TWI591411B - Pixel structure and manufacturing method thereof - Google Patents

Pixel structure and manufacturing method thereof Download PDF

Info

Publication number
TWI591411B
TWI591411B TW106103026A TW106103026A TWI591411B TW I591411 B TWI591411 B TW I591411B TW 106103026 A TW106103026 A TW 106103026A TW 106103026 A TW106103026 A TW 106103026A TW I591411 B TWI591411 B TW I591411B
Authority
TW
Taiwan
Prior art keywords
source
pixel structure
drain
gate
auxiliary
Prior art date
Application number
TW106103026A
Other languages
Chinese (zh)
Other versions
TW201827906A (en
Inventor
許世華
蔡佳宏
劉冠顯
陳維翰
吳安茹
涂峻豪
劉竹育
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW106103026A priority Critical patent/TWI591411B/en
Priority to CN201710207090.5A priority patent/CN106898621B/en
Application granted granted Critical
Publication of TWI591411B publication Critical patent/TWI591411B/en
Publication of TW201827906A publication Critical patent/TW201827906A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42356Disposition, e.g. buried gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42384Gate electrodes for field effect devices for field-effect transistors with insulated gate for thin film field effect transistors, e.g. characterised by the thickness or the shape of the insulator or the dimensions, the shape or the lay-out of the conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)
  • Liquid Crystal (AREA)

Description

畫素結構及其製造方法Pixel structure and its manufacturing method

本發明是有關於一種半導體結構及其製造方法,且特別是有關於一種畫素結構及其製造方法。The present invention relates to a semiconductor structure and a method of fabricating the same, and more particularly to a pixel structure and a method of fabricating the same.

近年來,顯示面板廣泛地運用在消費性電子產品上,例如:電視、電腦、手機、數位相機等。顯示面板包括主動元件陣列基板、對向基板以及配置於主動元件陣列基板與對向基板之間的顯示介質。主動元件陣列基板具有多個畫素結構。每一畫素結構包括薄膜電晶體以及與薄膜電晶體電性連接的畫素電極。薄膜電晶體用以控制畫素結構的開關。薄膜電晶體的性能優劣對顯示面板的品質具有關鍵性的影響。薄膜電晶體包括源極、汲極、閘極以及做為通道的半導體圖案。一般而言,當閘極的尺寸縮小時,閘極的邊緣與半導體圖案的邊緣接近,而薄膜電晶體之汲極電流與閘極電壓的特性曲線出現駝峰現象(Hump phenomenon),不利於顯示面板的品質。In recent years, display panels have been widely used in consumer electronics such as televisions, computers, mobile phones, and digital cameras. The display panel includes an active device array substrate, an opposite substrate, and a display medium disposed between the active device array substrate and the opposite substrate. The active device array substrate has a plurality of pixel structures. Each pixel structure includes a thin film transistor and a pixel electrode electrically connected to the thin film transistor. The thin film transistor is used to control the switching of the pixel structure. The performance of thin film transistors has a critical impact on the quality of the display panel. The thin film transistor includes a source, a drain, a gate, and a semiconductor pattern as a channel. In general, when the size of the gate is reduced, the edge of the gate is close to the edge of the semiconductor pattern, and the characteristic curve of the gate current and the gate voltage of the thin film transistor has a hump phenomenon, which is disadvantageous to the display panel. Quality.

本發明提供一種畫素結構,性能佳。The invention provides a pixel structure with good performance.

本發明提供一種畫素結構的製造方法,能降低畫素結構的製造成本。The invention provides a method for manufacturing a pixel structure, which can reduce the manufacturing cost of the pixel structure.

本發明的畫素結構包括薄膜電晶體及畫素電極。薄膜電晶體包括源極、汲極、半導體層及閘極。半導體層位於源極與汲極上且具有設置於源極與汲極之間的通道。閘極包括主要部及輔助部。主要部與源極、汲極和通道重疊設置。輔助部位於主要部外且與主要部電性連接。主要部與輔助部之間具有間隙。畫素電極與汲極電性連接。The pixel structure of the present invention includes a thin film transistor and a pixel electrode. The thin film transistor includes a source, a drain, a semiconductor layer, and a gate. The semiconductor layer is on the source and the drain and has a channel disposed between the source and the drain. The gate includes a main portion and an auxiliary portion. The main part is overlapped with the source, drain and channel. The auxiliary part is located outside the main part and is electrically connected to the main part. There is a gap between the main part and the auxiliary part. The pixel electrode is electrically connected to the drain.

本發明的畫素結構的製造方法,包括下列步驟:在基板上形成彼此分離的源極與汲極;形成第一蝕刻阻擋圖案,覆蓋源極與汲極且暴露源極與汲極的部份上表面;於第一蝕刻阻擋圖案和源極與汲極的所述部份上表面上形成半導體材料層;在半導體材料層上形成絕緣材料層;在絕緣材料層上形成導電層;圖案化導電層,以形成具有至少一開口的閘極;以閘極為罩幕,圖案化絕緣材料層與半導體材料層,以形成具有至少一開口的絕緣層與具有至少一開口的半導體層,其中閘極的至少一開口、絕緣層的至少一開口以及半導體層的至少一開口連通且暴露第一蝕刻阻擋圖案。The method for fabricating a pixel structure of the present invention comprises the steps of: forming a source and a drain separated from each other on a substrate; forming a first etch barrier pattern covering the source and the drain and exposing the source and the drain An upper surface; a semiconductor material layer formed on the first etch barrier pattern and the upper surface of the portion of the source and the drain; an insulating material layer formed on the semiconductor material layer; a conductive layer formed on the insulating material layer; and patterned conductive a layer to form a gate having at least one opening; patterning the layer of insulating material and the layer of semiconductor material with a gate to form an insulating layer having at least one opening and a semiconductor layer having at least one opening, wherein the gate At least one opening, at least one opening of the insulating layer, and at least one opening of the semiconductor layer communicate and expose the first etch barrier pattern.

基於上述,本發明的畫素結構包括具有源極、汲極、半導體層及閘極的薄膜電晶體及畫素電極。薄膜電晶體的閘極包括主要部及輔助部。閘極的主要部與源極、汲極和通道重疊設置。輔助部位於主要部外且與主要部電性連接。主要部與輔助部之間具有間隙。藉由輔助部,閘極能增加控制通道內載子的能力,進而抑制駝峰現象,提升薄膜電晶體的電性。Based on the above, the pixel structure of the present invention includes a thin film transistor having a source, a drain, a semiconductor layer, and a gate, and a pixel electrode. The gate of the thin film transistor includes a main portion and an auxiliary portion. The main part of the gate is overlapped with the source, the drain and the channel. The auxiliary part is located outside the main part and is electrically connected to the main part. There is a gap between the main part and the auxiliary part. With the auxiliary part, the gate can increase the ability of the carrier in the control channel, thereby suppressing the hump phenomenon and improving the electrical properties of the thin film transistor.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1A至圖1H為本發明一實施例之畫素結構的製造方法的上視示意圖。圖2A至圖2H為本發明一實施例之畫素結構的製造方法的剖面示意圖。特別是,圖2A至圖2H對應於圖1A至圖1H的剖線A-A’及B-B’。請參照圖1A及圖2A,首先,提供基板10,以承載畫素結構100(標於圖1H及圖2H)。在本實施例中,基板10的材質可為玻璃、石英、有機聚合物、或是不透光/反射材料(例如:晶圓、陶瓷等)、或是其它可適用的材料。1A to 1H are schematic top views of a method of fabricating a pixel structure according to an embodiment of the present invention. 2A to 2H are schematic cross-sectional views showing a method of fabricating a pixel structure according to an embodiment of the present invention. In particular, Figs. 2A to 2H correspond to the cross-sectional lines A-A' and B-B' of Figs. 1A to 1H. Referring to FIG. 1A and FIG. 2A, first, a substrate 10 is provided to carry a pixel structure 100 (labeled in FIGS. 1H and 2H). In this embodiment, the material of the substrate 10 may be glass, quartz, organic polymer, or an opaque/reflective material (eg, wafer, ceramic, etc.), or other applicable materials.

請參照圖1A及圖2A,接著,在基板10上形成彼此分離的源極112與汲極114。在本實施例中,形成源極112與汲極114時,可同時形成與源極112電性連接的資料線116。換言之,在本實施例中,源極112、汲極114與資料線116可形成於同一膜層,但本發明不以此為限。基於源極112、汲極114與半導體層132(標於圖1H及圖2H)的匹配性考量,在本實施例中,源極112與汲極114的材質可選用銀,但本發明不限於此,在其他實施例中,源極112與汲極114的材質也可選用其他導電材料,例如:其他金屬材料、合金、金屬材料的氮化物、金屬材料的氧化物、金屬材料的氮氧化物、或是金屬材料與其它導電材料的堆疊層。Referring to FIG. 1A and FIG. 2A, a source 112 and a drain 114 separated from each other are formed on the substrate 10. In the present embodiment, when the source 112 and the drain 114 are formed, the data line 116 electrically connected to the source 112 can be simultaneously formed. In other words, in the present embodiment, the source 112, the drain 114, and the data line 116 may be formed on the same film layer, but the invention is not limited thereto. Based on the matching considerations of the source 112, the drain 114, and the semiconductor layer 132 (labeled in FIGS. 1H and 2H), in the present embodiment, the source 112 and the drain 114 may be made of silver, but the invention is not limited thereto. Therefore, in other embodiments, the material of the source 112 and the drain 114 may also be selected from other conductive materials, such as other metal materials, alloys, nitrides of metal materials, oxides of metal materials, and oxynitrides of metal materials. Or a stacked layer of metal material and other conductive materials.

請參照圖1B及圖2B,接著,形成第一蝕刻阻擋圖案120。第一蝕刻阻擋圖案120覆蓋源極112與汲極114且暴露源極112與汲極114的部份上表面112a-1、114a-1。詳言之,在本實施例中,第一蝕刻阻擋圖案120暴露源極112之端部112-1的上表面112a-1、源極112之端部112-1的側壁112b、汲極114之端部114-1的上表面114a-1以及汲極114之端部114-1的側壁114b,而覆蓋源極112之其餘部份的上表面112a-2、源極112之其餘部份的側壁、汲極114之其餘部份的上表面114a-2以及汲極114之其餘部份的側壁。此外,蝕刻阻擋圖案120還包覆資料線116。詳言之,第一蝕刻阻擋圖案120可覆蓋資料線116的所有上表面116a與所有側壁116b,但本發明不以此為限。Referring to FIG. 1B and FIG. 2B, next, a first etch barrier pattern 120 is formed. The first etch barrier pattern 120 covers the source 112 and the drain 114 and exposes a portion of the upper surface 112a-1, 114a-1 of the source 112 and the drain 114. In detail, in the present embodiment, the first etch barrier pattern 120 exposes the upper surface 112a-1 of the end 112-1 of the source 112, the sidewall 112b of the end 112-1 of the source 112, and the drain 114. The upper surface 114a-1 of the end portion 114-1 and the side wall 114b of the end portion 114-1 of the drain electrode 114 cover the upper surface 112a-2 of the remaining portion of the source electrode 112 and the sidewall of the remaining portion of the source electrode 112. The upper surface 114a-2 of the remaining portion of the drain 114 and the sidewall of the remaining portion of the drain 114. In addition, the etch barrier pattern 120 also covers the data line 116. In detail, the first etch barrier pattern 120 may cover all of the upper surface 116a of the data line 116 and all of the sidewalls 116b, but the invention is not limited thereto.

值得一提的是,第一蝕刻阻擋圖案120的設置可降低源極112、汲極114及資料線116於後續製程中造成機台污染的機率,且可降低源極112、汲極114及資料線116於後續製程中受損的機率。第一蝕刻阻擋圖案120的材質選用以兼具導電性及抗蝕刻性為佳,在本實施例中,第一蝕刻阻擋圖案120的材質可包括金屬氧化物,例如:銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層,但本發明不以此為限。It is worth mentioning that the setting of the first etch barrier pattern 120 can reduce the probability of the source 112, the drain 114 and the data line 116 causing machine contamination in subsequent processes, and can reduce the source 112, the drain 114 and the data. The probability of line 116 being damaged in subsequent processes. The material of the first etch barrier pattern 120 is preferably selected to have both conductivity and etch resistance. In this embodiment, the material of the first etch barrier pattern 120 may include a metal oxide such as indium tin oxide or indium zinc. Oxide, aluminum tin oxide, aluminum zinc oxide, indium antimony zinc oxide, or other suitable oxide, or a stacked layer of at least two of the above, but the invention is not limited thereto.

請參照圖1C及圖2C,接著,於第一蝕刻阻擋圖案120和源極112與汲極114的部份上表面112a-1、114a-1上形成半導體材料層130。在本實施例中,半導體材料層130可全面性覆蓋基板10,但本發明不以此為限。在本實施例中,半導體材料層130的材質例如為有機半導體材料,但本發明不限於此,在其他實施例中,半導體材料層130的材質也可為非晶矽、多晶矽、微晶矽、單晶矽、氧化物半導體材料(例如:銦鋅氧化物、銦鍺鋅氧化物等)、或其它適當的材料。Referring to FIG. 1C and FIG. 2C, a semiconductor material layer 130 is formed on the first etch barrier pattern 120 and the source 112 and the partial upper surfaces 112a-1, 114a-1 of the drain 114. In the present embodiment, the semiconductor material layer 130 can cover the substrate 10 in a comprehensive manner, but the invention is not limited thereto. In this embodiment, the material of the semiconductor material layer 130 is, for example, an organic semiconductor material, but the invention is not limited thereto. In other embodiments, the material of the semiconductor material layer 130 may also be amorphous germanium, polycrystalline germanium, microcrystalline germanium, Single crystal germanium, an oxide semiconductor material (for example, indium zinc oxide, indium antimony zinc oxide, etc.), or other suitable material.

請參照圖1D及圖2D,接著,在半導體材料層130上形成絕緣材料層140。在本實施例中,絕緣材料層140可包括依序形成於半導體材料層130上的多個絕緣材料子層142、144,但本發明不以此為限。在本實施例中,絕緣材料層140的材質可為無機材料(例如:氧化矽、氮化矽、氮氧化矽、或上述至少二種材料的堆疊層)、有機材料或上述之組合。Referring to FIG. 1D and FIG. 2D, an insulating material layer 140 is formed on the semiconductor material layer 130. In this embodiment, the insulating material layer 140 may include a plurality of insulating material sub-layers 142, 144 sequentially formed on the semiconductor material layer 130, but the invention is not limited thereto. In this embodiment, the material of the insulating material layer 140 may be an inorganic material (for example, tantalum oxide, tantalum nitride, niobium oxynitride, or a stacked layer of at least two materials described above), an organic material, or a combination thereof.

請參照圖1D及圖2D,接著,在絕緣材料層140上形成導電層150。在本實施例中,導電層150可包括依序形成於絕緣材料層140上的金屬層152與蝕刻阻擋層154。在本實施例中,金屬層152的材質例如為銀,蝕刻阻擋層154的材質例如為金屬氧化物(例如:銦錫氧化物、銦鋅氧化物、鋁錫氧化物、鋁鋅氧化物、銦鍺鋅氧化物、或其它合適的氧化物、或者是上述至少二者之堆疊層),但本發明不以此為限。Referring to FIG. 1D and FIG. 2D, a conductive layer 150 is formed on the insulating material layer 140. In the present embodiment, the conductive layer 150 may include a metal layer 152 and an etch barrier layer 154 sequentially formed on the insulating material layer 140. In the present embodiment, the material of the metal layer 152 is, for example, silver, and the material of the etching stopper layer 154 is, for example, a metal oxide (for example, indium tin oxide, indium zinc oxide, aluminum tin oxide, aluminum zinc oxide, indium). Zinc oxide, or other suitable oxide, or a stacked layer of at least two of the above, but the invention is not limited thereto.

請參照圖1E及圖2E,接著,圖案化導電層150,以形成具有至少一開口156a的閘極156。在本實施例中,閘極156包括金屬圖案152a以及覆蓋金屬圖案152a的第二蝕刻阻擋圖案154a。金屬圖案152a與第二蝕刻阻擋圖案154a實質上可切齊。此外,在本實施例中,形成閘極156時,可同時形成與閘極156電性連接的掃描線158。換言之,閘極156與掃描線158可形成於同一膜層,但本發明不以此為限。在本實施例中,例如是利用溼蝕刻(wet etching)製程同時圖案化金屬層152與蝕刻阻擋層154,以形成閘極156與掃描線158,但本發明不以此為限。Referring to FIG. 1E and FIG. 2E, the conductive layer 150 is patterned to form a gate 156 having at least one opening 156a. In the present embodiment, the gate 156 includes a metal pattern 152a and a second etch barrier pattern 154a covering the metal pattern 152a. The metal pattern 152a and the second etch barrier pattern 154a are substantially tangable. In addition, in the present embodiment, when the gate 156 is formed, the scan line 158 electrically connected to the gate 156 can be simultaneously formed. In other words, the gate 156 and the scan line 158 can be formed on the same film layer, but the invention is not limited thereto. In the present embodiment, the metal layer 152 and the etch barrier layer 154 are simultaneously patterned by a wet etching process to form the gate 156 and the scan line 158, but the invention is not limited thereto.

請參照圖1F及圖2F,接著,以閘極156為罩幕,圖案化絕緣材料層140以及半導體材料層130,以形成具有至少一開口146a的絕緣層146與具有至少一開口132a的半導體層132。閘極156配置於絕緣層146上。絕緣層146覆蓋半導體層132。閘極156的開口156a、絕緣層146的開口146a以及半導體層132的開口132a連通,以形成一連通孔190,且暴露第一蝕刻阻擋圖案120。在本實施例中,閘極156、絕緣層146及半導體層132實質上可切齊,開口156a、開口142a以及開口132a實質上可切齊;換言之,閘極156於基板10上的垂直投影、絕緣層146於基板10上的垂直投影以及半導體層132於基板10上的垂直投影為相似的圖案;更進一步來說,閘極156於基板10上的垂直投影、絕緣層146於基板10上的垂直投影以及半導體層132於基板10上的垂直投影為實質上為相同的圖案且彼此重合,但本發明不以此為限。Referring to FIG. 1F and FIG. 2F, the insulating material layer 140 and the semiconductor material layer 130 are patterned by using the gate 156 as a mask to form an insulating layer 146 having at least one opening 146a and a semiconductor layer having at least one opening 132a. 132. The gate 156 is disposed on the insulating layer 146. The insulating layer 146 covers the semiconductor layer 132. The opening 156a of the gate 156, the opening 146a of the insulating layer 146, and the opening 132a of the semiconductor layer 132 communicate to form a via hole 190, and expose the first etch barrier pattern 120. In this embodiment, the gate 156, the insulating layer 146, and the semiconductor layer 132 are substantially tangible, and the opening 156a, the opening 142a, and the opening 132a are substantially tangential; in other words, the vertical projection of the gate 156 on the substrate 10, The vertical projection of the insulating layer 146 on the substrate 10 and the vertical projection of the semiconductor layer 132 on the substrate 10 are similar patterns; further, the vertical projection of the gate 156 on the substrate 10, the insulating layer 146 on the substrate 10 The vertical projection and the vertical projection of the semiconductor layer 132 on the substrate 10 are substantially the same pattern and overlap each other, but the invention is not limited thereto.

在本實施例中,例如是利用乾蝕刻(dry etching)製程圖案化絕緣材料層140及半導體材料層130,以形成絕緣層146與半導體層132。第一蝕刻阻擋圖案120於所述乾蝕刻製程中能保護源極112、汲極114與資料線116使其不易受損。值得一提的是,由於半導體層132是以閘極156為罩幕圖案化半導體材料層130而形成的,因此不需利用額外的光罩圖案化半導體材料層130。藉此,製作畫素結構100(標於圖1H及圖2H)的所需光罩數可減少,有利於畫素結構100的成本降低。此外,由於半導體層132是以閘極156為罩幕圖案化半導體材料層130而成,因此閘極156與半導體層132之間無對位問題,有助於畫素結構100的良率及電性提升。In the present embodiment, the insulating material layer 140 and the semiconductor material layer 130 are patterned, for example, by a dry etching process to form the insulating layer 146 and the semiconductor layer 132. The first etch barrier pattern 120 can protect the source 112, the drain 114 and the data line 116 from damage during the dry etch process. It is worth mentioning that since the semiconductor layer 132 is formed by patterning the semiconductor material layer 130 with the gate 156 as a mask, it is not necessary to pattern the semiconductor material layer 130 with an additional mask. Thereby, the number of required masks for producing the pixel structure 100 (labeled in FIGS. 1H and 2H) can be reduced, which is advantageous for the cost reduction of the pixel structure 100. In addition, since the semiconductor layer 132 is formed by patterning the semiconductor material layer 130 with the gate 156 as a mask, there is no alignment problem between the gate 156 and the semiconductor layer 132, which contributes to the yield and power of the pixel structure 100. Sexual improvement.

請參照圖1G及圖2G,接著,於基板10上形成平坦材料層160,以覆蓋閘極156以及部份的第一蝕刻阻擋圖案120。請參照圖1H及圖2H,接著,圖案化平坦材料層160,以形成具有接觸窗口162a的平坦層162。接觸窗口162a與開口156a錯開且暴露汲極114上方的部份的第一蝕刻阻擋圖案120。在本實施例中,平坦層162的材質可為無機材料(例如:氧化矽、氮化矽、氮氧化矽、或上述至少二種材料的堆疊層)、有機材料或上述之組合。然後,於平坦層162上形成畫素電極170,畫素電極170填入接觸窗口162a,以透過第一蝕刻阻擋圖案120與汲極114電性連接。於此,便完成了本實施例的畫素結構100。Referring to FIG. 1G and FIG. 2G, a flat material layer 160 is formed on the substrate 10 to cover the gate 156 and a portion of the first etch barrier pattern 120. Referring to FIGS. 1H and 2H, next, the planar material layer 160 is patterned to form a planar layer 162 having a contact window 162a. The contact window 162a is offset from the opening 156a and exposes a portion of the first etch barrier pattern 120 above the drain 114. In this embodiment, the material of the flat layer 162 may be an inorganic material (for example, yttria, tantalum nitride, ytterbium oxynitride, or a stacked layer of at least two materials described above), an organic material, or a combination thereof. Then, a pixel electrode 170 is formed on the flat layer 162, and the pixel electrode 170 is filled in the contact window 162a to be electrically connected to the drain electrode 114 through the first etch barrier pattern 120. Here, the pixel structure 100 of the present embodiment is completed.

請參照圖1H及圖2H,畫素結構100包括薄膜電晶體T以及與薄膜電晶體T之汲極114電性連接的畫素電極170。薄膜電晶體T包括源極112、汲極114、半導體層132與閘極156。半導體層132位於源極112與汲極114上且具有通道132c。通道132c設置於源極112與汲極114之間。閘極156包括主要部156-1以及輔助部156p。主要部156-1與源極112、汲極114以及通道132c重疊設置。輔助部156p位於主要部156-1外。畫素結構100還包括連接部159。輔助部156p透過連接部159與主要部156-1電性連接。主要部156-1與輔助部156p之間具有間隙(即開口156a)。閘極156藉由輔助部156p能增加控制通道132c內載子的能力,進而抑制駝峰現象,提升薄膜電晶體T的電性。Referring to FIGS. 1H and 2H , the pixel structure 100 includes a thin film transistor T and a pixel electrode 170 electrically connected to the drain 114 of the thin film transistor T. The thin film transistor T includes a source 112, a drain 114, a semiconductor layer 132, and a gate 156. The semiconductor layer 132 is located on the source 112 and the drain 114 and has a channel 132c. Channel 132c is disposed between source 112 and drain 114. The gate 156 includes a main portion 156-1 and an auxiliary portion 156p. The main portion 156-1 is disposed to overlap the source 112, the drain 114, and the channel 132c. The auxiliary portion 156p is located outside the main portion 156-1. The pixel structure 100 also includes a connection portion 159. The auxiliary portion 156p is electrically connected to the main portion 156-1 through the connection portion 159. There is a gap (i.e., opening 156a) between the main portion 156-1 and the auxiliary portion 156p. The gate 156 can increase the ability of the carrier in the control channel 132c by the auxiliary portion 156p, thereby suppressing the hump phenomenon and improving the electrical properties of the thin film transistor T.

圖2I為本發明一實施例之畫素結構100之閘極156、源極112與汲極114的透視示意圖。請參照圖1H、圖2H及圖2I,在本實施例中,半導體層132的通道132c具有通道寬度延伸方向y,源極112於通道寬度延伸方向y上具有相對的兩邊緣112-1a、112-1b,汲極114於通道寬度延伸方向y上具有相對的兩邊緣114-1a、114-1b,而閘極156的主要部156-1可突出於源極112的邊緣112-1a、112-1b與汲極114的邊緣114-1a、114-1b。2I is a perspective schematic view of a gate 156, a source 112, and a drain 114 of a pixel structure 100 in accordance with an embodiment of the present invention. Referring to FIG. 1H, FIG. 2H and FIG. 2I, in the embodiment, the channel 132c of the semiconductor layer 132 has a channel width extending direction y, and the source electrode 112 has opposite edges 112-1a, 112 in the channel width extending direction y. -1b, the drain 114 has opposite edges 114-1a, 114-1b in the channel width extension direction y, and the main portion 156-1 of the gate 156 may protrude from the edge 112-1a, 112 of the source 112. 1b and the edges 114-1a, 114-1b of the drain 114.

請繼續參照圖1H及圖2H。在本實施例中,輔助部156p 包括多個第一輔助子部156-2。每一第一輔助子部156-2與主要部156-1之間存在間隙(即開口156a)。多個第一輔助子部156-2分別位於主要部156-1的相對兩側。多個第一輔助子部156-2與主要部156-1在通道寬度延伸方向y上排列。多個第一輔助子部156-2於基板10上的垂直投影位於通道132c於基板10上的垂直投影外。第一輔助子部156-2與通道132c不重疊。更進一步地說,在本實施例中,至少一第一輔助子部156-2可位於掃描線158與主要部156-1之間且與掃描線158彼此隔開,但本發明不以此為限。Please continue to refer to Figures 1H and 2H. In the present embodiment, the auxiliary portion 156p includes a plurality of first auxiliary sub-portions 156-2. There is a gap (i.e., opening 156a) between each of the first auxiliary sub-sections 156-2 and the main portion 156-1. A plurality of first auxiliary sub-sections 156-2 are respectively located on opposite sides of the main portion 156-1. The plurality of first auxiliary sub-portions 156-2 and main portion 156-1 are arranged in the channel width extending direction y. The vertical projection of the plurality of first auxiliary sub-portions 156-2 on the substrate 10 is outside the vertical projection of the channel 132c on the substrate 10. The first auxiliary sub-portion 156-2 does not overlap the channel 132c. Further, in this embodiment, at least one first auxiliary sub-portion 156-2 may be located between the scan line 158 and the main portion 156-1 and spaced apart from the scan line 158, but the present invention does not limit.

在本實施例中,輔助部156p還包括多個第二輔助子部156-3。多個第二輔助子部156-3分別位於主要部156-1的另外相對兩側。多個第二輔助子部156-3與主要部156在方向x上排列。在本實施例中,每一第二輔助子部156-3與主要部156-1之間可存在間隙(即開口156a),但本發明不以此為限。整體而言,在本實施例中,第一輔助子部156-2與第二輔助子部156-3可連接成設置於主要部156-1週邊的環型結構。畫素結構100還包括至少一連接部159。連接部159電性連接於第一輔助子部156-2與主要部156-1之間。在本實施例中,連接部159還可電性連接於第二輔助子部156-2與主要部156-1之間,但本發明不以此為限。In the embodiment, the auxiliary portion 156p further includes a plurality of second auxiliary sub-sections 156-3. A plurality of second auxiliary sub-sections 156-3 are respectively located on the other opposite sides of the main portion 156-1. The plurality of second auxiliary sub-sections 156-3 and the main portion 156 are arranged in the direction x. In this embodiment, there may be a gap (ie, opening 156a) between each of the second auxiliary sub-sections 156-3 and the main portion 156-1, but the invention is not limited thereto. In general, in the present embodiment, the first auxiliary sub-portion 156-2 and the second auxiliary sub-portion 156-3 can be connected to form a ring-shaped structure disposed around the main portion 156-1. The pixel structure 100 also includes at least one connection portion 159. The connecting portion 159 is electrically connected between the first auxiliary sub-portion 156-2 and the main portion 156-1. In this embodiment, the connecting portion 159 is also electrically connected between the second auxiliary sub-section 156-2 and the main portion 156-1, but the invention is not limited thereto.

圖3為本發明另一實施例之畫素結構的剖面示意圖。圖4為本發明另一實施例之畫素結構的上視示意圖。特別是,圖3對應於圖4的剖線A-A’及B-B’。請參照圖3及圖4,畫素結構100A與畫素結構100類似,因此相同或相對應的元件以相同或相對應的標號表示。畫素結構100A與畫素結構100的主要差異在於:畫素結構100A的半導體層132A及絕緣層146A與畫素結構100的半導體層132及絕緣層146不同。此外,畫素結構100A較畫素結構100少了第一蝕刻阻擋圖案120與第二蝕刻阻擋圖案154a,而多了導電圖案182。以下主要說明此差異,兩者相同或相對應處,還請參照前述說明,於此便不再重述。3 is a cross-sectional view showing a pixel structure according to another embodiment of the present invention. 4 is a top plan view of a pixel structure in accordance with another embodiment of the present invention. In particular, Fig. 3 corresponds to the cross-sectional lines A-A' and B-B' of Fig. 4. Referring to FIGS. 3 and 4, the pixel structure 100A is similar to the pixel structure 100, and thus the same or corresponding elements are denoted by the same or corresponding reference numerals. The main difference between the pixel structure 100A and the pixel structure 100 is that the semiconductor layer 132A and the insulating layer 146A of the pixel structure 100A are different from the semiconductor layer 132 and the insulating layer 146 of the pixel structure 100. In addition, the pixel structure 100A is smaller than the pixel structure 100 by the first etch barrier pattern 120 and the second etch barrier pattern 154a, and the conductive pattern 182 is added. The following mainly explains the difference, the two are the same or corresponding, please refer to the above description, and will not be repeated here.

請參照圖3及圖4,畫素結構100A包括薄膜電晶體T以及與薄膜電晶體T之汲極114電性連接的畫素電極170。薄膜電晶體T包括源極112、汲極114、半導體層132A與閘極156A。半導體層132A位於源極112與汲極114上且具有通道132c。通道132c設置於源極112與汲極114之間。閘極156包括主要部156-1以及輔助部156p。主要部156-1與源極112、汲極114以及通道132c重疊設置。輔助部156p位於主要部156-1外,且輔助部156p與主要部156-1透過連接部159電性連接。閘極156的主要部156-1與閘極156的輔助部156p之間具有間隙(即開口156a)。Referring to FIGS. 3 and 4 , the pixel structure 100A includes a thin film transistor T and a pixel electrode 170 electrically connected to the drain 114 of the thin film transistor T. The thin film transistor T includes a source 112, a drain 114, a semiconductor layer 132A, and a gate 156A. The semiconductor layer 132A is located on the source 112 and the drain 114 and has a via 132c. Channel 132c is disposed between source 112 and drain 114. The gate 156 includes a main portion 156-1 and an auxiliary portion 156p. The main portion 156-1 is disposed to overlap the source 112, the drain 114, and the channel 132c. The auxiliary portion 156p is located outside the main portion 156-1, and the auxiliary portion 156p is electrically connected to the main portion 156-1 through the connecting portion 159. There is a gap (i.e., opening 156a) between the main portion 156-1 of the gate 156 and the auxiliary portion 156p of the gate 156.

與畫素結構100不同的是,半導體層132A不具有與閘極156之開口156a切齊的開口。在圖3及圖4的實施例中,閘極156的部份開口156a可與部份的半導體層132A重疊。絕緣層146A也不具有與閘極156之開口156a切齊的開口。詳言之,絕緣層146A可包括覆蓋半導體層132A且與半導體層132A實質上切齊的絕緣子層142A以及覆蓋絕緣子層142A的另一絕緣子層144A。畫素結構100還包括導電圖案182。汲極114覆蓋部份的導電圖案182且與導電圖案182電性連接。絕緣子層144A具有開口144a。開口144a與接觸窗口162a連通,以形成連通孔192。畫素電極170透過接觸連通孔192以及透過另一部份的未被汲極114覆蓋的導電圖案182與薄膜電晶體T的汲極114電性連接。Unlike the pixel structure 100, the semiconductor layer 132A does not have an opening that is aligned with the opening 156a of the gate 156. In the embodiment of FIGS. 3 and 4, a portion of the opening 156a of the gate 156 may overlap a portion of the semiconductor layer 132A. The insulating layer 146A also does not have an opening that is aligned with the opening 156a of the gate 156. In detail, the insulating layer 146A may include an insulator layer 142A that covers the semiconductor layer 132A and is substantially aligned with the semiconductor layer 132A, and another insulator layer 144A that covers the insulator layer 142A. The pixel structure 100 also includes a conductive pattern 182. The drain electrode 114 covers a portion of the conductive pattern 182 and is electrically connected to the conductive pattern 182. The insulator layer 144A has an opening 144a. The opening 144a communicates with the contact window 162a to form the communication hole 192. The pixel electrode 170 is electrically connected to the drain electrode 114 of the thin film transistor T through the contact via hole 192 and through the conductive pattern 182 of the other portion not covered by the drain electrode 114.

此外,需說明的是,圖1H及圖3所示之閘極156的形狀是用以舉例說明本發明而非用以限制本發明。在其他實施例中,閘極156也可設計為其他適當形狀,以下配合圖5~圖10舉例說明之。In addition, it should be noted that the shape of the gate 156 shown in FIGS. 1H and 3 is for exemplifying the invention and is not intended to limit the invention. In other embodiments, the gate 156 can also be designed in other suitable shapes, as exemplified in conjunction with FIGS. 5-10.

圖5為本發明一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。圖5的薄膜電晶體T-B、連接部159B及導電圖案182與圖3及圖4之畫素結構100A之薄膜電晶體T、連接部159及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-B的閘極156B與畫素結構100A之薄膜電晶體T的閘極156不同。以下主要說明此差異,兩者相同或相對應處,請參照前述說明,於此便不再重覆說明。5 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to an embodiment of the present invention. The thin film transistor TB, the connection portion 159B, and the conductive pattern 182 of FIG. 5 are similar to the thin film transistor T, the connection portion 159, and the conductive pattern 182 of the pixel structure 100A of FIGS. 3 and 4, and thus the same or corresponding elements are the same. Or the corresponding label is indicated. The main difference between the two is that the gate 156B of the thin film transistor T-B is different from the gate 156 of the thin film transistor T of the pixel structure 100A. The following mainly explains the difference. If the two are the same or correspond, please refer to the above description, and the description will not be repeated here.

請參照圖5,薄膜電晶體T-B包括源極112、汲極114、半導體層132A及閘極156B。半導體層132A位於源極112與汲極114之上且具有通道132c。通道132c設置於源極112以及汲極114之間。閘極156B包括主要部156-1以及輔助部156p。主要部156-1與源極112、汲極114以及通道132c重疊設置。輔助部156p包含第一輔助子部156-2與第二輔助子部156-3,其位於主要部156-1外且與主要部156-1電性連接。主要部156-1與輔助部156p之間具有間隙(即開口156a)。與畫素結構100A之薄膜電晶體T不同的是,在圖5的實施例中,連接部159B位於主要部156-1與第二輔助子部156-3之間。更進一步地說,多個連接部159B在方向x上可不對齊。在通道寬度延伸方向y上,通道132c的外側無設置連接部159B。包括薄膜電晶體T-B之畫素結構也具有與畫素結構100類似的功效與優點,於此便不再重述。Referring to FIG. 5, the thin film transistor T-B includes a source 112, a drain 114, a semiconductor layer 132A, and a gate 156B. Semiconductor layer 132A is over source 112 and drain 114 and has a channel 132c. The channel 132c is disposed between the source 112 and the drain 114. The gate 156B includes a main portion 156-1 and an auxiliary portion 156p. The main portion 156-1 is disposed to overlap the source 112, the drain 114, and the channel 132c. The auxiliary portion 156p includes a first auxiliary sub-portion 156-2 and a second auxiliary sub-portion 156-3 that are located outside the main portion 156-1 and are electrically connected to the main portion 156-1. There is a gap (i.e., opening 156a) between the main portion 156-1 and the auxiliary portion 156p. Unlike the thin film transistor T of the pixel structure 100A, in the embodiment of FIG. 5, the connecting portion 159B is located between the main portion 156-1 and the second auxiliary sub-section 156-3. Further, the plurality of connecting portions 159B may not be aligned in the direction x. In the channel width extending direction y, the connecting portion 159B is not provided on the outer side of the channel 132c. The pixel structure including the thin film transistor T-B also has similar effects and advantages as the pixel structure 100, and will not be repeated here.

圖6為本發明另一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。圖6的薄膜電晶體T-C、連接部159C及導電圖案182與圖3及圖4的薄膜電晶體T、連接部159及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-C的閘極156C與畫素結構100A之薄膜電晶體T的閘極156A不同。以下主要說明此差異,兩者相同或相對應處,請參照前述說明,於此便不再重覆繪示及說明。6 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to another embodiment of the present invention. The thin film transistor TC, the connection portion 159C, and the conductive pattern 182 of FIG. 6 are similar to the thin film transistor T, the connection portion 159, and the conductive pattern 182 of FIGS. 3 and 4, and therefore the same or corresponding elements have the same or corresponding reference numerals. Said. The main difference between the two is that the gate 156C of the thin film transistor T-C is different from the gate 156A of the thin film transistor T of the pixel structure 100A. The following mainly explains the difference. If the two are the same or the corresponding ones, please refer to the above description, and the description and description will not be repeated here.

請參照圖6,薄膜電晶體T-C包括源極112、汲極114、半導體層132A及閘極156C。半導體層132A位於源極112與汲極114之上且具有通道132c。通道132c設置於源極112以及汲極114之間。閘極156C包括主要部156-1以及輔助部156p。主要部156-1與源極112、汲極114以及通道132c重疊設置。輔助部156p包含第一輔助子部156-2與第二輔助子部156-3B,其位於主要部156-1外且與主要部156-1電性連接。主要部156-1與輔助部156p之間具有間隙(即開口156a)。與畫素結構100A之薄膜電晶體T不同的是,在圖6的實施例中,閘極156C的第二輔助子部156-3B可直接與主要部156-1連接。包括薄膜電晶體T-C的畫素結構也具有與畫素結構100類似的功效與優點,於此便不再重述。Referring to FIG. 6, the thin film transistor T-C includes a source 112, a drain 114, a semiconductor layer 132A, and a gate 156C. Semiconductor layer 132A is over source 112 and drain 114 and has a channel 132c. The channel 132c is disposed between the source 112 and the drain 114. The gate 156C includes a main portion 156-1 and an auxiliary portion 156p. The main portion 156-1 is disposed to overlap the source 112, the drain 114, and the channel 132c. The auxiliary portion 156p includes a first auxiliary sub-portion 156-2 and a second auxiliary sub-portion 156-3B that are located outside the main portion 156-1 and are electrically connected to the main portion 156-1. There is a gap (i.e., opening 156a) between the main portion 156-1 and the auxiliary portion 156p. Unlike the thin film transistor T of the pixel structure 100A, in the embodiment of FIG. 6, the second auxiliary sub-section 156-3B of the gate 156C can be directly connected to the main portion 156-1. The pixel structure including the thin film transistor T-C also has similar effects and advantages as the pixel structure 100, and will not be repeated here.

圖7為本發明又一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極及導電圖案的上視示意圖。圖7的薄膜電晶體T-D及導電圖案182與圖6的薄膜電晶體T-C及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-D之閘極156D的第一輔助子部156-2可不透過圖6的連接部159C與主要部156-1電性連接,而閘極156D的第一輔助子部156-2可透過第二輔助子部156-3B與主要部156-1電性連接。在通道寬度延伸方向y上,通道132c的外側無設置連接部。包括薄膜電晶體T-D的畫素結構也具有與畫素結構100類似的功效與優點,於此便不再重述。7 is a top plan view showing a gate, a semiconductor layer, a source, a drain, and a conductive pattern of a thin film transistor of a pixel structure according to still another embodiment of the present invention. The thin film transistor T-D and the conductive pattern 182 of FIG. 7 are similar to the thin film transistor T-C and the conductive pattern 182 of FIG. 6, and therefore the same or corresponding elements are denoted by the same or corresponding reference numerals. The main difference between the two is that the first auxiliary sub-portion 156-2 of the gate 156D of the thin film transistor TD can be electrically connected to the main portion 156-1 without connecting through the connecting portion 159C of FIG. 6, and the first auxiliary of the gate 156D. The sub-portion 156-2 can be electrically connected to the main portion 156-1 through the second auxiliary sub-portion 156-3B. In the channel width extending direction y, no connection portion is provided on the outer side of the channel 132c. The pixel structure including the thin film transistor T-D also has similar effects and advantages as the pixel structure 100, and will not be repeated here.

圖8為本發明再一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。圖8的薄膜電晶體T-E、連接部159E及導電圖案182與圖6的薄膜電晶體T-C、連接部159C及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-E的閘極156E與薄膜電晶體T-C的閘極156C不同。詳言之,在圖8的實施例中,每一第二輔助子部156-3E與一個第一輔助子部156-2連接而與另一個第一輔助子部156-2隔開。與第二輔助子部156-3E連接的一個第一輔助子部156-2可透過第二輔助子部156-3E與主要部156-1電性連接。與第二輔助子部156-3E隔開的另一個第一輔助子部156-2可透過連接部159E與主要部156-1電性連接。包括薄膜電晶體T-E的畫素結構也具有與畫素結構100類似的功效與優點,於此便不再重述。8 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to still another embodiment of the present invention. The thin film transistor T-E, the connection portion 159E, and the conductive pattern 182 of FIG. 8 are similar to the thin film transistor T-C, the connection portion 159C, and the conductive pattern 182 of FIG. 6, and therefore the same or corresponding elements are denoted by the same or corresponding reference numerals. The main difference between the two is that the gate 156E of the thin film transistor T-E is different from the gate 156C of the thin film transistor T-C. In particular, in the embodiment of FIG. 8, each of the second auxiliary sub-sections 156-3E is coupled to one of the first auxiliary sub-sections 156-2 and to the other of the first auxiliary sub-sections 156-2. A first auxiliary sub-portion 156-2 connected to the second auxiliary sub-portion 156-3E can be electrically connected to the main portion 156-1 through the second auxiliary sub-portion 156-3E. The other first auxiliary sub-section 156-2 spaced apart from the second auxiliary sub-section 156-3E can be electrically connected to the main portion 156-1 through the connection portion 159E. The pixel structure including the thin film transistor T-E also has similar effects and advantages as the pixel structure 100, and will not be repeated here.

圖9為本發明一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。圖9的薄膜電晶體T-F、連接部159F及導電圖案與圖6的薄膜電晶體T-C、連接部159C及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-F的閘極156F與薄膜電晶體T-C的閘極156C不同。詳言之,在圖9的實施例中,閘極156F可不包括閘極156C的第二輔助子部156-3B。閘極156F的多個第一輔助子部156-2可分別透過多個連接部159F與主要部156-1電性連接。包括薄膜電晶體T-F的畫素結構也具有與畫素結構100類似的功效與優點,於此便不再重述。FIG. 9 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to an embodiment of the present invention. The thin film transistor T-F, the connection portion 159F, and the conductive pattern of FIG. 9 are similar to the thin film transistor T-C of FIG. 6, the connection portion 159C, and the conductive pattern 182, and thus the same or corresponding elements are denoted by the same or corresponding reference numerals. The main difference between the two is that the gate 156F of the thin film transistor T-F is different from the gate 156C of the thin film transistor T-C. In particular, in the embodiment of FIG. 9, gate 156F may not include second auxiliary sub-section 156-3B of gate 156C. The plurality of first auxiliary sub-portions 156-2 of the gate 156F are electrically connected to the main portion 156-1 through the plurality of connecting portions 159F, respectively. The pixel structure including the thin film transistor T-F also has similar effects and advantages as the pixel structure 100, and will not be repeated here.

圖10為本發明另一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。圖10的薄膜電晶體T-G、連接部159及導電圖案182與圖3及圖4之的薄膜電晶體T、連接部159及導電圖案182類似,因此相同或相對應的元件以相同或相對應的標號表示。兩者的主要差異在於:薄膜電晶體T-G的閘極156G與畫素結構100A之薄膜電晶體T-B的閘極156A不同。詳言之,在圖10的實施例中,閘極156G的輔助部156p包括位於源極112與汲極114之上側的一個第一輔助子部156-2及兩個第二輔助子部156-3。其中位於源極112與汲極114之上側的一個第一輔助子部156-2、兩個第二輔助子部156-3以及位於源極112與汲極114之上側的兩個連接部159可與主要部156-1可圍成一個環型結構。此外,閘極156G的輔助部156p還包括位於源極112與汲極114之下側的一個第一輔助子部156-2及兩個第二輔助子部156-3。其中位於源極112與汲極114之下側的一個第一輔助子部156-2、兩個第二輔助子部156-3以及位於源極112與汲極114之下側的兩個連接部159可與主要部156-1可圍成另一個環型結構。在通道寬度延伸方向y上,通道132c的外側無設置連接部159。包括薄膜電晶體T-G的畫素結構具有與畫素結構100類似的功效與優點,於此便不再重述。FIG. 10 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to another embodiment of the present invention. The thin film transistor TG, the connection portion 159, and the conductive pattern 182 of FIG. 10 are similar to the thin film transistor T, the connection portion 159, and the conductive pattern 182 of FIGS. 3 and 4, and thus the same or corresponding elements are the same or corresponding. The label indicates. The main difference between the two is that the gate 156G of the thin film transistor T-G is different from the gate 156A of the thin film transistor T-B of the pixel structure 100A. In detail, in the embodiment of FIG. 10, the auxiliary portion 156p of the gate 156G includes a first auxiliary sub-section 156-2 and two second auxiliary sub-sections 156- located on the upper side of the source 112 and the drain 114. 3. A first auxiliary sub-section 156-2, two second auxiliary sub-sections 156-3, and two connection portions 159 on the upper side of the source 112 and the drain 114 may be located on the upper side of the source 112 and the drain 114. The main portion 156-1 can be enclosed in a ring structure. In addition, the auxiliary portion 156p of the gate 156G further includes a first auxiliary sub-section 156-2 and two second auxiliary sub-sections 156-3 on the lower side of the source 112 and the drain 114. A first auxiliary sub-section 156-2, two second auxiliary sub-sections 156-3, and two connection portions on the lower side of the source 112 and the drain 114 are located on the lower side of the source 112 and the drain 114. The 159 can be enclosed with another main ring structure 156-1. In the channel width extending direction y, the connecting portion 159 is not provided on the outer side of the channel 132c. The pixel structure including the thin film transistor T-G has similar effects and advantages as the pixel structure 100, and will not be repeated here.

綜上所述,本發明一實施例的畫素結構包括具有源極、汲極、半導體層及閘極的薄膜電晶體及畫素電極。薄膜電晶體的閘極包括主要部及輔助部。閘極的主要部與源極、汲極和通道重疊設置。輔助部位於主要部外且與主要部電性連接。主要部與輔助部之間具有間隙。藉由輔助部,閘極能增加控制通道內載子的能力,進而抑制駝峰現象,提升薄膜電晶體的電性。In summary, the pixel structure of one embodiment of the present invention includes a thin film transistor having a source, a drain, a semiconductor layer, and a gate, and a pixel electrode. The gate of the thin film transistor includes a main portion and an auxiliary portion. The main part of the gate is overlapped with the source, the drain and the channel. The auxiliary part is located outside the main part and is electrically connected to the main part. There is a gap between the main part and the auxiliary part. With the auxiliary part, the gate can increase the ability of the carrier in the control channel, thereby suppressing the hump phenomenon and improving the electrical properties of the thin film transistor.

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

10‧‧‧基板10‧‧‧Substrate

100、100A‧‧‧畫素結構100, 100A‧‧‧ pixel structure

112‧‧‧源極112‧‧‧ source

112-1、114-1‧‧‧端部112-1, 114-1‧‧‧ end

114-1 112-1a、112-1b、114-1a、114-1b‧‧‧邊緣114-1 112-1a, 112-1b, 114-1a, 114-1b‧‧‧ edge

112a-1、114a-1、112a-2、114a-2、116a‧‧‧上表面Upper surface of 112a-1, 114a-1, 112a-2, 114a-2, 116a‧‧

112b、114b、116b‧‧‧側壁112b, 114b, 116b‧‧‧ side wall

114‧‧‧汲極114‧‧‧汲polar

116‧‧‧資料線116‧‧‧Information line

120‧‧‧第一蝕刻阻擋圖案120‧‧‧First etch barrier pattern

130‧‧‧半導體材料層130‧‧‧Semiconductor material layer

132、132A‧‧‧半導體層132, 132A‧‧‧ semiconductor layer

132a、144a、146a‧‧‧開口132a, 144a, 146a‧‧

132c‧‧‧通道132c‧‧‧ channel

140‧‧‧絕緣材料層140‧‧‧Insulation layer

142、142A、144、144A‧‧‧絕緣材料子層142, 142A, 144, 144A‧‧‧ insulating material sublayer

146、146A‧‧‧絕緣層146, 146A‧‧‧ insulation

150‧‧‧導電層150‧‧‧ Conductive layer

152‧‧‧金屬層152‧‧‧metal layer

152a‧‧‧金屬圖案152a‧‧‧ metal pattern

154‧‧‧蝕刻阻擋層154‧‧‧etch barrier

154a‧‧‧第二蝕刻阻擋圖案154a‧‧‧second etch barrier pattern

156、156B~156G‧‧‧閘極156, 156B ~ 156G‧‧ ‧ gate

156-1‧‧‧主要部156-1‧‧‧ Main Department

156p‧‧‧輔助部156p‧‧Auxiliary Department

156-2‧‧‧第一輔助子部156-2‧‧‧First Auxiliary Division

156-3、156-3B、156-3E‧‧‧第二輔助子部156-3, 156-3B, 156-3E‧‧‧second auxiliary subsection

159、159B、159C、159E、159F‧‧‧連接部159, 159B, 159C, 159E, 159F‧‧‧ Connections

156a‧‧‧開口(間隙)156a‧‧‧ openings (gap)

158‧‧‧掃描線158‧‧‧ scan line

160‧‧‧平坦材料層160‧‧‧flat material layer

162‧‧‧平坦層162‧‧‧flat layer

162a‧‧‧接觸窗口162a‧‧‧Contact window

170‧‧‧畫素電極170‧‧‧ pixel electrodes

182‧‧‧導電圖案182‧‧‧ conductive pattern

190、192‧‧‧連通孔190, 192‧‧‧Connected holes

A-A’、B-B’‧‧‧剖線A-A’, B-B’‧‧‧ cut line

T、T-B、T-C、T-D、T-E、T-F、T-G‧‧‧薄膜電晶體T, T-B, T-C, T-D, T-E, T-F, T-G‧‧‧ film transistors

x、y‧‧‧方向x, y‧‧‧ direction

圖1A至圖1H為本發明一實施例之畫素結構的製造方法的上視示意圖。 圖2A至圖2H為本發明一實施例之畫素結構的製造方法的剖面示意圖。 圖2I為本發明一實施例之畫素結構之閘極、源極與汲極的透視示意圖。 圖3為本發明另一實施例之畫素結構的剖面示意圖。 圖4為本發明另一實施例之畫素結構的上視示意圖。 圖5為本發明一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。 圖6為本發明另一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。 圖7為本發明又一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極及導電圖案的上視示意圖。 圖8為本發明再一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。 圖9為本發明一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。 圖10為本發明另一實施例之畫素結構的薄膜電晶體的閘極、半導體層、源極與汲極、連接部及導電圖案的上視示意圖。1A to 1H are schematic top views of a method of fabricating a pixel structure according to an embodiment of the present invention. 2A to 2H are schematic cross-sectional views showing a method of fabricating a pixel structure according to an embodiment of the present invention. 2I is a perspective schematic view of a gate, a source and a drain of a pixel structure according to an embodiment of the invention. 3 is a cross-sectional view showing a pixel structure according to another embodiment of the present invention. 4 is a top plan view of a pixel structure in accordance with another embodiment of the present invention. 5 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to an embodiment of the present invention. 6 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to another embodiment of the present invention. 7 is a top plan view showing a gate, a semiconductor layer, a source, a drain, and a conductive pattern of a thin film transistor of a pixel structure according to still another embodiment of the present invention. 8 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to still another embodiment of the present invention. FIG. 9 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to an embodiment of the present invention. FIG. 10 is a top plan view showing a gate, a semiconductor layer, a source and a drain, a connection portion, and a conductive pattern of a thin film transistor of a pixel structure according to another embodiment of the present invention.

10‧‧‧基板 10‧‧‧Substrate

100‧‧‧畫素結構 100‧‧‧ pixel structure

112‧‧‧源極 112‧‧‧ source

112-1、114-1‧‧‧端部 112-1, 114-1‧‧‧ end

112a-1、114a-1、112a-2、114a-2、116a‧‧‧上表面 Upper surface of 112a-1, 114a-1, 112a-2, 114a-2, 116a‧‧

112b、114b、116b‧‧‧側壁 112b, 114b, 116b‧‧‧ side wall

114‧‧‧汲極 114‧‧‧汲polar

116‧‧‧資料線 116‧‧‧Information line

120‧‧‧第一蝕刻阻擋圖案 120‧‧‧First etch barrier pattern

132‧‧‧半導體層 132‧‧‧Semiconductor layer

132a、146a‧‧‧開口 132a, 146a‧‧

132c‧‧‧通道 132c‧‧‧ channel

146‧‧‧絕緣層 146‧‧‧Insulation

152a‧‧‧金屬圖案 152a‧‧‧ metal pattern

154a‧‧‧第二蝕刻阻擋圖案 154a‧‧‧second etch barrier pattern

156‧‧‧閘極 156‧‧‧ gate

156-1‧‧‧主要部 156-1‧‧‧ Main Department

156p‧‧‧輔助部 156p‧‧Auxiliary Department

156-2‧‧‧第一輔助子部 156-2‧‧‧First Auxiliary Division

156-3‧‧‧第二輔助子部 156-3‧‧‧Second auxiliary subsection

159‧‧‧連接部 159‧‧‧Connecting Department

156a‧‧‧開口(間隙) 156a‧‧‧ openings (gap)

162‧‧‧平坦層 162‧‧‧flat layer

162a‧‧‧接觸窗口 162a‧‧‧Contact window

170‧‧‧畫素電極 170‧‧‧ pixel electrodes

190‧‧‧連通孔 190‧‧‧Connected holes

A-A’、B-B’‧‧‧剖線 A-A’, B-B’‧‧‧ cut line

T‧‧‧薄膜電晶體 T‧‧‧film transistor

Claims (17)

一種畫素結構,包括:一薄膜電晶體,包括:一源極與一汲極;一半導體層,位於該源極與該汲極上且具有一通道,該通道設置於該源極與該汲極之間;以及一絕緣層,覆蓋該半導體層;一閘極,配置於該絕緣層上,該閘極包括:一主要部,與該源極、該汲極以及該通道重疊設置;一輔助部,位於該主要部外且與該主要部電性連接,其中該主要部與該輔助部之間具有一間隙;以及至少一連接部,電性連接於該主要部與該輔助部之間;以及一畫素電極,與該薄膜電晶體的該汲極電性連接。 A pixel structure includes: a thin film transistor comprising: a source and a drain; a semiconductor layer on the source and the drain and having a channel, the channel being disposed at the source and the drain And an insulating layer covering the semiconductor layer; a gate disposed on the insulating layer, the gate comprising: a main portion overlapping the source, the drain and the channel; an auxiliary portion , outside the main portion and electrically connected to the main portion, wherein the main portion and the auxiliary portion have a gap; and at least one connecting portion electrically connected between the main portion and the auxiliary portion; A pixel electrode is electrically connected to the drain of the thin film transistor. 如申請專利範圍第1項所述的畫素結構,更包括:一資料線,與該薄膜電晶體的該源極電性連接;以及一掃描線,與該薄膜電晶體的該閘極電性連接,其中至少部份的該輔助部位於該掃描線與該主要部之間且與該掃描線彼此隔開。 The pixel structure of claim 1, further comprising: a data line electrically connected to the source of the thin film transistor; and a scan line and the gate electrical property of the thin film transistor Connected, wherein at least a portion of the auxiliary portion is located between the scan line and the main portion and spaced apart from the scan line. 如申請專利範圍第1項所述的畫素結構,更包括:一掃描線,與該薄膜電晶體的該閘極電性連接,其中該輔助部包括多個第一輔助子部,分別位於該主要部的相對兩側且 與該主要部之間存在該間隙,該些第一輔助子部與該主要部在一第一方向上排列,該第一方向與該掃描線的長度方向交錯,而該至少一連接部,電性連接於該些第一輔助子部與該主要部之間。 The pixel structure of claim 1, further comprising: a scan line electrically connected to the gate of the thin film transistor, wherein the auxiliary portion includes a plurality of first auxiliary sub-sections respectively located The opposite sides of the main part The gap exists between the first auxiliary sub-portion and the main portion in a first direction, the first direction is staggered with the length direction of the scan line, and the at least one connecting portion is electrically The connection is between the first auxiliary subsection and the main part. 如申請專利範圍第3項所述的畫素結構,其中該輔助部更包括多個第二輔助子部,分別位於該主要部的另外相對兩側,該些第二輔助子部與該主要部在垂直於該第一方向的一第二方向上排列。 The pixel structure of claim 3, wherein the auxiliary portion further comprises a plurality of second auxiliary sub-sections respectively located on opposite sides of the main portion, the second auxiliary sub-section and the main portion Arranged in a second direction perpendicular to the first direction. 如申請專利範圍第1項所述的畫素結構,其中該輔助部具有一環型結構,設置於該主要部的週邊。 The pixel structure according to claim 1, wherein the auxiliary portion has a ring structure disposed at a periphery of the main portion. 如申請專利範圍第1項所述的畫素結構,其中該半導體層的該通道具有一通道寬度延伸方向,該畫素結構更包括:一掃描線,與該薄膜電晶體的該閘極電性連接,其中該輔助部包括至少一第一輔助子部,位於該通道寬度延伸方向上且位於該主要部的至少一側,該至少一第一輔助子部與該主要部之間存在該間隙,而該至少一連接部,電性連接於該至少一第一輔助子部與該主要部之間。 The pixel structure of claim 1, wherein the channel of the semiconductor layer has a channel width extending direction, the pixel structure further comprising: a scan line, and the gate electrical property of the thin film transistor Connecting, wherein the auxiliary portion includes at least one first auxiliary sub-section located in the extending direction of the channel width and located on at least one side of the main portion, the gap exists between the at least one first auxiliary sub-portion and the main portion, The at least one connecting portion is electrically connected between the at least one first auxiliary sub-portion and the main portion. 如申請專利範圍第6項所述的畫素結構,其中該輔助部更包括一第二輔助子部,位於該主要部的另一側,該第二輔助子部與該主要部在垂直於該通道寬度延伸方向上排列。 The pixel structure of claim 6, wherein the auxiliary portion further includes a second auxiliary sub-section located on the other side of the main portion, the second auxiliary sub-section being perpendicular to the main portion The channel width is arranged in the direction in which it extends. 如申請專利範圍第1項所述的畫素結構,其中該半導體層的該通道具有一通道寬度延伸方向,該源極於該通道寬度 延伸方向上具有相對的兩邊緣,該汲極於該通道寬度延伸方向上具有相對的兩邊緣,而該主要部突出於該源極的該些邊緣與該汲極的該些邊緣。 The pixel structure of claim 1, wherein the channel of the semiconductor layer has a channel width extending direction, and the source is at the channel width The extending direction has opposite edges, and the drain has opposite edges in the extending direction of the width of the channel, and the main portion protrudes from the edges of the source and the edges of the drain. 如申請專利範圍第1項所述的畫素結構,其中該閘極與該半導體層切齊。 The pixel structure of claim 1, wherein the gate is aligned with the semiconductor layer. 如申請專利範圍第1項所述的畫素結構,更包括:一資料線,與該源極電性連接;以及一第一蝕刻阻擋圖案,覆蓋於該資料線的一上表面、該資料線的一側壁、該源極的一側壁、該汲極的一側壁、該源極的部份上表面以及該汲極的部份上表面,其中該半導體層設置於該第一蝕刻阻擋圖案、該源極的該部份上表面以及該汲極的該部份上表面上。 The pixel structure of claim 1, further comprising: a data line electrically connected to the source; and a first etch barrier pattern covering an upper surface of the data line, the data line a sidewall, a sidewall of the source, a sidewall of the drain, a portion of the upper surface of the source, and a portion of the upper surface of the drain, wherein the semiconductor layer is disposed on the first etch barrier pattern, The upper surface of the portion of the source and the upper surface of the portion of the drain. 如申請專利範圍第10項所述的畫素結構,更包括:一平坦層,覆蓋該閘極且具有一接觸窗口,其中該畫素電極透過該接觸窗口與和該第一蝕刻阻擋圖案及該汲極電性連接。 The pixel structure of claim 10, further comprising: a flat layer covering the gate and having a contact window, wherein the pixel electrode passes through the contact window and the first etch barrier pattern and Bungee electrical connection. 如申請專利範圍第1項所述的畫素結構,其中該閘極包括一金屬圖案以及覆蓋該金屬圖案的一第二蝕刻阻擋圖案。 The pixel structure of claim 1, wherein the gate comprises a metal pattern and a second etch barrier pattern covering the metal pattern. 如申請專利範圍第1項所述的畫素結構,更包括:一資料線,與該源極電性連接,其中該半導體層包覆該資料線、該源極以及該汲極。 The pixel structure of claim 1, further comprising: a data line electrically connected to the source, wherein the semiconductor layer covers the data line, the source, and the drain. 如申請專利範圍第1項所述的畫素結構,其中該絕緣層具有與該間隙切齊的一開口。 The pixel structure of claim 1, wherein the insulating layer has an opening that is aligned with the gap. 一種畫素結構的製造方法,包括:在一基板上形成彼此分離的一源極與一汲極;形成一第一蝕刻阻擋圖案,覆蓋該源極與該汲極,且暴露該源極與該汲極的一部份上表面;於該第一蝕刻阻擋圖案和該源極與該汲極的一部份上表面上形成一半導體材料層;在該半導體材料層上形成一絕緣材料層;在該絕緣材料層上形成一導電層;圖案化該導電層,以形成具有至少一開口的一閘極;以及以該閘極為罩幕,圖案化該絕緣材料層以及該半導體材料層,以形成具有至少一開口的一絕緣層與具有至少一開口的一半導體層,其中該閘極的該至少一開口、該絕緣層的該至少一開口以及該半導體層的該至少一開口連通且暴露該第一蝕刻阻擋圖案。 A method for fabricating a pixel structure includes: forming a source and a drain separated from each other on a substrate; forming a first etch barrier pattern covering the source and the drain, and exposing the source and the a portion of the upper surface of the drain; forming a layer of semiconductor material on the first etch barrier pattern and a portion of the source and the surface of the drain; forming a layer of insulating material on the layer of semiconductor material; Forming a conductive layer on the insulating material layer; patterning the conductive layer to form a gate having at least one opening; and patterning the insulating material layer and the semiconductor material layer with the gate mask to form An insulating layer having at least one opening and a semiconductor layer having at least one opening, wherein the at least one opening of the gate, the at least one opening of the insulating layer, and the at least one opening of the semiconductor layer are in contact with each other and exposing the first Etching the barrier pattern. 如申請專利範圍第15項所述的畫素結構的製造方法,其中利用一溼蝕刻製程圖案化該導電層,而利用一乾蝕刻製程圖案化該絕緣材料層及該半導體材料層。 The method for fabricating a pixel structure according to claim 15, wherein the conductive layer is patterned by a wet etching process, and the insulating material layer and the semiconductor material layer are patterned by a dry etching process. 如申請專利範圍第15項所述的畫素結構的製造方法,更包括: 形成一資料線以及一掃描線,該資料線與該源極電性連接,該掃描線與該閘極電性連接,其中該第一蝕刻阻擋圖案包覆該資料線。 The method for manufacturing a pixel structure according to claim 15 of the patent application, further comprising: Forming a data line and a scan line, the data line is electrically connected to the source, and the scan line is electrically connected to the gate, wherein the first etch barrier pattern covers the data line.
TW106103026A 2017-01-25 2017-01-25 Pixel structure and manufacturing method thereof TWI591411B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW106103026A TWI591411B (en) 2017-01-25 2017-01-25 Pixel structure and manufacturing method thereof
CN201710207090.5A CN106898621B (en) 2017-01-25 2017-03-31 Pixel structure and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106103026A TWI591411B (en) 2017-01-25 2017-01-25 Pixel structure and manufacturing method thereof

Publications (2)

Publication Number Publication Date
TWI591411B true TWI591411B (en) 2017-07-11
TW201827906A TW201827906A (en) 2018-08-01

Family

ID=59192641

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106103026A TWI591411B (en) 2017-01-25 2017-01-25 Pixel structure and manufacturing method thereof

Country Status (2)

Country Link
CN (1) CN106898621B (en)
TW (1) TWI591411B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI662347B (en) * 2017-12-14 2019-06-11 友達光電股份有限公司 Pixel structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100678321B1 (en) * 2005-12-14 2007-02-02 동부일렉트로닉스 주식회사 Method for fabricating gate dielectric layers of different thickness
CN103730511B (en) * 2013-12-26 2016-03-23 京东方科技集团股份有限公司 Thin-film transistor and manufacture method, array base palte, display unit
CN106298810B (en) * 2016-09-23 2019-06-11 上海天马微电子有限公司 Array substrate manufacturing method, array substrate, display panel and display device

Also Published As

Publication number Publication date
CN106898621A (en) 2017-06-27
TW201827906A (en) 2018-08-01
CN106898621B (en) 2019-10-18

Similar Documents

Publication Publication Date Title
TWI438868B (en) Complementary metal oxide semiconductor transistor and fabricating method thereof
TWI500161B (en) Hybrid thin film transistor and manufacturing method thereof and display panel
US20110266542A1 (en) Semiconductor device and method of fabricating the same
CN106816443A (en) Display substrate, the method for manufacture display substrate and display device
US10192944B2 (en) Thin film transistor array panel with diffusion barrier layer and gate insulation layer and organic light emitting diode display including the same
US10032849B2 (en) Organic light emitting diode display device and manufacturing method thereof
JP5309547B2 (en) Thin film transistor panel and manufacturing method thereof
EP1536482A1 (en) Thin film transistor with tapered edges
US8981377B2 (en) Semiconductor device and method of making the same
CN103094305A (en) Thin-film transistor array substrate, method of manufacturing the same and organic light emitting display device
KR20140108026A (en) Thin film semiconductor device, organic light emitting display, and method of manufacturing the same
TW201423991A (en) Semiconductor device and manufacturing method thereof
US8461633B2 (en) Thin film transistor and manufacturing method thereof
TWI567871B (en) Thin film transistor and method for fabricating the same
TWI591411B (en) Pixel structure and manufacturing method thereof
US11355569B2 (en) Active device substrate comprising silicon layer and manufacturing method thereof
CN107910351B (en) Manufacturing method of TFT substrate
KR101822120B1 (en) Manufacturing method of organic light emitting diode display
CN109728002A (en) The manufacturing method of display base plate, display device and display base plate
CN115275042A (en) Display panel and manufacturing method thereof
CN106129064A (en) Active element array substrate
US20150325700A1 (en) Thin film transistor and pixel structure
KR100787805B1 (en) Method for manufacturing pixel structure
CN112543997B (en) Array substrate and manufacturing method thereof
TWI520221B (en) Thin film transistor and method for fabricating the same