TWI589868B - Method for making test strip and method for detecting phosphoric acid concentration - Google Patents
Method for making test strip and method for detecting phosphoric acid concentration Download PDFInfo
- Publication number
- TWI589868B TWI589868B TW105125149A TW105125149A TWI589868B TW I589868 B TWI589868 B TW I589868B TW 105125149 A TW105125149 A TW 105125149A TW 105125149 A TW105125149 A TW 105125149A TW I589868 B TWI589868 B TW I589868B
- Authority
- TW
- Taiwan
- Prior art keywords
- phosphoric acid
- substrate
- layer
- forming
- away
- Prior art date
Links
Landscapes
- Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Description
本發明為有關一種檢測方法,尤指一種檢測試片的製作方法及其檢測磷酸濃度的方法。The invention relates to a detection method, in particular to a method for preparing a test piece and a method for detecting the concentration of phosphoric acid.
為了製造出均勻且一致的奈米孔洞,陽極處理為一種常見的使用方法,其為將鋁金屬當作陽極,並透過電化學的蝕刻模式在鋁金屬的表面蝕刻出奈米結構,而所生成的奈米結構的均勻度與品質則跟反應過程中所使用的酸液濃度有很大的關係,因此,如何檢知磷酸的濃度即為一重要的課題。In order to produce a uniform and uniform nanopore, anodizing is a common method of using aluminum metal as an anode and etching the nanostructure on the surface of the aluminum metal through an electrochemical etching mode. The uniformity and quality of the nanostructure are highly dependent on the concentration of the acid used in the reaction. Therefore, how to detect the concentration of phosphoric acid is an important issue.
目前的檢測方式有利用離子選擇電極來進行檢測,如美國專利第US 6540894號之「Phosphate ion selective electrode and manufacturing method thereof」,其為利用微溶於水的金屬鹽做為一感測膜,而可測定低濃度的磷酸根離子;此外,亦可以利用分光光度儀或液相層析質譜儀來進行檢測,分光光度儀為利用吸光度與磷酸根的濃度成正比的關係,來定量磷酸鹽,而液相層析質譜儀則是透過不同的管柱分離雜質後,再對分離後的液體利用光譜量測,透過不同的波峰訊號,對磷酸特徵波形進行濃度分析。The current detection method is performed by using an ion-selective electrode, such as "Phosphate ion selective electrode and manufacturing method thereof" in US Pat. No. 6,540,894, which uses a metal salt slightly soluble in water as a sensing film. A low concentration of phosphate ions can be measured; in addition, it can also be detected by a spectrophotometer or a liquid chromatography mass spectrometer, and the spectrophotometer is used to quantify phosphate by using the relationship between the absorbance and the concentration of the phosphate. The liquid chromatography mass spectrometer separates impurities through different columns, and then uses the spectral measurement of the separated liquid to conduct concentration analysis on the characteristic waveform of the phosphoric acid through different peak signals.
然而,離子選擇電極與分光光度儀對磷酸並沒有量測專一性,容易受到其他酸的影響,而產生雜訊,造成濃度的誤判,而液相層析質譜儀則需要較長的處理時間,不利於產業利用,因此,如何快速且精準的量測出磷酸的濃度,實為相關業者所欲解決的問題。However, ion-selective electrodes and spectrophotometers have no specificity for phosphoric acid, are susceptible to other acids, and generate noise, causing misjudgment of concentration, while liquid chromatography mass spectrometers require longer processing times. It is not conducive to industrial utilization. Therefore, how to measure the concentration of phosphoric acid quickly and accurately is a problem that the relevant industry wants to solve.
本發明的主要目的,在於解決無法快速且精準的量測出磷酸的濃度的問題。The main object of the present invention is to solve the problem that the concentration of phosphoric acid cannot be measured quickly and accurately.
為達上述目的,本發明提供一種檢測試片的製作方法,包含有以下步驟: S1:於一基板之一第一區域上形成一銅電極,該銅電極包含有一工作電極、一參考電極以及一輔助電極,該工作電極包含有一第一工作端以及一遠離該第一工作端的第一讀取端; S2:形成一第一鎳層於該第一工作端遠離該基板之一側; S3:利用化鎳浸金的方式而形成一第一金層於該第一鎳層遠離該基板之一側;以及 S4:於該基板之一相鄰於該第一區域的第二區域上形成一絕緣層,該絕緣層覆蓋住該第一金層遠離該第一鎳層之一側的周圍。In order to achieve the above object, the present invention provides a method for fabricating a test strip, comprising the steps of: S1: forming a copper electrode on a first region of a substrate, the copper electrode comprising a working electrode, a reference electrode, and a An auxiliary electrode, the working electrode includes a first working end and a first reading end away from the first working end; S2: forming a first nickel layer on the first working end away from the side of the substrate; S3: utilizing Nickel immersion gold forms a first gold layer on the side of the first nickel layer away from the substrate; and S4: forming an insulating layer on a second region of the substrate adjacent to the first region The insulating layer covers the periphery of the first gold layer away from one side of the first nickel layer.
除此之外,本發明更提供一種利用檢測試片來檢測磷酸濃度的檢測方法,其包含有以下步驟: Q1:利用循環伏安法取得磷酸的一氧化還原電位,並根據不同已知濃度的磷酸水溶液建立一磷酸濃度參考比對資料; Q2:取得一未知濃度並混合有該磷酸的一混合水溶液,滴定該混合水溶液至該檢測試片上; Q3:施加該氧化還原電位至該檢測試片,以取得該混合水溶液的電流訊號;以及 Q4:比對該電流訊號與該磷酸濃度參考比對資料,以確認該磷酸於該混合水溶液中的濃度。In addition, the present invention further provides a detection method for detecting a phosphoric acid concentration by using a test strip, which comprises the following steps: Q1: obtaining a redox potential of phosphoric acid by cyclic voltammetry, and according to different known concentrations The phosphoric acid aqueous solution establishes a reference ratio of the monophosphate concentration; Q2: obtains a mixed aqueous solution of the phosphoric acid mixed with an unknown concentration, and titrates the mixed aqueous solution onto the test piece; Q3: applying the redox potential to the test piece, Obtaining a current signal of the mixed aqueous solution; and Q4: comparing the current signal with the phosphoric acid concentration to compare the data to confirm the concentration of the phosphoric acid in the mixed aqueous solution.
綜上所述,本發明具有以下特點:In summary, the present invention has the following features:
一、 藉由將該混合水溶液滴至該檢測試片上,再施加該氧化還原電位,而得到該電流訊號後,即可比對得知磷酸的濃度,而具有快速且精準的優點。1. By dropping the mixed aqueous solution onto the test piece and applying the redox potential to obtain the current signal, the concentration of phosphoric acid can be compared, and the method has the advantages of fastness and precision.
二、 藉由將該絕緣層覆蓋住該第一金層遠離該第一鎳層之一側的周圍,可以防止該第一鎳層、該銅電極的露出,而影響量測的精準度。2. By covering the insulating layer with the periphery of the first gold layer away from the side of the first nickel layer, the exposure of the first nickel layer and the copper electrode can be prevented, thereby affecting the accuracy of measurement.
三、 該檢測試片為低成本拋棄式電極,且不需要使用該昂貴的儀器,如分光光度儀或液相層析質譜儀等,而可以降低成本。Third, the test strip is a low-cost disposable electrode, and the expensive instrument, such as a spectrophotometer or a liquid chromatography mass spectrometer, is not needed, and the cost can be reduced.
有關本發明的詳細說明及技術內容,現就配合圖式說明如下:The detailed description and technical content of the present invention will now be described as follows:
請參閱「圖1」至「圖3F」所示,檢測試片的製作方法,為進一步清楚說明,「圖3A」至「圖3F」為利用「圖2」中之A-A剖面來進行說明,而製作方法包含有以下步驟:Please refer to the "Fig. 1" to "Fig. 3F" to test the production method of the test piece. To further clarify, "Fig. 3A" to "Fig. 3F" are explained by using the AA cross section in Fig. 2, and The production method includes the following steps:
步驟S1:如「圖3A」所示,先於一基板10之一第一區域11上形成一銅電極20,該銅電極20包含有一工作電極21、一參考電極22以及一輔助電極23,且該工作電極21包含有一第一工作端211以及一遠離該第一工作端211的第一讀取端212。而形成該銅電極20的方法可以為利用網版印刷的方式,或是先形成一銅層於該基板10上,而後再進行蝕刻以形成該銅電極20,但不以此為限。於本實施例中,更包含有以下步驟:Step S1: forming a copper electrode 20 on a first region 11 of a substrate 10, as shown in FIG. 3A, the copper electrode 20 includes a working electrode 21, a reference electrode 22, and an auxiliary electrode 23, and The working electrode 21 includes a first working end 211 and a first reading end 212 away from the first working end 211. The method of forming the copper electrode 20 may be by screen printing, or a copper layer is first formed on the substrate 10, and then etched to form the copper electrode 20, but not limited thereto. In this embodiment, the following steps are further included:
步驟S1A:先於該基板10的該第一區域11形成該銅電極20。Step S1A: The copper electrode 20 is formed prior to the first region 11 of the substrate 10.
步驟S1B:如「圖3B」所示,再於該基板10的一第二區域12形成一隔離層60,並使該隔離層60接觸於該銅電極20,且該第二區域12為相鄰於該第一區域11,本實施例中,該隔離層60所形成的厚度較該銅電極20厚,但該隔離層60亦可以薄於該銅電極20。Step S1B: as shown in FIG. 3B, an isolation layer 60 is formed on a second region 12 of the substrate 10, and the isolation layer 60 is in contact with the copper electrode 20, and the second region 12 is adjacent. In the first region 11, in the embodiment, the isolation layer 60 is formed thicker than the copper electrode 20, but the isolation layer 60 may be thinner than the copper electrode 20.
步驟S2:如「圖3C」所示,形成一第一鎳層31於該第一工作端211遠離該基板10之一側,而形成該第一鎳層31的方式可以為化學鍍(Electroless plating)等方式。本實施例中,更包含有以下步驟:Step S2: As shown in FIG. 3C, a first nickel layer 31 is formed on the side of the first working end 211 away from the substrate 10, and the first nickel layer 31 is formed by electroless plating (Electroless plating). ) and other methods. In this embodiment, the following steps are further included:
步驟S2A:形成該第一鎳層31於該第一工作端211遠離該基板10之一側。Step S2A: forming the first nickel layer 31 away from the side of the substrate 10 at the first working end 211.
步驟S2B:形成一第二鎳層32於該參考電極22之一第二工作端221遠離該基板10之一側,且該參考電極22還包含有一遠離該第二工作端221的第二讀取端222。Step S2B: forming a second nickel layer 32 on one side of the second working end 221 of the reference electrode 22 away from the substrate 10, and the reference electrode 22 further includes a second reading away from the second working end 221 End 222.
步驟S2C:形成一第三鎳層33於該輔助電極23之一第三工作端231遠離該基板10之一側。其中,該第一鎳層31、該第二鎳層32、該第三鎳層33可以為同時形成,且該輔助電極23還包含有一遠離該第三工作端231的第三讀取端232,而由於該第一讀取端212、該第二讀取端222與該第三讀取端232不須與檢測液接觸,因此可不必於其上形成鎳層。Step S2C: forming a third nickel layer 33 on one side of the third working end 231 of the auxiliary electrode 23 away from the substrate 10. The first nickel layer 31, the second nickel layer 32, and the third nickel layer 33 may be formed at the same time, and the auxiliary electrode 23 further includes a third reading end 232 away from the third working end 231. Since the first reading end 212, the second reading end 222 and the third reading end 232 do not need to be in contact with the detecting liquid, it is not necessary to form a nickel layer thereon.
步驟S3:如「圖3D」所示,利用化鎳浸金的方式而形成一第一金層41於該第一鎳層31遠離該基板10之一側,化鎳浸金為浸入低濃度的金溶液中,透過該第一鎳層31丟出電子的同時,將金沉積在該第一鎳層31之上,而可形成該第一金層41。本實施例中,更包含有以下步驟:Step S3: As shown in FIG. 3D, a first gold layer 41 is formed by nickel immersion gold on the side of the first nickel layer 31 away from the substrate 10, and the nickel immersion gold is immersed in a low concentration. In the gold solution, gold is deposited on the first nickel layer 31 while the first nickel layer 31 is ejected, and the first gold layer 41 can be formed. In this embodiment, the following steps are further included:
步驟S3A:形成該第一金層41於該第一鎳層31遠離該基板10之一側。Step S3A: forming the first gold layer 41 on a side of the first nickel layer 31 away from the substrate 10.
步驟S3B:形成一第二金層42於該第二鎳層32端遠離該基板10之一側。Step S3B: forming a second gold layer 42 away from one side of the substrate 10 at the end of the second nickel layer 32.
步驟S3C:形成一第三金層43於該第三鎳層33端遠離該基板10之一側。而該第一金層41、該第二金層42、該第三金層43可以同時形成。於此步驟後,更包含有以下步驟:Step S3C: forming a third gold layer 43 away from one side of the substrate 10 at the end of the third nickel layer 33. The first gold layer 41, the second gold layer 42, and the third gold layer 43 can be simultaneously formed. After this step, the following steps are included:
步驟P1:如「圖3E」所示,於該第二金層42遠離該基板10之一側形成一第二導電層72,該第二導電層72的材質可以為銀、氯化銀或其組合。該第二導電層72可以為利用網版印刷的方式來形成。Step P1: As shown in FIG. 3E, a second conductive layer 72 is formed on the side of the second gold layer 42 away from the substrate 10. The second conductive layer 72 may be made of silver, silver chloride or combination. The second conductive layer 72 can be formed by screen printing.
步驟P2:於該第三金層43遠離該基板10之一側形成一第三導電層73,該第三導電層73的材質為碳、白金或其組合。該第三導電層73可以為利用網版印刷的方式來形成。Step P2: forming a third conductive layer 73 on a side of the third gold layer 43 away from the substrate 10. The material of the third conductive layer 73 is carbon, platinum or a combination thereof. The third conductive layer 73 may be formed by screen printing.
步驟S4:如「圖3F」所示,於該基板10之一相鄰於該第一區域11的第二區域12上形成一絕緣層50,且該絕緣層50由該第二區域12往上延伸,並覆蓋住該第一金層41遠離該第一鎳層31之一側的周圍,如此一來,可以防止該第一鎳層31、該銅電極20的露出,而影響量測的精準度。本實施例中,該絕緣層50是形成於該隔離層60之上,且該絕緣層50與該隔離層60的材質可以為相同的,只要不會與其他材料產生反應皆可。但如「圖4」所示,於其他實施例中亦可以不形成該隔離層60,而直接形成該絕緣層50,使該絕緣層50與該銅電極20、該第一鎳層31以及該第一金層41的外圍接觸,並同樣覆蓋住該第一金層41遠離該第一鎳層31之一側的周圍。Step S4: As shown in FIG. 3F, an insulating layer 50 is formed on the second region 12 adjacent to the first region 11 of the substrate 10, and the insulating layer 50 is upward from the second region 12. Extending and covering the periphery of the first gold layer 41 away from the side of the first nickel layer 31, thereby preventing the first nickel layer 31 and the copper electrode 20 from being exposed, thereby affecting the accuracy of measurement degree. In this embodiment, the insulating layer 50 is formed on the isolation layer 60, and the material of the insulating layer 50 and the isolation layer 60 may be the same as long as it does not react with other materials. However, as shown in FIG. 4, in other embodiments, the isolation layer 60 may not be formed, and the insulating layer 50 may be directly formed, such that the insulating layer 50 and the copper electrode 20, the first nickel layer 31, and the The periphery of the first gold layer 41 is in contact with, and also covers, the periphery of the first gold layer 41 away from the side of the first nickel layer 31.
使用時,將檢測液滴至該第一工作端211、該第二工作端221與該第三工作端231,並連接一檢測儀器(圖未示)至該第一讀取端212、該第二讀取端222與該第三讀取端232,即可進行量測。In use, the liquid droplet is detected to the first working end 211, the second working end 221 and the third working end 231, and a detecting device (not shown) is connected to the first reading end 212, the first The second read end 222 and the third read end 232 can be measured.
續搭配參閱「圖5」至「圖7」所示,為利用前述方法所製作而成的檢測試片來量測磷酸的濃度,其包含有以下步驟:Continued collocation Referring to "Fig. 5" to "Fig. 7", the concentration of phosphoric acid is measured for the test piece produced by the above method, and includes the following steps:
步驟Q1:利用循環伏安法取得磷酸的一氧化還原電位,並根據不同已知濃度的磷酸水溶液建立一磷酸濃度參考比對資料。於本實施例中,更包含有以下步驟:Step Q1: The redox potential of the phosphoric acid is obtained by cyclic voltammetry, and the reference ratio of the monophosphate concentration is established according to different known concentrations of the phosphoric acid aqueous solution. In this embodiment, the following steps are further included:
步驟Q1A:利用循環伏安法(cyclic voltammetry,簡稱CV)取得該磷酸的該氧化還原電位。Step Q1A: The redox potential of the phosphoric acid is obtained by cyclic voltammetry (CV).
步驟Q1B:調配出不同已知濃度的該些磷酸水溶液,並利用計時安培法(chronoamperometry)施加該氧化還原電位給該些磷酸水溶液,而得到一根據該些磷酸水溶液之濃度而有不同電流變化的磷酸電流響應資料,而磷酸電流響應資料如「圖6」所示,線段A、線段B、線段C、線段D、線段E的濃度分別為0.003%wt、0.03%wt、0.15%wt、0.3%wt、0.9%wt。Step Q1B: formulating the aqueous phosphoric acid solutions of different known concentrations, and applying the redox potential to the aqueous phosphoric acid solutions by chronoamperometry to obtain a different current change according to the concentration of the aqueous phosphoric acid solutions. Phosphoric acid current response data, and phosphoric acid current response data as shown in Figure 6, the concentration of line A, line B, line C, line D, and line E are 0.003% wt, 0.03% wt, 0.15% wt, 0.3%, respectively. Wt, 0.9% wt.
步驟Q1C:根據該磷酸電流響應資料而建立該磷酸濃度參考比對資料。請搭配參閱「圖6」所示,於適當時間作為參考線,舉例來說為2.5秒,而取得不同濃度的該些磷酸水溶液的對應電流,並進一步的製作成電流對濃度的比對資料,而可形成如「圖7」所示之該磷酸濃度參考比對資料,而於其中,其線性相關係數(R 2)為0.9767,因此,具有很高的準確依據。 Step Q1C: The phosphoric acid concentration reference alignment data is established based on the phosphoric acid current response data. Please refer to "Figure 6" for the appropriate time as a reference line, for example 2.5 seconds, and obtain the corresponding currents of the different concentrations of the phosphoric acid aqueous solution, and further make the current-to-concentration comparison data. The phosphoric acid concentration reference alignment data as shown in "Fig. 7" can be formed, and the linear correlation coefficient (R 2 ) thereof is 0.9767, and therefore, it has a high accurate basis.
步驟Q2:取得一混合有該磷酸的一混合水溶液,其濃度未知,並將該混合水溶液滴定至該檢測試片上。Step Q2: A mixed aqueous solution in which the phosphoric acid is mixed is obtained, the concentration of which is unknown, and the mixed aqueous solution is titrated onto the test piece.
步驟Q3:施加該氧化還原電位至該檢測試片,以取得該混合水溶液的電流訊號,而磷酸由循環伏安法所測定出之的該氧化還原電位為0.15伏特。此外,當施加0.14伏特或0.16伏特時,其線性相關係數(R 2)分別為0.2651與0.3014,故可得知施加0.15伏特時,對檢測磷酸溶液有很好的專一性。 Step Q3: applying the oxidation-reduction potential to the test piece to obtain a current signal of the mixed aqueous solution, and the oxidation-reduction potential of the phosphoric acid determined by cyclic voltammetry is 0.15 volt. In addition, when 0.14 volts or 0.16 volts is applied, the linear correlation coefficient (R 2 ) is 0.2651 and 0.3014, respectively, so that it is known that when 0.15 volts is applied, the specificity of the detection phosphoric acid solution is good.
步驟Q4:比對該電流訊號與該磷酸濃度參考比對資料,以確認該磷酸於該混合水溶液中的濃度。並搭配參閱「圖7」所示,若該電流訊號為20 μA,則可測定出磷酸的濃度為0.22%wt。如此一來,利用此種方式可以快速且準確的測量出磷酸的濃度(結果訊號RSD=1.5%以下)。Step Q4: Align the current signal with the phosphoric acid concentration to confirm the concentration of the phosphoric acid in the mixed aqueous solution. With reference to "Figure 7", if the current signal is 20 μA, the concentration of phosphoric acid can be determined to be 0.22% by weight. In this way, the concentration of phosphoric acid can be measured quickly and accurately using this method (result signal RSD = 1.5% or less).
綜上所述,本發明具有以下特點:In summary, the present invention has the following features:
一、 藉由將該混合水溶液滴定至該檢測試片上,並施加該氧化還原電位而得到的該電流訊號,便可快速且準確的測量出磷酸的濃度。1. The current signal obtained by titrating the mixed aqueous solution onto the test piece and applying the oxidation-reduction potential can quickly and accurately measure the concentration of phosphoric acid.
二、 藉由將該絕緣層覆蓋住該第一金層遠離該第一鎳層之一側的周圍,可以防止該第一鎳層、該銅電極的露出,而影響量測的精準度。2. By covering the insulating layer with the periphery of the first gold layer away from the side of the first nickel layer, the exposure of the first nickel layer and the copper electrode can be prevented, thereby affecting the accuracy of measurement.
三、 本檢測試片為低成本拋棄式電極,且不需要使用該昂貴的儀器,如分光光度儀或液相層析質譜儀等,而可以降低成本。Third, the test strip is a low-cost disposable electrode, and the expensive instrument, such as a spectrophotometer or a liquid chromatography mass spectrometer, is not required, and the cost can be reduced.
因此本發明極具進步性及符合申請發明專利的要件,爰依法提出申請,祈 鈞局早日賜准專利,實感德便。Therefore, the present invention is highly progressive and conforms to the requirements of the invention patent application, and the application is filed according to law, and the praying office grants the patent as soon as possible.
以上已將本發明做一詳細說明,惟以上所述者,僅爲本發明的一較佳實施例而已,當不能限定本發明實施的範圍。即凡依本發明申請範圍所作的均等變化與修飾等,皆應仍屬本發明的專利涵蓋範圍內。The present invention has been described in detail above, but the foregoing is only a preferred embodiment of the present invention, and is not intended to limit the scope of the invention. That is, the equivalent changes and modifications made by the scope of the present application should remain within the scope of the patent of the present invention.
10‧‧‧基板
11‧‧‧第一區域
12‧‧‧第二區域
20‧‧‧銅電極
21‧‧‧工作電極
211‧‧‧第一工作端
212‧‧‧第一讀取端
22‧‧‧參考電極
221‧‧‧第二工作端
222‧‧‧第二讀取端
23‧‧‧輔助電極
231‧‧‧第三工作端
232‧‧‧第三讀取端
31‧‧‧第一鎳層
32‧‧‧第二鎳層
33‧‧‧第三鎳層
41‧‧‧第一金層
42‧‧‧第二金層
43‧‧‧第三金層
50‧‧‧絕緣層
60‧‧‧隔離層
72‧‧‧第二導電層
73‧‧‧第三導電層
S1~S4、S1A~S1C、S2A~S2C、S3A~S3C、P1、P2、Q1~Q4、Q1A~Q1C‧‧‧步驟
A~E‧‧‧線段10‧‧‧Substrate
11‧‧‧First area
12‧‧‧Second area
20‧‧‧ copper electrode
21‧‧‧Working electrode
211‧‧‧ first working end
212‧‧‧First reading end
22‧‧‧ reference electrode
221‧‧‧Second working end
222‧‧‧second reading end
23‧‧‧Auxiliary electrode
231‧‧‧ Third working end
232‧‧‧ third read end
31‧‧‧First nickel layer
32‧‧‧Second nickel layer
33‧‧‧ Third nickel layer
41‧‧‧First gold layer
42‧‧‧Second gold layer
43‧‧‧ third gold layer
50‧‧‧Insulation
60‧‧‧Isolation
72‧‧‧Second conductive layer
73‧‧‧ Third conductive layer
S1~S4, S1A~S1C, S2A~S2C, S3A~S3C, P1, P2, Q1~Q4, Q1A~Q1C‧‧‧ steps
A~E‧‧‧ line segment
圖1,為本發明第一實施例的流程示意圖。 圖2,為本發明第一實施例的立體結構示意圖。 圖3A~3F,為本發明第一實施例的製作流程示意圖。 圖4,為本發明第二實施例的剖面示意圖。 圖5,為本發明第三實施例的流程示意圖。 圖6,為本發明第三實施例的電流響應資料數據示意圖。 圖7,為本發明第三實施例的濃度參考比對資料數據示意圖。FIG. 1 is a schematic flow chart of a first embodiment of the present invention. Fig. 2 is a perspective view showing the structure of the first embodiment of the present invention. 3A-3F are schematic diagrams showing the manufacturing process of the first embodiment of the present invention. Figure 4 is a cross-sectional view showing a second embodiment of the present invention. FIG. 5 is a schematic flow chart of a third embodiment of the present invention. FIG. 6 is a schematic diagram of current response data according to a third embodiment of the present invention. FIG. 7 is a schematic diagram of data of concentration reference ratio data according to a third embodiment of the present invention.
Q1~Q4、Q1A~Q1C‧‧‧步驟 Q1~Q4, Q1A~Q1C‧‧‧ steps
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105125149A TWI589868B (en) | 2016-08-08 | 2016-08-08 | Method for making test strip and method for detecting phosphoric acid concentration |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105125149A TWI589868B (en) | 2016-08-08 | 2016-08-08 | Method for making test strip and method for detecting phosphoric acid concentration |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI589868B true TWI589868B (en) | 2017-07-01 |
TW201805623A TW201805623A (en) | 2018-02-16 |
Family
ID=60048193
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105125149A TWI589868B (en) | 2016-08-08 | 2016-08-08 | Method for making test strip and method for detecting phosphoric acid concentration |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI589868B (en) |
-
2016
- 2016-08-08 TW TW105125149A patent/TWI589868B/en active
Also Published As
Publication number | Publication date |
---|---|
TW201805623A (en) | 2018-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chen et al. | Electrochemical impedance spectroscopy study of Ta2O5 based EIOS pH sensors in acid environment | |
US8466521B2 (en) | Hydrogen ion-sensitive field effect transistor and manufacturing method thereof | |
Wu et al. | A novel molecularly imprinted impedimetric sensor for melamine determination | |
TWI504889B (en) | Hematocrit measurement system and measurement method using the same | |
Cinková et al. | Electroanalytical application of a boron-doped diamond electrode for sensitive voltammetric determination of theophylline in pharmaceutical dosages and human urine | |
TWI616655B (en) | Solution property sensor and method of fabricating the same | |
Hussein et al. | Novel solid-contact ion-selective electrode based on a polyaniline transducer layer for determination of alcaftadine in biological fluid | |
WO2021169242A1 (en) | Dual-channel electrochemical biosensor and method for measuring heme concentration | |
TWI589868B (en) | Method for making test strip and method for detecting phosphoric acid concentration | |
CN111474216B (en) | Analyte detection meter and related methods of use | |
US20130304397A1 (en) | Method of measuring a capacitance | |
US7887683B2 (en) | Electrochemical sensor compensated for relative humidity | |
RU2016102343A (en) | TRANSPORT SIGNAL ERRORS FOR MEASURING ANALYTES ON THE BASIS OF THE SET TIME FOR RECEIVING A SAMPLE FROM THE PHYSICAL CHARACTERISTICS OF AN ANALYTIC SAMPLE | |
Korek et al. | Manufacturing of Flexible, Impedimetric Potassium Sensors | |
TWI425211B (en) | Electrochemical test strip and electrochemical test method | |
JP7264465B2 (en) | Electrode structure, electrochemical measurement device, and electrochemical measurement method | |
US10772210B2 (en) | Solution property sensor | |
CN102338767A (en) | Electrolyte-insulator-semiconductor (EIS) structure based on H<+> sensitive Ta2O5 material, preparation thereof and pH online detection method | |
JP6362256B2 (en) | Ion sensor | |
KR102557583B1 (en) | Oxide film etch rate monitoring apparatus and monitoring method thereof | |
CN115791934B (en) | Composite heavy metal ion detection chip and method | |
JP7227885B2 (en) | Electrode structure, electrochemical measuring device, and electrode structure forming method | |
US20180231490A1 (en) | Method for calculating hematocrit in blood, method for calibrating biochemical index value in blood, and system thereof | |
TWI588482B (en) | Electrochemical detection of mixed solution concentration method | |
CN116773603A (en) | Taste sensor based on electrical signals, preparation method and detection method thereof |