克斯克魯維酵母之囊封效率。如表2中所示,使用原位及虹吸管方法的108個酵母細胞之囊封分別展示70.0±2.0%及67.0±15.0%之囊封效率。2種方法展示在108之細胞密度下的類似囊封效率。吾等囊封效率資料表明,馬克斯克魯維酵母細胞倖存於電紡方法。 We evaluated the encapsulation efficiency of K. marxianus for two encapsulation methods, in situ preparation and siphon preparation. As shown in Table 2, the method of in situ and siphon 10 8 yeast cells were showing encapsulation of 70.0 ± 2.0% and 67.0 ± 15.0% of the encapsulation efficiency. Two methods show similar efficiency in a sealed capsule at a density of 10 8 cells. Our encapsulation efficiency data indicates that the K. marquee yeast cells survived the electrospinning method.

表2Table 2

資料表示為平均值±SD(n=3)。 Data are expressed as mean ± SD (n = 3).

實例4囊封方法及MTAM之孔隙度在酵母生長及分批生物乙醇發酵上之效應Example 4 Encapsulation Method and Effect of MTAM Porosity on Yeast Growth and Batch Bioethanol Fermentation

圖1(A)展示MTAM為單層,其中空管直徑為約40μm及在各中空管之表面上奈米孔直徑為約30nm,其允許簡單的糖、醇及其他小分子擴散進及擴散出。為了測定在管之表面上的較大孔隙度是否將加速糖消耗及乙醇生產,可能由於糖及乙醇跨越障壁的較大擴散,吾等在PLLA-MTAM製備中使用10%(v/v)造孔劑聚乙二醇,在MTAM中空管壁之表面上生產奈米孔直徑為0.31±0.08μm的較大孔隙度。如表3中所示,原位製備具有較大孔隙度的MTAM固定馬克斯克魯維酵母在生物乙醇發酵期間展示8.76±0.07g/L之CEtOH、0.73±0.01g/Lh之r PEtoH及0.43±0.01a(g/g)之最大YP/S,其比原始MTAM的相對應值更佳。關於利用虹吸管方法製備之具有較大孔隙度的MTAM固定馬克斯克魯維酵母,與原始MTAM的生物乙醇發酵之參數相比,不存在顯而易見的差異。使用此方法的囊封效率展示相對較高標準差,表明涉及原始MTAM及具有較大孔隙度之MTAM之各囊封的細胞數目之間差異較大。吾等使用10%(v/v)聚乙二醇以建立用於其餘研究的MTAM固定馬克斯克魯維酵母。 Figure 1 (A) shows that the MTAM is a single layer in which the diameter of the empty tube is about 40 μm and the diameter of the nanopore on the surface of each hollow tube is about 30 nm, which allows simple diffusion of sugar, alcohol and other small molecules into and spread. Out. In order to determine whether the larger porosity on the surface of the tube will accelerate sugar consumption and ethanol production, possibly due to the large diffusion of sugar and ethanol across the barrier, we used 10% (v/v) in PLLA-MTAM preparation. The pore agent polyethylene glycol produced a large porosity of a pore diameter of 0.31 ± 0.08 μm on the surface of the hollow wall of the MTAM. As shown in Table 3, in situ preparation of MTAM-fixed K. marxianus with large porosity exhibited 8.76 ± 0.07 g / L of C EtOH , 0.73 ± 0.01 g / Lh of r P EtoH during bioethanol fermentation and The maximum Y P/S of 0.43 ± 0.01 a (g/g) is better than the corresponding value of the original MTAM. Regarding the MTAM-fixed K. marxianus yeast having a large porosity prepared by the siphon method, there is no obvious difference compared with the parameters of the bioethanol fermentation of the original MTAM. The encapsulation efficiency using this method exhibited a relatively high standard deviation indicating a large difference between the number of cells involved in the original MTAM and the MTAM with larger porosity. We used 10% (v/v) polyethylene glycol to establish MTAM-fixed K. marxianus for the rest of the study.

C EtOH (乙醇濃度);r P EtOH (初始乙醇產生速率);Max.YP/S(最大乙醇產量)。 C EtOH (ethanol concentration); r P EtOH (initial ethanol production rate); Max. Y P/S (maximum ethanol production).

資料表示為平均值±SD(n=3)。在資料欄中的不同字母展示顯著差異(p<0.05)。 Data are expressed as mean ± SD (n = 3). The different letters in the data column show significant differences (p < 0.05).

實例5使用游離且MTAM固定馬克斯克魯維酵母的糖用量及葡萄糖之生物乙醇發酵Example 5 using a free and MTAM-fixed sugar amount of K. martingus and bioethanol fermentation of glucose

藉由游離且MTAM固定馬克斯克魯維酵母之YPD之生物乙醇發酵展示於圖2中。在發酵中游離且MTAM固定馬克斯克魯維酵母之起始細胞密度持續保存在105CFU/mL下。結果展示與游離細胞相比,用固定於MTAM中之酵母細胞的分批發酵需要較少發酵時間來將葡萄糖轉化成生物乙醇。游離細胞在24h內消耗濃度為50g/L之葡萄糖,然而利用原位及虹吸管方法製備的MTAM固定細胞分別在9h及12h內耗盡葡萄糖,指示MTAM固定馬克斯克魯維酵母提高了效率。 The bioethanol fermentation of YPD by free and MTAM immobilized K. marxianus is shown in Figure 2. The initial cell density of the free and MTAM-fixed K. marxianus in the fermentation was continuously maintained at 10 5 CFU/mL. The results show that batch fermentation with yeast cells immobilized in MTAM requires less fermentation time to convert glucose to bioethanol than free cells. Free cells consumed glucose at a concentration of 50 g/L within 24 h. However, MTAM-fixed cells prepared by in situ and siphon method depleted glucose at 9 h and 12 h, respectively, indicating that MTAM immobilized K. marxianus increased efficiency.

18.46g/L之最大生物乙醇濃度獲自使用游離細胞15h之後的發酵。自原位及虹吸管製備的在MTAM中固定之酵母細胞展示20.7g/L(9h)及19.9g/L(12h)之最大生物乙醇濃度,其比游離細胞分別高10%及8%。在此研究中,吾等使用分批發酵的MTAM固定馬克斯克魯維酵母,且與游離細胞相比提高乙醇生產力8-10%,其視所使用製備方法而定。 The maximum bioethanol concentration of 18.46 g/L was obtained from fermentation after 15 h of free cells. Yeast cells fixed in MTAM prepared from in situ and siphon tubes exhibited maximum bioethanol concentrations of 20.7 g/L (9 h) and 19.9 g/L (12 h), which were 10% and 8% higher, respectively, than free cells. In this study, we used batch-fermented MTAM to immobilize K. marxianus and increased ethanol productivity by 8-10% compared to free cells, depending on the preparation method used.

實例6使用MTAM固定馬克斯克魯維酵母的YPD之重複分批生物乙醇發酵Example 6 Repeated Batch Bioethanol Fermentation of YPD by Using MTAM to Fix Marker's Yeast

在重複分批發酵中使用MTAM固定馬克斯克魯維酵母的葡萄糖消耗及乙醇生產隨時間變化來研究(圖3)。第一批次MTAM固定細胞在6h時消耗17g/L起始50g/L葡萄糖(34%)。自批次II至VII,再使用同一MTAM,且各批次在6h時消耗超過95%葡萄糖(圖3(A))。另外,所有 批次,包括第一批次,在9h內消耗所有葡萄糖。因此,在所有批次中在發酵9h時獲得最高乙醇濃度,其在12h時開始降低,可能由於當沒有可利用之葡萄糖時,乙醇即氧化代謝。在6h時所有批次的乙醇濃度之標準差均大於在任何其他時間點的彼等乙醇濃度之標準差,此表示一些固定MTAM可在9h之前達成最大乙醇生產。吾等試圖於MTAM中囊封馬克斯克魯維酵母以用於重複分批生物乙醇發酵,成功地降低製備接種物之處理成本,且加速葡萄糖消耗及乙醇生產。在發酵中使用游離細胞之乙醇生產的動力參數及在重複分批發酵中以MTAM固定馬克斯克魯維酵母的評估示於表4中。正如所料,在各個批次中MTAM固定細胞在糖消耗及乙醇生產方面與游離細胞相比顯示提高之效能。使用游離馬克斯克魯維酵母細胞的生物乙醇發酵在15h時展示93%之葡萄糖消耗、18.46±0.38g/L之CEtOH、0.40±0.002g/g之最大YP/S及1.23±0.02g/L h之r PEtOH。對於固定之細胞,第一批次在9h時顯示最低乙醇生產力,其中CEtOH(20.78±0.16g/L)、最大YP/S(0.42±0.003g/g)及r P EtOH(2.31±0.02g/L h)。在後續批次中,乙醇生產力逐漸增加直至批次VI為止,且批次III、IV、V及VI中所獲得之CEtOH、最大TP/S及r PEtOH高於前2個批次。藉由原位製法製備的固定細胞於重複分批發酵之6次循環中,得到24.23±0.63g/L之最大CEtOH、0.48±0.012g/g之最大YP/S及2.69±0.07g/L h之r PEtOH,在發酵之最後一次循環中稍微降低。乙醇生產力在批次VII中開始降低,可能由於酵母細胞老化;於其中進行物理性質、細胞囊封效率及固定技術,且吾等資料顯示MTAM固定酵母在重複分批及連續生物乙醇發酵中顯示極大潛力。本發明首次將此細胞固定技術引入至生物乙醇發酵。 Glucose consumption and ethanol production of M. serrata using MTAM in repeated batch fermentations were studied as a function of time (Fig. 3). The first batch of MTAM-fixed cells consumed 17 g/L of starting 50 g/L glucose (34%) at 6 h. From batches II to VII, the same MTAM was used, and each batch consumed more than 95% glucose at 6 h (Fig. 3(A)). In addition, all batches, including the first batch, consumed all glucose within 9 hours. Thus, the highest ethanol concentration was obtained in all batches at 9 h of fermentation, which began to decrease at 12 h, possibly due to the oxidative metabolism of ethanol when there was no available glucose. The standard deviation of ethanol concentrations for all batches at 6 h was greater than the standard deviation of their ethanol concentrations at any other time point, indicating that some fixed MTAMs could achieve maximum ethanol production by 9 h. We attempted to encapsulate Marker's yeast in MTAM for repeated batch bioethanol fermentation, successfully reducing the cost of processing inoculum preparation, and accelerating glucose consumption and ethanol production. The kinetic parameters of ethanol production using free cells in fermentation and the evaluation of immobilization of K. marxianus by MTAM in repeated batch fermentation are shown in Table 4. As expected, MTAM fixed cells showed improved efficacy in terms of sugar consumption and ethanol production compared to free cells in each batch. Bioethanol fermentation using free K. marxianus cells showed 93% glucose consumption, 18.46 ± 0.38 g/L C EtOH , 0.40 ± 0.002 g/g maximum Y P/S and 1.23 ± 0.02 g/ at 15 h. L h of r P EtOH . For fixed cells, the first batch showed the lowest ethanol productivity at 9 h, with C EtOH (20.78 ± 0.16 g/L), maximum Y P/S (0.42 ± 0.003 g/g), and r P EtOH (2.31 ± 0.02). g/L h). In subsequent batches, ethanol productivity gradually increased until batch VI, and C EtOH , maximum T P/S, and r P EtOH obtained in batches III, IV, V, and VI were higher than the first two batches. The fixed cells prepared by the in-situ method were subjected to 6 cycles of repeated batch fermentation to obtain a maximum C EtOH of 24.23±0.63 g/L, a maximum Y P/S of 0.48±0.012 g/g, and 2.69±0.07 g/ r P EtOH of L h , slightly decreased in the last cycle of fermentation. Ethanol productivity began to decrease in batch VII, possibly due to aging of yeast cells; physical properties, cell encapsulation efficiency and immobilization techniques were performed therein, and our data showed that MTAM-fixed yeast showed great significance in repeated batch and continuous bioethanol fermentations. potential. The present invention introduces this cell fixation technique for the first time into bioethanol fermentation.

表4在分批發酵中藉由游離細胞之乙醇生產的動力參數及在重複分批發酵中MTAM囊封馬克斯克魯維酵母的評估。 Table 4 shows the kinetic parameters of ethanol production by free cells in batch fermentation and the evaluation of MTAM encapsulation of K. marxianus in repeated batch fermentations.

CEtOH(乙醇濃度);r PEtOH(初始乙醇產生速率);Max.YP/S(最大乙醇產量)。 C EtOH (ethanol concentration); r P EtOH (initial ethanol production rate); Max. Y P/S (maximum ethanol production).

資料表示為平均值±SD(n=3)。在資料欄中不同字母展示顯著差異(p<0.05)。 Data are expressed as mean ± SD (n = 3). Different letters in the data column showed significant differences (p < 0.05).

Claims (14)

一種酵母細胞與多孔微管陣列膜(MTAM)之組合,其中該等酵母細胞固定在該MTAM中,且其中酵母囊封效率超過60%。 A combination of a yeast cell and a porous microtubule array membrane (MTAM), wherein the yeast cells are immobilized in the MTAM, and wherein the yeast encapsulation efficiency exceeds 60%. 如請求項1之組合,其中該酵母細胞為馬克斯克魯維酵母(Kluyveromyces marxianus)、乳酸克魯維酵母(Kluyveromyces lactis)、解脂克魯維酵母(Kluyveromyces lipolytica)、釀酒酵母(Saccharomyces cerevisiae)或粟酒裂殖酵母(Schizosaccharomyces pombe)The combination of claim 1, wherein the yeast cell is Kluyveromyces marxianus, Kluyveromyces lactis , Kluyveromyces lipolytica , Saccharomyces cerevisiae or Schizosaccharomyces pombe . 如請求項1之組合,其中該MTAM為高度對準且緊密填充之纖維總成,且其中纖維填充在一起以形成單層,且該等纖維之定向不大於+/-5°。 A combination of claim 1 wherein the MTAM is a highly aligned and closely packed fiber assembly, and wherein the fibers are filled together to form a single layer, and the fibers are oriented no more than +/- 5[deg.]. 如請求項1之組合,其中該MTAM為具有中空管的單層。 A combination of claim 1 wherein the MTAM is a single layer having a hollow tube. 如請求項4之組合,其中該管之直徑在約30μm至約50μm範圍內。 A combination of claim 4, wherein the tube has a diameter in the range of from about 30 [mu]m to about 50 [mu]m. 如請求項1之組合,其中該MTAM之孔徑在約20nm至約40nm範圍內。 A combination of claim 1 wherein the MTAM has a pore size in the range of from about 20 nm to about 40 nm. 如請求項1之組合,其中該MTAM由選自以下之生物可降解性及/或生物可吸收性的聚合物組成:環氧乙烷、聚氧化乙烯(PEO)、乙二醇、聚乙二醇(PEG)、聚(乳酸)(PLA)、聚(乙醇酸)(PGA)、聚(乳酸-共-乙醇酸)(PLGA)、聚(氧化乙烯)(PEO)、耐綸、聚酯、聚醯胺、聚(醯胺酸)、聚醯亞胺、聚醚、聚酮、聚胺基甲酸酯、聚己內酯、聚丙烯腈、芳族聚醯胺、共軛聚合物諸如電致發光聚合物、聚(2-甲氧基,5乙基(2'己氧基)對伸苯基乙烯)(MEH-PPV)、聚伸苯基乙烯、聚伸芳基乙烯、聚伸噻吩基乙烯、聚吡咯-乙烯、聚伸雜芳基乙烯、聚苯胺、聚伸苯基化合物、聚伸芳 基化合物、聚噻吩、聚吡咯、聚伸雜芳基化合物、聚伸苯基-乙炔、聚伸芳基-乙炔、聚噻吩-乙炔、聚伸雜芳基-乙炔及其混合物。 The combination of claim 1, wherein the MTAM is composed of a biodegradable and/or bioabsorbable polymer selected from the group consisting of ethylene oxide, polyethylene oxide (PEO), ethylene glycol, and polyethylene. Alcohol (PEG), poly(lactic acid) (PLA), poly(glycolic acid) (PGA), poly(lactic-co-glycolic acid) (PLGA), poly(ethylene oxide) (PEO), nylon, polyester, Polyamide, poly(proline), polyimine, polyether, polyketone, polyurethane, polycaprolactone, polyacrylonitrile, aromatic polyamine, conjugated polymer such as electricity Luminescent polymer, poly(2-methoxy, 5 ethyl(2'hexyloxy)-p-phenylene vinyl) (MEH-PPV), polyphenylenevinylene, poly(arylene), polythiophene Ethylene, polypyrrole-ethylene, poly(arylene), polyaniline, polyphenylene compound, poly-extension Base compounds, polythiophenes, polypyrroles, polyheteroaryl compounds, polyphenylene-acetylenes, poly(arylene-acetylenes), polythiophene-acetylenes, polyhexamethylene-acetylenes, and mixtures thereof. 如請求項1之組合,其中該MTAM為PLA。 As in the combination of claim 1, wherein the MTAM is a PLA. 一種用於生物乙醇發酵的方法,其包含以下步驟:(a)藉由原位製法或虹吸管製法,於MTAM中固定約107至約109細胞數(CFU/mL)之酵母細胞,使該等酵母細胞依超過60%囊封效率囊封至該MTAM中;及(b)藉由分批發酵法,使用所得MTAM發酵糖,生產乙醇。 A method for bioethanol fermentation comprising the steps of: (a) fixing about 10 7 to about 10 9 cell numbers (CFU/mL) of yeast cells in MTAM by in situ or siphon control, such that The yeast cells are encapsulated into the MTAM by more than 60% encapsulation efficiency; and (b) the resulting MTAM fermented sugar is used to produce ethanol by batch fermentation. 如請求項9之方法,其中在(a)中該等酵母細胞之細胞數為約108CFU/mL。 The method of claim 9, wherein the number of cells of the yeast cells in (a) is about 10 8 CFU/mL. 如請求項9之方法,其中該糖為葡萄糖、果糖或蔗糖。 The method of claim 9, wherein the sugar is glucose, fructose or sucrose. 如請求項9之方法,其中該糖為濃度在約40g/L至約60g/L範圍內的葡萄糖。 The method of claim 9, wherein the sugar is glucose having a concentration ranging from about 40 g/L to about 60 g/L. 如請求項9之方法,其中該分批發酵為重複分批發酵。 The method of claim 9, wherein the batch fermentation is repeated batch fermentation. 如請求項13之方法,其中該重複分批發酵為2至7批次。 The method of claim 13, wherein the repeated batch fermentation is from 2 to 7 batches.
TW104141803A 2015-12-11 2015-12-11 Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation TWI592488B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104141803A TWI592488B (en) 2015-12-11 2015-12-11 Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104141803A TWI592488B (en) 2015-12-11 2015-12-11 Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation

Publications (2)

Publication Number Publication Date
TW201720923A TW201720923A (en) 2017-06-16
TWI592488B true TWI592488B (en) 2017-07-21

Family

ID=59687266

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141803A TWI592488B (en) 2015-12-11 2015-12-11 Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation

Country Status (1)

Country Link
TW (1) TWI592488B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI743725B (en) * 2019-03-29 2021-10-21 綿天科技有限公司 Highly aligned and packed hollow fiber assembly

Also Published As

Publication number Publication date
TW201720923A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
Işik et al. Synthesis and characterization of electrospun PVA/Zn2+ metal composite nanofibers for lipase immobilization with effective thermal, pH stabilities and reusability
Wu et al. Electrospinning of multilevel structured functional micro-/nanofibers and their applications
US6586246B1 (en) Preparing porous biodegradable polymeric scaffolds for tissue engineering using effervescent salts
Chen et al. Accelerated bioethanol fermentation by using a novel yeast immobilization technique: Microtube array membrane
CN106282153A (en) Sandwich micro nanometer fiber composite membrane of loading microorganisms and its preparation method and application
JP2007510820A5 (en)
JP2012533006A (en) Electrospinning of polyamide nanofibers
CN103667148B (en) One plant height produces the high temperature resistant middle gluconacetobacter of bacteria cellulose
AU780321B2 (en) Method for preparing biocompatible scaffold and scaffold prepared therefrom
Chen et al. Repeated-batch lactic acid fermentation using a novel bacterial immobilization technique based on a microtube array membrane
CN106947466B (en) Carbon dots-porous inorganic oxide composite nano fiber preparation method
CN103261427A (en) Method for producing chemical by continuous fermentation
TWI592488B (en) Poly-l-lactic acid (plla) microtube array membrane-immobilized yeast cells for bioethanol fermentation
CN107698952A (en) A kind of 3D printing porous material for expanding drilling and preparation method thereof
CN103642854B (en) Method for producing succinic acid from corynebacterium glutamicum through immobilized repeated batch fermentation
KR101828925B1 (en) Low density nanofiber, a process for the preparation thereof, and a use thereof
CN101736438A (en) Chitosan nanofibre and preparation method and application thereof
CN111235700A (en) Red phosphorus doped TiO2Preparation method of/C nanofiber negative electrode material
Sawada et al. Enhanced productivity of electrospun polyvinyl alcohol nanofibrous mats using aqueous N, N-dimethylformamide solution and their application to lipase-immobilizing membrane-shaped catalysts
CN102251393B (en) Surface modification method of aliphatic polyester electrospun fiber by using sodium alginate and gelatin
US9758778B2 (en) Poly-l-lactic acid (PLLA) microtube array membrane-immobilized yeast cells for bioethanol fermentation
Huang et al. The microsphere of sodium alginate-chitosan-Pichia kudriavzevii enhanced esterase activity to increase the content of esters in Baijiu solid-state fermentation
CN106496613B (en) Preparation method of stereo composite polylactic acid porous membrane material
CN110699850B (en) Preparation method of polyhydroxyalkanoate/polypyrrole composite electrospinning membrane and electrospinning membrane
CN102352543A (en) Method for preparing bipolar membrane using modified sodium alginate-sodium carboxymethylcellulose as middle interface layer