TWI589926B - Three-piece infrared single wavelength lens assembly - Google Patents
Three-piece infrared single wavelength lens assembly Download PDFInfo
- Publication number
- TWI589926B TWI589926B TW104144579A TW104144579A TWI589926B TW I589926 B TWI589926 B TW I589926B TW 104144579 A TW104144579 A TW 104144579A TW 104144579 A TW104144579 A TW 104144579A TW I589926 B TWI589926 B TW I589926B
- Authority
- TW
- Taiwan
- Prior art keywords
- lens
- wavelength
- infrared single
- optical axis
- focal length
- Prior art date
Links
Landscapes
- Lenses (AREA)
Description
本發明係與鏡片組有關,特別是指一種應用於電子產品上的小型化三片式紅外單波長鏡片組。The present invention relates to a lens group, and more particularly to a miniaturized three-piece infrared single-wavelength lens set for use in electronic products.
現今數位影像技術不斷創新、變化,特別是在數位相機與行動電話等的數位載體皆朝小型化發展,而使感光元件如CCD或CMOS亦被要求更小型化,在紅外線聚焦鏡片應用,除了運用於攝影領域中,近年來亦大量轉用於遊戲機之紅外線接收與感應領域,且為使其遊戲機感應使用者之範圍更寬廣,目前接收紅外線波長的鏡片組,多半以畫角較大之廣角鏡片組為主流。Nowadays, digital imaging technology is constantly innovating and changing. Especially in digital cameras such as digital cameras and mobile phones, miniaturization is being developed. Photosensitive components such as CCD or CMOS are also required to be more miniaturized. In addition to the application of infrared focusing lenses, In the field of photography, in recent years, it has also been widely used in the field of infrared receiving and sensing of game machines, and in order to make the range of the user of the game machine wider, the lens group that receives the infrared wavelength is mostly in the angle of drawing. The wide-angle lens group is the mainstream.
其中,申請人先前亦提出多件有關紅外線波長接收的鏡片組,唯目前遊戲機係以更具立體、真實及臨場感之3D遊戲為主,故就目前或申請人先前的鏡片組,皆以2D之平面遊戲偵測為訴求,以致於無法滿足3D遊戲側重之縱深感應功效。Among them, the applicant has previously proposed a number of lens sets for infrared wavelength reception. However, the current game machine is mainly a 3D game with more stereo, real and realistic feeling. Therefore, the current lens group of the applicant or the applicant is The 2D plane game detection is so demanding that it cannot satisfy the depth sensing effect of the 3D game.
再者,有關遊戲機專用之紅外線接收、感應鏡片組,為追求低廉而採用塑膠鏡片,一來材質透光性較差是影響遊戲機縱深偵測精度不足關鍵要素之一,二來塑膠鏡片容易於環境溫度過熱或過冷,以致鏡片組之焦距改變而無法精確對焦偵測,如上所述,乃目前紅外線波長接收的鏡片組無法滿足3D遊戲縱深距離精確感應之兩大技術課題。Furthermore, the infrared receiving and sensing lens sets for game machines are made of plastic lenses for the pursuit of low cost. The poor light transmittance of the materials is one of the key factors affecting the depth detection accuracy of the game machine. Secondly, the plastic lenses are easy to be used. The ambient temperature is too hot or too cold, so that the focal length of the lens group changes and the focus cannot be detected accurately. As mentioned above, the lens group that receives the infrared wavelength is unable to meet the two technical problems of accurate sensing of the depth of the 3D game.
有鑑於此,如何提供一種精確縱深距離偵測、接收,以及防止鏡片組焦距改變影響縱深偵測效果,遂為紅外線波長接收的鏡片組目前急欲克服之技術瓶頸。In view of this, how to provide an accurate depth-distance detection, reception, and prevention of the focal length change of the lens group affects the depth detection effect, and the lens group that is the infrared wavelength receiving is currently eager to overcome the technical bottleneck.
本發明之目的在於提供一種三片式紅外單波長鏡片組,尤指一種具有較佳影像感測功能的三片式紅外單波長鏡片組。It is an object of the present invention to provide a three-piece infrared single-wavelength lens set, and more particularly to a three-piece infrared single-wavelength lens set having a better image sensing function.
緣是,為了達成前述目的,依據本發明所提供之一種三片式紅外單波長鏡片組,由物側至像側依序包含:一光圈;一第一透鏡,具有正屈折力,其物側表面近光軸處為凸面,其像側表面近光軸處為凸面,其物側表面與像側表面至少一表面為非球面;一第二透鏡,具有正屈折力,其物側表面近光軸處為凹面,其像側表面近光軸處為凸面,其物側表面與像側表面至少一表面為非球面;一第三透鏡,具有正屈折力,其物側表面近光軸處為凸面,其像側表面近光軸處為凹面,其物側表面與像側表面至少一表面為非球面;In order to achieve the foregoing objective, a three-piece infrared single-wavelength lens group according to the present invention includes, in order from the object side to the image side, an aperture; a first lens having a positive refractive power and an object side thereof The surface near-optical axis is convex, and the image side surface is convex at the near-optical axis, and at least one surface of the object-side surface and the image-side surface is aspherical; a second lens has a positive refractive power, and the object side surface is low-beam The axis is a concave surface, and the image side surface is convex at the near optical axis, and at least one surface of the object side surface and the image side surface is aspherical; a third lens has a positive refractive power, and the object side surface is at the near optical axis. a convex surface having a concave surface at a near-optical axis of the image side surface, and at least one surface of the object side surface and the image side surface is aspherical;
其中該第一透鏡的焦距為f1,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.5 < f1/f23 < 1.0。藉此,則可令該三片式紅外單波長鏡片組在獲得廣泛的畫角(視場角)的同時,其解像能力顯著提昇。Wherein the focal length of the first lens is f1, the combined focal length of the second lens and the third lens is f23, and the following condition is satisfied: 0.5 < f1/f23 < 1.0. Thereby, the three-chip infrared single-wavelength lens group can significantly improve the resolution of the image while obtaining a wide angle of view (angle of view).
較佳地,該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足下列條件:0.05 < f1/f2 < 0.45。藉此,使該第一透鏡與該第二透鏡的屈折力配置較為合適,可有利於獲得廣泛的畫角(視場角)且減少系統像差的過度增大。Preferably, the focal length of the first lens is f1, the focal length of the second lens is f2, and the following condition is satisfied: 0.05 < f1/f2 < 0.45. Thereby, the refractive power arrangement of the first lens and the second lens is suitable, which is advantageous for obtaining a wide angle of view (angle of view) and reducing excessive increase of system aberration.
較佳地,該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:0.5 < f2/f3 < 2.6。藉此,使該第二透鏡與該第三透鏡的屈折力配置較為平衡,有助於像差的修正與敏感度的降低。Preferably, the focal length of the second lens is f2, the focal length of the third lens is f3, and the following condition is satisfied: 0.5 < f2 / f3 < 2.6. Thereby, the arrangement of the refractive power of the second lens and the third lens is balanced, which contributes to the correction of the aberration and the reduction of the sensitivity.
較佳地,該第一透鏡的焦距為f1,該第三透鏡的焦距為f3,並滿足下列條件:0.05 < f1/f3 < 0.7。藉此,有效分配第一透鏡的正屈折力,降低三片式紅外單波長鏡片組的敏感度。Preferably, the focal length of the first lens is f1, the focal length of the third lens is f3, and the following condition is satisfied: 0.05 < f1/f3 < 0.7. Thereby, the positive refractive power of the first lens is effectively distributed, and the sensitivity of the three-piece infrared single-wavelength lens group is reduced.
較佳地,該第一透鏡與第二透鏡的合成焦距為f12,該第三透鏡的焦距為f3,並滿足下列條件:0.1 < f12/f3 < 0.65。藉此,可令該三片式紅外單波長鏡片組在獲得廣泛的畫角(視場角)的同時,其解像能力顯著提昇。Preferably, the combined focal length of the first lens and the second lens is f12, the focal length of the third lens is f3, and the following condition is satisfied: 0.1 < f12/f3 < 0.65. Thereby, the three-chip infrared single-wavelength lens group can significantly improve the resolution of the image while obtaining a wide angle of view (angle of view).
較佳地,該第一透鏡的像側表面曲率半徑為R2,該第二透鏡的物側表面曲率半徑為R3,並滿足下列條件:25 < R2/R3 < 270。藉此,有效降低該三片式紅外單波長鏡片組的球差與像散。Preferably, the image side surface has a radius of curvature R2, and the second lens has an object side surface radius of curvature R3 and satisfies the following condition: 25 < R2/R3 < 270. Thereby, the spherical aberration and astigmatism of the three-piece infrared single-wavelength lens group are effectively reduced.
較佳地,該三片式紅外單波長鏡片組的最大視場角為FOV,並滿足下列條件:45 < FOV< 75。藉此,使該三片式紅外單波長鏡片組可具有適當之較大視場角。Preferably, the maximum field of view of the three-piece infrared single-wavelength lens set is FOV and satisfies the following condition: 45 < FOV < 75. Thereby, the three-piece infrared single-wavelength lens group can have a suitable larger angle of view.
較佳地,該第一透鏡於光軸上的厚度為CT1,該第一透鏡與第二透鏡於光軸上的間隔距離為T12,並滿足下列條件:1.4 < CT1/T12 < 2.4。藉此,有助於鏡片組的組裝,以提高製作良率。Preferably, the thickness of the first lens on the optical axis is CT1, and the distance between the first lens and the second lens on the optical axis is T12, and the following condition is satisfied: 1.4 < CT1/T12 < 2.4. Thereby, the assembly of the lens group is facilitated to improve the production yield.
較佳地,該第一透鏡與第二透鏡於光軸上的間隔距離為T12,該第二透鏡於光軸上的厚度為CT2,並滿足下列條件:0.5 < T12/CT2 < 1.4。藉此,有助於鏡片的成型性與均質性,並使組裝良率增加。Preferably, the distance between the first lens and the second lens on the optical axis is T12, the thickness of the second lens on the optical axis is CT2, and the following condition is satisfied: 0.5 < T12/CT2 < 1.4. Thereby, the moldability and homogeneity of the lens are contributed, and the assembly yield is increased.
較佳地,該第一透鏡與第二透鏡於光軸上的間隔距離為T12,該第二透鏡與第三透鏡於光軸上的間隔距離為T23,並滿足下列條件:5.4 < T12/T23 < 9.0。藉此,透鏡的間隔距離較為合適,有助於鏡片組裝以增加成品良率。Preferably, the distance between the first lens and the second lens on the optical axis is T12, and the distance between the second lens and the third lens on the optical axis is T23, and the following conditions are met: 5.4 < T12/T23 < 9.0. Thereby, the separation distance of the lens is suitable, which helps the lens assembly to increase the yield of the finished product.
較佳地,該第一透鏡的色散係數為V1,該第二透鏡的色散係數為V2,並滿足下列條件:30 < V1-V2< 42。藉此,有效降低三片式紅外單波長鏡片組的色差。Preferably, the first lens has a dispersion coefficient of V1, the second lens has a dispersion coefficient of V2, and satisfies the following condition: 30 < V1-V2<42. Thereby, the chromatic aberration of the three-piece infrared single-wavelength lens group is effectively reduced.
較佳地,該第一透鏡的色散係數為V1,該第三透鏡的色散係數為V3,並滿足下列條件:30 < V1-V3< 42。藉此,可有效修正三片式紅外單波長鏡片組的色差,提升成像品質。Preferably, the first lens has a dispersion coefficient of V1, and the third lens has a dispersion coefficient of V3 and satisfies the following condition: 30 < V1 - V3 < 42. Thereby, the chromatic aberration of the three-piece infrared single-wavelength lens group can be effectively corrected, and the imaging quality is improved.
較佳地,該三片式紅外單波長鏡片組的光圈值為Fno,並滿足下列條件:1.2 < Fno < 1.8。藉此,可適當調整三片式紅外單波長鏡片組的光圈大小,使三片式紅外單波長鏡片組具有大光圈的特性。Preferably, the three-chip infrared single-wavelength lens group has an aperture value of Fno and satisfies the following condition: 1.2 < Fno < 1.8. Thereby, the aperture size of the three-piece infrared single-wavelength lens group can be appropriately adjusted, so that the three-piece infrared single-wavelength lens group has a large aperture characteristic.
有關本發明為達成上述目的,所採用之技術、手段及其他之功效,茲舉四較佳可行實施例並配合圖式詳細說明如後。With regard to the techniques, means and other effects of the present invention in order to achieve the above objects, four preferred embodiments are described in detail with reference to the drawings.
<第一實施例><First Embodiment>
請參照圖1A及圖1B,其中圖1A繪示依照本發明第一實施例之三片式紅外單波長鏡片組的示意圖,圖1B由左至右依序為第一實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。由圖1A可知,三片式紅外單波長鏡片組係包含有一光圈100和一光學組,該光學組由物側至像側依序包含第一透鏡110、第二透鏡120、第三透鏡130、紅外線濾除濾光元件170、以及成像面180,其中該三片式紅外單波長鏡片組中具屈折力的透鏡為三片。該光圈100設置在該第一透鏡110的像側表面112與被攝物之間。1A and FIG. 1B, FIG. 1A is a schematic diagram of a three-chip infrared single-wavelength lens group according to a first embodiment of the present invention, and FIG. 1B is a three-chip infrared of the first embodiment from left to right. Spherical aberration, astigmatism, and distortion curves for a single-wavelength lens set. As shown in FIG. 1A, the three-chip infrared single-wavelength lens assembly includes an aperture 100 and an optical group. The optical group includes a first lens 110, a second lens 120, and a third lens 130 from the object side to the image side. The infrared filter filter element 170 and the imaging surface 180, wherein the three-piece infrared single-wavelength lens group has three refractive lenses. The aperture 100 is disposed between the image side surface 112 of the first lens 110 and the subject.
該第一透鏡110具有正屈折力,且為塑膠材質,其物側表面111近光軸190處為凸面,其像側表面112近光軸190處為凸面,且該物側表面111及像側表面112皆為非球面。The first lens 110 has a positive refractive power and is made of a plastic material. The object side surface 111 is convex at the near optical axis 190, and the image side surface 112 is convex at the near optical axis 190, and the object side surface 111 and the image side are Surface 112 is aspherical.
該第二透鏡120具有正屈折力,且為塑膠材質,其物側表面121近光軸190處為凹面,其像側表面122近光軸190處為凸面,且該物側表面121及像側表面122皆為非球面。The second lens 120 has a positive refractive power and is made of a plastic material. The object side surface 121 is a concave surface at the near optical axis 190, and the image side surface 122 is convex at the near optical axis 190, and the object side surface 121 and the image side are Surface 122 is aspherical.
該第三透鏡130具有正屈折力,且為塑膠材質,其物側表面131近光軸190處為凸面,其像側表面132近光軸190處為凹面,且該物側表面131及像側表面132皆為非球面。The third lens 130 has a positive refractive power and is made of a plastic material. The object side surface 131 is convex at the near optical axis 190, and the image side surface 132 is concave at the near optical axis 190, and the object side surface 131 and the image side are The surfaces 132 are all aspherical.
該紅外線濾除濾光元件170為玻璃材質,其設置於該第三透鏡130及成像面180間且不影響該三片式紅外單波長鏡片組的焦距。The infrared filter element 170 is made of glass and disposed between the third lens 130 and the imaging surface 180 without affecting the focal length of the three-piece infrared single-wavelength lens group.
上述各透鏡的非球面的曲線方程式表示如下:The aspherical curve equations of the above lenses are expressed as follows:
<TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td width="127" height="2"></td></tr><tr><td></td><td><img wi="485" he="48" file="02_image001.jpg" img-format="jpg"></img></td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0002"><TBODY><tr><td width="127" height="2"></td></tr><tr>< Td></td><td><img wi="485" he="48" file="02_image001.jpg" img-format="jpg"></img></td></tr></ TBODY></TABLE>
其中z為沿光軸190方向在高度為h的位置以表面頂點作參考的位置值;c是透鏡表面靠近光軸190的曲率,並為曲率半徑(R)的倒數(c=1/R),R為透鏡表面靠近光軸190的曲率半徑,h是透鏡表面距離光軸190的垂直距離,k為圓錐係數(conic constant),而A、B、C、D、E、G、……為高階非球面係數。Where z is the position value with reference to the surface apex at a position of height h in the direction of the optical axis 190; c is the curvature of the lens surface near the optical axis 190, and is the reciprocal of the radius of curvature (R) (c = 1/R) R is the radius of curvature of the lens surface near the optical axis 190, h is the vertical distance of the lens surface from the optical axis 190, k is a conic constant, and A, B, C, D, E, G, ... are High order aspheric coefficient.
第一實施例的三片式紅外單波長鏡片組中,三片式紅外單波長鏡片組的焦距為f,三片式紅外單波長鏡片組的光圈值(f-number)為Fno,三片式紅外單波長鏡片組中最大視場角(畫角)為FOV,其數值如下:f=1.192(公厘);Fno= 1.4;以及FOV= 60(度)。In the three-piece infrared single-wavelength lens group of the first embodiment, the focal length of the three-piece infrared single-wavelength lens group is f, and the aperture value (f-number) of the three-piece infrared single-wavelength lens group is Fno, three-piece The maximum field of view (arrow angle) in the infrared single-wavelength lens set is FOV, and its values are as follows: f = 1.192 (mm); Fno = 1.4; and FOV = 60 (degrees).
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的焦距為f1,該第二透鏡120與第三透鏡130的合成焦距為f23,並滿足下列條件: f1/f23 = 0.64636。In the three-piece infrared single-wavelength lens group of the first embodiment, the focal length of the first lens 110 is f1, and the combined focal length of the second lens 120 and the third lens 130 is f23, and the following conditions are satisfied: f1/f23 = 0.64636.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的焦距為f1,該第二透鏡120的焦距為f2,並滿足下列條件: f1/f2 = 0.22985。In the three-piece infrared single-wavelength lens group of the first embodiment, the focal length of the first lens 110 is f1, the focal length of the second lens 120 is f2, and the following condition is satisfied: f1/f2 = 0.22985.
第一實施例的三片式紅外單波長鏡片組中,該第二透鏡120的焦距為f2,該第三透鏡130的焦距為f3,並滿足下列條件: f2/f3 = 1.39174。In the three-piece infrared single-wavelength lens group of the first embodiment, the focal length of the second lens 120 is f2, the focal length of the third lens 130 is f3, and the following condition is satisfied: f2/f3 = 1.39174.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的焦距為f1,該第三透鏡130的焦距為f3,並滿足下列條件: f1/f3 = 0.31990。In the three-piece infrared single-wavelength lens group of the first embodiment, the focal length of the first lens 110 is f1, the focal length of the third lens 130 is f3, and the following condition is satisfied: f1/f3 = 0.31990.
第一實施例的三片式紅單波長鏡片組中,該第一透鏡110與第二透鏡120的合成焦距為f12,該第三透鏡130的焦距為f3,並滿足下列條件: f12/f3 = 0.32798。In the three-piece red single-wavelength lens group of the first embodiment, the composite focal length of the first lens 110 and the second lens 120 is f12, and the focal length of the third lens 130 is f3, and the following conditions are satisfied: f12/f3 = 0.32798.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的像側表面112曲率半徑為R2,該第二透鏡120的物側表面121曲率半徑為R3,並滿足下列條件: R2/R3 = 261.90368。In the three-piece infrared single-wavelength lens set of the first embodiment, the image side surface 112 of the first lens 110 has a radius of curvature R2, and the object side surface 121 of the second lens 120 has a radius of curvature of R3, and satisfies the following conditions: R2/R3 = 261.90368.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110於光軸190上的厚度為CT1,該第一透鏡110與第二透鏡120於光軸190上的間隔距離為T12,並滿足下列條件: CT1/T12 = 1.85473。In the three-piece infrared single-wavelength lens group of the first embodiment, the thickness of the first lens 110 on the optical axis 190 is CT1, and the distance between the first lens 110 and the second lens 120 on the optical axis 190 is T12. And meet the following conditions: CT1/T12 = 1.85473.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110與第二透鏡120於光軸190上的間隔距離為T12,該第二透鏡120於光軸190上的厚度為CT2,並滿足下列條件: T12/CT2 = 0.97384。In the three-piece infrared single-wavelength lens group of the first embodiment, the distance between the first lens 110 and the second lens 120 on the optical axis 190 is T12, and the thickness of the second lens 120 on the optical axis 190 is CT2. And meet the following conditions: T12/CT2 = 0.97384.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110與第二透鏡120於光軸190上的間隔距離為T12,該第二透鏡120與第三透鏡130於光軸190上的間隔距離為T23,並滿足下列條件: T12/T23 = 7.159。In the three-piece infrared single-wavelength lens group of the first embodiment, the distance between the first lens 110 and the second lens 120 on the optical axis 190 is T12, and the second lens 120 and the third lens 130 are on the optical axis 190. The upper separation distance is T23 and the following conditions are met: T12/T23 = 7.159.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的色散係數為V1,該第二透鏡120的色散係數為V2,並滿足下列條件: V1-V2 = 34.5。In the three-piece infrared single-wavelength lens group of the first embodiment, the first lens 110 has a dispersion coefficient of V1, and the second lens 120 has a dispersion coefficient of V2 and satisfies the following conditions: V1-V2 = 34.5.
第一實施例的三片式紅外單波長鏡片組中,該第一透鏡110的色散係數為V1,該第三透鏡130的色散係數為V3,並滿足下列條件: V1-V3 = 34.5。In the three-piece infrared single-wavelength lens group of the first embodiment, the first lens 110 has a dispersion coefficient of V1, and the third lens 130 has a dispersion coefficient of V3 and satisfies the following conditions: V1-V3 = 34.5.
再配合參照下列表1及表2。Refer to Table 1 and Table 2 below for reference.
<TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td><b>表1</b></td></tr><tr><td> 第一實施例 </td></tr><tr><td><u>f(</u><u>焦距) =1.192 mm(公厘), Fno(光圈值) = 1.4, FOV(畫角) = 60 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.002 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> -0.002 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.866 </td><td> (ASP) </td><td> 0.398 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.000 </td><td> 1.610 </td></tr><tr><td> 4 </td><td> </td><td> -107.896 </td><td> (ASP) </td><td> 0.215 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.412 </td><td> (ASP) </td><td> 0.221 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 7.005 </td></tr><tr><td> 6 </td><td> </td><td> -0.454 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> 0.658 </td><td> (ASP) </td><td> 0.256 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 5.034 </td></tr><tr><td> 8 </td><td> </td><td> 0.707 </td><td> (ASP) </td><td> 0.379 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> 無限 </td><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0003"><TBODY><tr><td><b>Table 1</b></td></tr><tr><td > First Embodiment </td></tr><tr><td><u>f(uu><u>focal length)=1.192 mm (mm), Fno (aperture value) = 1.4, FOV (painting angle) = 60 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td> <td> Thickness </td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr>< Td> 0 </td><td> Subject </td><td> Unlimited</td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> infinity</td><td> 0.002 </td>< Td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td> <td> Unlimited</td><td> -0.002 </td><td> </td><td> </td><td> </td><td> </td></tr>< Tr><td> 3 </td><td> first lens</td><td> 0.866 </td><td> (ASP) </td><td> 0.398 </td><td> plastic </td><td> 1.544 </td><td> 56.000 </td><td> 1.610 </td></tr><tr><td> 4 </td><td> </td> <td> -107.896 </td><td> (ASP) </td><td> 0.215 </td>< Td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</ Td><td> -0.412 </td><td> (ASP) </td><td> 0.221 </td><td> Plastic</td><td> 1.651 </td><td> 21.500 < /td><td> 7.005 </td></tr><tr><td> 6 </td><td> </td><td> -0.454 </td><td> (ASP) </ Td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 < /td><td> Third lens</td><td> 0.658 </td><td> (ASP) </td><td> 0.256 </td><td> Plastic </td><td> 1.651 </td><td> 21.500 </td><td> 5.034 </td></tr><tr><td> 8 </td><td> </td><td> 0.707 </td ><td> (ASP) </td><td> 0.379 </td><td> </td><td> </td><td> </td><td> </td></tr ><tr><td> 9 </td><td> Infrared Filter Filter </td><td> Unlimited</td><td> 0.210 </td><td> Glass</td>< Td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> infinity< /td><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> imaging surface </td><td> infinity</td><td> 0.000 </td><td> </ Td><td> </td><td> </td><td> </td></tr></TBODY></TABLE>
<TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td><b>表 2</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> 1.6561E-01 </td><td> 9.0001E+01 </td><td> -5.0677E-01 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -1.7783E-01 </td><td> -3.8297E-01 </td><td> 2.8597E+00 </td></tr><tr><td> C: </td><td> 2.2848E+00 </td><td> 7.7170E+00 </td><td> -5.9554E+00 </td></tr><tr><td> D: </td><td> -5.8170E+01 </td><td> -1.3481E+02 </td><td> -6.6323E+01 </td></tr><tr><td> E: </td><td> 5.3783E+02 </td><td> 1.0727E+03 </td><td> 1.1671E+03 </td></tr><tr><td> F: </td><td> -2.3081E+03 </td><td> -3.8622E+03 </td><td> -4.7624E+03 </td></tr><tr><td> G </td><td> 3.4798E+03 </td><td> 4.9505E+03 </td><td> 6.3678E+03 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> 平面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.5487E+00 </td><td> -1.1929E+01 </td><td> -6.9879E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.3135E-01 </td><td> 2.0091E+00 </td><td> -5.2294E-01 </td></tr><tr><td> C: </td><td> 5.6008E+00 </td><td> -2.1131E+01 </td><td> 1.5078E+00 </td></tr><tr><td> D: </td><td> -5.8963E+01 </td><td> 1.1419E+02 </td><td> -1.1792E+01 </td></tr><tr><td> E: </td><td> 3.4446E+02 </td><td> -3.9602E+02 </td><td> 3.2929E+01 </td></tr><tr><td> F: </td><td> -7.4388E+02 </td><td> 7.4075E+02 </td><td> -5.7999E+01 </td></tr><tr><td> G </td><td> 5.0956E+02 </td><td> -6.2921E+02 </td><td> 4.4847E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0004"><TBODY><tr><td><b>Table 2</b></td></tr><tr><td > aspherical coefficient </td></tr><tr><td> plane</td><td> 3 </td><td> 4 </td><td> 5 </td></tr ><tr><td> K: </td><td> 1.6561E-01 </td><td> 9.0001E+01 </td><td> -5.0677E-01 </td></tr ><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> B: </td><td> -1.7783E-01 </td><td> -3.8297E-01 </td><td> 2.8597E+00 </td></tr ><tr><td> C: </td><td> 2.2848E+00 </td><td> 7.7170E+00 </td><td> -5.9554E+00 </td></tr ><tr><td> D: </td><td> -5.8170E+01 </td><td> -1.3481E+02 </td><td> -6.6323E+01 </td>< /tr><tr><td> E: </td><td> 5.3783E+02 </td><td> 1.0727E+03 </td><td> 1.1671E+03 </td></ Tr><tr><td> F: </td><td> -2.3081E+03 </td><td> -3.8622E+03 </td><td> -4.7624E+03 </td> </tr><tr><td> G </td><td> 3.4798E+03 </td><td> 4.9505E+03 </td><td> 6.3678E+03 </td></ Tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> Plane</td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.5487E+00 </td><td> -1.1929E+01 </ Td><td> -6.9879E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </ Td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.3135E-01 </td><td> 2.0091E+00 </ Td><td> -5.2294E-01 </td></tr><tr><td> C: </td><td> 5.6008E+00 </td><td> -2.1131E+01 < /td><td> 1.5078E+00 </td></tr><tr><td> D: </td><td> -5.8963E+01 </td><td> 1.1419E+02 < /td><td> -1.1792E+01 </td></tr><tr><td> E: </td><td> 3.4446E+02 </td><td> -3.9602E+02 </td><td> 3.2929E+01 </td></tr><tr><td> F: </td><td> -7.4388E+02 </td><td> 7.4075E+02 </td><td> -5.7999E+01 </td></tr><tr><td> G </td><td> 5.0956E+02 </td><td> -6.2921E+02 </td><td> 4.4847E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </ Td><td> 0.0000E+00 </td></tr></TBODY></TABLE>
表1為圖1A第一實施例詳細的結構數據,其中曲率半徑、厚度及焦距的單位為mm,且表面0-11依序表示由物側至像側的表面。表2為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A、B、C、D、E、F、G、H……為高階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表1、及表2的定義相同,在此不加贅述。Table 1 is the detailed structural data of the first embodiment of Fig. 1A, in which the unit of curvature radius, thickness and focal length is mm, and the surfaces 0-11 sequentially represent the surface from the object side to the image side. Table 2 is the aspherical surface data in the first embodiment, wherein the cone surface coefficients in the a-spherical curve equation of k, A, B, C, D, E, F, G, H, ... are high-order aspherical coefficients. In addition, the table of the following embodiments corresponds to the schematic diagram and the aberration diagram of each embodiment, and the definition of the data in the table is the same as the definitions of Table 1 and Table 2 of the first embodiment, and details are not described herein.
<第二實施例><Second embodiment>
請參照圖2A及圖2B,其中圖2A繪示依照本發明第二實施例之三片式紅外單波長鏡片組的示意圖,圖2B由左至右依序為第二實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。由圖2A可知,三片式紅外單波長鏡片組係包含有一光圈200和一光學組,該光學組由物側至像側依序包含第一透鏡210、第二透鏡220、第三透鏡230、紅外線濾除濾光元件270、以及成像面280,其中該三片式紅外單波長鏡片組中具屈折力的透鏡為三片。該光圈200設置在該第一透鏡210的像側表面212與被攝物之間。2A and 2B, wherein FIG. 2A is a schematic diagram of a three-chip infrared single-wavelength lens group according to a second embodiment of the present invention, and FIG. 2B is a three-chip infrared of the second embodiment from left to right. Spherical aberration, astigmatism, and distortion curves for a single-wavelength lens set. As can be seen from FIG. 2A, the three-piece infrared single-wavelength lens assembly includes an aperture 200 and an optical group. The optical group includes a first lens 210, a second lens 220, and a third lens 230 from the object side to the image side. The infrared filter filter element 270 and the imaging surface 280, wherein the three-piece infrared single-wavelength lens group has three refractive lenses. The aperture 200 is disposed between the image side surface 212 of the first lens 210 and the object.
該第一透鏡210具有正屈折力,且為塑膠材質,其物側表面211近光軸290處為凸面,其像側表面212近光軸290處為凸面,且該物側表面211及像側表面212皆為非球面。The first lens 210 has a positive refractive power and is made of a plastic material. The object side surface 211 is convex at the near optical axis 290, and the image side surface 212 is convex at the near optical axis 290, and the object side surface 211 and the image side are Surface 212 is aspherical.
該第二透鏡220具有正屈折力,且為塑膠材質,其物側表面221近光軸290處為凹面,其像側表面222近光軸290處為凸面,且該物側表面221及像側表面222皆為非球面。The second lens 220 has a positive refractive power and is made of a plastic material. The object side surface 221 is concave at the near optical axis 290, and the image side surface 222 is convex at the near optical axis 290, and the object side surface 221 and the image side are Surfaces 222 are all aspherical.
該第三透鏡230具有正屈折力,且為塑膠材質,其物側表面231近光軸290處為凸面,其像側表面232近光軸290處為凹面,且該物側表面231及像側表面232皆為非球面。The third lens 230 has a positive refractive power and is made of a plastic material. The object side surface 231 is convex at the near optical axis 290, and the image side surface 232 is concave at the near optical axis 290, and the object side surface 231 and the image side are Surfaces 232 are all aspherical.
該紅外線濾除濾光元件270為玻璃材質,其設置於該第三透鏡230及成像面280間且不影響該三片式紅外單波長鏡片組的焦距。The infrared filter element 270 is made of glass and disposed between the third lens 230 and the imaging surface 280 without affecting the focal length of the three-piece infrared single-wavelength lens group.
再配合參照下列表3、以及表4。Refer to Table 3 and Table 4 below.
<TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td><b>表3</b></td></tr><tr><td> 第二實施例 </td></tr><tr><td><u>f(</u><u>焦距) =1.264 mm(公厘), Fno(光圈值) = 1.4, FOV(畫角) = 55 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.003 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> -0.003 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.956 </td><td> (ASP) </td><td> 0.479 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.000 </td><td> 1.760 </td></tr><tr><td> 4 </td><td> </td><td> -56.134 </td><td> (ASP) </td><td> 0.258 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.453 </td><td> (ASP) </td><td> 0.221 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 9.111 </td></tr><tr><td> 6 </td><td> </td><td> -0.499 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> 0.669 </td><td> (ASP) </td><td> 0.274 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 4.227 </td></tr><tr><td> 8 </td><td> </td><td> 0.752 </td><td> (ASP) </td><td> 0.367 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> 無限 </td><td> 0.144 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0005"><TBODY><tr><td><b>Table 3</b></td></tr><tr><td > Second Embodiment </td></tr><tr><td><u>f(</u><u>focal length)=1.264 mm (mm), Fno (aperture value) = 1.4, FOV (painting angle) = 55 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td> <td> Thickness </td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr>< Td> 0 </td><td> Subject </td><td> Unlimited</td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> infinity</td><td> 0.003 </td>< Td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td> <td> Unlimited</td><td> -0.003 </td><td> </td><td> </td><td> </td><td> </td></tr>< Tr><td> 3 </td><td> first lens</td><td> 0.956 </td><td> (ASP) </td><td> 0.479 </td><td> plastic </td><td> 1.544 </td><td> 56.000 </td><td> 1.760 </td></tr><tr><td> 4 </td><td> </td> <td> -56.134 </td><td> (ASP) </td><td> 0.258 </td><t d> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens </ Td><td> -0.453 </td><td> (ASP) </td><td> 0.221 </td><td> Plastic </td><td> 1.651 </td><td> 21.500 < /td><td> 9.111 </td></tr><tr><td> 6 </td><td> </td><td> -0.499 </td><td> (ASP) </ Td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 < /td><td> Third lens</td><td> 0.669 </td><td> (ASP) </td><td> 0.274 </td><td> Plastic </td><td> 1.651 </td><td> 21.500 </td><td> 4.227 </td></tr><tr><td> 8 </td><td> </td><td> 0.752 </td ><td> (ASP) </td><td> 0.367 </td><td> </td><td> </td><td> </td><td> </td></tr ><tr><td> 9 </td><td> Infrared Filter Filter </td><td> Unlimited</td><td> 0.210 </td><td> Glass</td>< Td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> infinity< /td><td> 0.144 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> imaging surface </td><td> infinity</td><td> 0.000 </td><td> </t d><td> </td><td> </td><td> </td></tr></TBODY></TABLE>
<TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td><b>表 四</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> 1.4591E-01 </td><td> 8.6453E+03 </td><td> -5.0418E-01 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -1.4983E-01 </td><td> -2.5141E-01 </td><td> 2.1650E+00 </td></tr><tr><td> C: </td><td> 1.4038E+00 </td><td> 4.8007E+00 </td><td> -3.7831E+00 </td></tr><tr><td> D: </td><td> -2.9628E+01 </td><td> -6.9229E+01 </td><td> -3.4353E+01 </td></tr><tr><td> E: </td><td> 2.2943E+02 </td><td> 4.5491E+02 </td><td> 4.9418E+02 </td></tr><tr><td> F: </td><td> -8.0646E+02 </td><td> -1.3541E+03 </td><td> -1.6700E+03 </td></tr><tr><td> G </td><td> 1.0122E+03 </td><td> 1.4330E+03 </td><td> 1.8433E+03 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> 平面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.4998E+00 </td><td> -1.0282E+01 </td><td> -5.4983E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -3.2878E-01 </td><td> 1.8526E+00 </td><td> -8.3680E-02 </td></tr><tr><td> C: </td><td> 3.5347E+00 </td><td> -1.3143E+01 </td><td> 1.1134E+00 </td></tr><tr><td> D: </td><td> -3.0133E+01 </td><td> 5.8273E+01 </td><td> -6.4602E+00 </td></tr><tr><td> E: </td><td> 1.4609E+02 </td><td> -1.6768E+02 </td><td> 1.3145E+01 </td></tr><tr><td> F: </td><td> -2.6120E+02 </td><td> 2.6112E+02 </td><td> -2.0481E+01 </td></tr><tr><td> G </td><td> 1.4485E+02 </td><td> -1.7938E+02 </td><td> 1.5542E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0006"><TBODY><tr><td><b>Table 4</b></td></tr><tr><td > aspherical coefficient </td></tr><tr><td> plane</td><td> 3 </td><td> 4 </td><td> 5 </td></tr ><tr><td> K: </td><td> 1.4591E-01 </td><td> 8.6453E+03 </td><td> -5.0418E-01 </td></tr ><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> B: </td><td> -1.4983E-01 </td><td> -2.5141E-01 </td><td> 2.1650E+00 </td></tr ><tr><td> C: </td><td> 1.4038E+00 </td><td> 4.8007E+00 </td><td> -3.7831E+00 </td></tr ><tr><td> D: </td><td> -2.9628E+01 </td><td> -6.9229E+01 </td><td> -3.4353E+01 </td>< /tr><tr><td> E: </td><td> 2.2943E+02 </td><td> 4.5491E+02 </td><td> 4.9418E+02 </td></ Tr><tr><td> F: </td><td> -8.0646E+02 </td><td> -1.3541E+03 </td><td> -1.6700E+03 </td> </tr><tr><td> G </td><td> 1.0122E+03 </td><td> 1.4330E+03 </td><td> 1.8433E+03 </td></ Tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> Plane</td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.4998E+00 </td><td> -1.0282E+01 < /td><td> -5.4983E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 < /td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -3.2878E-01 </td><td> 1.8526E+00 < /td><td> -8.3680E-02 </td></tr><tr><td> C: </td><td> 3.5347E+00 </td><td> -1.3143E+01 </td><td> 1.1134E+00 </td></tr><tr><td> D: </td><td> -3.0133E+01 </td><td> 5.8273E+01 </td><td> -6.4602E+00 </td></tr><tr><td> E: </td><td> 1.4609E+02 </td><td> -1.6768E+ 02 </td><td> 1.3145E+01 </td></tr><tr><td> F: </td><td> -2.6120E+02 </td><td> 2.6112E+ 02 </td><td> -2.0481E+01 </td></tr><tr><td> G </td><td> 1.4485E+02 </td><td> -1.7938E+ 02 </td><td> 1.5542E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 < /td><td> 0.0000E+00 </td></tr></TBODY></TABLE>
第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the second embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.
配合表3、以及表4可推算出下列數據:With Table 3 and Table 4, the following data can be derived:
<TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> 第二實施例 </td></tr><tr><td> f </td><td> 1.264 </td><td> f12/f3 </td><td> 0.43356 </td></tr><tr><td> Fno </td><td> 1.4 </td><td> R2/R3 </td><td> 123.96486 </td></tr><tr><td> FOV </td><td> 55 </td><td> CT1/T12 </td><td> 1.85478 </td></tr><tr><td> f1/f2 </td><td> 0.19314 </td><td> T12/CT2 </td><td> 1.16877 </td></tr><tr><td> f2/f3 </td><td> 2.15539 </td><td> T12/T23 </td><td> 8.60333 </td></tr><tr><td> f1/f3 </td><td> 0.41629 </td><td> V1-V2 </td><td> 34.5 </td></tr><tr><td> f1/f23 </td><td> 0.71360 </td><td> V1-V3 </td><td> 34.5 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0007"><TBODY><tr><td> Second Embodiment</td></tr><tr><td> f </td ><td> 1.264 </td><td> f12/f3 </td><td> 0.43356 </td></tr><tr><td> Fno </td><td> 1.4 </td> <td> R2/R3 </td><td> 123.96486 </td></tr><tr><td> FOV </td><td> 55 </td><td> CT1/T12 </td ><td> 1.85478 </td></tr><tr><td> f1/f2 </td><td> 0.19314 </td><td> T12/CT2 </td><td> 1.16877 </ Td></tr><tr><td> f2/f3 </td><td> 2.15539 </td><td> T12/T23 </td><td> 8.60333 </td></tr>< Tr><td> f1/f3 </td><td> 0.41629 </td><td> V1-V2 </td><td> 34.5 </td></tr><tr><td> f1/ F23 </td><td> 0.71360 </td><td> V1-V3 </td><td> 34.5 </td></tr></TBODY></TABLE>
<第三實施例><Third embodiment>
請參照圖3A及圖3B,其中圖3A繪示依照本發明第三實施例之三片式紅外單波長鏡片組的示意圖,圖3B由左至右依序為第三實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。由圖3A可知,三片式紅外單波長鏡片組係包含有一光圈300和一光學組,該光學組由物側至像側依序包含第一透鏡310、第二透鏡320、第三透鏡330、紅外線濾除濾光元件370、以及成像面380,其中該三片式紅外單波長鏡片組中具屈折力的透鏡為三片。該光圈300設置在該第一透鏡310的像側表面312與被攝物之間。Please refer to FIG. 3A and FIG. 3B , wherein FIG. 3A is a schematic diagram of a three-chip infrared single-wavelength lens group according to a third embodiment of the present invention, and FIG. 3B is a three-chip infrared of the third embodiment from left to right. Spherical aberration, astigmatism, and distortion curves for a single-wavelength lens set. As shown in FIG. 3A, the three-chip infrared single-wavelength lens assembly includes an aperture 300 and an optical group. The optical group sequentially includes a first lens 310, a second lens 320, and a third lens 330 from the object side to the image side. The infrared filter filter element 370 and the imaging surface 380, wherein the lens of the three-piece infrared single-wavelength lens group has a refractive power of three. The aperture 300 is disposed between the image side surface 312 of the first lens 310 and the subject.
該第一透鏡310具有正屈折力,且為塑膠材質,其物側表面311近光軸390處為凸面,其像側表面312近光軸390處為凸面,且該物側表面311及像側表面312皆為非球面。The first lens 310 has a positive refractive power and is made of a plastic material. The object side surface 311 is convex at the near optical axis 390, and the image side surface 312 is convex at the near optical axis 390, and the object side surface 311 and the image side are Surfaces 312 are all aspherical.
該第二透鏡320具有正屈折力,且為塑膠材質,其物側表面321近光軸390處為凹面,其像側表面322近光軸390處為凸面,且該物側表面321及像側表面322皆為非球面。The second lens 320 has a positive refractive power and is made of a plastic material. The object side surface 321 is concave at the near optical axis 390, and the image side surface 322 is convex at the near optical axis 390, and the object side surface 321 and the image side are Surfaces 322 are all aspherical.
該第三透鏡330具有正屈折力,且為塑膠材質,其物側表面331近光軸390處為凸面,其像側表面332近光軸390處為凹面,且該物側表面331及像側表面332皆為非球面。The third lens 330 has a positive refractive power and is made of a plastic material. The object side surface 331 is convex at the near optical axis 390, and the image side surface 332 is concave at the near optical axis 390, and the object side surface 331 and the image side are Surface 332 is aspherical.
該紅外線濾除濾光元件370為玻璃材質,其設置於該第三透鏡330及成像面380間且不影響該三片式紅外單波長鏡片組的焦距。The infrared filter element 370 is made of glass and disposed between the third lens 330 and the imaging surface 380 without affecting the focal length of the three-piece infrared single-wavelength lens group.
再配合參照下列表5、以及表6。Refer to Table 5 and Table 6 below for reference.
<TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td><b>表5</b></td></tr><tr><td> 第三實施例 </td></tr><tr><td><u>f(</u><u>焦距) =1.076 mm(公厘), Fno(光圈值) = 1.6, FOV(畫角) = 65 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> -0.054 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> 0.054 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.876 </td><td> (ASP) </td><td> 0.358 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.000 </td><td> 1.602 </td></tr><tr><td> 4 </td><td> </td><td> -37.188 </td><td> (ASP) </td><td> 0.211 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.412 </td><td> (ASP) </td><td> 0.213 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 7.268 </td></tr><tr><td> 6 </td><td> </td><td> -0.453 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> 0.626 </td><td> (ASP) </td><td> 0.254 </td><td> 塑膠 </td><td> 1.651 </td><td> 21.500 </td><td> 3.216 </td></tr><tr><td> 8 </td><td> </td><td> 0.764 </td><td> (ASP) </td><td> 0.333 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> 無限 </td><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0008"><TBODY><tr><td><b>Table 5</b></td></tr><tr><td > Third Embodiment </td></tr><tr><td><u>f(</u><u>focal length)=1.076 mm (mm), Fno (aperture value) = 1.6, FOV (painting angle) = 65 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td> <td> Thickness </td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr>< Td> 0 </td><td> Subject </td><td> Unlimited</td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> infinity</td><td> -0.054 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td ><td> Unlimited</td><td> 0.054 </td><td> </td><td> </td><td> </td><td> </td></tr>< Tr><td> 3 </td><td> first lens</td><td> 0.876 </td><td> (ASP) </td><td> 0.358 </td><td> plastic </td><td> 1.544 </td><td> 56.000 </td><td> 1.602 </td></tr><tr><td> 4 </td><td> </td> <td> -37.188 </td><td> (ASP) </td><td> 0.211 </td><t d> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens </ Td><td> -0.412 </td><td> (ASP) </td><td> 0.213 </td><td> Plastic </td><td> 1.651 </td><td> 21.500 < /td><td> 7.268 </td></tr><tr><td> 6 </td><td> </td><td> -0.453 </td><td> (ASP) </ Td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 < /td><td> Third lens</td><td> 0.626 </td><td> (ASP) </td><td> 0.254 </td><td> Plastic </td><td> 1.651 </td><td> 21.500 </td><td> 3.216 </td></tr><tr><td> 8 </td><td> </td><td> 0.764 </td ><td> (ASP) </td><td> 0.333 </td><td> </td><td> </td><td> </td><td> </td></tr ><tr><td> 9 </td><td> Infrared Filter Filter </td><td> Unlimited</td><td> 0.210 </td><td> Glass</td>< Td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> infinity< /td><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> imaging surface </td><td> infinity</td><td> 0.000 </td><td> </t d><td> </td><td> </td><td> </td></tr></TBODY></TABLE>
<TABLE border="1" borderColor="#000000" width="_0009"><TBODY><tr><td><b>表 6</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> 1.1143E-01 </td><td> 4.5584E+03 </td><td> -5.0524E-01 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -2.6472E-01 </td><td> -4.3381E-01 </td><td> 3.0370E+00 </td></tr><tr><td> C: </td><td> 2.4231E+00 </td><td> 1.0284E+01 </td><td> -1.0318E+01 </td></tr><tr><td> D: </td><td> -3.2150E+01 </td><td> -1.4021E+02 </td><td> -1.4086E+01 </td></tr><tr><td> E: </td><td> 1.7801E+02 </td><td> 9.7852E+02 </td><td> 8.8790E+02 </td></tr><tr><td> F: </td><td> -6.4089E+02 </td><td> -3.3473E+03 </td><td> -4.0655E+03 </td></tr><tr><td> G </td><td> 8.4568E+02 </td><td> 4.1659E+03 </td><td> 5.7099E+03 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> 平面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.4714E+00 </td><td> -1.2397E+01 </td><td> -6.4401E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.9828E-01 </td><td> 2.6913E+00 </td><td> -4.5859E-01 </td></tr><tr><td> C: </td><td> 6.5987E+00 </td><td> -2.3621E+01 </td><td> 5.1313E+00 </td></tr><tr><td> D: </td><td> -7.6651E+01 </td><td> 1.2891E+02 </td><td> -3.6777E+01 </td></tr><tr><td> E: </td><td> 4.6447E+02 </td><td> -4.6825E+02 </td><td> 1.1797E+02 </td></tr><tr><td> F: </td><td> -1.0766E+03 </td><td> 9.5965E+02 </td><td> -1.9549E+02 </td></tr><tr><td> G </td><td> 8.5055E+02 </td><td> -8.6698E+02 </td><td> 1.2566E+02 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0009"><TBODY><tr><td><b>Table 6</b></td></tr><tr><td > aspherical coefficient </td></tr><tr><td> plane</td><td> 3 </td><td> 4 </td><td> 5 </td></tr ><tr><td> K: </td><td> 1.1143E-01 </td><td> 4.5584E+03 </td><td> -5.0524E-01 </td></tr ><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> B: </td><td> -2.6472E-01 </td><td> -4.3381E-01 </td><td> 3.0370E+00 </td></tr ><tr><td> C: </td><td> 2.4231E+00 </td><td> 1.0284E+01 </td><td> -1.0318E+01 </td></tr ><tr><td> D: </td><td> -3.2150E+01 </td><td> -1.4021E+02 </td><td> -1.4086E+01 </td>< /tr><tr><td> E: </td><td> 1.7801E+02 </td><td> 9.7852E+02 </td><td> 8.8790E+02 </td></ Tr><tr><td> F: </td><td> -6.4089E+02 </td><td> -3.3473E+03 </td><td> -4.0655E+03 </td> </tr><tr><td> G </td><td> 8.4568E+02 </td><td> 4.1659E+03 </td><td> 5.7099E+03 </td></ Tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr> <tr><td> Plane</td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.4714E+00 </td><td> -1.2397E+01 </ Td><td> -6.4401E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </ Td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.9828E-01 </td><td> 2.6913E+00 </ Td><td> -4.5859E-01 </td></tr><tr><td> C: </td><td> 6.5987E+00 </td><td> -2.3621E+01 < /td><td> 5.1313E+00 </td></tr><tr><td> D: </td><td> -7.6651E+01 </td><td> 1.2891E+02 < /td><td> -3.6777E+01 </td></tr><tr><td> E: </td><td> 4.6447E+02 </td><td> -4.6825E+02 </td><td> 1.1797E+02 </td></tr><tr><td> F: </td><td> -1.0766E+03 </td><td> 9.5965E+02 </td><td> -1.9549E+02 </td></tr><tr><td> G </td><td> 8.5055E+02 </td><td> -8.6698E+02 </td><td> 1.2566E+02 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </ Td><td> 0.0000E+00 </td></tr></TBODY></TABLE>
第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the third embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.
配合表5、以及表6可推算出下列數據:With Table 5 and Table 6, the following data can be derived:
<TABLE border="1" borderColor="#000000" width="_0010"><TBODY><tr><td> 第三實施例 </td></tr><tr><td> f </td><td> 1.076 </td><td> f12/f3 </td><td> 0.50896 </td></tr><tr><td> Fno </td><td> 1.6 </td><td> R2/R3 </td><td> 90.34390 </td></tr><tr><td> FOV </td><td> 65 </td><td> CT1/T12 </td><td> 1.69914 </td></tr><tr><td> f1/f2 </td><td> 0.22035 </td><td> T12/CT2 </td><td> 0.98882 </td></tr><tr><td> f2/f3 </td><td> 2.26020 </td><td> T12/T23 </td><td> 7.01767 </td></tr><tr><td> f1/f3 </td><td> 0.49804 </td><td> V1-V2 </td><td> 34.5 </td></tr><tr><td> f1/f23 </td><td> 0.84401 </td><td> V1-V3 </td><td> 34.5 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0010"><TBODY><tr><td> Third Embodiment</td></tr><tr><td> f </td ><td> 1.076 </td><td> f12/f3 </td><td> 0.50896 </td></tr><tr><td> Fno </td><td> 1.6 </td> <td> R2/R3 </td><td> 90.34390 </td></tr><tr><td> FOV </td><td> 65 </td><td> CT1/T12 </td ><td> 1.69914 </td></tr><tr><td> f1/f2 </td><td> 0.22035 </td><td> T12/CT2 </td><td> 0.98882 </ Td></tr><tr><td> f2/f3 </td><td> 2.26020 </td><td> T12/T23 </td><td> 7.01767 </td></tr>< Tr><td> f1/f3 </td><td> 0.49804 </td><td> V1-V2 </td><td> 34.5 </td></tr><tr><td> f1/ F23 </td><td> 0.84401 </td><td> V1-V3 </td><td> 34.5 </td></tr></TBODY></TABLE>
<第四實施例><Fourth embodiment>
請參照圖4A及圖4B,其中圖4A繪示依照本發明第四實施例之三片式紅外單波長鏡片組的示意圖,圖4B由左至右依序為第四實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。由圖4A可知,三片式紅外單波長鏡片組係包含有一光圈400和一光學組,該光學組由物側至像側依序包含第一透鏡410、第二透鏡420、第三透鏡430、紅外線濾除濾光元件470、以及成像面480,其中該三片式紅外單波長鏡片組中具屈折力的透鏡為三片。該光圈400設置在該第一透鏡410的像側表面412與被攝物之間。Please refer to FIG. 4A and FIG. 4B , wherein FIG. 4A is a schematic diagram of a three-chip infrared single-wavelength lens group according to a fourth embodiment of the present invention, and FIG. 4B is a three-chip infrared of the fourth embodiment from left to right. Spherical aberration, astigmatism, and distortion curves for a single-wavelength lens set. As shown in FIG. 4A, the three-chip infrared single-wavelength lens assembly includes an aperture 400 and an optical group. The optical group includes a first lens 410, a second lens 420, and a third lens 430 from the object side to the image side. The infrared filter filter element 470 and the imaging surface 480, wherein the lens of the three-piece infrared single-wavelength lens group has a refractive power of three. The aperture 400 is disposed between the image side surface 412 of the first lens 410 and the object.
該第一透鏡410具有正屈折力,且為塑膠材質,其物側表面411近光軸490處為凸面,其像側表面412近光軸490處為凸面,且該物側表面411及像側表面412皆為非球面。The first lens 410 has a positive refractive power and is made of a plastic material. The object side surface 411 is convex at the near optical axis 490, and the image side surface 412 is convex at the near optical axis 490, and the object side surface 411 and the image side are Surface 412 is aspherical.
該第二透鏡420具有正屈折力,且為塑膠材質,其物側表面421近光軸490處為凹面,其像側表面422近光軸490處為凸面,且該物側表面421及像側表面422皆為非球面。The second lens 420 has a positive refractive power and is made of a plastic material. The object side surface 421 is concave at the near optical axis 490, and the image side surface 422 is convex at the near optical axis 490, and the object side surface 421 and the image side are Surface 422 is aspherical.
該第三透鏡430具有正屈折力,且為塑膠材質,其物側表面431近光軸490處為凸面,其像側表面432近光軸490處為凹面,且該物側表面431及像側表面432皆為非球面。The third lens 430 has a positive refractive power and is made of a plastic material. The object side surface 431 is convex at the near optical axis 490, and the image side surface 432 is concave at the near optical axis 490, and the object side surface 431 and the image side are Surface 432 is aspherical.
該紅外線濾除濾光元件470為玻璃材質,其設置於該第三透鏡430及成像面480間且不影響該三片式紅外單波長鏡片組的焦距。The infrared filter element 470 is made of glass and disposed between the third lens 430 and the imaging surface 480 without affecting the focal length of the three-piece infrared single-wavelength lens group.
再配合參照下列表7、以及表8。Refer to Table 7 and Table 8 below for reference.
<TABLE border="1" borderColor="#000000" width="_0011"><TBODY><tr><td><b>表7</b></td></tr><tr><td> 第四實施例 </td></tr><tr><td><u>f(</u><u>焦距) =1.11 mm(公厘), Fno(光圈值) = 1.4, FOV(畫角) = 64 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被攝物 </td><td> 無限 </td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.848 </td><td> (ASP) </td><td> 0.364 </td><td> 塑膠 </td><td> 1.544 </td><td> 56.000 </td><td> 1.508 </td></tr><tr><td> 4 </td><td> </td><td> -13.555 </td><td> (ASP) </td><td> 0.173 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.416 </td><td> (ASP) </td><td> 0.234 </td><td> 塑膠 </td><td> 1.635 </td><td> 23.900 </td><td> 5.081 </td></tr><tr><td> 6 </td><td> </td><td> -0.445 </td><td> (ASP) </td><td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> 0.612 </td><td> (ASP) </td><td> 0.236 </td><td> 塑膠 </td><td> 1.635 </td><td> 23.900 </td><td> 6.070 </td></tr><tr><td> 8 </td><td> </td><td> 0.625 </td><td> (ASP) </td><td> 0.358 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 紅外線濾 除濾光片 </td><td> 無限 </td><td> 0.210 </td><td> 玻璃 </td><td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> 無限 </td><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </td><td> 成像面 </td><td> 無限 </td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0011"><TBODY><tr><td><b>Table 7</b></td></tr><tr><td > Fourth Embodiment </td></tr><tr><td><u>f(</u><u>focal length)=1.11 mm (mm), Fno (aperture value) = 1.4, FOV (painting angle) = 64 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td> <td> Thickness </td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr>< Td> 0 </td><td> Subject </td><td> Unlimited</td><td> 500.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> infinity</td><td> 0.000 </td>< Td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td> <td> Unlimited</td><td> 0.000 </td><td> </td><td> </td><td> </td><td> </td></tr><tr ><td> 3 </td><td> First lens</td><td> 0.848 </td><td> (ASP) </td><td> 0.364 </td><td> Plastic< /td><td> 1.544 </td><td> 56.000 </td><td> 1.508 </td></tr><tr><td> 4 </td><td> </td>< Td> -13.555 </td><td> (ASP) </td><td> 0.173 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td> <td> -0.416 </td><td> (ASP) </td><td> 0.234 </td><td> Plastic</td><td> 1.635 </td><td> 23.900 </td ><td> 5.081 </td></tr><tr><td> 6 </td><td> </td><td> -0.445 </td><td> (ASP) </td> <td> 0.030 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td ><td> Third lens</td><td> 0.612 </td><td> (ASP) </td><td> 0.236 </td><td> Plastic </td><td> 1.635 < /td><td> 23.900 </td><td> 6.070 </td></tr><tr><td> 8 </td><td> </td><td> 0.625 </td>< Td> (ASP) </td><td> 0.358 </td><td> </td><td> </td><td> </td><td> </td></tr>< Tr><td> 9 </td><td> Infrared Filter Filter </td><td> Unlimited</td><td> 0.210 </td><td> Glass </td><td> 1.517 </td><td> 64.167 </td><td> - </td></tr><tr><td> 10 </td><td> </td><td> Unlimited</td ><td> 0.131 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 11 </ Td><td> imaging surface</td><td> infinity</td><td> 0.000 </td><td> </td> <td> </td><td> </td><td> </td></tr></TBODY></TABLE>
<TABLE border="1" borderColor="#000000" width="_0012"><TBODY><tr><td><b>表 8</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 平面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> -6.8165E-02 </td><td> -6.6204E+01 </td><td> -5.5086E-01 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -9.2855E-02 </td><td> -3.9781E-01 </td><td> 2.8075E+00 </td></tr><tr><td> C: </td><td> -1.7300E+00 </td><td> -9.5082E-01 </td><td> -1.4380E+01 </td></tr><tr><td> D: </td><td> -1.1434E+01 </td><td> 7.3878E+00 </td><td> 1.3482E+02 </td></tr><tr><td> E: </td><td> 3.1050E+02 </td><td> 2.2340E+00 </td><td> -3.5346E+02 </td></tr><tr><td> F: </td><td> -2.3349E+03 </td><td> -1.6160E+02 </td><td> 3.2516E+02 </td></tr><tr><td> G </td><td> 5.0324E+03 </td><td> 3.4273E+02 </td><td> -1.3212E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> 平面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.6842E+00 </td><td> -1.0036E+01 </td><td> -6.3872E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.2370E-01 </td><td> 2.1256E+00 </td><td> -2.1000E-01 </td></tr><tr><td> C: </td><td> 2.6819E+00 </td><td> -2.0101E+01 </td><td> 5.4441E-01 </td></tr><tr><td> D: </td><td> 8.1475E+00 </td><td> 1.1789E+02 </td><td> -5.4072E+00 </td></tr><tr><td> E: </td><td> -8.0008E+01 </td><td> -4.9289E+02 </td><td> -5.1579E+00 </td></tr><tr><td> F: </td><td> 4.9479E+02 </td><td> 1.1501E+03 </td><td> 3.0434E+01 </td></tr><tr><td> G </td><td> -8.8479E+02 </td><td> -1.2123E+03 </td><td> -2.9698E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0012"><TBODY><tr><td><b>Table 8</b></td></tr><tr><td > aspherical coefficient </td></tr><tr><td> plane</td><td> 3 </td><td> 4 </td><td> 5 </td></tr ><tr><td> K: </td><td> -6.8165E-02 </td><td> -6.6204E+01 </td><td> -5.5086E-01 </td>< /tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></ Tr><tr><td> B: </td><td> -9.2855E-02 </td><td> -3.9781E-01 </td><td> 2.8075E+00 </td>< /tr><tr><td> C: </td><td> -1.7300E+00 </td><td> -9.5082E-01 </td><td> -1.4380E+01 </td ></tr><tr><td> D: </td><td> -1.1434E+01 </td><td> 7.3878E+00 </td><td> 1.3482E+02 </td ></tr><tr><td> E: </td><td> 3.1050E+02 </td><td> 2.2340E+00 </td><td> -3.5346E+02 </td ></tr><tr><td> F: </td><td> -2.3349E+03 </td><td> -1.6160E+02 </td><td> 3.2516E+02 </ Td></tr><tr><td> G </td><td> 5.0324E+03 </td><td> 3.4273E+02 </td><td> -1.3212E+01 </td ></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td>< /tr><tr><td> Plane</td><td> 6 </td><td > 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -1.6842E+00 </td><td> -1.0036E+01 </td><td> -6.3872E+00 </td></tr><tr><td> A: </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td><td> 0.0000E+00 </td></tr><tr><td> B: </td><td> -4.2370E-01 </td><td> 2.1256E+00 </td><td> -2.1000E-01 </td></tr><tr><td> C: </td><td> 2.6819E+00 </td><td> -2.0101E+ 01 </td><td> 5.4441E-01 </td></tr><tr><td> D: </td><td> 8.1475E+00 </td><td> 1.1789E+02 </td><td> -5.4072E+00 </td></tr><tr><td> E: </td><td> -8.0008E+01 </td><td> -4.9289E +02 </td><td> -5.1579E+00 </td></tr><tr><td> F: </td><td> 4.9479E+02 </td><td> 1.1501E +03 </td><td> 3.0434E+01 </td></tr><tr><td> G </td><td> -8.8479E+02 </td><td> -1.2123E +03 </td><td> -2.9698E+01 </td></tr><tr><td> H </td><td> 0.0000E+00 </td><td> 0.0000E+ 00 </td><td> 0.0000E+00 </td></tr></TBODY></TABLE>
第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the fourth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.
配合表7、以及表8可推算出下列數據:The following data can be derived from Table 7 and Table 8:
<TABLE border="1" borderColor="#000000" width="_0013"><TBODY><tr><td> 第四實施例 </td></tr><tr><td> f </td><td> 1.11 </td><td> f12/f3 </td><td> 0.24379 </td></tr><tr><td> Fno </td><td> 1.4 </td><td> R2/R3 </td><td> 32.60571 </td></tr><tr><td> FOV </td><td> 64 </td><td> CT1/T12 </td><td> 2.10076 </td></tr><tr><td> f1/f2 </td><td> 0.29673 </td><td> T12/CT2 </td><td> 0.74124 </td></tr><tr><td> f2/f3 </td><td> 0.83702 </td><td> T12/T23 </td><td> 5.77300 </td></tr><tr><td> f1/f3 </td><td> 0.24837 </td><td> V1-V2 </td><td> 32.1 </td></tr><tr><td> f1/f23 </td><td> 0.63936 </td><td> V1-V3 </td><td> 32.1 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="_0013"><TBODY><tr><td> Fourth Embodiment</td></tr><tr><td> f </td ><td> 1.11 </td><td> f12/f3 </td><td> 0.24379 </td></tr><tr><td> Fno </td><td> 1.4 </td> <td> R2/R3 </td><td> 32.60571 </td></tr><tr><td> FOV </td><td> 64 </td><td> CT1/T12 </td ><td> 2.10076 </td></tr><tr><td> f1/f2 </td><td> 0.29673 </td><td> T12/CT2 </td><td> 0.74124 </ Td></tr><tr><td> f2/f3 </td><td> 0.83702 </td><td> T12/T23 </td><td> 5.77300 </td></tr>< Tr><td> f1/f3 </td><td> 0.24837 </td><td> V1-V2 </td><td> 32.1 </td></tr><tr><td> f1/ F23 </td><td> 0.63936 </td><td> V1-V3 </td><td> 32.1 </td></tr></TBODY></TABLE>
本發明提供的三片式紅外單波長鏡片組,透鏡的材質可為塑膠或玻璃,當透鏡材質為塑膠,可以有效降低生產成本,另當透鏡的材質為玻璃,則可以增加三片式紅外單波長鏡片組屈折力配置的自由度。此外,三片式紅外單波長鏡片組中透鏡的物側表面及像側表面可為非球面,非球面可以容易製作成球面以外的形狀,獲得較多的控制變數,用以消減像差,進而縮減透鏡使用的數目,因此可以有效降低本發明三片式紅外單波長鏡片組的總長度。The three-piece infrared single-wavelength lens set provided by the invention can be made of plastic or glass. When the lens material is plastic, the production cost can be effectively reduced. When the lens material is glass, a three-chip infrared single can be added. The degree of freedom in the configuration of the refractive power of the wavelength lens set. In addition, the object side surface and the image side surface of the lens in the three-piece infrared single-wavelength lens group may be aspherical, and the aspherical surface can be easily formed into a shape other than the spherical surface, and more control variables are obtained to reduce the aberration, and further The number of lenses used is reduced, so that the overall length of the three-piece infrared single wavelength lens set of the present invention can be effectively reduced.
本發明提供的三片式紅外單波長鏡片組中,就以具有屈折力的透鏡而言,若透鏡表面係為凸面且未界定該凸面位置時,則表示該透鏡表面於近光軸處為凸面;若透鏡表面係為凹面且未界定該凹面位置時,則表示該透鏡表面於近光軸處為凹面。In the three-piece infrared single-wavelength lens set provided by the present invention, in the case of a lens having a refractive power, if the lens surface is convex and the convex position is not defined, it indicates that the lens surface is convex at the low beam axis. If the lens surface is concave and the concave position is not defined, it indicates that the lens surface is concave at the low beam axis.
本發明提供的三片式紅外單波長鏡片組更可視需求應用於移動對焦的光學系統中,並兼具優良像差修正與良好成像品質的特色,可多方面應用於3D(三維)影像擷取、數位相機、行動裝置、數位平板或車用攝影等電子影像系統中。The three-piece infrared single-wavelength lens set provided by the invention is more suitable for the optical system of moving focus, and has the characteristics of excellent aberration correction and good imaging quality, and can be applied to 3D (3D) image capture in various aspects. In electronic imaging systems such as digital cameras, mobile devices, digital tablets or car photography.
綜上所述,上述各實施例及圖式僅為本發明的較佳實施例而已,當不能以之限定本發明實施之範圍,即大凡依本發明申請專利範圍所作的均等變化與修飾,皆應屬本發明專利涵蓋的範圍內。In the above, the above embodiments and drawings are only the preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention are all It should be within the scope of the patent of the present invention.
100、200、300、400:光圈 110、210、310、410:第一透鏡 111、211、311、411:物側表面 112、212、312、412:像側表面 120、220、320、420:第二透鏡 121、221、321、421:物側表面 122、222、322、422:像側表面 130、230、330、430:第三透鏡 131、231、331、431:物側表面 132、232、332、432:像側表面 170、270、370、470:紅外線濾除濾光元件 180、280、380、480:成像面 190、290、390、490:光軸 f:三片式紅外單波長鏡片組的焦距 Fno:三片式紅外單波長鏡片組的光圈值 FOV:三片式紅外單波長鏡片組中最大視場角 f1:第一透鏡的焦距 f2:第二透鏡的焦距 f3:第三透鏡的焦距 f12:第一透鏡與第二透鏡的合成焦距 f23:第二透鏡與第三透鏡的合成焦距 R2:第一透鏡的像側表面曲率半徑 R3:第二透鏡的物側表面曲率半徑 V1:第一透鏡的色散係數 V2:第二透鏡的色散係數 V3:第三透鏡的色散係數 CT1:第一透鏡於光軸上的厚度 CT2:第二透鏡於光軸上的厚度 T12:第一透鏡與第二透鏡於光軸上的間隔距離 T23:第二透鏡與第三透鏡於光軸上的間隔距離100, 200, 300, 400: apertures 110, 210, 310, 410: first lenses 111, 211, 311, 411: object side surfaces 112, 212, 312, 412: image side surfaces 120, 220, 320, 420: Second lenses 121, 221, 321, 421: object side surfaces 122, 222, 322, 422: image side surfaces 130, 230, 330, 430: third lenses 131, 231, 331, 431: object side surfaces 132, 232 , 332, 432: image side surface 170, 270, 370, 470: infrared filter element 180, 280, 380, 480: imaging surface 190, 290, 390, 490: optical axis f: three-chip infrared single wavelength Focal length of the lens group Fno: aperture value of the three-piece infrared single-wavelength lens group FOV: maximum angle of view f1 in the three-piece infrared single-wavelength lens group: focal length f2 of the first lens: focal length f3 of the second lens: third The focal length f12 of the lens: the combined focal length f23 of the first lens and the second lens: the combined focal length R2 of the second lens and the third lens: the radius of curvature of the image side surface of the first lens R3: the radius of curvature of the object side surface of the second lens V1 : dispersion coefficient V2 of the first lens: dispersion coefficient V3 of the second lens: dispersion of the third lens The number CT1: the thickness of the first lens on the optical axis CT2: the thickness T12 of the second lens on the optical axis: the distance between the first lens and the second lens on the optical axis T23: the second lens and the third lens are in the light Spacing distance on the shaft
圖1A係本發明第一實施例之三片式紅外單波長鏡片組的示意圖。 圖1B由左至右依序為第一實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。 圖2A係本發明第二實施例之三片式紅外單波長鏡片組的示意圖。 圖2B由左至右依序為第二實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。 圖3A係本發明第三實施例之三片式紅外單波長鏡片組的示意圖。 圖3B由左至右依序為第三實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。 圖4A係本發明第四實施例之三片式紅外單波長鏡片組的示意圖。 圖4B由左至右依序為第四實施例的三片式紅外單波長鏡片組的球差、像散及歪曲曲線圖。1A is a schematic view of a three-piece infrared single-wavelength lens group according to a first embodiment of the present invention. 1B is a spherical aberration, astigmatism, and distortion curve of the three-piece infrared single-wavelength lens group of the first embodiment, from left to right. 2A is a schematic illustration of a three-piece infrared single wavelength lens set in accordance with a second embodiment of the present invention. 2B is a spherical aberration, astigmatism, and distortion curve of the three-piece infrared single-wavelength lens group of the second embodiment, from left to right. 3A is a schematic illustration of a three-piece infrared single wavelength lens assembly in accordance with a third embodiment of the present invention. 3B is a spherical aberration, astigmatism, and distortion curve of the three-piece infrared single-wavelength lens group of the third embodiment, from left to right. 4A is a schematic view of a three-piece infrared single-wavelength lens set according to a fourth embodiment of the present invention. 4B is a spherical aberration, astigmatism, and distortion curve of the three-piece infrared single-wavelength lens group of the fourth embodiment, from left to right.
100:光圈 110:第一透鏡 111:物側表面 112:像側表面 120:第二透鏡 121:物側表面 122:像側表面 130:第三透鏡 131:物側表面 132:像側表面 170:紅外線濾除濾光元件 180:成像面 190:光軸100: aperture 110: first lens 111: object side surface 112: image side surface 120: second lens 121: object side surface 122: image side surface 130: third lens 131: object side surface 132: image side surface 170: Infrared filtering filter element 180: imaging surface 190: optical axis
Claims (12)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104144579A TWI589926B (en) | 2015-12-31 | 2015-12-31 | Three-piece infrared single wavelength lens assembly |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104144579A TWI589926B (en) | 2015-12-31 | 2015-12-31 | Three-piece infrared single wavelength lens assembly |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI589926B true TWI589926B (en) | 2017-07-01 |
TW201723574A TW201723574A (en) | 2017-07-01 |
Family
ID=60047336
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104144579A TWI589926B (en) | 2015-12-31 | 2015-12-31 | Three-piece infrared single wavelength lens assembly |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI589926B (en) |
-
2015
- 2015-12-31 TW TW104144579A patent/TWI589926B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201723574A (en) | 2017-07-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI647505B (en) | Four-piece infrared single wavelength lens system | |
CN109212716B (en) | Four-piece infrared single-wavelength lens group | |
TWI665484B (en) | Four-piece infrared single wavelength lens system | |
TWI574041B (en) | Four-piece infrared single wavelength lens assembly | |
TWI588532B (en) | Four-piece infrared single wavelength lens assembly | |
CN110632737A (en) | Four-piece infrared single-wavelength lens group | |
TWI631367B (en) | Three-piece infrared single wavelength projection lens system | |
CN110161650B (en) | Four-piece infrared single-wavelength lens group | |
TW202018358A (en) | Three-piece infrared single wavelength projection lens system | |
TWI710789B (en) | Five-piece infrared single focus lens system | |
TWI634361B (en) | Four-piece infrared single wavelength lens system | |
TWI662294B (en) | Four-piece infrared single wavelength lens system | |
TWI609196B (en) | Four-piece infrared single wavelength lens system | |
TWI589926B (en) | Three-piece infrared single wavelength lens assembly | |
TWI687732B (en) | Three-piece infrared single wavelength projection lens system | |
TW201723566A (en) | Optical lens system with a wide field of view | |
TWI732667B (en) | Five-piece infrared single wavelength lens system | |
TWI603113B (en) | Optical lens system with a wide field of view | |
TW201917442A (en) | Three-piece infrared single wavelength projection lens system | |
TWI702417B (en) | Five-piece infrared single focus lens system | |
TWI674435B (en) | Three-piece infrared single wavelength lens system | |
TWI709782B (en) | Four-piece infrared single wavelength lens system | |
CN111273423B (en) | Three-piece infrared wavelength lens group | |
TWI710816B (en) | Five-piece infrared single focus lens system | |
TWI630434B (en) | Two-piece infrared single wavelength projection lens system |