TWI631367B - Three-piece infrared single wavelength projection lens system - Google Patents

Three-piece infrared single wavelength projection lens system Download PDF

Info

Publication number
TWI631367B
TWI631367B TW106136444A TW106136444A TWI631367B TW I631367 B TWI631367 B TW I631367B TW 106136444 A TW106136444 A TW 106136444A TW 106136444 A TW106136444 A TW 106136444A TW I631367 B TWI631367 B TW I631367B
Authority
TW
Taiwan
Prior art keywords
lens
infrared single
wavelength projection
focal length
projection lens
Prior art date
Application number
TW106136444A
Other languages
Chinese (zh)
Other versions
TW201917441A (en
Inventor
蔡斐欣
黃靖昀
Original Assignee
新鉅科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新鉅科技股份有限公司 filed Critical 新鉅科技股份有限公司
Priority to TW106136444A priority Critical patent/TWI631367B/en
Application granted granted Critical
Publication of TWI631367B publication Critical patent/TWI631367B/en
Publication of TW201917441A publication Critical patent/TW201917441A/en

Links

Landscapes

  • Lenses (AREA)

Abstract

本發明為一種三片式紅外單波長投影鏡片組,由成像側至像源側依序包含:一第一透鏡,具有正屈折力;一第二透鏡,具有負屈折力;一第三透鏡,具有正屈折力;一光圈,設置在該第一透鏡的像源側表面之前或該第一透鏡的成像側表面與第二透鏡的像源側表面之間。藉此,達到一種具有較佳影像感測功能的三片式紅外單波長投影鏡片組。The invention relates to a three-piece infrared single-wavelength projection lens group, which comprises, in order from the imaging side to the image source side, a first lens having a positive refractive power, a second lens having a negative refractive power, and a third lens. Having a positive refractive power; an aperture disposed between the image source side surface of the first lens or between the image side surface of the first lens and the image source side surface of the second lens. Thereby, a three-piece infrared single-wavelength projection lens set with better image sensing function is achieved.

Description

三片式紅外單波長投影鏡片組Three-piece infrared single-wavelength projection lens set

本發明係與投影鏡片組有關,特別是指一種應用於電子產品上的小型化三片式紅外單波長投影鏡片組。The present invention relates to a projection lens set, and more particularly to a miniaturized three-piece infrared single-wavelength projection lens set for use on an electronic product.

現今數位影像技術不斷創新、變化,特別是在數位相機與行動電話等的數位載體皆朝小型化發展,而使感光元件如CCD或CMOS亦被要求更小型化,在紅外線聚焦鏡片應用,除了運用於攝影領域中,近年來亦大量轉用於遊戲機之紅外線接收與感應領域,且為使其遊戲機感應使用者之範圍更寬廣,目前接收紅外線波長的鏡片組,多半以畫角較大之廣角鏡片組為主流。Nowadays, digital imaging technology is constantly innovating and changing. Especially in digital cameras such as digital cameras and mobile phones, miniaturization is being developed. Photosensitive components such as CCD or CMOS are also required to be more miniaturized. In addition to the application of infrared focusing lenses, In the field of photography, in recent years, it has also been widely used in the field of infrared receiving and sensing of game machines, and in order to make the range of the user of the game machine wider, the lens group that receives the infrared wavelength is mostly in the angle of drawing. The wide-angle lens group is the mainstream.

其中,申請人先前亦提出多件有關紅外線波長接收的鏡片組,唯目前遊戲機係以更具立體、真實及臨場感之3D遊戲為主,故就目前或申請人先前的鏡片組,皆以2D之平面遊戲偵測為訴求,以致於無法滿足3D遊戲側重之縱深感應功效。Among them, the applicant has previously proposed a number of lens sets for infrared wavelength reception. However, the current game machine is mainly a 3D game with more stereo, real and realistic feeling. Therefore, the current lens group of the applicant or the applicant is The 2D plane game detection is so demanding that it cannot satisfy the depth sensing effect of the 3D game.

再者,有關遊戲機專用之紅外線接收、感應鏡片組,為追求低廉而採用塑膠鏡片,一來材質透光性較差是影響遊戲機縱深偵測精度不足關鍵要素之一,二來塑膠鏡片容易於環境溫度過熱或過冷,以致鏡片組之焦距改變而無法精確對焦偵測,如上所述,乃目前紅外線波長接收的鏡片組無法滿足3D遊戲縱深距離精確感應之兩大技術課題。Furthermore, the infrared receiving and sensing lens sets for game machines are made of plastic lenses for the pursuit of low cost. The poor light transmittance of the materials is one of the key factors affecting the depth detection accuracy of the game machine. Secondly, the plastic lenses are easy to be used. The ambient temperature is too hot or too cold, so that the focal length of the lens group changes and the focus cannot be detected accurately. As mentioned above, the lens group that receives the infrared wavelength is unable to meet the two technical problems of accurate sensing of the depth of the 3D game.

有鑑於此,如何提供一種精確縱深距離偵測、接收,以及防止鏡片組焦距改變影響縱深偵測效果,遂為紅外線波長接收的鏡片組目前急欲克服之技術瓶頸。In view of this, how to provide an accurate depth-distance detection, reception, and prevention of the focal length change of the lens group affects the depth detection effect, and the lens group that is the infrared wavelength receiving is currently eager to overcome the technical bottleneck.

本發明之目的在於提供一種三片式紅外單波長投影鏡片組,尤指一種具有較佳影像感測功能的三片式紅外單波長投影鏡片組。It is an object of the present invention to provide a three-piece infrared single-wavelength projection lens set, and more particularly to a three-piece infrared single-wavelength projection lens set having a better image sensing function.

緣是,為了達成前述目的,依據本發明所提供之一種三片式紅外單波長投影鏡片組,由成像側至像源側依序包含:一第一透鏡,具有正屈折力,其成像側表面近光軸處為凸面,其成像側表面與像源側表面至少一表面為非球面;一第二透鏡,具有負屈折力,其像源側表面近光軸處為凹面,其成像側表面與像源側表面至少一表面為非球面。一第三透鏡,具有正屈折力,其成像側表面近光軸處為凹面,其像源側表面近光軸處為凸面,其成像側表面與像源側表面至少一表面為非球面。一光圈,設置在該第一透鏡的像源側表面之前或該第一透鏡的成像側表面與第二透鏡的像源側表面之間。In order to achieve the foregoing objective, a three-piece infrared single-wavelength projection lens set according to the present invention comprises, in order from the imaging side to the image source side, a first lens having a positive refractive power and an imaging side surface thereof. The near optical axis is convex, and at least one surface of the imaging side surface and the image source side surface is aspherical; a second lens has a negative refractive power, and the image side surface is concave at the near optical axis, and the imaging side surface thereof is At least one surface of the source side surface is aspherical. A third lens has a positive refractive power, and the imaging side surface has a concave surface at a near optical axis, and the image side surface is convex at a near optical axis, and at least one surface of the imaging side surface and the image source side surface is aspherical. An aperture is disposed between the image source side surface of the first lens or between the image side surface of the first lens and the image source side surface of the second lens.

較佳地,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡與第二透鏡的合成焦距為f12,並滿足下列條件:0.6 < f/f12 < 1.6。藉此,透過第一透鏡與第二透鏡屈折力的適當配置,有效兼具大視角與小型化的特色。Preferably, wherein the three-piece infrared single-wavelength projection lens group has an overall focal length of f, the first lens and the second lens have a combined focal length of f12, and satisfy the following condition: 0.6 < f/f12 < 1.6. Thereby, the proper arrangement of the refractive power of the first lens and the second lens effectively combines the characteristics of large viewing angle and miniaturization.

較佳地,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.1 < f/f23 < 1.3。藉此,該三片式紅外單波長投影鏡片組可於縮短光學總長與修正像差之間取得平衡。Preferably, wherein the three-piece infrared single-wavelength projection lens group has an overall focal length of f, the second lens and the third lens have a combined focal length of f23, and satisfy the following condition: 0.1 < f/f23 < 1.3. Thereby, the three-chip infrared single-wavelength projection lens set can achieve a balance between shortening the total optical length and correcting the aberration.

較佳地,其中該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足下列條件:-3.0 < f1/f2 < -1.7。藉此,使該第一透鏡與該第二透鏡的屈折力配置較為合適,可有利於減少系統像差的過度增大。Preferably, wherein the focal length of the first lens is f1, the focal length of the second lens is f2, and the following condition is satisfied: -3.0 < f1/f2 < -1.7. Thereby, the refractive power arrangement of the first lens and the second lens is suitable, which can be beneficial to reduce excessive increase of system aberration.

較佳地,其中該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:-0.55 < f2/f3 < -0.15。藉此,使該第二透鏡與該第三透鏡的屈折力配置較為平衡,有助於像差的修正與敏感度的降低。Preferably, wherein the focal length of the second lens is f2, the focal length of the third lens is f3, and the following condition is satisfied: -0.55 < f2/f3 < -0.15. Thereby, the arrangement of the refractive power of the second lens and the third lens is balanced, which contributes to the correction of the aberration and the reduction of the sensitivity.

較佳地,其中該第一透鏡的焦距為f1,該第三透鏡的焦距為f3,並滿足下列條件:0.5 < f1/f3 < 1.3。藉此,有效分配第一透鏡的正屈折力,降低該三片式紅外單波長投影鏡片組的敏感度。Preferably, wherein the focal length of the first lens is f1, the focal length of the third lens is f3, and the following condition is satisfied: 0.5 < f1/f3 < 1.3. Thereby, the positive refractive power of the first lens is effectively distributed, and the sensitivity of the three-piece infrared single-wavelength projection lens group is reduced.

較佳地,其中該第一透鏡的焦距為f1,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.02 < f1/f23 < 0.46。藉此,該三片式紅外單波長投影鏡片組的解像能力顯著提昇。Preferably, wherein the focal length of the first lens is f1, the combined focal length of the second lens and the third lens is f23, and the following condition is satisfied: 0.02 < f1/f23 < 0.46. Thereby, the resolution capability of the three-piece infrared single-wavelength projection lens group is significantly improved.

較佳地,其中該第一透鏡與第二透鏡的合成焦距為f12,該第三透鏡的焦距為f3,並滿足下列條件:1.34 < f12/f3 < 4.05。藉此,該三片式紅外單波長投影鏡片組的解像能力顯著提昇。Preferably, wherein the first lens and the second lens have a combined focal length of f12, the third lens has a focal length of f3, and satisfies the following condition: 1.34 < f12/f3 < 4.05. Thereby, the resolution capability of the three-piece infrared single-wavelength projection lens group is significantly improved.

較佳地,其中該第一透鏡的成像側表面曲率半徑為R1,該第一透鏡的像源側表面曲率半徑為R2,並滿足下列條件:-3.38 < R1/R2 < 0.45。藉此,有效降低該三片式紅外單波長投影鏡片組的球差與像散。Preferably, wherein the imaging side surface of the first lens has a radius of curvature R1, the image source side surface of the first lens has a radius of curvature of R2, and satisfies the following condition: -3.38 < R1/R2 < 0.45. Thereby, the spherical aberration and astigmatism of the three-piece infrared single-wavelength projection lens group are effectively reduced.

較佳地,其中該第二透鏡的成像側表面曲率半徑為R3,該第二透鏡的像源側表面曲率半徑為R4,並滿足下列條件:-1.87 < R3/R4 < 6.23。藉此,有效降低該三片式紅外單波長投影鏡片組的球差與像散。Preferably, wherein the imaging side surface has a radius of curvature R3, the image side surface curvature radius of the second lens is R4, and the following condition is satisfied: -1.87 < R3/R4 < 6.23. Thereby, the spherical aberration and astigmatism of the three-piece infrared single-wavelength projection lens group are effectively reduced.

較佳地,其中該第三透鏡的成像側表面曲率半徑為R5,該第三透鏡的像源側表面曲率半徑為R6,並滿足下列條件:0.5 < R5/R6 < 3.2。藉此,有效降低該三片式紅外單波長投影鏡片組的球差與像散。Preferably, wherein the imaging lens has a radius of curvature R5 of the third lens, and the image source side surface of the third lens has a radius of curvature of R6 and satisfies the following condition: 0.5 < R5/R6 < 3.2. Thereby, the spherical aberration and astigmatism of the three-piece infrared single-wavelength projection lens group are effectively reduced.

較佳地,其中該第一透鏡於光軸上的厚度為CT1,該第二透鏡於光軸上的厚度為CT2,並滿足下列條件:0.8 < CT1/CT2 < 3.5。藉此,可有助於透鏡的成型性及均質性。Preferably, the thickness of the first lens on the optical axis is CT1, the thickness of the second lens on the optical axis is CT2, and the following condition is satisfied: 0.8 < CT1/CT2 < 3.5. Thereby, the moldability and homogeneity of the lens can be facilitated.

較佳地,其中該第二透鏡於光軸上的厚度為CT2,該第三透鏡於光軸上的厚度為CT3,並滿足下列條件:0.1 < CT2/CT3 < 1.6。藉此,讓成像品質與敏感度之間獲得適當的平衡。Preferably, the thickness of the second lens on the optical axis is CT2, and the thickness of the third lens on the optical axis is CT3, and the following condition is satisfied: 0.1 < CT2/CT3 < 1.6. This allows for an appropriate balance between image quality and sensitivity.

較佳地,其中該第一透鏡於光軸上的厚度為CT1,該第三透鏡於光軸上的厚度為CT3,並滿足下列條件:0.1 < CT1/CT3 < 1.1。藉此,可有助於透鏡的成型性及均質性。Preferably, the thickness of the first lens on the optical axis is CT1, and the thickness of the third lens on the optical axis is CT3, and the following condition is satisfied: 0.1 < CT1/CT3 < 1.1. Thereby, the moldability and homogeneity of the lens can be facilitated.

較佳地,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡的成像側表面至像源面於光軸上的距離為TL,並滿足下列條件:1.0 < f/TL < 2.0。藉此,可有利於維持該三片式紅外單波長投影鏡片組的小型化,以搭載於輕薄的電子產品上。Preferably, wherein the overall focal length of the three-piece infrared single-wavelength projection lens group is f, the distance from the imaging side surface of the first lens to the image source surface on the optical axis is TL, and the following condition is satisfied: 1.0 < f /TL < 2.0. Thereby, it is advantageous to maintain the miniaturization of the three-chip infrared single-wavelength projection lens group to be mounted on a thin and light electronic product.

較佳地,其中該第一透鏡的折射率為n1,該第二透鏡的折射率為n2,該第三透鏡的折射率為n3,並滿足下列條件:n1、n2、n3>1.6。藉此,有利於整體三片式紅外單波長投影鏡片組之透鏡匹配與調和,以提供較佳地像差平衡能力。Preferably, wherein the first lens has a refractive index of n1, the second lens has a refractive index of n2, and the third lens has a refractive index of n3, and satisfies the following conditions: n1, n2, and n3>1.6. Thereby, lens matching and blending of the overall three-piece infrared single-wavelength projection lens group is facilitated to provide better aberration balance.

有關本發明為達成上述目的,所採用之技術、手段及其他之功效,茲舉五較佳可行實施例並配合圖式詳細說明如後。With regard to the techniques, means, and other effects of the present invention in light of the above-described objects, the preferred embodiments are described in detail with reference to the drawings.

<第一實施例> <First Embodiment>

請參照圖1A及圖1B,其中圖1A繪示依照本發明第一實施例之三片式紅外單波長投影鏡片組的示意圖,圖1B由左至右依序為第一實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。由圖1A可知,三片式紅外單波長投影鏡片組係包含有一光圈100和一光學組,該光學組由成像側至像源側依序包含第一透鏡110、第二透鏡120、第三透鏡130、以及像源面180,其中 該三片式紅外單波長投影鏡片組中具屈折力的透鏡為三片。該光圈100設置在該第一透鏡110的成像側表面111與該第二透鏡120的成像側表面121之間。 1A and FIG. 1B, FIG. 1A is a schematic diagram of a three-chip infrared single-wavelength projection lens set according to a first embodiment of the present invention, and FIG. 1B is a three-piece type of the first embodiment from left to right. Infrared single-wavelength projection lens group non-point difference, distortion curve. As shown in FIG. 1A, the three-chip infrared single-wavelength projection lens assembly includes an aperture 100 and an optical group. The optical group sequentially includes a first lens 110, a second lens 120, and a third lens from the imaging side to the image source side. 130, and the source surface 180, wherein The lens of the three-piece infrared single-wavelength projection lens group with refractive power is three. The aperture 100 is disposed between the imaging side surface 111 of the first lens 110 and the imaging side surface 121 of the second lens 120.

該第一透鏡110具有正屈折力,且為塑膠材質,其成像側表面111近光軸190處為凸面,其像源側表面112近光軸190處為凸面,且該成像側表面111及像源側表面112皆為非球面。 The first lens 110 has a positive refractive power and is made of a plastic material. The imaging side surface 111 is convex at the near optical axis 190, and the source side surface 112 is convex at the near optical axis 190, and the imaging side surface 111 and the image are The source side surfaces 112 are all aspherical.

該第二透鏡120具有負屈折力,且為塑膠材質,其成像側表面121近光軸190處為凸面,其像源側表面122近光軸190處為凹面,且該成像側表面121及像源側表面122皆為非球面。 The second lens 120 has a negative refractive power and is made of a plastic material. The imaging side surface 121 is convex at the near optical axis 190, and the source side surface 122 is concave at the near optical axis 190, and the imaging side surface 121 and the image are The source side surfaces 122 are all aspherical.

該第三透鏡130具有正屈折力,且為塑膠材質,其成像側表面131近光軸190處為凹面,其像源側表面132近光軸190處為凸面,且該成像側表面131及像源側表面132皆為非球面。 The third lens 130 has a positive refractive power and is made of a plastic material, and the imaging side surface 131 is concave at the near optical axis 190, and the image side surface 132 is convex at the near optical axis 190, and the imaging side surface 131 and the image are The source side surfaces 132 are all aspherical.

上述各透鏡的非球面的曲線方程式表示如下: The aspherical curve equations of the above lenses are expressed as follows:

其中z為沿光軸190方向在高度為h的位置以表面頂點作參考的位置值;c是透鏡表面靠近光軸190的曲率,並為曲率半徑(R)的倒數(c=1/R),R為透鏡表面靠近光軸190的曲率半徑,h是透鏡表面距離光軸190的垂直距離,k為圓錐係數(conic constant),而A、B、C、D、E、G、……為高階非球面係數。 Where z is the position value with reference to the surface apex at a position of height h in the direction of the optical axis 190; c is the curvature of the lens surface near the optical axis 190, and is the reciprocal of the radius of curvature (R) (c = 1/R) R is the radius of curvature of the lens surface near the optical axis 190, h is the vertical distance of the lens surface from the optical axis 190, k is a conic constant, and A, B, C, D, E, G, ... are High order aspheric coefficient.

第一實施例的三片式紅外單波長投影鏡片組中,三片式紅外單波長投影鏡片組的焦距為f,三片式紅外單波長投影鏡片組的光圈值(f-number)為Fno,三片式紅外單波長投影鏡片組中最大視場角(畫角)為FOV,其數值如下:f=5.97(公厘);Fno=2.6;以及FOV=4.89(度)。 In the three-piece infrared single-wavelength projection lens group of the first embodiment, the focal length of the three-piece infrared single-wavelength projection lens group is f, and the aperture value (f-number) of the three-piece infrared single-wavelength projection lens group is Fno. The maximum field of view (angle of view) in the three-piece infrared single-wavelength projection lens set is FOV, and the values are as follows: f = 5.97 (millimeters); Fno = 2.6; and FOV = 4.89 (degrees).

第一實施例的三片式紅外單波長投影鏡片組中,該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡110與第二透鏡120的合成焦距為f12,並滿足下列條件:f/f12=1.429。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the overall focal length of the three-piece infrared single-wavelength projection lens group is f, and the combined focal length of the first lens 110 and the second lens 120 is f12, and satisfies The following conditions: f/f12=1.429.

第一實施例的三片式紅外單波長投影鏡片組中,該三片式紅外單波長投影鏡片組的整體焦距為f,該第二透鏡120與第三透鏡130的合成焦距為f23,並滿足下列條件: f/f23 = 0.512。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the overall focal length of the three-piece infrared single-wavelength projection lens group is f, and the combined focal length of the second lens 120 and the third lens 130 is f23, and satisfies The following conditions are: f/f23 = 0.512.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110的焦距為f1,該第二透鏡120的焦距為f2,並滿足下列條件: f1/f2 = -2.088。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the focal length of the first lens 110 is f1, the focal length of the second lens 120 is f2, and the following condition is satisfied: f1/f2 = -2.088.

第一實施例的三片式紅外單波長投影鏡片組中,該第二透鏡120的焦距為f2,該第三透鏡130的焦距為f3,並滿足下列條件: f2/f3 = -0.383。In the three-piece infrared single-wavelength projection lens group of the first embodiment, the focal length of the second lens 120 is f2, the focal length of the third lens 130 is f3, and the following condition is satisfied: f2/f3 = -0.383.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110的焦距為f1,該第三透鏡130的焦距為f3,並滿足下列條件: f1/f3 = 0.8。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the focal length of the first lens 110 is f1, the focal length of the third lens 130 is f3, and the following condition is satisfied: f1/f3 = 0.8.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110的焦距為f1,該第二透鏡120與第三透鏡130的合成焦距為f23,並滿足下列條件: f1/f23 = 0.175。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the focal length of the first lens 110 is f1, and the combined focal length of the second lens 120 and the third lens 130 is f23, and the following conditions are satisfied: f1/f23 = 0.175.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110與第二透鏡120的合成焦距為f12,該第三透鏡130的焦距為f3,並滿足下列條件: f12/f3 = 1.637。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the composite focal length of the first lens 110 and the second lens 120 is f12, and the focal length of the third lens 130 is f3, and the following conditions are satisfied: f12/f3 = 1.637.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110的成像側表面111曲率半徑為R1,該第一透鏡110的像源側表面112曲率半徑為R2,並滿足下列條件: R1/R2 = -3.076。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the imaging side surface 111 of the first lens 110 has a radius of curvature R1, and the image source side surface 112 of the first lens 110 has a radius of curvature of R2 and satisfies the following Condition: R1/R2 = -3.076.

第一實施例的三片式紅外單波長投影鏡片組中,該第二透鏡120的成像側表面121曲率半徑為R3,該第二透鏡120的像源側表面122曲率半徑為R4,並滿足下列條件: R3/R4 = 3.559。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the imaging side surface 121 of the second lens 120 has a radius of curvature R3, and the image source side surface 122 of the second lens 120 has a radius of curvature of R4, and satisfies the following Condition: R3/R4 = 3.559.

第一實施例的三片式紅外單波長投影鏡片組中,該第三透鏡130的成像側表面131曲率半徑為R5,該第三透鏡130的像源側表面132曲率半徑為R6,並滿足下列條件: R5/R6 = 0.75。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the imaging side surface 131 of the third lens 130 has a radius of curvature R5, and the image source side surface 132 of the third lens 130 has a radius of curvature of R6, and satisfies the following Condition: R5/R6 = 0.75.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110於光軸190上的厚度為CT1,該第二透鏡120於光軸190上的厚度為CT2,並滿足下列條件: CT1/CT2 = 1.004。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the thickness of the first lens 110 on the optical axis 190 is CT1, and the thickness of the second lens 120 on the optical axis 190 is CT2, and the following conditions are met. : CT1/CT2 = 1.004.

第一實施例的三片式紅外單波長投影鏡片組中,該第二透鏡120於光軸190上的厚度為CT2,該第三透鏡130於光軸190上的厚度為CT3,並滿足下列條件: CT2/CT3 = 1.354。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the thickness of the second lens 120 on the optical axis 190 is CT2, and the thickness of the third lens 130 on the optical axis 190 is CT3, and the following conditions are met. : CT2/CT3 = 1.354.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110於光軸190上的厚度為CT1,該第三透鏡130於光軸190上的厚度為CT3,並滿足下列條件: CT1/CT3 = 1.360。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the thickness of the first lens 110 on the optical axis 190 is CT1, and the thickness of the third lens 130 on the optical axis 190 is CT3, and the following conditions are met. : CT1/CT3 = 1.360.

第一實施例的三片式紅外單波長投影鏡片組中,該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡110的成像側表面111至像源面180於光軸190上的距離為TL,並滿足下列條件: f/TL = 1.637。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the overall focal length of the three-piece infrared single-wavelength projection lens group is f, and the imaging side surface 111 to the image source surface 180 of the first lens 110 are on the optical axis. The distance on 190 is TL and the following conditions are met: f/TL = 1.637.

第一實施例的三片式紅外單波長投影鏡片組中,該第一透鏡110的折射率為n1,該第二透鏡120的折射率為n2,該第三透鏡130的折射率為n3,並滿足下列條件:n1、n2、n3 = 1.65。In the three-piece infrared single-wavelength projection lens set of the first embodiment, the refractive index of the first lens 110 is n1, the refractive index of the second lens 120 is n2, and the refractive index of the third lens 130 is n3, and The following conditions are met: n1, n2, n3 = 1.65.

再配合參照下列表1及表2。Refer to Table 1 and Table 2 below for reference.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表1</b></td></tr><tr><td> 第一實施例 </td></tr><tr><td><u>f(</u><u>焦距) = 5.97 mm(公厘), Fno(光圈值) = 2.6, FOV(畫角) = 4.89 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被投影物 </td><td> 無限 </td><td> 700 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 第一透鏡 </td><td> 4.978 </td><td> (ASP) </td><td> 0.724 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> 2.044 </td></tr><tr><td> 3 </td><td> </td><td> -1.619 </td><td> (ASP) </td><td> -0.224 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 光圈 </td><td> 無限 </td><td> 0.250 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> 0.687 </td><td> (ASP) </td><td> 0.720 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> -0.979 </td></tr><tr><td> 6 </td><td> </td><td> 0.193 </td><td> (ASP) </td><td> 1.012 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -0.334 </td><td> (ASP) </td><td> 0.532 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> 2.555 </td></tr><tr><td> 8 </td><td> </td><td> -0.445 </td><td> (ASP) </td><td> 0.499 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 像源面 </td><td> 無限 </td><td> - </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 1</b></td></tr><tr>< Td> first embodiment </td></tr><tr><td><u>f(</u><u>focal length) = 5.97 mm (mm), Fno (aperture value) = 2.6, FOV (painting angle) = 4.89 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature </td ><td> Thickness</td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr> <td> 0 </td><td> Projection </td><td> Unlimited</td><td> 700 </td><td> </td><td> </td><td > </td><td> </td></tr><tr><td> 1 </td><td> </td><td> Unlimited</td><td> 0 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> first lens< /td><td> 4.978 </td><td> (ASP) </td><td> 0.724 </td><td> Plastic</td><td> 1.65 </td><td> 21.5 < /td><td> 2.044 </td></tr><tr><td> 3 </td><td> </td><td> -1.619 </td><td> (ASP) </ Td><td> -0.224 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> Aperture</td><td> Unlimited</td><td> 0.250 </td><td> </td><td> </td><t d> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td><td> 0.687 </td><td> ( ASP) </td><td> 0.720 </td><td> Plastic</td><td> 1.65 </td><td> 21.5 </td><td> -0.979 </td></tr ><tr><td> 6 </td><td> </td><td> 0.193 </td><td> (ASP) </td><td> 1.012 </td><td> </ Td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> third lens</td><td > -0.334 </td><td> (ASP) </td><td> 0.532 </td><td> Plastic</td><td> 1.65 </td><td> 21.5 </td>< Td> 2.555 </td></tr><tr><td> 8 </td><td> </td><td> -0.445 </td><td> (ASP) </td><td > 0.499 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td>< Td> image source surface </td><td> infinity</td><td> - </td><td> </td><td> </td><td> </td><td> < /td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表 2</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 表面 </td><td> 2 </td><td> 3 </td><td> 5 </td></tr><tr><td> K: </td><td> -6.9507E+01 </td><td> -6.5824E+00 </td><td> -4.9731E-01 </td></tr><tr><td> A: </td><td> 2.6183E-01 </td><td> 9.3099E-02 </td><td> -1.6216E-01 </td></tr><tr><td> B: </td><td> -2.6153E-01 </td><td> -1.9801E-01 </td><td> -5.5685E-01 </td></tr><tr><td> C: </td><td> 9.7126E-02 </td><td> 1.0107E-01 </td><td> -1.7392E+00 </td></tr><tr><td> D: </td><td> -1.2788E-02 </td><td> 5.6492E-02 </td><td> 6.3501E+00 </td></tr><tr><td> E: </td><td> 1.5759E-03 </td><td> -8.1979E-02 </td><td> -6.4523E+00 </td></tr><tr><td> F: </td><td> 2.3038E-03 </td><td> 2.9121E-02 </td><td> 2.2633E+00 </td></tr><tr><td> 表面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -8.0491E-01 </td><td> -5.5390E-01 </td><td> -1.5357E+00 </td></tr><tr><td> A: </td><td> -4.8088E+00 </td><td> 6.3540E-01 </td><td> -3.1526E+00 </td></tr><tr><td> B: </td><td> -8.4992E+00 </td><td> -5.0180E+02 </td><td> 4.7309E+01 </td></tr><tr><td> C: </td><td> -1.4301E+02 </td><td> 2.6285E+04 </td><td> -7.5592E+02 </td></tr><tr><td> D: </td><td> 2.1212E+03 </td><td> -7.0107E+05 </td><td> 6.0844E+03 </td></tr><tr><td> E: </td><td> -1.3929E+04 </td><td> 8.7304E+06 </td><td> -2.4555E+04 </td></tr><tr><td> F: </td><td> 3.7563E+04 </td><td> -4.1319E+07 </td><td> 3.9097E+04 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 2</b></td></tr><tr>< Td> aspherical coefficient </td></tr><tr><td> surface </td><td> 2 </td><td> 3 </td><td> 5 </td></ Tr><tr><td> K: </td><td> -6.9507E+01 </td><td> -6.5824E+00 </td><td> -4.9731E-01 </td> </tr><tr><td> A: </td><td> 2.6183E-01 </td><td> 9.3099E-02 </td><td> -1.6216E-01 </td> </tr><tr><td> B: </td><td> -2.6153E-01 </td><td> -1.9801E-01 </td><td> -5.5685E-01 </ Td></tr><tr><td> C: </td><td> 9.7126E-02 </td><td> 1.0107E-01 </td><td> -1.7392E+00 </ Td></tr><tr><td> D: </td><td> -1.2788E-02 </td><td> 5.6492E-02 </td><td> 6.3501E+00 </ Td></tr><tr><td> E: </td><td> 1.5759E-03 </td><td> -8.1979E-02 </td><td> -6.4523E+00 < /td></tr><tr><td> F: </td><td> 2.3038E-03 </td><td> 2.9121E-02 </td><td> 2.2633E+00 </ Td></tr><tr><td> surface </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td > K: </td><td> -8.0491E-01 </td><td> -5.5390E-01 </td><td> -1.5357E+00 </td></tr><tr> <td> A: </td><td> -4.8088E+00 </td><td> 6.3540E-01 </t d><td> -3.1526E+00 </td></tr><tr><td> B: </td><td> -8.4992E+00 </td><td> -5.0180E+02 </td><td> 4.7309E+01 </td></tr><tr><td> C: </td><td> -1.4301E+02 </td><td> 2.6285E+04 </td><td> -7.5592E+02 </td></tr><tr><td> D: </td><td> 2.1212E+03 </td><td> -7.0107E+ 05 </td><td> 6.0844E+03 </td></tr><tr><td> E: </td><td> -1.3929E+04 </td><td> 8.7304E+ 06 </td><td> -2.4555E+04 </td></tr><tr><td> F: </td><td> 3.7563E+04 </td><td> -4.1319E +07 </td><td> 3.9097E+04 </td></tr></TBODY></TABLE>

表1為圖1A第一實施例詳細的結構數據,其中曲率半徑、厚度及焦距的單位為mm,且表面0-9依序表示由成像側至像源側的表面。表2為第一實施例中的非球面數據,其中,k表非球面曲線方程式中的錐面係數,A、B、C、D、E、F、……為高階非球面係數。此外,以下各實施例表格乃對應各實施例的示意圖與像差曲線圖,表格中數據的定義皆與第一實施例的表1、及表2的定義相同,在此不加贅述。Table 1 is the detailed structural data of the first embodiment of Fig. 1A, in which the unit of curvature radius, thickness and focal length is mm, and the surfaces 0-9 sequentially represent the surface from the imaging side to the image source side. Table 2 is the aspherical data in the first embodiment, wherein the cone coefficients in the a-spherical curve equation of k, A, B, C, D, E, F, ... are high-order aspheric coefficients. In addition, the table of the following embodiments corresponds to the schematic diagram and the aberration diagram of each embodiment, and the definition of the data in the table is the same as the definitions of Table 1 and Table 2 of the first embodiment, and details are not described herein.

<第二實施例><Second embodiment>

請參照圖2A及圖2B,其中圖2A繪示依照本發明第二實施例之三片式紅外單波長投影鏡片組的示意圖,圖2B由左至右依序為第二實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。由圖2A可知,三片式紅外單波長投影鏡片組係包含有一光圈200和一光學組,該光學組由成像側至像源側依序包含第一透鏡210、第二透鏡220、第三透鏡230、以及像源面280,其中該三片式紅外單波長投影鏡片組中具屈折力的透鏡為三片。該光圈200設置在該第一透鏡210的像源側表面212與該第二透鏡220的成像側表面221之間。2A and FIG. 2B, FIG. 2A is a schematic diagram of a three-chip infrared single-wavelength projection lens group according to a second embodiment of the present invention, and FIG. 2B is a three-piece embodiment of the second embodiment from left to right. Infrared single-wavelength projection lens group non-point difference, distortion curve. As can be seen from FIG. 2A, the three-chip infrared single-wavelength projection lens assembly includes an aperture 200 and an optical group. The optical group sequentially includes a first lens 210, a second lens 220, and a third lens from the imaging side to the image source side. 230, and an image source surface 280, wherein the lens of the three-piece infrared single-wavelength projection lens group has a refractive power of three. The aperture 200 is disposed between the image source side surface 212 of the first lens 210 and the imaging side surface 221 of the second lens 220.

該第一透鏡210具有正屈折力,且為塑膠材質,其成像側表面211近光軸290處為凸面,其像源側表面212近光軸290處為凸面,且該成像側表面211及像源側表面212皆為非球面。The first lens 210 has a positive refractive power and is made of a plastic material. The imaging side surface 211 is convex at the near optical axis 290, and the source side surface 212 is convex at the near optical axis 290, and the imaging side surface 211 and the image are The source side surfaces 212 are all aspherical.

該第二透鏡220具有負屈折力,且為塑膠材質,其成像側表面221近光軸290處為凸面,其像源側表面222近光軸290處為凹面,且該成像側表面221及像源側表面222皆為非球面。The second lens 220 has a negative refractive power and is made of a plastic material. The imaging side surface 221 is convex at the near optical axis 290, and the image side surface 222 is concave at the near optical axis 290, and the imaging side surface 221 and the image are The source side surfaces 222 are all aspherical.

該第三透鏡230具有正屈折力,且為塑膠材質,其成像側表面231近光軸290處為凹面,其像源側表面232近光軸290處為凸面,且該成像側表面231及像源側表面232皆為非球面。The third lens 230 has a positive refractive power and is made of a plastic material. The imaging side surface 231 is concave at the near optical axis 290, and the image side surface 232 is convex at the near optical axis 290, and the imaging side surface 231 and the image are The source side surfaces 232 are all aspherical.

再配合參照下列表3、以及表4。Refer to Table 3 and Table 4 below.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表3</b></td></tr><tr><td> 第二實施例 </td></tr><tr><td><u>f(</u><u>焦距) = 5.60 mm(公厘), Fno(光圈值) = 2.9, FOV(畫角) = 10.67 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被投影物 </td><td> 無限 </td><td> 700 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 第一透鏡 </td><td> 1.064 </td><td> (ASP) </td><td> 0.768 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> 1.623 </td></tr><tr><td> 3 </td><td> </td><td> -15.065 </td><td> (ASP) </td><td> 0.014 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 </td><td> 光圈 </td><td> 無限 </td><td> 0.549 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> 1.704 </td><td> (ASP) </td><td> 0.236 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> -0.592 </td></tr><tr><td> 6 </td><td> </td><td> 0.287 </td><td> (ASP) </td><td> 0.757 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -0.999 </td><td> (ASP) </td><td> 0.654 </td><td> 塑膠 </td><td> 1.65 </td><td> 21.5 </td><td> 1.997 </td></tr><tr><td> 8 </td><td> </td><td> -0.694 </td><td> (ASP) </td><td> 0.543 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 像源面 </td><td> 無限 </td><td> - </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 3</b></td></tr><tr>< Td> second embodiment </td></tr><tr><td><u>f(uu><u>focal length) = 5.60 mm (mm), Fno (aperture value) = 2.9, FOV (painting angle) = 10.67 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature </td ><td> Thickness</td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr> <td> 0 </td><td> Projection </td><td> Unlimited</td><td> 700 </td><td> </td><td> </td><td > </td><td> </td></tr><tr><td> 1 </td><td> </td><td> Unlimited</td><td> 0 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> first lens< /td><td> 1.064 </td><td> (ASP) </td><td> 0.768 </td><td> Plastic </td><td> 1.65 </td><td> 21.5 < /td><td> 1.623 </td></tr><tr><td> 3 </td><td> </td><td> -15.065 </td><td> (ASP) </ Td><td> 0.014 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 4 < /td><td> Aperture</td><td> Unlimited</td><td> 0.549 </td><td> </td><td> </td>< Td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td><td> 1.704 </td><td> ( ASP) </td><td> 0.236 </td><td> Plastic</td><td> 1.65 </td><td> 21.5 </td><td> -0.592 </td></tr ><tr><td> 6 </td><td> </td><td> 0.287 </td><td> (ASP) </td><td> 0.757 </td><td> </ Td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> third lens</td><td > -0.999 </td><td> (ASP) </td><td> 0.654 </td><td> Plastic</td><td> 1.65 </td><td> 21.5 </td>< Td> 1.997 </td></tr><tr><td> 8 </td><td> </td><td> -0.694 </td><td> (ASP) </td><td > 0.543 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td>< Td> image source surface </td><td> infinity</td><td> - </td><td> </td><td> </td><td> </td><td> < /td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表 4</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 表面 </td><td> 2 </td><td> 3 </td><td> 5 </td></tr><tr><td> K: </td><td> -1.6241E-01 </td><td> -5.4705E+02 </td><td> 9.2656E-01 </td></tr><tr><td> A: </td><td> -2.9461E-02 </td><td> -2.2284E-02 </td><td> -2.3385E+00 </td></tr><tr><td> B: </td><td> 2.2146E-02 </td><td> 4.1664E-01 </td><td> 7.4193E+00 </td></tr><tr><td> C: </td><td> -1.8500E-04 </td><td> -1.8224E+00 </td><td> -3.7376E+00 </td></tr><tr><td> D: </td><td> -2.6263E-01 </td><td> 3.9034E+00 </td><td> -1.4259E+02 </td></tr><tr><td> E: </td><td> 4.5051E-01 </td><td> -4.0999E+00 </td><td> 9.5449E+02 </td></tr><tr><td> F: </td><td> -2.5746E-01 </td><td> 1.6431E+00 </td><td> -2.1616E+03 </td></tr><tr><td> 表面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> -6.2380E-01 </td><td> -1.1766E+02 </td><td> -1.4405E+00 </td></tr><tr><td> A: </td><td> -3.4702E+00 </td><td> -9.9908E-01 </td><td> -8.4013E-01 </td></tr><tr><td> B: </td><td> 6.9321E+00 </td><td> 6.2334E+01 </td><td> 2.7131E+00 </td></tr><tr><td> C: </td><td> 4.9255E+02 </td><td> -4.3705E+02 </td><td> -2.1645E+01 </td></tr><tr><td> D: </td><td> -1.2643E+04 </td><td> 1.3293E+03 </td><td> 8.1906E+01 </td></tr><tr><td> E: </td><td> 1.5252E+05 </td><td> -7.8347E+02 </td><td> -1.6494E+02 </td></tr><tr><td> F: </td><td> -6.5218E+05 </td><td> -1.7926E+03 </td><td> 1.3327E+02 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 4</b></td></tr><tr>< Td> aspherical coefficient </td></tr><tr><td> surface </td><td> 2 </td><td> 3 </td><td> 5 </td></ Tr><tr><td> K: </td><td> -1.6241E-01 </td><td> -5.4705E+02 </td><td> 9.2656E-01 </td>< /tr><tr><td> A: </td><td> -2.9461E-02 </td><td> -2.2284E-02 </td><td> -2.3385E+00 </td ></tr><tr><td> B: </td><td> 2.2146E-02 </td><td> 4.1664E-01 </td><td> 7.4193E+00 </td> </tr><tr><td> C: </td><td> -1.8500E-04 </td><td> -1.8224E+00 </td><td> -3.7376E+00 </ Td></tr><tr><td> D: </td><td> -2.6263E-01 </td><td> 3.9034E+00 </td><td> -1.4259E+02 < /td></tr><tr><td> E: </td><td> 4.5051E-01 </td><td> -4.0999E+00 </td><td> 9.5449E+02 < /td></tr><tr><td> F: </td><td> -2.5746E-01 </td><td> 1.6431E+00 </td><td> -2.1616E+03 </td></tr><tr><td> Surface </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr> <td> K: </td><td> -6.2380E-01 </td><td> -1.1766E+02 </td><td> -1.4405E+00 </td></tr>< Tr><td> A: </td><td> -3.4702E+00 </td><td> -9.9908E-01 </td><td> -8.4013E-01 </td></tr><tr><td> B: </td><td> 6.9321E+00 </td><td> 6.2334E+01 </td><td> 2.7131E+00 </td></tr><tr><td> C: </td><td> 4.9255E+02 </td><td> -4.3705E+02 </td><td> -2.1645E+01 </td></tr><tr><td> D: </td><td> -1.2643E+04 </td><td> 1.3293E+ 03 </td><td> 8.1906E+01 </td></tr><tr><td> E: </td><td> 1.5252E+05 </td><td> -7.8347E+ 02 </td><td> -1.6494E+02 </td></tr><tr><td> F: </td><td> -6.5218E+05 </td><td> -1.7926 E+03 </td><td> 1.3327E+02 </td></tr></TBODY></TABLE>

第二實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the second embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

配合表3、以及表4可推算出下列數據:With Table 3 and Table 4, the following data can be derived:

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第二實施例 </td></tr><tr><td> f[mm] </td><td> 5.60 </td><td> f12/f3 </td><td> 2.839 </td></tr><tr><td> Fno </td><td> 2.9 </td><td> f/TL </td><td> 1.589 </td></tr><tr><td> FOV[deg.] </td><td> 10.67 </td><td> R1/R2 </td><td> -0.071 </td></tr><tr><td> f/f12 </td><td> 0.987 </td><td> R3/R4 </td><td> 5.935 </td></tr><tr><td> f/f23 </td><td> 0.208 </td><td> R5/R6 </td><td> 1.440 </td></tr><tr><td> f1/f2 </td><td> -2.743 </td><td> CT1/CT2 </td><td> 3.248 </td></tr><tr><td> f2/f3 </td><td> -0.296 </td><td> CT2/CT3 </td><td> 0.361 </td></tr><tr><td> f1/f3 </td><td> 0.813 </td><td> CT1/CT3 </td><td> 1.174 </td></tr><tr><td> f1/f23 </td><td> 0.060 </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Second embodiment</td></tr><tr><td> f[mm ] </td><td> 5.60 </td><td> f12/f3 </td><td> 2.839 </td></tr><tr><td> Fno </td><td> 2.9 </td><td> f/TL </td><td> 1.589 </td></tr><tr><td> FOV[deg.] </td><td> 10.67 </td>< Td> R1/R2 </td><td> -0.071 </td></tr><tr><td> f/f12 </td><td> 0.987 </td><td> R3/R4 < /td><td> 5.935 </td></tr><tr><td> f/f23 </td><td> 0.208 </td><td> R5/R6 </td><td> 1.440 </td></tr><tr><td> f1/f2 </td><td> -2.743 </td><td> CT1/CT2 </td><td> 3.248 </td></ Tr><tr><td> f2/f3 </td><td> -0.296 </td><td> CT2/CT3 </td><td> 0.361 </td></tr><tr>< Td> f1/f3 </td><td> 0.813 </td><td> CT1/CT3 </td><td> 1.174 </td></tr><tr><td> f1/f23 </ Td><td> 0.060 </td><td> </td><td> </td></tr></TBODY></TABLE>

<第三實施例><Third embodiment>

請參照圖3A及圖3B,其中圖3A繪示依照本發明第三實施例之三片式紅外單波長投影鏡片組的示意圖,圖3B由左至右依序為第三實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。由圖3A可知,三片式紅外單波長投影鏡片組係包含有一光圈300和一光學組,該光學組由成像側至像源側依序包含第一透鏡310、第二透鏡320、第三透鏡330、以及像源面380,其中該三片式紅外單波長投影鏡片組中具屈折力的透鏡為二片。該光圈300設置在該第一透鏡310的成像側表面311與像源側表面312之間。Please refer to FIG. 3A and FIG. 3B , wherein FIG. 3A is a schematic diagram of a three-chip infrared single-wavelength projection lens set according to a third embodiment of the present invention, and FIG. 3B is a three-piece third embodiment from left to right. Infrared single-wavelength projection lens group non-point difference, distortion curve. As can be seen from FIG. 3A, the three-chip infrared single-wavelength projection lens assembly includes an aperture 300 and an optical group. The optical group sequentially includes a first lens 310, a second lens 320, and a third lens from the imaging side to the image source side. 330, and an image source surface 380, wherein the lens having a refractive power in the three-piece infrared single-wavelength projection lens group is two. The aperture 300 is disposed between the imaging side surface 311 of the first lens 310 and the image source side surface 312.

該第一透鏡310具有正屈折力,且為塑膠材質,其成像側表面311近光軸390處為凸面,其像源側表面312近光軸390處為凸面,且該成像側表面311及像源側表面312皆為非球面。The first lens 310 has a positive refractive power and is made of a plastic material. The imaging side surface 311 is convex at the near optical axis 390, and the image side surface 312 is convex at the near optical axis 390, and the imaging side surface 311 and the image are The source side surfaces 312 are all aspherical.

該第二透鏡320具有負屈折力,且為塑膠材質,其成像側表面321近光軸390處為凹面,其像源側表面322近光軸390處為凹面,且該成像側表面321及像源側表面322皆為非球面。The second lens 320 has a negative refractive power and is made of a plastic material. The imaging side surface 321 is concave at the near optical axis 390, and the image side surface 322 is concave at the near optical axis 390, and the imaging side surface 321 and the image are The source side surfaces 322 are all aspherical.

該第三透鏡330具有正屈折力,且為塑膠材質,其成像側表面331近光軸390處為凹面,其像源側表面332近光軸390處為凸面,且該成像側表面331及像源側表面332皆為非球面。The third lens 330 has a positive refractive power and is made of a plastic material. The imaging side surface 331 is concave at the near optical axis 390, and the image side surface 332 is convex at the near optical axis 390, and the imaging side surface 331 and the image are The source side surfaces 332 are all aspherical.

再配合參照下列表5、以及表6。Refer to Table 5 and Table 6 below for reference.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表5</b></td></tr><tr><td> 第三實施例 </td></tr><tr><td><u>f(</u><u>焦距) = 5.00 mm(公厘), Fno(光圈值) = 2.8, FOV(畫角) = 11.53 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被投影物 </td><td> 無限 </td><td> 700 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.479 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> -0.479 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.960 </td><td> (ASP) </td><td> 0.793 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.558 </td></tr><tr><td> 4 </td><td> </td><td> -100.005 </td><td> (ASP) </td><td> 0.573 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.833 </td><td> (ASP) </td><td> 0.250 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> -0.570 </td></tr><tr><td> 6 </td><td> </td><td> 0.669 </td><td> (ASP) </td><td> 0.524 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -1.706 </td><td> (ASP) </td><td> 0.818 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.691 </td></tr><tr><td> 8 </td><td> </td><td> -0.762 </td><td> (ASP) </td><td> 0.545 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 像源面 </td><td> 無限 </td><td> - </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 5</b></td></tr><tr>< Td> Third embodiment </td></tr><tr><td><u>f(</u><u>focal length) = 5.00 mm (mm), Fno (aperture value) = 2.8, FOV (painting angle) = 11.53 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td ><td> Thickness</td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr> <td> 0 </td><td> Projection </td><td> Unlimited</td><td> 700 </td><td> </td><td> </td><td > </td><td> </td></tr><tr><td> 1 </td><td> </td><td> Unlimited</td><td> 0.479 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td ><td> Unlimited</td><td> -0.479 </td><td> </td><td> </td><td> </td><td> </td></tr> <tr><td> 3 </td><td> First lens</td><td> 0.960 </td><td> (ASP) </td><td> 0.793 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> 1.558 </td></tr><tr><td> 4 </td><td> </td ><td> -100.005 </td><td> (ASP) </td><td> 0.573 </td><td> </td><td> < /td><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td><td> -0.833 </td ><td> (ASP) </td><td> 0.250 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> -0.570 </ Td></tr><tr><td> 6 </td><td> </td><td> 0.669 </td><td> (ASP) </td><td> 0.524 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> Third lens< /td><td> -1.706 </td><td> (ASP) </td><td> 0.818 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> 1.691 </td></tr><tr><td> 8 </td><td> </td><td> -0.762 </td><td> (ASP) < /td><td> 0.545 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> Image source surface</td><td> Unlimited</td><td> - </td><td> </td><td> </td><td> </td ><td> </td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表 6</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 表面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> -2.6398E-01 </td><td> 5.0000E+02 </td><td> -2.8996E+01 </td></tr><tr><td> A: </td><td> 4.1118E-04 </td><td> 1.4575E-01 </td><td> -1.1315E+00 </td></tr><tr><td> B: </td><td> 8.5137E-02 </td><td> 2.9778E-01 </td><td> 6.7305E+00 </td></tr><tr><td> C: </td><td> 1.0540E-03 </td><td> -1.8603E+00 </td><td> -2.8827E+01 </td></tr><tr><td> D: </td><td> -3.1305E-01 </td><td> 4.0358E+00 </td><td> -2.6092E+02 </td></tr><tr><td> E: </td><td> 5.3893E-01 </td><td> -4.0708E+00 </td><td> 2.3782E+03 </td></tr><tr><td> F: </td><td> -2.5746E-01 </td><td> 1.6431E+00 </td><td> -2.1616E+03 </td></tr><tr><td> G </td><td> 1.5880E-02 </td><td> -1.7845E-01 </td><td> -1.6700E+04 </td></tr><tr><td> 表面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> 2.1367E+00 </td><td> -1.2598E+02 </td><td> -7.6695E-01 </td></tr><tr><td> A: </td><td> 4.8124E+00 </td><td> -3.5237E+00 </td><td> -6.7446E-01 </td></tr><tr><td> B: </td><td> -5.8232E+01 </td><td> 3.8053E+01 </td><td> 3.9725E+00 </td></tr><tr><td> C: </td><td> 8.3806E+02 </td><td> -2.8782E+02 </td><td> -2.1423E+01 </td></tr><tr><td> D: </td><td> -1.4158E+04 </td><td> 1.0334E+03 </td><td> 6.5252E+01 </td></tr><tr><td> E: </td><td> 1.5056E+05 </td><td> -1.1587E+03 </td><td> -1.2469E+02 </td></tr><tr><td> F: </td><td> -6.5218E+05 </td><td> -1.7926E+03 </td><td> 1.3327E+02 </td></tr><tr><td> G </td><td> 3.4570E+05 </td><td> 4.0438E+03 </td><td> -6.0733E+01 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 6</b></td></tr><tr>< Td> aspherical coefficient </td></tr><tr><td> surface </td><td> 3 </td><td> 4 </td><td> 5 </td></ Tr><tr><td> K: </td><td> -2.6398E-01 </td><td> 5.0000E+02 </td><td> -2.8996E+01 </td>< /tr><tr><td> A: </td><td> 4.1118E-04 </td><td> 1.4575E-01 </td><td> -1.1315E+00 </td>< /tr><tr><td> B: </td><td> 8.5137E-02 </td><td> 2.9778E-01 </td><td> 6.7305E+00 </td></ Tr><tr><td> C: </td><td> 1.0540E-03 </td><td> -1.8603E+00 </td><td> -2.8827E+01 </td>< /tr><tr><td> D: </td><td> -3.1305E-01 </td><td> 4.0358E+00 </td><td> -2.6092E+02 </td> </tr><tr><td> E: </td><td> 5.3893E-01 </td><td> -4.0708E+00 </td><td> 2.3782E+03 </td> </tr><tr><td> F: </td><td> -2.5746E-01 </td><td> 1.6431E+00 </td><td> -2.1616E+03 </td ></tr><tr><td> G </td><td> 1.5880E-02 </td><td> -1.7845E-01 </td><td> -1.6700E+04 </td ></tr><tr><td> Surface </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> 2.1367E+00 </td><td> -1.2598E+02 </td>< Td> -7.6695E-01 </td></tr><tr><td> A: </td><td> 4.8124E+00 </td><td> -3.5237E+00 </td> <td> -6.7446E-01 </td></tr><tr><td> B: </td><td> -5.8232E+01 </td><td> 3.8053E+01 </td ><td> 3.9725E+00 </td></tr><tr><td> C: </td><td> 8.3806E+02 </td><td> -2.8782E+02 </td ><td> -2.1423E+01 </td></tr><tr><td> D: </td><td> -1.4158E+04 </td><td> 1.0334E+03 </ Td><td> 6.5252E+01 </td></tr><tr><td> E: </td><td> 1.5056E+05 </td><td> -1.1587E+03 </ Td><td> -1.2469E+02 </td></tr><tr><td> F: </td><td> -6.5218E+05 </td><td> -1.7926E+03 </td><td> 1.3327E+02 </td></tr><tr><td> G </td><td> 3.4570E+05 </td><td> 4.0438E+03 </ Td><td> -6.0733E+01 </td></tr></TBODY></TABLE>

第三實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the third embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

配合表5、以及表6可推算出下列數據:With Table 5 and Table 6, the following data can be derived:

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第三實施例 </td></tr><tr><td> f[mm] </td><td> 5.00 </td><td> f12/f3 </td><td> 3.392 </td></tr><tr><td> Fno </td><td> 2.8 </td><td> f/TL </td><td> 1.427 </td></tr><tr><td> FOV[deg.] </td><td> 11.53 </td><td> R1/R2 </td><td> -0.010 </td></tr><tr><td> f/f12 </td><td> 0.871 </td><td> R3/R4 </td><td> -1.246 </td></tr><tr><td> f/f23 </td><td> 0.814 </td><td> R5/R6 </td><td> 2.240 </td></tr><tr><td> f1/f2 </td><td> -2.735 </td><td> CT1/CT2 </td><td> 3.177 </td></tr><tr><td> f2/f3 </td><td> -0.337 </td><td> CT2/CT3 </td><td> 0.305 </td></tr><tr><td> f1/f3 </td><td> 0.921 </td><td> CT1/CT3 </td><td> 0.970 </td></tr><tr><td> f1/f23 </td><td> 0.254 </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Third Embodiment</td></tr><tr><td> f[mm ] </td><td> 5.00 </td><td> f12/f3 </td><td> 3.392 </td></tr><tr><td> Fno </td><td> 2.8 </td><td> f/TL </td><td> 1.427 </td></tr><tr><td> FOV[deg.] </td><td> 11.53 </td>< Td> R1/R2 </td><td> -0.010 </td></tr><tr><td> f/f12 </td><td> 0.871 </td><td> R3/R4 < /td><td> -1.246 </td></tr><tr><td> f/f23 </td><td> 0.814 </td><td> R5/R6 </td><td> 2.240 </td></tr><tr><td> f1/f2 </td><td> -2.735 </td><td> CT1/CT2 </td><td> 3.177 </td>< /tr><tr><td> f2/f3 </td><td> -0.337 </td><td> CT2/CT3 </td><td> 0.305 </td></tr><tr> <td> f1/f3 </td><td> 0.921 </td><td> CT1/CT3 </td><td> 0.970 </td></tr><tr><td> f1/f23 < /td><td> 0.254 </td><td> </td><td> </td></tr></TBODY></TABLE>

<第四實施例><Fourth embodiment>

請參照圖4A及圖4B,其中圖4A繪示依照本發明第四實施例之三片式紅外單波長投影鏡片組的示意圖,圖4B由左至右依序為第四實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。由圖4A可知,三片式紅外單波長投影鏡片組係包含有一光圈400和一光學組,該光學組由成像側至像源側依序包含第一透鏡410、第二透鏡420、第三透鏡430、以及像源面480,其中該三片式紅外單波長投影鏡片組中具屈折力的透鏡為三片。該光圈400設置在該第一透鏡410的成像側表面411與像源側表面412之間。Please refer to FIG. 4A and FIG. 4B , wherein FIG. 4A is a schematic diagram of a three-chip infrared single-wavelength projection lens set according to a fourth embodiment of the present invention, and FIG. 4B is a three-piece form of the fourth embodiment from left to right. Infrared single-wavelength projection lens group non-point difference, distortion curve. As can be seen from FIG. 4A, the three-chip infrared single-wavelength projection lens assembly includes an aperture 400 and an optical group. The optical group sequentially includes a first lens 410, a second lens 420, and a third lens from the imaging side to the image source side. 430, and an image source surface 480, wherein the lens of the three-piece infrared single-wavelength projection lens group has a refractive power of three. The aperture 400 is disposed between the imaging side surface 411 of the first lens 410 and the image source side surface 412.

該第一透鏡410具有正屈折力,且為塑膠材質,其成像側表面411近光軸490處為凸面,其像源側表面412近光軸490處為凹面,且該成像側表面411及像源側表面412皆為非球面。The first lens 410 has a positive refractive power and is made of a plastic material. The imaging side surface 411 is convex at the near optical axis 490, and the image side surface 412 is concave at the near optical axis 490, and the imaging side surface 411 and the image are The source side surfaces 412 are all aspherical.

該第二透鏡420具有負屈折力,且為塑膠材質,其成像側表面421近光軸490處為凹面,其像源側表面422近光軸490處為凹面,且該成像側表面421及像源側表面422皆為非球面。The second lens 420 has a negative refractive power and is made of a plastic material. The imaging side surface 421 is concave at the near optical axis 490, and the image side surface 422 is concave at the near optical axis 490, and the imaging side surface 421 and the image are The source side surfaces 422 are all aspherical.

該第三透鏡430具有正屈折力,且為塑膠材質,其成像側表面431近光軸490處為凹面,其像源側表面432近光軸490處為凸面,且該成像側表面431及像源側表面432皆為非球面。The third lens 430 has a positive refractive power and is made of a plastic material. The imaging side surface 431 is concave at the near optical axis 490, and the image side surface 432 is convex at the near optical axis 490, and the imaging side surface 431 and the image are The source side surfaces 432 are all aspherical.

再配合參照下列表7、以及表8。Refer to Table 7 and Table 8 below for reference.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表7</b></td></tr><tr><td> 第四實施例 </td></tr><tr><td><u>f(</u><u>焦距) = 4.80 mm(公厘), Fno(光圈值) = 2.8, FOV(畫角) = 11.99 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被投影物 </td><td> 無限 </td><td> 700 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.479 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> -0.479 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.921 </td><td> (ASP) </td><td> 0.740 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.670 </td></tr><tr><td> 4 </td><td> </td><td> 6.376 </td><td> (ASP) </td><td> 0.610 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -0.990 </td><td> (ASP) </td><td> 0.250 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> -0.650 </td></tr><tr><td> 6 </td><td> </td><td> 0.730 </td><td> (ASP) </td><td> 0.606 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -2.318 </td><td> (ASP) </td><td> 0.754 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.653 </td></tr><tr><td> 8 </td><td> </td><td> -0.792 </td><td> (ASP) </td><td> 0.544 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 像源面 </td><td> 無限 </td><td> - </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 7</b></td></tr><tr>< Td> Fourth embodiment </td></tr><tr><td><u>f(</u><u>focal length) = 4.80 mm (mm), Fno (aperture value) = 2.8, FOV (drawn angle) = 11.99 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature</td ><td> Thickness</td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr> <td> 0 </td><td> Projection </td><td> Unlimited</td><td> 700 </td><td> </td><td> </td><td > </td><td> </td></tr><tr><td> 1 </td><td> </td><td> Unlimited</td><td> 0.479 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td ><td> Unlimited</td><td> -0.479 </td><td> </td><td> </td><td> </td><td> </td></tr> <tr><td> 3 </td><td> First lens</td><td> 0.921 </td><td> (ASP) </td><td> 0.740 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> 1.670 </td></tr><tr><td> 4 </td><td> </td ><td> 6.376 </td><td> (ASP) </td><td> 0.610 </td><td> </td><td> </td ><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td><td> -0.990 </td>< Td> (ASP) </td><td> 0.250 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> -0.650 </td> </tr><tr><td> 6 </td><td> </td><td> 0.730 </td><td> (ASP) </td><td> 0.606 </td><td > </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> third lens</td ><td> -2.318 </td><td> (ASP) </td><td> 0.754 </td><td> Plastic</td><td> 1.636 </td><td> 24 </ Td><td> 1.653 </td></tr><tr><td> 8 </td><td> </td><td> -0.792 </td><td> (ASP) </td ><td> 0.544 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </ Td><td> image source surface</td><td> infinity</td><td> - </td><td> </td><td> </td><td> </td>< Td> </td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表8</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 表面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> -2.8762E-01 </td><td> -1.4622E+02 </td><td> -2.8281E+01 </td></tr><tr><td> A: </td><td> 1.3589E-02 </td><td> 1.6193E-01 </td><td> -2.7394E+00 </td></tr><tr><td> B: </td><td> 1.2126E-01 </td><td> -1.9416E-01 </td><td> 3.8785E+01 </td></tr><tr><td> C: </td><td> -7.3627E-01 </td><td> 2.3439E-01 </td><td> -6.7499E+02 </td></tr><tr><td> D: </td><td> 2.8705E+00 </td><td> 3.5854E-01 </td><td> 8.2993E+03 </td></tr><tr><td> E: </td><td> -5.9017E+00 </td><td> -2.6531E+00 </td><td> -6.4278E+04 </td></tr><tr><td> F: </td><td> 6.3347E+00 </td><td> 4.3969E+00 </td><td> 2.7238E+05 </td></tr><tr><td> G </td><td> -2.7556E+00 </td><td> -2.7840E+00 </td><td> -4.7500E+05 </td></tr><tr><td> 表面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> 2.7667E+00 </td><td> -1.7085E+02 </td><td> -1.6623E+00 </td></tr><tr><td> A: </td><td> 1.1642E+00 </td><td> -1.5475E+00 </td><td> -5.5562E-01 </td></tr><tr><td> B: </td><td> -4.2362E+00 </td><td> 1.4958E+01 </td><td> 2.1309E+00 </td></tr><tr><td> C: </td><td> -2.6773E+02 </td><td> -1.4428E+02 </td><td> -1.2893E+01 </td></tr><tr><td> D: </td><td> 8.7323E+03 </td><td> 8.9714E+02 </td><td> 3.8135E+01 </td></tr><tr><td> E: </td><td> -1.3710E+05 </td><td> -3.4259E+03 </td><td> -6.0214E+01 </td></tr><tr><td> F: </td><td> 1.0155E+06 </td><td> 7.1886E+03 </td><td> 3.9800E+01 </td></tr><tr><td> G </td><td> -2.9300E+06 </td><td> -6.1517E+03 </td><td> -2.0552E+00 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 8</b></td></tr><tr>< Td> aspherical coefficient </td></tr><tr><td> surface </td><td> 3 </td><td> 4 </td><td> 5 </td></ Tr><tr><td> K: </td><td> -2.8762E-01 </td><td> -1.4622E+02 </td><td> -2.8281E+01 </td> </tr><tr><td> A: </td><td> 1.3589E-02 </td><td> 1.6193E-01 </td><td> -2.7394E+00 </td> </tr><tr><td> B: </td><td> 1.2126E-01 </td><td> -1.9416E-01 </td><td> 3.8785E+01 </td> </tr><tr><td> C: </td><td> -7.3627E-01 </td><td> 2.3439E-01 </td><td> -6.7499E+02 </td ></tr><tr><td> D: </td><td> 2.8705E+00 </td><td> 3.5854E-01 </td><td> 8.2993E+03 </td> </tr><tr><td> E: </td><td> -5.9017E+00 </td><td> -2.6531E+00 </td><td> -6.4278E+04 </ Td></tr><tr><td> F: </td><td> 6.3347E+00 </td><td> 4.3969E+00 </td><td> 2.7238E+05 </td ></tr><tr><td> G </td><td> -2.7556E+00 </td><td> -2.7840E+00 </td><td> -4.7500E+05 </ Td></tr><tr><td> surface </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td > K: </td><td> 2.7667E+00 </td><td> -1.7085E+02 </td>< Td> -1.6623E+00 </td></tr><tr><td> A: </td><td> 1.1642E+00 </td><td> -1.5475E+00 </td> <td> -5.5562E-01 </td></tr><tr><td> B: </td><td> -4.2362E+00 </td><td> 1.4958E+01 </td ><td> 2.1309E+00 </td></tr><tr><td> C: </td><td> -2.6773E+02 </td><td> -1.4428E+02 </ Td><td> -1.2893E+01 </td></tr><tr><td> D: </td><td> 8.7323E+03 </td><td> 8.9714E+02 </ Td><td> 3.8135E+01 </td></tr><tr><td> E: </td><td> -1.3710E+05 </td><td> -3.4259E+03 < /td><td> -6.0214E+01 </td></tr><tr><td> F: </td><td> 1.0155E+06 </td><td> 7.1886E+03 < /td><td> 3.9800E+01 </td></tr><tr><td> G </td><td> -2.9300E+06 </td><td> -6.1517E+03 < /td><td> -2.0552E+00 </td></tr></TBODY></TABLE>

第四實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the fourth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

配合表7、以及表8可推算出下列數據:The following data can be derived from Table 7 and Table 8:

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第四實施例 </td></tr><tr><td> f[mm] </td><td> 4.80 </td><td> f12/f3 </td><td> 3.566 </td></tr><tr><td> Fno </td><td> 2.8 </td><td> f/TL </td><td> 1.370 </td></tr><tr><td> FOV[deg.] </td><td> 11.99 </td><td> R1/R2 </td><td> 0.144 </td></tr><tr><td> f/f12 </td><td> 0.814 </td><td> R3/R4 </td><td> -1.356 </td></tr><tr><td> f/f23 </td><td> 1.176 </td><td> R5/R6 </td><td> 2.926 </td></tr><tr><td> f1/f2 </td><td> -2.570 </td><td> CT1/CT2 </td><td> 2.962 </td></tr><tr><td> f2/f3 </td><td> -0.393 </td><td> CT2/CT3 </td><td> 0.331 </td></tr><tr><td> f1/f3 </td><td> 1.010 </td><td> CT1/CT3 </td><td> 0.981 </td></tr><tr><td> f1/f23 </td><td> 0.409 </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fourth Embodiment</td></tr><tr><td> f[mm ] </td><td> 4.80 </td><td> f12/f3 </td><td> 3.566 </td></tr><tr><td> Fno </td><td> 2.8 </td><td> f/TL </td><td> 1.370 </td></tr><tr><td> FOV[deg.] </td><td> 11.99 </td>< Td> R1/R2 </td><td> 0.144 </td></tr><tr><td> f/f12 </td><td> 0.814 </td><td> R3/R4 </ Td><td> -1.356 </td></tr><tr><td> f/f23 </td><td> 1.176 </td><td> R5/R6 </td><td> 2.926 </td></tr><tr><td> f1/f2 </td><td> -2.570 </td><td> CT1/CT2 </td><td> 2.962 </td></ Tr><tr><td> f2/f3 </td><td> -0.393 </td><td> CT2/CT3 </td><td> 0.331 </td></tr><tr>< Td> f1/f3 </td><td> 1.010 </td><td> CT1/CT3 </td><td> 0.981 </td></tr><tr><td> f1/f23 </ Td><td> 0.409 </td><td> </td><td> </td></tr></TBODY></TABLE>

<第五實施例><Fifth Embodiment>

請參照圖5A及圖5B,其中圖5A繪示依照本發明第五實施例之三片式紅外單波長投影鏡片組的示意圖,圖5B由左至右依序為第五實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。由圖5A可知,三片式紅外單波長投影鏡片組係包含有一光圈500和一光學組,該光學組由成像側至像源側依序包含第一透鏡510、第二透鏡520、第三透鏡530、以及像源面580,其中該三片式紅外單波長投影鏡片組中具屈折力的透鏡為三片。該光圈500設置在該第一透鏡510的成像側表面511與像源側表面512之間。5A and 5B, wherein FIG. 5A is a schematic diagram of a three-chip infrared single-wavelength projection lens group according to a fifth embodiment of the present invention, and FIG. 5B is a three-piece fifth embodiment from left to right. Infrared single-wavelength projection lens group non-point difference, distortion curve. As can be seen from FIG. 5A, the three-chip infrared single-wavelength projection lens assembly includes an aperture 500 and an optical group. The optical group sequentially includes a first lens 510, a second lens 520, and a third lens from the imaging side to the image source side. 530, and an image source surface 580, wherein the lens of the three-piece infrared single-wavelength projection lens group has a refractive power of three. The aperture 500 is disposed between the imaging side surface 511 of the first lens 510 and the image source side surface 512.

該第一透鏡510具有正屈折力,且為塑膠材質,其成像側表面511近光軸590處為凸面,其像源側表面512近光軸590處為凹面,且該成像側表面511及像源側表面512皆為非球面。The first lens 510 has a positive refractive power and is made of a plastic material. The imaging side surface 511 is convex at the near optical axis 590, and the source side surface 512 is concave at the near optical axis 590, and the imaging side surface 511 and the image are The source side surfaces 512 are all aspherical.

該第二透鏡520具有負屈折力,且為塑膠材質,其成像側表面521近光軸590處為凹面,其像源側表面522近光軸590處為凹面,且該成像側表面521及像源側表面522皆為非球面。The second lens 520 has a negative refractive power and is made of a plastic material. The imaging side surface 521 is concave at the near optical axis 590, and the image side surface 522 is concave at the near optical axis 590, and the imaging side surface 521 and the image are The source side surfaces 522 are all aspherical.

該第三透鏡530具有正屈折力,且為塑膠材質,其成像側表面531近光軸590處為凹面,其像源側表面532近光軸590處為凸面,且該成像側表面531及像源側表面532皆為非球面。The third lens 530 has a positive refractive power and is made of a plastic material, and the imaging side surface 531 is concave at the near optical axis 590, and the image side surface 532 is convex at the near optical axis 590, and the imaging side surface 531 and the image are The source side surfaces 532 are all aspherical.

再配合參照下列表9、以及表10。Refer to Table 9 and Table 10 below.

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表9</b></td></tr><tr><td> 第五實施例 </td></tr><tr><td><u>f(</u><u>焦距) = 4.99 mm(公厘), Fno(光圈值) = 2.9, FOV(畫角) = 11.55 deg.(度)</u></td></tr><tr><td> 表面 </td><td> </td><td> 曲率半徑 </td><td> 厚度 </td><td> 材質 </td><td> 折射率 </td><td> 色散係數 </td><td> 焦距 </td></tr><tr><td> 0 </td><td> 被投影物 </td><td> 無限 </td><td> 700 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 1 </td><td> </td><td> 無限 </td><td> 0.475 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> 光圈 </td><td> 無限 </td><td> -0.475 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 3 </td><td> 第一透鏡 </td><td> 0.950 </td><td> (ASP) </td><td> 0.729 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.738 </td></tr><tr><td> 4 </td><td> </td><td> 6.244 </td><td> (ASP) </td><td> 0.688 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 5 </td><td> 第二透鏡 </td><td> -1.054 </td><td> (ASP) </td><td> 0.250 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> -0.635 </td></tr><tr><td> 6 </td><td> </td><td> 0.671 </td><td> (ASP) </td><td> 0.592 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> 第三透鏡 </td><td> -1.931 </td><td> (ASP) </td><td> 0.708 </td><td> 塑膠 </td><td> 1.636 </td><td> 24 </td><td> 1.620 </td></tr><tr><td> 8 </td><td> </td><td> -0.747 </td><td> (ASP) </td><td> 0.542 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </td><td> 像源面 </td><td> 無限 </td><td> - </td><td> </td><td> </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 9</b></td></tr><tr>< Td> Fifth embodiment </td></tr><tr><td><u>f(uu><u>focal length) = 4.99 mm (mm), Fno (aperture value) = 2.9, FOV (painting angle) = 11.55 deg. (degrees)</u></td></tr><tr><td> surface </td><td> </td><td> radius of curvature </td ><td> Thickness</td><td> Material </td><td> Refractive Index </td><td> Dispersion Coefficient </td><td> Focal Length </td></tr><tr> <td> 0 </td><td> Projection </td><td> Unlimited</td><td> 700 </td><td> </td><td> </td><td > </td><td> </td></tr><tr><td> 1 </td><td> </td><td> Unlimited</td><td> 0.475 </td> <td> </td><td> </td><td> </td><td> </td></tr><tr><td> 2 </td><td> aperture</td ><td> Unlimited</td><td> -0.475 </td><td> </td><td> </td><td> </td><td> </td></tr> <tr><td> 3 </td><td> First lens</td><td> 0.950 </td><td> (ASP) </td><td> 0.729 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> 1.738 </td></tr><tr><td> 4 </td><td> </td ><td> 6.244 </td><td> (ASP) </td><td> 0.688 </td><td> </td><td> </td ><td> </td><td> </td></tr><tr><td> 5 </td><td> second lens</td><td> -1.054 </td>< Td> (ASP) </td><td> 0.250 </td><td> Plastic</td><td> 1.636 </td><td> 24 </td><td> -0.635 </td> </tr><tr><td> 6 </td><td> </td><td> 0.671 </td><td> (ASP) </td><td> 0.592 </td><td > </td><td> </td><td> </td><td> </td></tr><tr><td> 7 </td><td> third lens</td ><td> -1.931 </td><td> (ASP) </td><td> 0.708 </td><td> Plastic</td><td> 1.636 </td><td> 24 </ Td><td> 1.620 </td></tr><tr><td> 8 </td><td> </td><td> -0.747 </td><td> (ASP) </td ><td> 0.542 </td><td> </td><td> </td><td> </td><td> </td></tr><tr><td> 9 </ Td><td> image source surface</td><td> infinity</td><td> - </td><td> </td><td> </td><td> </td>< Td> </td></tr></TBODY></TABLE>

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>表10</b></td></tr><tr><td> 非球面係數 </td></tr><tr><td> 表面 </td><td> 3 </td><td> 4 </td><td> 5 </td></tr><tr><td> K: </td><td> -2.7420E-01 </td><td> -1.6911E+02 </td><td> -3.4863E+01 </td></tr><tr><td> A: </td><td> 1.3875E-02 </td><td> 1.3776E-01 </td><td> -2.7815E+00 </td></tr><tr><td> B: </td><td> 5.2786E-02 </td><td> -2.0290E-01 </td><td> 3.8359E+01 </td></tr><tr><td> C: </td><td> -6.5696E-01 </td><td> 2.7933E-01 </td><td> -6.6769E+02 </td></tr><tr><td> D: </td><td> 2.9206E+00 </td><td> 4.3081E-01 </td><td> 8.2840E+03 </td></tr><tr><td> E: </td><td> -6.0432E+00 </td><td> -2.8168E+00 </td><td> -6.4380E+04 </td></tr><tr><td> F: </td><td> 6.1794E+00 </td><td> 4.1303E+00 </td><td> 2.7203E+05 </td></tr><tr><td> G </td><td> -2.5428E+00 </td><td> -2.1983E+00 </td><td> -4.7200E+05 </td></tr><tr><td> 表面 </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td> K: </td><td> 1.3533E+00 </td><td> -1.0420E+02 </td><td> -1.6517E+00 </td></tr><tr><td> A: </td><td> 2.1378E+00 </td><td> -1.6499E+00 </td><td> -6.0543E-01 </td></tr><tr><td> B: </td><td> -1.3383E+01 </td><td> 1.4976E+01 </td><td> 1.9897E+00 </td></tr><tr><td> C: </td><td> -1.5477E+02 </td><td> -1.4123E+02 </td><td> -1.2642E+01 </td></tr><tr><td> D: </td><td> 9.0302E+03 </td><td> 8.9439E+02 </td><td> 3.8353E+01 </td></tr><tr><td> E: </td><td> -1.4189E+05 </td><td> -3.4580E+03 </td><td> -6.1002E+01 </td></tr><tr><td> F: </td><td> 9.9128E+05 </td><td> 7.1314E+03 </td><td> 3.7651E+01 </td></tr><tr><td> G </td><td> -2.6000E+06 </td><td> -5.8773E+03 </td><td> -7.5000E-01 </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td><b>Table 10</b></td></tr><tr>< Td> aspherical coefficient </td></tr><tr><td> surface </td><td> 3 </td><td> 4 </td><td> 5 </td></ Tr><tr><td> K: </td><td> -2.7420E-01 </td><td> -1.6911E+02 </td><td> -3.4863E+01 </td> </tr><tr><td> A: </td><td> 1.3875E-02 </td><td> 1.3776E-01 </td><td> -2.7815E+00 </td> </tr><tr><td> B: </td><td> 5.2786E-02 </td><td> -2.0290E-01 </td><td> 3.8359E+01 </td> </tr><tr><td> C: </td><td> -6.5696E-01 </td><td> 2.7933E-01 </td><td> -6.6769E+02 </td ></tr><tr><td> D: </td><td> 2.9206E+00 </td><td> 4.3081E-01 </td><td> 8.2840E+03 </td> </tr><tr><td> E: </td><td> -6.0432E+00 </td><td> -2.8168E+00 </td><td> -6.4380E+04 </ Td></tr><tr><td> F: </td><td> 6.1794E+00 </td><td> 4.1303E+00 </td><td> 2.7203E+05 </td ></tr><tr><td> G </td><td> -2.5428E+00 </td><td> -2.1983E+00 </td><td> -4.7200E+05 </ Td></tr><tr><td> surface </td><td> 6 </td><td> 7 </td><td> 8 </td></tr><tr><td > K: </td><td> 1.3533E+00 </td><td> -1.0420E+02 </td> <td> -1.6517E+00 </td></tr><tr><td> A: </td><td> 2.1378E+00 </td><td> -1.6499E+00 </td ><td> -6.0543E-01 </td></tr><tr><td> B: </td><td> -1.3383E+01 </td><td> 1.4976E+01 </ Td><td> 1.9897E+00 </td></tr><tr><td> C: </td><td> -1.5477E+02 </td><td> -1.4123E+02 < /td><td> -1.2642E+01 </td></tr><tr><td> D: </td><td> 9.0302E+03 </td><td> 8.9439E+02 < /td><td> 3.8353E+01 </td></tr><tr><td> E: </td><td> -1.4189E+05 </td><td> -3.4580E+03 </td><td> -6.1002E+01 </td></tr><tr><td> F: </td><td> 9.9128E+05 </td><td> 7.1314E+03 </td><td> 3.7651E+01 </td></tr><tr><td> G </td><td> -2.6000E+06 </td><td> -5.8773E+03 </td><td> -7.5000E-01 </td></tr></TBODY></TABLE>

第五實施例中,非球面的曲線方程式表示如第一實施例的形式。此外,下表參數的定義皆與第一實施例相同,在此不加以贅述。In the fifth embodiment, the aspherical curve equation represents the form as in the first embodiment. In addition, the definitions of the parameters in the following table are the same as those in the first embodiment, and are not described herein.

配合表9、以及表10可推算出下列數據:The following data can be derived from Table 9 and Table 10:

<TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> 第五實施例 </td></tr><tr><td> f[mm] </td><td> 4.99 </td><td> f12/f3 </td><td> 3.745 </td></tr><tr><td> Fno </td><td> 2.9 </td><td> f/TL </td><td> 1.423 </td></tr><tr><td> FOV[deg.] </td><td> 11.55 </td><td> R1/R2 </td><td> 0.152 </td></tr><tr><td> f/f12 </td><td> 0.823 </td><td> R3/R4 </td><td> -1.571 </td></tr><tr><td> f/f23 </td><td> 1.197 </td><td> R5/R6 </td><td> 2.586 </td></tr><tr><td> f1/f2 </td><td> -2.739 </td><td> CT1/CT2 </td><td> 2.915 </td></tr><tr><td> f2/f3 </td><td> -0.392 </td><td> CT2/CT3 </td><td> 0.353 </td></tr><tr><td> f1/f3 </td><td> 1.073 </td><td> CT1/CT3 </td><td> 1.030 </td></tr><tr><td> f1/f23 </td><td> 0.417 </td><td> </td><td> </td></tr></TBODY></TABLE><TABLE border="1" borderColor="#000000" width="85%"><TBODY><tr><td> Fifth Embodiment</td></tr><tr><td> f[mm ] </td><td> 4.99 </td><td> f12/f3 </td><td> 3.745 </td></tr><tr><td> Fno </td><td> 2.9 </td><td> f/TL </td><td> 1.423 </td></tr><tr><td> FOV[deg.] </td><td> 11.55 </td>< Td> R1/R2 </td><td> 0.152 </td></tr><tr><td> f/f12 </td><td> 0.823 </td><td> R3/R4 </ Td><td> -1.571 </td></tr><tr><td> f/f23 </td><td> 1.197 </td><td> R5/R6 </td><td> 2.586 </td></tr><tr><td> f1/f2 </td><td> -2.739 </td><td> CT1/CT2 </td><td> 2.915 </td></ Tr><tr><td> f2/f3 </td><td> -0.392 </td><td> CT2/CT3 </td><td> 0.353 </td></tr><tr>< Td> f1/f3 </td><td> 1.073 </td><td> CT1/CT3 </td><td> 1.030 </td></tr><tr><td> f1/f23 </ Td><td> 0.417 </td><td> </td><td> </td></tr></TBODY></TABLE>

本發明提供的三片式紅外單波長投影鏡片組,透鏡的材質可為塑膠或玻璃,當透鏡材質為塑膠,可以有效降低生產成本,另當透鏡的材質為玻璃,則可以增加三片式紅外單波長投影鏡片組屈折力配置的自由度。此外,三片式紅外單波長投影鏡片組中透鏡的成像側表面及像源側表面可為非球面,非球面可以容易製作成球面以外的形狀,獲得較多的控制變數,用以消減像差,進而縮減透鏡使用的數目,因此可以有效降低本發明三片式紅外單波長投影鏡片組的總長度。The three-piece infrared single-wavelength projection lens set provided by the invention can be made of plastic or glass. When the lens material is plastic, the production cost can be effectively reduced. When the lens material is glass, three-piece infrared can be added. The degree of freedom in the configuration of the refractive power of a single-wavelength projection lens set. In addition, the imaging side surface and the image source side surface of the lens in the three-piece infrared single-wavelength projection lens group may be aspherical, and the aspheric surface can be easily formed into a shape other than a spherical surface, and more control variables are obtained to reduce the aberration. In turn, the number of lenses used is reduced, so that the total length of the three-piece infrared single-wavelength projection lens set of the present invention can be effectively reduced.

本發明提供的三片式紅外單波長投影鏡片組中,就以具有屈折力的透鏡而言,若透鏡表面係為凸面且未界定該凸面位置時,則表示該透鏡表面於近光軸處為凸面;若透鏡表面係為凹面且未界定該凹面位置時,則表示該透鏡表面於近光軸處為凹面。In the three-piece infrared single-wavelength projection lens set provided by the present invention, in the case of a lens having a refractive power, if the lens surface is convex and the convex position is not defined, it indicates that the lens surface is at the low beam axis. If the surface of the lens is concave and the position of the concave surface is not defined, it indicates that the surface of the lens is concave at the low beam axis.

綜上所述,上述各實施例及圖式僅為本發明的較佳實施例而已,當不能以之限定本發明實施之範圍,即大凡依本發明申請專利範圍所作的均等變化與修飾,皆應屬本發明專利涵蓋的範圍內。In the above, the above embodiments and drawings are only the preferred embodiments of the present invention, and the scope of the present invention is not limited thereto, that is, the equivalent changes and modifications made by the scope of the present invention are all It should be within the scope of the patent of the present invention.

100、200、300、400、500‧‧‧光圈100, 200, 300, 400, 500‧ ‧ aperture

110、210、310、410、510‧‧‧第一透鏡110, 210, 310, 410, 510‧‧‧ first lens

111、211、311、411、511‧‧‧成像側表面111, 211, 311, 411, 511 ‧ ‧ imaging side surface

112、212、312、412、512‧‧‧像源側表面112, 212, 312, 412, 512‧‧‧ source side surface

120、220、320、420、520‧‧‧第二透鏡120, 220, 320, 420, 520‧‧‧ second lens

121、221、321、421、521‧‧‧成像側表面121, 221, 321, 421, 521 ‧ ‧ imaging side surface

122、222、322、422、522‧‧‧像源側表面122, 222, 322, 422, 522‧‧‧ source side surface

130、230、330、430、530‧‧‧第三透鏡130, 230, 330, 430, 530‧‧‧ third lens

131、231、331、431、531‧‧‧成像側表面131, 231, 331, 431, 531‧‧ ‧ imaging side surface

132、232、332、432、532‧‧‧像源側表面132, 232, 332, 432, 532‧‧‧ source side surface

180、280、380、480、580‧‧‧像源面180, 280, 380, 480, 580‧‧‧ source side

190、290、390、490、590‧‧‧光軸190, 290, 390, 490, 590‧‧ ‧ optical axis

f‧‧‧三片式紅外單波長投影鏡片組的焦距f‧‧‧Focus of three-piece infrared single-wavelength projection lens set

Fno‧‧‧三片式紅外單波長投影鏡片組的光圈值Aperture value of Fno‧‧‧ three-chip infrared single-wavelength projection lens set

FOV‧‧‧三片式紅外單波長投影鏡片組中最大視場角Maximum field of view in a FOV‧‧‧ three-chip infrared single-wavelength projection lens set

f1‧‧‧第一透鏡的焦距F1‧‧‧The focal length of the first lens

f2‧‧‧第二透鏡的焦距F2‧‧‧The focal length of the second lens

f3‧‧‧第三透鏡的焦距f3‧‧‧The focal length of the third lens

f12‧‧‧第一透鏡與第二透鏡的合成焦距F12‧‧‧Combined focal length of the first lens and the second lens

f23‧‧‧第二透鏡與第三透鏡的合成焦距F23‧‧‧Combined focal length of the second lens and the third lens

R1‧‧‧第一透鏡的成像側表面曲率半徑Radius of curvature of the image side surface of the first lens of R1‧‧‧

R2‧‧‧第一透鏡的像源側表面曲率半徑R2‧‧‧ Image source side surface radius of curvature of the first lens

R3‧‧‧第二透鏡的成像側表面曲率半徑The radius of curvature of the image side surface of the R3‧‧‧ second lens

R4‧‧‧第二透鏡的像源側表面曲率半徑R4‧‧‧ Image source side surface radius of curvature of the second lens

R5‧‧‧第三透鏡的成像側表面曲率半徑R5‧‧‧ imaging lens surface curvature radius of the third lens

R6‧‧‧第三透鏡的像源側表面曲率半徑R6‧‧‧ Image source side surface radius of curvature of the third lens

CT1‧‧‧第一透鏡於光軸上的厚度CT1‧‧‧ thickness of the first lens on the optical axis

CT2‧‧‧第二透鏡於光軸上的厚度CT2‧‧‧ thickness of the second lens on the optical axis

CT3‧‧‧第三透鏡於光軸上的厚度CT3‧‧‧ thickness of the third lens on the optical axis

TL‧‧‧第一透鏡的成像側表面至像源面於光軸上的距離TL‧‧‧Distance of the imaging side surface of the first lens to the image source surface on the optical axis

圖1A係本發明第一實施例之三片式紅外單波長投影鏡片組的示意圖。 1A is a schematic view of a three-piece infrared single-wavelength projection lens set according to a first embodiment of the present invention.

圖1B由左至右依序為第一實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。 FIG. 1B is a non-dot-collecting and distortion-receiving graph of the three-piece infrared single-wavelength projection lens group of the first embodiment, from left to right.

圖2A係本發明第二實施例之三片式紅外單波長投影鏡片組的示意圖。 2A is a schematic view of a three-piece infrared single-wavelength projection lens set according to a second embodiment of the present invention.

圖2B由左至右依序為第二實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。 2B is a non-dot-collecting and distortion-receiving graph of the three-piece infrared single-wavelength projection lens group of the second embodiment, from left to right.

圖3A係本發明第三實施例之三片式紅外單波長投影鏡片組的示意圖。 3A is a schematic view of a three-piece infrared single-wavelength projection lens set according to a third embodiment of the present invention.

圖3B由左至右依序為第三實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。 FIG. 3B is a non-dot-collecting and distortion-receiving graph of the three-piece infrared single-wavelength projection lens group of the third embodiment, from left to right.

圖4A係本發明第四實施例之三片式紅外單波長投影鏡片組的示意圖。 4A is a schematic diagram of a three-piece infrared single-wavelength projection lens set according to a fourth embodiment of the present invention.

圖4B由左至右依序為第四實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。 4B is a non-dot-collecting and distortion-receiving graph of the three-piece infrared single-wavelength projection lens group of the fourth embodiment, from left to right.

圖5A係本發明第五實施例之三片式紅外單波長投影鏡片組的示意圖。 Figure 5A is a schematic illustration of a three-piece infrared single wavelength projection lens assembly in accordance with a fifth embodiment of the present invention.

圖5B由左至右依序為第四實施例的三片式紅外單波長投影鏡片組的非點收差、歪曲收差曲線圖。FIG. 5B is a non-dot-collecting and distortion-receiving graph of the three-piece infrared single-wavelength projection lens group of the fourth embodiment, from left to right.

Claims (15)

一種三片式紅外單波長投影鏡片組,由成像側至像源側依序包含:一第一透鏡,具有正屈折力,其成像側表面近光軸處為凸面,其成像側表面與像源側表面至少一表面為非球面;一第二透鏡,具有負屈折力,其像源側表面近光軸處為凹面,其成像側表面與像源側表面至少一表面為非球面;一第三透鏡,具有正屈折力,其成像側表面近光軸處為凹面,其像源側表面近光軸處為凸面,其成像側表面與像源側表面至少一表面為非球面;一光圈,設置在該第一透鏡的像源側表面之前或該第一透鏡的成像側表面與第二透鏡的像源側表面之間;其中該第一透鏡的成像側表面曲率半徑為R1,該第一透鏡的像源側表面曲率半徑為R2,並滿足下列條件:-3.38<R1/R2<0.45。 A three-piece infrared single-wavelength projection lens set comprises, in order from the imaging side to the image source side, a first lens having a positive refractive power, a convex side of the imaging side surface near the optical axis, and an imaging side surface and an image source thereof At least one surface of the side surface is aspherical; a second lens has a negative refractive power, and the image side surface is concave at a near optical axis, and at least one surface of the image side surface and the image source side surface is aspherical; The lens has a positive refractive power, and the imaging side surface is concave at the near optical axis, and the image side surface is convex at the near optical axis, and at least one surface of the imaging side surface and the image source side surface is aspherical; an aperture is set Between the image source side surface of the first lens or the image side surface of the first lens and the image source side surface of the second lens; wherein the first lens has an imaging side surface having a radius of curvature R1, the first lens The source side surface has a radius of curvature of R2 and satisfies the following condition: -3.38 < R1/R2 < 0.45. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡與第二透鏡的合成焦距為f12,並滿足下列條件:0.6<f/f12<1.6。 The three-chip infrared single-wavelength projection lens set according to claim 1, wherein the overall focal length of the three-piece infrared single-wavelength projection lens group is f, and the combined focal length of the first lens and the second lens is f12, and satisfies The following conditions are: 0.6 < f / f 12 < 1.6. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.1<f/f23<1.3。 The three-chip infrared single-wavelength projection lens set according to claim 1, wherein the overall focal length of the three-piece infrared single-wavelength projection lens group is f, and the combined focal length of the second lens and the third lens is f23, and satisfies The following conditions are: 0.1 < f / f 23 < 1.3. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡的焦距為f1,該第二透鏡的焦距為f2,並滿足下列條件:-3.0<f1/f2<-1.7。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the first lens has a focal length of f1, the second lens has a focal length of f2, and satisfies the following condition: -3.0<f1/f2<-1.7 . 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第二透鏡的焦距為f2,該第三透鏡的焦距為f3,並滿足下列條件:-0.55<f2/f3<-0.15。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the focal length of the second lens is f2, the focal length of the third lens is f3, and the following condition is satisfied: -0.55<f2/f3<-0.15 . 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡的焦距為f1,該第三透鏡的焦距為f3,並滿足下列條件:0.5<f1/f3<1.3。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the focal length of the first lens is f1, the focal length of the third lens is f3, and the following condition is satisfied: 0.5 < f1/f3 < 1.3. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡的焦距為f1,該第二透鏡與第三透鏡的合成焦距為f23,並滿足下列條件:0.02<f1/f23<0.46。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the focal length of the first lens is f1, the combined focal length of the second lens and the third lens is f23, and the following condition is satisfied: 0.02<f1/ F23<0.46. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡與第二透鏡的合成焦距為f12,該第三透鏡的焦距為f3,並滿足下列條件:1.34<f12/f3<4.05。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the first lens and the second lens have a combined focal length of f12, the third lens has a focal length of f3, and satisfies the following condition: 1.34<f12/ F3<4.05. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第二透鏡的成像側表面曲率半徑為R3,該第二透鏡的像源側表面曲率半徑為R4,並滿足下列條件:-1.87<R3/R4<6.23。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the imaging lens has a radius of curvature R3 of the second lens, and the image source side surface of the second lens has a radius of curvature of R4, and satisfies the following conditions: -1.87<R3/R4<6.23. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第三透鏡的成像側表面曲率半徑為R5,該第三透鏡的像源側表面曲率半徑為R6,並滿足下列條件:0.5<R5/R6<3.2。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein an imaging side surface of the third lens has a radius of curvature R5, and an image source side surface of the third lens has a radius of curvature of R6, and satisfies the following conditions: 0.5 < R5 / R6 < 3.2. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡於光軸上的厚度為CT1,該第二透鏡於光軸上的厚度為CT2,並滿足下列條件:0.8<CT1/CT2<3.5。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the thickness of the first lens on the optical axis is CT1, the thickness of the second lens on the optical axis is CT2, and the following condition is satisfied: 0.8 <CT1/CT2<3.5. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第二透鏡於光軸上的厚度為CT2,該第三透鏡於光軸上的厚度為CT3,並滿足下列條件:0.1<CT2/CT3<1.6。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the thickness of the second lens on the optical axis is CT2, the thickness of the third lens on the optical axis is CT3, and the following condition is satisfied: 0.1 <CT2/CT3<1.6. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡於光軸上的厚度為CT1,該第三透鏡於光軸上的厚度為CT3,並滿足下列條件:0.1<CT1/CT3<1.1。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the thickness of the first lens on the optical axis is CT1, the thickness of the third lens on the optical axis is CT3, and the following condition is satisfied: 0.1 <CT1/CT3<1.1. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該三片式紅外單波長投影鏡片組的整體焦距為f,該第一透鏡的成像側表面至像源面於光軸上的距離為TL,並滿足下列條件:1.0<f/TL<2.0。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the three-piece infrared single-wavelength projection lens group has an overall focal length of f, and the imaging side surface of the first lens is on the optical axis of the image source surface. The distance is TL and the following conditions are met: 1.0 < f / TL < 2.0. 如請求項1所述的三片式紅外單波長投影鏡片組,其中該第一透鏡的折射率為n1,該第二透鏡的折射率為n2,該第三透鏡的折射率為n3,並滿足下列條件:n1、n2、n3>1.6。 The three-piece infrared single-wavelength projection lens set according to claim 1, wherein the first lens has a refractive index of n1, the second lens has a refractive index of n2, and the third lens has a refractive index of n3 and satisfies The following conditions: n1, n2, n3>1.6.
TW106136444A 2017-10-24 2017-10-24 Three-piece infrared single wavelength projection lens system TWI631367B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW106136444A TWI631367B (en) 2017-10-24 2017-10-24 Three-piece infrared single wavelength projection lens system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW106136444A TWI631367B (en) 2017-10-24 2017-10-24 Three-piece infrared single wavelength projection lens system

Publications (2)

Publication Number Publication Date
TWI631367B true TWI631367B (en) 2018-08-01
TW201917441A TW201917441A (en) 2019-05-01

Family

ID=63959577

Family Applications (1)

Application Number Title Priority Date Filing Date
TW106136444A TWI631367B (en) 2017-10-24 2017-10-24 Three-piece infrared single wavelength projection lens system

Country Status (1)

Country Link
TW (1) TWI631367B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110568595A (en) * 2019-10-16 2019-12-13 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor
TWI680322B (en) * 2018-11-27 2019-12-21 大立光電股份有限公司 Lens system, projection apparatus, detecting module and electronic device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445793C (en) * 2004-10-15 2008-12-24 亚洲光学股份有限公司 Camera lenses
CN201273960Y (en) * 2007-12-18 2009-07-15 富士能株式会社 Image taking lens and image taking apparatus
TWI354821B (en) * 2007-12-18 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100445793C (en) * 2004-10-15 2008-12-24 亚洲光学股份有限公司 Camera lenses
CN201273960Y (en) * 2007-12-18 2009-07-15 富士能株式会社 Image taking lens and image taking apparatus
TWI354821B (en) * 2007-12-18 2011-12-21 Largan Precision Co Ltd Optical lens system for taking image

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI680322B (en) * 2018-11-27 2019-12-21 大立光電股份有限公司 Lens system, projection apparatus, detecting module and electronic device
US11360290B2 (en) 2018-11-27 2022-06-14 Largan Precision Co., Ltd. Lens system, projection apparatus, detecting module and electronic device
CN110568595A (en) * 2019-10-16 2019-12-13 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor
CN110568595B (en) * 2019-10-16 2024-04-05 协益电子(苏州)有限公司 Small-distortion infrared optical lens and auxiliary driving monitor

Also Published As

Publication number Publication date
TW201917441A (en) 2019-05-01

Similar Documents

Publication Publication Date Title
TWI647505B (en) Four-piece infrared single wavelength lens system
CN109782421B (en) Three-piece infrared single-wavelength projection lens set
TWI665484B (en) Four-piece infrared single wavelength lens system
TWI631367B (en) Three-piece infrared single wavelength projection lens system
TWI574041B (en) Four-piece infrared single wavelength lens assembly
TWI588532B (en) Four-piece infrared single wavelength lens assembly
TWI672539B (en) Three-piece infrared single wavelength projection lens system
TWI687732B (en) Three-piece infrared single wavelength projection lens system
CN111273430B (en) Three-piece infrared wavelength projection lens set
TWI634361B (en) Four-piece infrared single wavelength lens system
TWI662294B (en) Four-piece infrared single wavelength lens system
TWI609196B (en) Four-piece infrared single wavelength lens system
TW201917442A (en) Three-piece infrared single wavelength projection lens system
TW202141112A (en) Five-piece infrared single focus lens system
TWI630434B (en) Two-piece infrared single wavelength projection lens system
TWI627462B (en) Two-piece infrared single wavelength projection lens system
TWI742822B (en) Four-piece infrared projection lens system
TWI709782B (en) Four-piece infrared single wavelength lens system
TWI710816B (en) Five-piece infrared single focus lens system
CN109782422B (en) Three-piece infrared single-wavelength projection lens set
TWI732667B (en) Five-piece infrared single wavelength lens system
CN111273423B (en) Three-piece infrared wavelength lens group
CN111273431B (en) Three-piece infrared wavelength projection lens set
TWI674435B (en) Three-piece infrared single wavelength lens system
CN109116510B (en) Two-piece infrared single-wavelength projection lens set