TWI589048B - Light emitting device - Google Patents

Light emitting device Download PDF

Info

Publication number
TWI589048B
TWI589048B TW105141479A TW105141479A TWI589048B TW I589048 B TWI589048 B TW I589048B TW 105141479 A TW105141479 A TW 105141479A TW 105141479 A TW105141479 A TW 105141479A TW I589048 B TWI589048 B TW I589048B
Authority
TW
Taiwan
Prior art keywords
light
layer
emitting element
organic light
light emitting
Prior art date
Application number
TW105141479A
Other languages
Chinese (zh)
Other versions
TW201822389A (en
Inventor
張瑋志
陳憲泓
宋怡樺
Original Assignee
友達光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 友達光電股份有限公司 filed Critical 友達光電股份有限公司
Priority to TW105141479A priority Critical patent/TWI589048B/en
Priority to CN201710096110.6A priority patent/CN106972112B/en
Application granted granted Critical
Publication of TWI589048B publication Critical patent/TWI589048B/en
Publication of TW201822389A publication Critical patent/TW201822389A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/302Details of OLEDs of OLED structures

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electroluminescent Light Sources (AREA)

Description

發光裝置Illuminating device

本發明係關於一種發光裝置,特別是有關於一種以有機發光元件發光之發光裝置。The present invention relates to a light-emitting device, and more particularly to a light-emitting device that emits light by an organic light-emitting element.

自工業革命出現陰極射線管顯示器,人們可藉由發送訊號供各台顯示器接收,以令顯示器之收視使用者獲得與此訊號相關之各種訊息。然而,陰極射線管有著體積過大、耗電量過大以及輻射線劑量過高等缺點。因此,近年來有各種顯示器不斷地發展出來,以冀求體積縮小、省電以及低輻射劑量。而且,除了希望夠克服上述陰極射線管之缺點以外,還希望能夠保留陰極射線管之如色彩鮮豔及廣視角等優點。Since the emergence of the cathode ray tube display in the industrial revolution, people can receive signals for each display to enable the viewing user of the display to obtain various messages related to the signal. However, cathode ray tubes have the disadvantages of excessive volume, excessive power consumption, and high radiation doses. Therefore, in recent years, various displays have been continuously developed to plead for volume reduction, power saving, and low radiation dose. Moreover, in addition to the disadvantages of the cathode ray tube described above, it is desirable to retain the advantages of the cathode ray tube such as bright color and wide viewing angle.

於各種顯示器中,發展有液晶顯示器、電漿顯示器及藉由有機發光元件做為顯示手段的顯示器。有機發光元件具有色彩鮮豔、對比鮮明、高反應速率、畫面不跳動、廣視角、體積輕薄、耗電量低及輻射劑量低等優點。然而,有機發光元件於受到其他高能量射線照射後,有機發光元件內之有機分子可能會斷裂,而可能會有啟動電壓升高且發光量變低等情形發生。Among various displays, liquid crystal displays, plasma displays, and displays using organic light-emitting elements as display means have been developed. The organic light-emitting element has the advantages of bright color, contrast, high reaction rate, no flick of the picture, wide viewing angle, light volume, low power consumption and low radiation dose. However, after the organic light-emitting element is irradiated by other high-energy rays, the organic molecules in the organic light-emitting element may be broken, and there may be a case where the starting voltage is increased and the amount of light is lowered.

有鑑於以上的問題,本發明提出一種發光裝置,藉由限制照射於有機發光元件之光線以增進其壽命。In view of the above problems, the present invention provides a light-emitting device that enhances the life of light by illuminating an organic light-emitting element.

本發明之一實施例提出一種發光裝置包含有機發光元件及光學層組。有機發光元件具有發光面。光學層組具有相對之第一表面及第二表面。第一表面較第二表面接近發光元件。光學層組包含偏光層及濾光層。偏光層設置於發光元件之發光面上。濾光層設置於發光元件之發光面上。當光線從第二表面穿過光學層組而通過第一表面成為第一光線,第一光線具有第一光譜,當光線從第一表面穿過光學層組而通過第二表面成為第二光線,第二光線具有第二光譜。第一光譜相異於第二光譜。第一光譜於波長值為380 nm以下之穿透率小於或等於2%。An embodiment of the invention provides a light emitting device comprising an organic light emitting element and an optical layer set. The organic light emitting element has a light emitting surface. The optical layer set has opposing first and second surfaces. The first surface is closer to the light emitting element than the second surface. The optical layer group includes a polarizing layer and a filter layer. The polarizing layer is disposed on the light emitting surface of the light emitting element. The filter layer is disposed on the light emitting surface of the light emitting element. When the light passes through the optical layer from the second surface and becomes the first light through the first surface, the first light has a first spectrum, and when the light passes through the optical layer from the first surface and becomes the second light through the second surface, The second light has a second spectrum. The first spectrum is different from the second spectrum. The first spectrum has a transmittance of less than or equal to 2% at a wavelength value of 380 nm or less.

根據本發明之實施例之發光裝置,能夠藉由光學層組之配置,使得光線從第二表面穿過光學層組而通過第一表面時,波長值為380 nm以下之光線僅能透光小於或等於2%,而不至於對有機發光元件造成傷害,而有機發光元件所發出之光線從第二表面穿過光學層組而通過第一表面時,則光線不會受到光學層組太多的影響,而能夠維持有機發光元件所發出之光線的表現。According to the illuminating device of the embodiment of the present invention, the optical layer group can be configured such that when the light passes through the optical layer group from the second surface and passes through the first surface, the light having a wavelength value of less than 380 nm can only transmit less than light. Or equal to 2%, without causing damage to the organic light-emitting element, and when the light emitted by the organic light-emitting element passes through the optical layer group from the second surface and passes through the first surface, the light is not affected by the optical layer group too much. The effect is to maintain the performance of the light emitted by the organic light-emitting element.

以上之關於本發明內容之說明及以下之實施方式之說明係用以示範與解釋本發明之精神與原理,並且提供本發明之專利申請範圍更進一步之解釋。The above description of the present invention and the following description of the embodiments of the present invention are intended to illustrate and explain the spirit and principles of the invention.

以下在實施方式中詳細敘述本發明之實施例之詳細特徵以及優點,其內容足以使任何本領域中具通常知識者了解本發明之實施例之技術內容並據以實施,且根據本說明書所揭露之內容、申請專利範圍及圖式,任何本領域中具通常知識者可輕易地理解本發明相關之目的及優點。以下之實施例係進一步詳細說明本發明之觀點,但非以任何觀點限制本發明之範疇。The detailed features and advantages of the embodiments of the present invention are set forth in the Detailed Description of the Detailed Description. The objects and advantages of the present invention can be readily understood by those of ordinary skill in the art in the <RTIgt; The following examples are intended to describe the present invention in further detail, but are not intended to limit the scope of the invention.

說明書中所述之「上」,可表示為懸置於上方,亦可表示為接觸於上表面。"Upper" as used in the specification can be expressed as being suspended above or as being in contact with the upper surface.

請參照圖1A及圖1B,圖1A繪示依照本發明之一實施例之發光裝置1之立體分解示意圖,圖1B繪示圖1A之有機發光元件110所發出之藍光之發光強度相對於波長之示意圖。發光裝置1包含有機發光元件110及光學層組120。有機發光元件110具有發光面110a。光學層組120具有相對之第一表面120a及第二表面120b。第一表面120a較第二表面120b接近有機發光元件110。1A and FIG. 1B, FIG. 1A is a perspective exploded view of a light-emitting device 1 according to an embodiment of the present invention, and FIG. 1B illustrates the intensity of blue light emitted by the organic light-emitting device 110 of FIG. 1A with respect to wavelength. schematic diagram. The light-emitting device 1 includes an organic light-emitting element 110 and an optical layer group 120. The organic light emitting element 110 has a light emitting surface 110a. The optical layer set 120 has opposing first and second surfaces 120a, 120b. The first surface 120a is closer to the organic light emitting element 110 than the second surface 120b.

光學層組120包含偏光層121及濾光層122。偏光層121設置於發光元件110之發光面110a上。偏光層121可包含相位延遲層,用以延遲所經過之光線之相位,其中相位延遲層可為四分之一波片。偏光層121具有彼此相異之第一快軸方向N1及第一慢軸方向N2。第一快軸方向N1與第一慢軸方向N2之夾角可為90°。The optical layer group 120 includes a polarizing layer 121 and a filter layer 122. The polarizing layer 121 is disposed on the light emitting surface 110a of the light emitting element 110. The polarizing layer 121 may include a phase retardation layer for delaying the phase of the passing light, wherein the phase retarding layer may be a quarter wave plate. The polarizing layer 121 has a first fast axis direction N1 and a first slow axis direction N2 that are different from each other. The angle between the first fast axis direction N1 and the first slow axis direction N2 may be 90°.

濾光層122設置於有機發光元件110之發光面110a上。濾光層122可位於有機發光元件110及偏光層121之間。濾光層122之材質可為聚對苯二甲酸乙二酯(polyethylene terephthalate,PET)。濾光層122可具有彼此相異之第二快軸方向N3及第二慢軸方向N4,第二快軸方向N3與第二慢軸方向N4之夾角可為90°。濾光層122沿第二快軸方向N3之折射率及沿第二慢軸方向N4之折射率相異。偏光層121之第一快軸方向N1與濾光層122之第二快軸方向N3之夾角可約為3°。舉例而言,偏光層121之第一快軸方向N1之角度為0°或180°時,濾光層122之第二快軸方向N3之角度可約為177°。The filter layer 122 is disposed on the light emitting surface 110a of the organic light emitting element 110. The filter layer 122 may be located between the organic light emitting element 110 and the polarizing layer 121. The material of the filter layer 122 may be polyethylene terephthalate (PET). The filter layer 122 may have a second fast axis direction N3 and a second slow axis direction N4 that are different from each other, and the angle between the second fast axis direction N3 and the second slow axis direction N4 may be 90°. The refractive index of the filter layer 122 in the second fast axis direction N3 and the refractive index in the second slow axis direction N4 are different. The angle between the first fast axis direction N1 of the polarizing layer 121 and the second fast axis direction N3 of the filter layer 122 may be about 3°. For example, when the angle of the first fast axis direction N1 of the polarizing layer 121 is 0° or 180°, the angle of the second fast axis direction N3 of the filter layer 122 may be about 177°.

於製作濾光層122時,可藉由拉伸濾光層122之材料且貼附於其他元件之方式,以完成濾光層122,其中拉伸濾光層122之方向可為第二快軸方向N3,被貼附之其他元件可為偏光層121。但不以此為限。於製作濾光層122時,亦可藉由將液態之濾光層之材料塗佈於其他元件並加以固化之方式,以完成濾光層122,其中塗佈濾光層122之方向亦可為第二快軸方向N3,被塗佈之其他元件亦可為偏光層121。另外,還可以配向方式沿第二快軸方向N3及第二慢軸方向N4形成濾光層122。其中,此配向方式可為將有濾光特性之離子摻雜於PET(polyethylene terephthalate)塑膠膜中,並使其以第二快軸方向N3或第二慢軸方向N4均勻排列。When the filter layer 122 is formed, the filter layer 122 can be completed by stretching the material of the filter layer 122 and attaching to other components, wherein the direction of the tensile filter layer 122 can be the second fast axis. In the direction N3, other elements to be attached may be the polarizing layer 121. But not limited to this. When the filter layer 122 is formed, the filter layer 122 may be completed by applying a material of the liquid filter layer to other components and curing the coating layer 122. In the second fast axis direction N3, the other elements to be coated may also be the polarizing layer 121. Further, the filter layer 122 may be formed in the second fast axis direction N3 and the second slow axis direction N4 in an alignment manner. The alignment method may be such that ions having filter characteristics are doped into a PET (polyethylene terephthalate) plastic film and uniformly arranged in a second fast axis direction N3 or a second slow axis direction N4.

於本實施例中,可見光之波長範圍可為380 nm~780 nm,濾光層122對於可見光之總穿透率可為90%以上,或者對於可見光之平均穿透率可為90%以上。濾光層122對於波長值為420 nm以下之光線之穿透率可小於15%。濾光層122及偏光層121對於可見光之總穿透率可為43%以上。濾光層122之厚度及偏光層121之厚度之總和可小於或等於180微米。In this embodiment, the wavelength of visible light may range from 380 nm to 780 nm, and the total transmittance of the filter layer 122 for visible light may be 90% or more, or the average transmittance for visible light may be 90% or more. The filter layer 122 may have a transmittance of less than 15% for light having a wavelength value of 420 nm or less. The total transmittance of the filter layer 122 and the polarizing layer 121 for visible light may be 43% or more. The sum of the thickness of the filter layer 122 and the thickness of the polarizing layer 121 may be less than or equal to 180 microns.

而且,如圖1B所示,圖中之曲線為圖1A之有機發光元件110所發出之藍光之發光強度相對於波長之示意圖。於本實施例中,有機發光元件110所發出之藍光之波長範圍可為420 nm至480 nm。此藍光之最強強度可表示為H,於此最強強度所對應之波長值可表示為波長峰值L,此藍光於最強強度之半高強度可表示為H/2,此藍光對應於半高強度H/2時之波長值之寬度可表示為波長半高寬W,有機發光元件110所發出之此藍光之波長峰值L減去此藍光之波長半高寬W可表示為波長值L-W。濾光層122對於波長值L-W以下之光線之穿透率可小於2%。Moreover, as shown in FIG. 1B, the graph in the figure is a schematic diagram of the intensity of the blue light emitted by the organic light-emitting element 110 of FIG. 1A with respect to the wavelength. In the present embodiment, the blue light emitted by the organic light emitting element 110 may range from 420 nm to 480 nm. The strongest intensity of the blue light can be expressed as H, and the wavelength value corresponding to the strongest intensity can be expressed as the wavelength peak L, and the half-high intensity of the blue light at the strongest intensity can be expressed as H/2, which corresponds to the half-high intensity H. The width of the wavelength value of /2 hours can be expressed as the wavelength half width W, and the wavelength peak L of the blue light emitted by the organic light emitting element 110 minus the wavelength half width W of the blue light can be expressed as the wavelength value L-W. The transmittance of the filter layer 122 for light having a wavelength value of L-W or less may be less than 2%.

請參照圖2A及圖2B。圖2A繪示圖1A之光學層組120中,當光線L0從第二表面120b穿過光學層組120而通過第一表面120a成為第一光線L1時,第一光線L1所具有之第一光譜λ1之示意圖。圖2B繪示圖1A之光學層組120中,當光線L0從第一表面120a穿過光學層組而通過第二表面120b成為第二光線L2時,第二光線L2所具有之第二光譜λ2之示意圖。Please refer to FIG. 2A and FIG. 2B. 2A illustrates a first spectrum of the first light ray L1 when the light ray L0 passes through the optical layer stack 120 from the second surface 120b and becomes the first light ray L1 through the first surface 120a. Schematic diagram of λ1. 2B illustrates a second spectrum λ2 of the second light ray L2 when the light ray L0 passes through the optical layer group from the first surface 120a and becomes the second light ray L2 through the second surface 120b in the optical layer group 120 of FIG. 1A. Schematic diagram.

於欲取得光線穿過光學層組120之光譜時,可將光學層組120設置於蓋體130上,且第一表面120a朝向蓋體130,第二表面120b背對蓋體130。濾光層122可位於蓋體130及偏光層121之間。蓋體130可為玻璃。如圖2A所示,令測試用光線L0從第二表面120b穿過光學層組120而通過第一表面120a成為第一光線L1,且於蓋體130接收第一光線L1而取得第一光譜λ1。如圖2B所示,令測試用光線L0從蓋體130穿過第一表面120a且穿過光學層組120而通過第二表面120b成為第二光線L2,且於第二表面120b接收第二光線而取得第二光譜λ2。綜合圖2A及圖2B可知,第一光譜λ1相異於第二光譜λ2。第二光譜λ2於波長值為380nm以下之穿透率可大於2%。When the spectrum of the optical layer 120 is to be obtained, the optical layer 120 may be disposed on the cover 130, and the first surface 120a faces the cover 130, and the second surface 120b faces the cover 130. The filter layer 122 may be located between the cover 130 and the polarizing layer 121. The cover 130 can be glass. As shown in FIG. 2A, the test light L0 is passed through the optical layer group 120 from the second surface 120b to become the first light L1 through the first surface 120a, and the first light L1 is received by the cover 130 to obtain the first spectrum λ1. . As shown in FIG. 2B, the test light L0 is passed from the cover 130 through the first surface 120a and through the optical layer 120 to pass through the second surface 120b to become the second light L2, and to receive the second light on the second surface 120b. And the second spectrum λ2 is obtained. 2A and 2B, the first spectrum λ1 is different from the second spectrum λ2. The transmittance of the second spectrum λ2 at a wavelength value of 380 nm or less may be greater than 2%.

由圖2A所示之第一光譜可知,如圖中虛線圈起之部分所示,第一光線於波長約為380 nm以下之穿透率非常接近為零,表示波長約為380 nm以下之光線,例如UV(ultraviolet)光,幾乎不會從第二表面120b穿透光學層組120而通過第一表面120a。詳言之,第一光譜λ1於波長值為380 nm以下之穿透率可小於或等於2%。因此,當如圖1A所示將有機發光元件110設置於第一表面120a時,則可大幅避免有機發光元件110受到波長約為380 nm以下之光線照射,而能夠避免有機發光元件110內之有機分子因此發生斷裂之情形,進而提升有機發光元件110之壽命。As can be seen from the first spectrum shown in FIG. 2A, the transmittance of the first light at a wavelength of about 380 nm or less is very close to zero, as shown by the portion of the dotted circle in the figure, indicating light having a wavelength of about 380 nm or less. For example, UV (ultraviolet) light hardly passes through the first surface 120a from the second surface 120b through the optical layer stack 120. In detail, the first spectrum λ1 may have a transmittance of less than or equal to 2% at a wavelength value of 380 nm or less. Therefore, when the organic light emitting element 110 is disposed on the first surface 120a as shown in FIG. 1A, the organic light emitting element 110 can be largely prevented from being irradiated with light having a wavelength of about 380 nm or less, and the organic light in the organic light emitting element 110 can be avoided. The rupture of the molecules thus increases the lifetime of the organic light-emitting element 110.

由圖2B所示之第二光譜可知,如圖中虛線圈起之部分所示,第二光線於波長約為380 nm以下仍可有些許的穿透率,表示波長約為380 nm以下之光線仍些許能夠從第一表面120a穿透光學層組120而通過第二表面120b。詳言之,第二光譜λ2於波長值為380nm以下之穿透率可大於2%。因此,當如圖1A所示將有機發光元件110設置於第一表面120a時,有機發光元件110所發出之光線中之波長約為380 nm以下之光線,亦能夠經過光學層組120而供發光裝置1之使用者觀看,因此能夠維持發光裝置1所呈現之色彩表現。It can be seen from the second spectrum shown in FIG. 2B that, as shown in the portion of the dotted circle in the figure, the second light has a slight transmittance at a wavelength of about 380 nm or less, indicating light having a wavelength of about 380 nm or less. It is still possible to penetrate the optical layer stack 120 from the first surface 120a and pass through the second surface 120b. In detail, the transmittance of the second spectrum λ2 at a wavelength value of 380 nm or less may be greater than 2%. Therefore, when the organic light emitting element 110 is disposed on the first surface 120a as shown in FIG. 1A, the light having a wavelength of about 380 nm or less in the light emitted from the organic light emitting element 110 can also be illuminated through the optical layer group 120. The user of the device 1 views, and thus the color representation exhibited by the illumination device 1 can be maintained.

以下將說明圖1A之光學層組120對於有機發光元件110之保護效果。The protective effect of the optical layer group 120 of FIG. 1A on the organic light emitting element 110 will be described below.

此處之測試條件,是將未運作時之發光裝置儲存於太陽照射模擬儀器中,且根據IEC 60068-2-5,Sa試驗之地面太陽輻射模擬規範進行測試。其中,最高溫約為攝氏40度,最低溫約為攝氏25度,照度約為1120W/m 2。於每一次循環中,照射狀態下持續八個小時,黑暗狀態下維持十六個小時。於每次取測試點時對有機發光元件110導通相同電流之電源,以測試其發光強度。 The test conditions here are to store the illuminating device in the non-operating operation in the solar radiation simulation instrument and test it according to the ground solar radiation simulation specification of IEC 60068-2-5, Sa test. Among them, the highest temperature is about 40 degrees Celsius, the lowest temperature is about 25 degrees Celsius, and the illumination is about 1120 W/m 2 . In each cycle, it lasts for eight hours in the illumination state and sixteen hours in the dark state. The power source of the same current is turned on for the organic light-emitting element 110 each time the test point is taken to test its luminous intensity.

請參照圖3A、圖3B及圖3C。圖3A繪示於相異結構下之有機發光元件110之紅光發光強度相對於循環次數之關係之示意圖。圖3B繪示於相異結構下之有機發光元件110之綠光發光強度相對於循環次數之關係之示意圖。圖3C繪示於相異結構下之有機發光元件110之藍光發光強度相對於循環次數之關係之示意圖。圖中以三角形標記(▲)之測試點為設置有光學層組120保護有機發光元件110之情形,此結構為第一結構,如圖1A之發光裝置1。圖中以菱形標記(◆)之測試點為僅設置偏光層121保護有機發光元件110之情形,此結構為第二結構。圖中以圓形標記(●)之測試點為未設置其他元件保護有機發光元件110之情形,此結構為第三結構。實粗線為參考數值,表示圖1A之發光裝置1完全未進行地面太陽輻射模擬測試時之情形。Please refer to FIG. 3A, FIG. 3B and FIG. 3C. FIG. 3A is a schematic diagram showing the relationship between the intensity of red light emission of the organic light-emitting element 110 in a different structure with respect to the number of cycles. FIG. 3B is a schematic diagram showing the relationship between the green light emission intensity of the organic light-emitting element 110 and the number of cycles in a different structure. FIG. 3C is a schematic diagram showing the relationship between the intensity of blue light emission of the organic light-emitting element 110 under different structures with respect to the number of cycles. The test point with the triangular mark (▲) in the figure is a case where the optical layer group 120 is provided to protect the organic light-emitting element 110, and this structure is the first structure, such as the light-emitting device 1 of FIG. 1A. The test point with the diamond mark (◆) in the figure is a case where only the polarizing layer 121 is provided to protect the organic light emitting element 110, and this structure is the second structure. The test point with a circular mark (●) in the figure is a case where the other elements are not provided to protect the organic light-emitting element 110, and this structure is the third structure. The solid thick line is a reference value, indicating that the light-emitting device 1 of FIG. 1A is completely not subjected to the ground solar radiation simulation test.

如圖3A所示,於六次循環後,未設置其他元件保護有機發光元件110之第三結構中,有機發光元件110之紅光發光強度便降至70%以下。僅設置偏光層121保護有機發光元件110之第二結構中,有機發光元件110之紅光發光強度便降至95%以下。設置光學層組120保護有機發光元件110之第一結構中,有機發光元件110之紅光發光強度可維持在95%以上。於十次循環後,第二結構之有機發光元件110之紅光發光強度便降至90%以下,第一結構之有機發光元件110之紅光發光強度可維持在90%以上。其中,第一結構之有機發光元件110之紅光發光強度比第二結構之有機發光元件110之紅光發光強度高出約7.3%。As shown in FIG. 3A, in the third structure in which the other elements are not provided to protect the organic light-emitting element 110 after six cycles, the red light-emitting intensity of the organic light-emitting element 110 is reduced to 70% or less. In the second structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110, the red light emitting intensity of the organic light emitting element 110 is reduced to 95% or less. In the first structure in which the optical layer group 120 is provided to protect the organic light emitting element 110, the red light emission intensity of the organic light emitting element 110 can be maintained at 95% or more. After ten cycles, the red light emission intensity of the organic light-emitting element 110 of the second structure is reduced to 90% or less, and the red light-emitting intensity of the organic light-emitting element 110 of the first structure can be maintained at 90% or more. The red light emitting intensity of the organic light emitting element 110 of the first structure is about 7.3% higher than the red light emitting intensity of the organic light emitting element 110 of the second structure.

如圖3B所示,未設置其他元件保護有機發光元件110之第三結構中,有機發光元件110經過於二次循環後其綠光發光強度便降至93%以下。僅設置偏光層121保護有機發光元件110之第二結構中以及設置光學層組120保護有機發光元件110之第一結構中,有機發光元件110於十次循環中之綠光發光強度可維持在98%以上。第二結構及第一結構於此測試中其有機發光元件110之綠光發光強度幾乎未見有衰退的現象。As shown in FIG. 3B, in the third structure in which the other element is not provided to protect the organic light emitting element 110, the green light emitting element 110 has a green light emission intensity of less than 93% after the second cycle. In the first structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110 and the optical layer group 120 is disposed to protect the organic light emitting element 110, the green light emitting intensity of the organic light emitting element 110 in ten cycles can be maintained at 98. %the above. The second structure and the first structure showed little deterioration of the green light emission intensity of the organic light-emitting element 110 in this test.

如圖3C所示,未設置其他元件保護有機發光元件110之第三結構中,有機發光元件110經過於二次循環後其藍光發光強度便降至63%以下,而第一結構之有機發光元件110之藍光發光強度幾乎未見有衰退的現象。僅設置偏光層121保護有機發光元件110之第二結構中,有機發光元件110經過二次循環後其藍光發光強度便降至88%以下,經過六次循環後其藍光發光強度便降至82%以下,經過八次循環後其藍光發光強度便降至75%以下,十次循環後之藍光發光強度約為70~75%。設置光學層組120保護有機發光元件110之第一結構中,有機發光元件110經過四次循環前之藍光發光強度可維持在95%以上,經過四次循環後其藍光發光強度僅降至95%左右,經過七次循環後其藍光發光強度才降至90%以下,十次循環後之藍光發光強度仍然保有約為80~85%。因此,於十次循環後,以光學層組120保護之有機發光元件110之藍光發光強度比僅以偏光層121保護有機發光元件110之藍光發光強度高出約13.7%。As shown in FIG. 3C, in the third structure in which the other element is not provided to protect the organic light emitting element 110, the blue light emitting intensity of the organic light emitting element 110 is reduced to 63% or less after the second cycle, and the organic light emitting element of the first structure is reduced. There is almost no degradation of the blue light intensity of 110. In the second structure in which only the polarizing layer 121 is disposed to protect the organic light emitting element 110, the blue light emitting intensity of the organic light emitting element 110 is reduced to less than 88% after the second cycle, and the blue light emitting intensity is reduced to 82% after six cycles. Hereinafter, after eight cycles, the blue light emission intensity is reduced to 75% or less, and the blue light emission intensity after ten cycles is about 70 to 75%. In the first structure in which the optical layer group 120 is disposed to protect the organic light emitting element 110, the blue light emitting intensity of the organic light emitting element 110 can be maintained above 95% after four cycles, and the blue light emitting intensity is reduced to only 95% after four cycles. Left and right, after seven cycles, the blue light intensity is reduced to less than 90%, and the blue light intensity after ten cycles is still about 80-85%. Therefore, after ten cycles, the blue light emission intensity of the organic light-emitting element 110 protected by the optical layer group 120 is about 13.7% higher than that of the blue light-emitting intensity of the organic light-emitting element 110 only by the polarizing layer 121.

由上可知,光學層組120可有效保護有機發光元件110,以減緩亮度衰減的產生。As can be seen from the above, the optical layer group 120 can effectively protect the organic light emitting element 110 to slow the generation of luminance attenuation.

請參照圖4A、圖4B及圖4C。圖4A繪示於相異結構下之紅光有機發光元件110之跨壓(cross voltage)相對於循環次數之關係之示意圖。圖4B繪示於相異結構下之綠光有機發光元件110之跨壓相對於循環次數之關係之示意圖。圖4C繪示於相異結構下之藍光有機發光元件110之跨壓相對於循環次數之關係之示意圖。圖中以三角形標記(▲)之測試點為設置有光學層組120保護有機發光元件110之情形,此結構為第一結構,如圖1A之發光裝置1。圖中以菱形標記(◆)之測試點為僅設置偏光層121保護有機發光元件110之情形,此結構為第二結構。圖中以圓形標記(●)之測試點為未設置其他元件保護有機發光元件110之情形,此結構為第三結構。Please refer to FIG. 4A, FIG. 4B and FIG. 4C. FIG. 4A is a schematic diagram showing the relationship between the cross voltage of the red organic light-emitting element 110 under the different structure with respect to the number of cycles. FIG. 4B is a schematic diagram showing the relationship between the voltage across the green light-emitting organic light-emitting element 110 and the number of cycles in a different structure. FIG. 4C is a schematic diagram showing the relationship between the voltage across the blue organic light-emitting element 110 and the number of cycles in a different structure. The test point with the triangular mark (▲) in the figure is a case where the optical layer group 120 is provided to protect the organic light-emitting element 110, and this structure is the first structure, such as the light-emitting device 1 of FIG. 1A. The test point with the diamond mark (◆) in the figure is a case where only the polarizing layer 121 is provided to protect the organic light emitting element 110, and this structure is the second structure. The test point with a circular mark (●) in the figure is a case where the other elements are not provided to protect the organic light-emitting element 110, and this structure is the third structure.

如圖4A所示,未設置其他元件保護有機發光元件110時之第三結構中,紅光有機發光元件110之跨壓會不斷地上升,十次循環後之跨壓上升約4.5~5伏特。僅設置偏光層121保護有機發光元件110時之第二結構中,紅光有機發光元件110之跨壓會較緩慢地上升,十次循環後之跨壓上升約3伏特。設置光學層組120保護有機發光元件110時之第一結構中,紅光有機發光元件110之跨壓會更緩慢地上升,十次循環後之跨壓僅上升約1.5伏特。於十次循環後,以光學層組120保護之紅光有機發光元件110之跨壓比僅以偏光層121保護紅光有機發光元件110之跨壓低約1.5伏特。As shown in FIG. 4A, in the third configuration in which the other elements are not provided to protect the organic light-emitting element 110, the voltage across the red organic light-emitting element 110 is continuously increased, and the voltage across the ten cycles is increased by about 4.5 to 5 volts. In the second structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110, the voltage across the red organic light emitting element 110 rises slowly, and the voltage across the ten cycles increases by about 3 volts. In the first configuration in which the optical layer group 120 is provided to protect the organic light emitting element 110, the voltage across the red organic light emitting element 110 rises more slowly, and the voltage across the ten cycles increases by only about 1.5 volts. After ten cycles, the voltage-to-pressure ratio of the red organic light-emitting element 110 protected by the optical layer group 120 is only about 1.5 volts lower than the cross-voltage of the red light-emitting organic light-emitting element 110 protected by the polarizing layer 121.

相似地,如圖4B所示,未設置其他元件保護有機發光元件110時之第三結構中,綠光有機發光元件110之跨壓會不斷地上升,十次循環後之跨壓上升約4.5~5伏特。僅設置偏光層121保護有機發光元件110時之第二結構中,綠光有機發光元件110之跨壓會較緩慢地上升,十次循環後之跨壓上升約2~2.5伏特。設置光學層組120保護有機發光元件110時之第一結構中,綠光有機發光元件110之跨壓會更緩慢地上升,十次循環後之跨壓上升約1.5伏特。於十次循環後,以光學層組120保護之綠光有機發光元件110之跨壓比僅以偏光層121保護綠光有機發光元件110之跨壓低約0.8伏特。Similarly, as shown in FIG. 4B, in the third structure when the other elements are not provided to protect the organic light emitting element 110, the voltage across the green organic light emitting element 110 will continuously rise, and the voltage across the ten cycles will increase by about 4.5~. 5 volts. In the second structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110, the voltage across the green organic light emitting element 110 rises slowly, and the voltage across the ten cycles increases by about 2 to 2.5 volts. In the first configuration in which the optical layer group 120 is provided to protect the organic light emitting element 110, the voltage across the green organic light emitting element 110 rises more slowly, and the voltage across the ten cycles increases by about 1.5 volts. After ten cycles, the voltage-to-pressure ratio of the green organic light-emitting element 110 protected by the optical layer group 120 is only about 0.8 volts lower than the cross-voltage of the green organic light-emitting element 110 protected by the polarizing layer 121.

相似地,如圖4C所示,未設置其他元件保護有機發光元件110之第三結構中,藍光有機發光元件110之跨壓會不斷地上升,十次循環後之跨壓上升約5~5.5伏特。僅設置偏光層121保護有機發光元件110之第二結構中,藍光有機發光元件110之跨壓會較緩慢地上升,十次循環後之跨壓上升約3~3.5伏特。設置光學層組120保護有機發光元件110之第一結構中,藍光有機發光元件110之跨壓會更緩慢地上升,十次循環後之跨壓上升約2.5~3伏特。於十次循環後,以光學層組120保護之藍光有機發光元件110之跨壓比僅以偏光層121保護有機發光元件110之跨壓低約0.6伏特。Similarly, as shown in FIG. 4C, in the third structure in which the other elements are not provided to protect the organic light emitting element 110, the voltage across the blue organic light emitting element 110 is continuously increased, and the voltage across the ten cycles is increased by about 5 to 5.5 volts. . In the second structure in which only the polarizing layer 121 is provided to protect the organic light emitting element 110, the voltage across the blue organic light emitting element 110 rises slowly, and the voltage across the ten cycles increases by about 3 to 3.5 volts. In the first structure in which the optical layer group 120 is provided to protect the organic light emitting element 110, the voltage across the blue organic light emitting element 110 rises more slowly, and the voltage across the ten cycles increases by about 2.5 to 3 volts. After ten cycles, the voltage-to-pressure ratio of the blue organic light-emitting element 110 protected by the optical layer group 120 is only about 0.6 volts lower than the cross-voltage of the organic light-emitting element 110 protected by the polarizing layer 121.

由上可知,光學層組120可有效保護有機發光元件110,以減緩跨壓上升的情形,進而能夠減少耗電。As can be seen from the above, the optical layer group 120 can effectively protect the organic light emitting element 110 to slow down the voltage rise, thereby reducing power consumption.

另外,以下將介紹依照本發明之各種實施例之發光裝置。In addition, a light-emitting device according to various embodiments of the present invention will be described below.

請參照圖5A,繪示依照本發明之另一實施例之發光裝置2之剖面示意圖。於本實施例中,發光裝置2包含有機發光元件110、可做為光學層組之偏光層121及濾光層122、第一保護層131及第二保護層132。圖5A之有機發光元件110、偏光層121及濾光層122可與圖1A中之有機發光元件110、偏光層121及濾光層122類似或相同,故在此不再贅述其詳細內容。第二保護層132設置於有機發光元件110上,且發光面110a朝向第二保護層132。第二保護層132設置於第一保護層131及有機發光元件110之間。第一保護層131之硬度大於第二保護層132。第一保護層131及第二保護層132皆可為透光材質。第一保護層131例如可以為强化玻璃蓋板,但不以此為限。第二保護層例如可以是玻璃或塑膠,但不以此為限。Referring to FIG. 5A, a cross-sectional view of a light emitting device 2 in accordance with another embodiment of the present invention is shown. In the present embodiment, the light-emitting device 2 includes an organic light-emitting element 110, a polarizing layer 121 and a filter layer 122, which may be used as an optical layer group, a first protective layer 131, and a second protective layer 132. The organic light-emitting element 110, the polarizing layer 121, and the filter layer 122 of FIG. 5A may be similar or identical to the organic light-emitting element 110, the polarizing layer 121, and the filter layer 122 of FIG. 1A, and thus the details thereof will not be repeated herein. The second protective layer 132 is disposed on the organic light emitting element 110 , and the light emitting surface 110 a faces the second protective layer 132 . The second protective layer 132 is disposed between the first protective layer 131 and the organic light emitting element 110. The first protective layer 131 has a hardness greater than that of the second protective layer 132. Each of the first protective layer 131 and the second protective layer 132 may be a light transmissive material. The first protective layer 131 can be, for example, a tempered glass cover, but is not limited thereto. The second protective layer can be, for example, glass or plastic, but is not limited thereto.

於本實施例中,第二保護層132可設置於有機發光元件110之發光面110a上。濾光層122可設置於第二保護層132上。偏光層121可設置於濾光層122上。第一保護層131可設置於偏光層121上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。In this embodiment, the second protective layer 132 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The filter layer 122 may be disposed on the second protective layer 132. The polarizing layer 121 may be disposed on the filter layer 122. The first protective layer 131 may be disposed on the polarizing layer 121. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

請參照圖5B,繪示依照本發明之另一實施例之發光裝置3之剖面示意圖。於本實施例中,第二保護層132可設置於有機發光元件110之發光面110a上。第一保護層131可設置於第二保護層132上。濾光層122可設置於第一保護層131上。偏光層121可設置於濾光層122上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。Referring to FIG. 5B, a cross-sectional view of a light emitting device 3 according to another embodiment of the present invention is shown. In this embodiment, the second protective layer 132 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The first protective layer 131 may be disposed on the second protective layer 132. The filter layer 122 may be disposed on the first protective layer 131. The polarizing layer 121 may be disposed on the filter layer 122. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

請參照圖5C,繪示依照本發明之另一實施例之發光裝置4之剖面示意圖。於本實施例中,第二保護層132可設置於有機發光元件110之發光面110a上。濾光層122可設置於第二保護層132上。第一保護層131可設置於濾光層122上。偏光層121可設置於第一保護層131上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。Referring to FIG. 5C, a cross-sectional view of a light emitting device 4 in accordance with another embodiment of the present invention is shown. In this embodiment, the second protective layer 132 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The filter layer 122 may be disposed on the second protective layer 132. The first protective layer 131 may be disposed on the filter layer 122. The polarizing layer 121 may be disposed on the first protective layer 131. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

請參照圖5D,繪示依照本發明之另一實施例之發光裝置5之剖面示意圖。於本實施例中,濾光層122可設置於有機發光元件110之發光面110a上。偏光層121可設置於濾光層122上。第二保護層132可設置於偏光層121上。第一保護層131可設置於第二保護層132上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。Referring to FIG. 5D, a cross-sectional view of a light emitting device 5 in accordance with another embodiment of the present invention is shown. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The polarizing layer 121 may be disposed on the filter layer 122. The second protective layer 132 may be disposed on the polarizing layer 121. The first protective layer 131 may be disposed on the second protective layer 132. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

請參照圖5E,繪示依照本發明之另一實施例之發光裝置6之剖面示意圖。於本實施例中,濾光層122可設置於有機發光元件110之發光面110a上。第二保護層132可設置於濾光層122上。偏光層121可設置於第二保護層132上。第一保護層131可設置於偏光層121上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。Referring to FIG. 5E, a cross-sectional view of a light emitting device 6 in accordance with another embodiment of the present invention is shown. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The second protective layer 132 may be disposed on the filter layer 122. The polarizing layer 121 may be disposed on the second protective layer 132. The first protective layer 131 may be disposed on the polarizing layer 121. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

請參照圖5F,繪示依照本發明之另一實施例之發光裝置7之剖面示意圖。於本實施例中,濾光層122可設置於有機發光元件110之發光面110a上。第二保護層132可設置於濾光層122上。第一保護層131可設置於第二保護層132上。偏光層121可設置於第一保護層131上。其中,各層之間可直接緊密接合,或者可夾有膠層或空氣層,更或者可部分緊密接合且部分夾有膠層或空氣層。Referring to FIG. 5F, a cross-sectional view of a light-emitting device 7 in accordance with another embodiment of the present invention is shown. In this embodiment, the filter layer 122 can be disposed on the light emitting surface 110a of the organic light emitting element 110. The second protective layer 132 may be disposed on the filter layer 122. The first protective layer 131 may be disposed on the second protective layer 132. The polarizing layer 121 may be disposed on the first protective layer 131. Wherein, the layers may be directly and tightly joined, or may be sandwiched with a glue layer or an air layer, or may be partially tightly joined and partially sandwiched with a glue layer or an air layer.

綜上所述,本發明之實施例之發光裝置,能夠藉由光學層組120之配置,使得光線從第二表面穿過光學層組而通過第一表面時,波長值為380 nm以下之能量較高的光線僅能透光小於或等於2%,而不至於對有機發光元件造成傷害,而有機發光元件所發出之光線從第二表面穿過光學層組而通過第一表面時,則光線不會受到光學層組太多的影響,而能夠維持有機發光元件所發出之光線的表現。In summary, the illuminating device of the embodiment of the present invention can be configured by the optical layer group 120 such that when the light passes through the optical layer group from the second surface and passes through the first surface, the wavelength is less than 380 nm. The higher light can only transmit less than or equal to 2% without causing damage to the organic light-emitting element, and the light emitted by the organic light-emitting element passes through the optical layer from the second surface and passes through the first surface. It is not affected by too many optical layer groups, and can maintain the performance of light emitted by the organic light-emitting element.

雖然本發明以前述之實施例揭露如上,然其並非用以限定本發明。在不脫離本發明之精神和範圍內,所為之更動與潤飾,均屬本發明之專利保護範圍。關於本發明所界定之保護範圍請參考所附之申請專利範圍。Although the present invention has been disclosed above in the foregoing embodiments, it is not intended to limit the invention. It is within the scope of the invention to be modified and modified without departing from the spirit and scope of the invention. Please refer to the attached patent application for the scope of protection defined by the present invention.

1、2、3、4、5、6、7、8、9、10、11‧‧‧發光裝置
110‧‧‧有機發光元件
110a ‧‧‧發光面
120‧‧‧光學層組
120a‧‧‧第一表面
120b‧‧‧第二表面
121‧‧‧偏光層
122‧‧‧濾光層
130‧‧‧蓋體
131‧‧‧第一保護層
132‧‧‧第二保護層
L0、L1、L2‧‧‧光線
N1‧‧‧第一快軸方向
N2‧‧‧第一慢軸方向
N3‧‧‧第二快軸方向
N4‧‧‧第二慢軸方向
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11‧‧‧ illuminating devices
110‧‧‧Organic light-emitting elements
110a ‧‧‧Lighting surface
120‧‧‧Optical layer group
120a‧‧‧ first surface
120b‧‧‧second surface
121‧‧‧ polarizing layer
122‧‧‧Filter layer
130‧‧‧ cover
131‧‧‧First protective layer
132‧‧‧Second protective layer
L0, L1, L2‧‧‧ rays
N1‧‧‧ first fast axis direction
N2‧‧‧ first slow axis direction
N3‧‧‧second fast axis direction
N4‧‧‧second slow axis direction

圖1A繪示依照本發明之一實施例之發光裝置之立體分解示意圖。 圖1B繪示圖1A之有機發光元件所發出之藍光之波長峰值減去藍光之波長半高寬之波長值之示意圖。 圖2A繪示圖1A之光學層組中,當光線從第二表面穿過光學層組而通過第一表面成為第一光線時,第一光線所具有之第一光譜之示意圖。 圖2B繪示圖1A之光學層組中,當光線從第一表面穿過光學層組而通過第二表面成為第二光線時,第二光線所具有之第二光譜之示意圖。 圖3A繪示測試圖1A於相異結構下之有機發光元件之紅光發光強度相對於循環次數之關係之示意圖。 圖3B繪示測試圖1A於相異結構下之有機發光元件之綠光發光強度相對於循環次數之關係之示意圖。 圖3C繪示測試圖1A於相異結構下之有機發光元件之藍光發光強度相對於循環次數之關係之示意圖。 圖4A繪示測試圖1A於相異結構下之紅光有機發光元件之跨壓相對於循環次數之關係之示意圖。 圖4B繪示測試圖1A於相異結構下之綠光有機發光元件之跨壓相對於循環次數之關係之示意圖。 圖4C繪示測試圖1A於相異結構下之藍光有機發光元件之跨壓相對於循環次數之關係之示意圖。 圖5A繪示依照本發明之另一實施例之發光裝置之剖面示意圖。 圖5B繪示依照本發明之另一實施例之發光裝置之剖面示意圖。 圖5C繪示依照本發明之另一實施例之發光裝置之剖面示意圖。 圖5D繪示依照本發明之另一實施例之發光裝置之剖面示意圖。 圖5E繪示依照本發明之另一實施例之發光裝置之剖面示意圖。 圖5F繪示依照本發明之另一實施例之發光裝置之剖面示意圖。FIG. 1A is a perspective exploded view of a light emitting device according to an embodiment of the invention. FIG. 1B is a schematic diagram showing the wavelength peak value of the blue light emitted by the organic light-emitting element of FIG. 1A minus the wavelength half-width of the blue light. FIG. 2A is a schematic diagram showing a first spectrum of a first ray when light passes through the optical layer from the second surface and becomes the first ray through the first surface in the optical layer set of FIG. 1A. 2B is a schematic view showing a second spectrum of the second light when the light passes through the optical layer group from the first surface and becomes the second light through the second surface in the optical layer group of FIG. 1A. FIG. 3A is a schematic diagram showing the relationship between the intensity of red light emission of the organic light-emitting element under the different structure of FIG. 1A with respect to the number of cycles. FIG. 3B is a schematic diagram showing the relationship between the green light emission intensity of the organic light-emitting element in the different structure of FIG. 1A with respect to the number of cycles. FIG. 3C is a schematic diagram showing the relationship between the blue light emission intensity of the organic light-emitting element under the different structure of FIG. 1A with respect to the number of cycles. 4A is a schematic diagram showing the relationship between the voltage across the red light organic light-emitting element of FIG. 1A under different structures with respect to the number of cycles. 4B is a schematic diagram showing the relationship between the voltage across the green light organic light-emitting element of FIG. 1A under different structures with respect to the number of cycles. 4C is a schematic view showing the relationship between the voltage across the blue organic light-emitting element of FIG. 1A in a different structure with respect to the number of cycles. FIG. 5A is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention. FIG. 5B is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention. FIG. 5C is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention. FIG. 5D is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention. FIG. 5E is a cross-sectional view of a light emitting device according to another embodiment of the present invention. FIG. 5F is a schematic cross-sectional view of a light emitting device according to another embodiment of the present invention.

1‧‧‧發光裝置 1‧‧‧Lighting device

110‧‧‧有機發光元件 110‧‧‧Organic light-emitting elements

110a‧‧‧發光面 110a‧‧‧Lighting surface

120‧‧‧光學層組 120‧‧‧Optical layer group

120a‧‧‧第一表面 120a‧‧‧ first surface

120b‧‧‧第二表面 120b‧‧‧second surface

121‧‧‧偏光層 121‧‧‧ polarizing layer

122‧‧‧濾光層 122‧‧‧Filter layer

N1‧‧‧第一快軸方向 N1‧‧‧ first fast axis direction

N2‧‧‧第一慢軸方向 N2‧‧‧ first slow axis direction

N3‧‧‧第二快軸方向 N3‧‧‧second fast axis direction

N4‧‧‧第二慢軸方向 N4‧‧‧second slow axis direction

Claims (14)

一種發光裝置,包括: 一有機發光元件,具有一發光面;以及一光學層組,具有相對之一第一表面及一第二表面,該第一表面較該第二表面接近該有機發光元件,該光學層組包括:一濾光層,設置於該有機發光元件之該發光面上;以及一偏光層,設置於該有機發光元件之該發光面上;其中,當一光線從該第二表面穿過該光學層組而通過該第一表面成為一第一光線,該第一光線具有一第一光譜,當該光線從該第一表面穿過該光學層組而通過該第二表面成為一第二光線,該第二光線具有一第二光譜,該第一光譜相異於該第二光譜,其中該第一光譜於波長值為380 nm以下之穿透率小於或等於2%。A light-emitting device comprising: an organic light-emitting element having a light-emitting surface; and an optical layer set having a first surface and a second surface, the first surface being closer to the organic light-emitting element than the second surface The optical layer set includes: a filter layer disposed on the light emitting surface of the organic light emitting element; and a polarizing layer disposed on the light emitting surface of the organic light emitting element; wherein, when a light is from the second surface Passing through the optical layer group to form a first light through the first surface, the first light having a first spectrum, the light passing through the optical layer from the first surface and passing through the second surface The second light, the second light has a second spectrum, the first spectrum being different from the second spectrum, wherein the first spectrum has a transmittance of less than or equal to 2% at a wavelength value below 380 nm. 如請求項1所述之發光裝置,其中該濾光層位於該有機發光元件及該偏光層之間。The light-emitting device of claim 1, wherein the filter layer is located between the organic light-emitting element and the polarizing layer. 如請求項1所述之發光裝置,其中該第二光譜於波長值為380nm以下之穿透率大於2%。The light-emitting device of claim 1, wherein the second spectrum has a transmittance of greater than 2% at a wavelength value of 380 nm or less. 如請求項1所述之發光裝置,其中該濾光層具有彼此相異之一快軸方向及一慢軸方向,該濾光層沿該快軸方向之折射率及沿該慢軸方向之折射率相異。The illuminating device of claim 1, wherein the filter layer has a fast axis direction and a slow axis direction different from each other, and the refractive index of the filter layer along the fast axis direction and the refraction along the slow axis direction The rates are different. 如請求項1所述之發光裝置,其中該濾光層對於波長值為420 nm以下之光線之穿透率小於15%。The light-emitting device of claim 1, wherein the filter layer has a transmittance of less than 15% for light having a wavelength value of 420 nm or less. 如請求項1所述之發光裝置,其中該濾光層對於該有機發光元件所發出之一藍光之波長峰值減去該藍光之波長半高寬之波長值以下之穿透率小於2%。The light-emitting device of claim 1, wherein the filter layer has a transmittance of less than 2% below a wavelength value of a wavelength of the blue light minus a wavelength half-width of the blue light emitted by the organic light-emitting element. 如請求項6所述之發光裝置,其中該藍光之波長範圍為420 nm至480 nm。The illuminating device of claim 6, wherein the blue light has a wavelength ranging from 420 nm to 480 nm. 如請求項1所述之發光裝置,其中該濾光層對於可見光之穿透率為90%以上。The light-emitting device of claim 1, wherein the filter layer has a transmittance for visible light of 90% or more. 如請求項1所述之發光裝置,其中該濾光層之厚度及該偏光層之厚度之總和小於或等於180微米。The illuminating device of claim 1, wherein the sum of the thickness of the filter layer and the thickness of the polarizing layer is less than or equal to 180 microns. 如請求項1所述之發光裝置,其中該濾光層及該偏光層對於可見光之總穿透率為43%以上。The light-emitting device of claim 1, wherein the filter layer and the polarizing layer have a total transmittance of visible light of 43% or more. 如請求項1所述之發光裝置,其中該偏光層包括一相位延遲層,設置於該有機發光元件上,且用以延遲所經過之光線之相位。The illuminating device of claim 1, wherein the polarizing layer comprises a phase retarding layer disposed on the organic luminescent element and configured to delay the phase of the passing light. 如請求項11所述之發光裝置,其中該相位延遲層為四分之一波片。The illuminating device of claim 11, wherein the phase retardation layer is a quarter wave plate. 如請求項1所述之發光裝置,更包括一第一保護層,設置於該有機發光元件上,且該發光面朝向該第一保護層。The illuminating device of claim 1, further comprising a first protective layer disposed on the organic luminescent element, wherein the illuminating surface faces the first protective layer. 如請求項13所述之發光裝置,更包括一第二保護層,設置於該第一保護層及該有機發光元件之間,該第一保護層之硬度大於該第二保護層。The illuminating device of claim 13 further comprising a second protective layer disposed between the first protective layer and the organic light emitting element, the first protective layer having a hardness greater than the second protective layer.
TW105141479A 2016-12-14 2016-12-14 Light emitting device TWI589048B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW105141479A TWI589048B (en) 2016-12-14 2016-12-14 Light emitting device
CN201710096110.6A CN106972112B (en) 2016-12-14 2017-02-22 light emitting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW105141479A TWI589048B (en) 2016-12-14 2016-12-14 Light emitting device

Publications (2)

Publication Number Publication Date
TWI589048B true TWI589048B (en) 2017-06-21
TW201822389A TW201822389A (en) 2018-06-16

Family

ID=59328393

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105141479A TWI589048B (en) 2016-12-14 2016-12-14 Light emitting device

Country Status (2)

Country Link
CN (1) CN106972112B (en)
TW (1) TWI589048B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102223A (en) * 2002-07-15 2004-04-02 Fuji Photo Film Co Ltd Filter for organic electroluminescent display element
US7626329B2 (en) * 2004-01-20 2009-12-01 Lg Display Co., Ltd Organic electroluminescent device with black insulator
TWI520398B (en) * 2012-06-15 2016-02-01 群康科技(深圳)有限公司 Organic light-emitting device and image display system employing the same
JP2016170271A (en) * 2015-03-12 2016-09-23 大日本印刷株式会社 Optical sheet and display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070003250A (en) * 2005-07-01 2007-01-05 삼성전자주식회사 Display device and method of manufacturing the same
CN101212023A (en) * 2006-12-28 2008-07-02 上海广电电子股份有限公司 Organic top luminous device and method for producing the luminous device
JP2015084000A (en) * 2012-02-07 2015-04-30 シャープ株式会社 Display element and illumination device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004102223A (en) * 2002-07-15 2004-04-02 Fuji Photo Film Co Ltd Filter for organic electroluminescent display element
US7626329B2 (en) * 2004-01-20 2009-12-01 Lg Display Co., Ltd Organic electroluminescent device with black insulator
TWI520398B (en) * 2012-06-15 2016-02-01 群康科技(深圳)有限公司 Organic light-emitting device and image display system employing the same
JP2016170271A (en) * 2015-03-12 2016-09-23 大日本印刷株式会社 Optical sheet and display device

Also Published As

Publication number Publication date
CN106972112B (en) 2018-11-09
TW201822389A (en) 2018-06-16
CN106972112A (en) 2017-07-21

Similar Documents

Publication Publication Date Title
US10962833B2 (en) Planar lighting device
US20180299727A1 (en) Display devices
TWI556021B (en) Method for improving contrast of polarizing plate, image display device, and image display device
JP6748898B2 (en) Light emitting element and light emitting device
JP2003332068A (en) Electroluminescence element
JP2007035550A (en) Base plate for electroluminescent element
TWI532034B (en) Illumination control
TW201608308A (en) Backlight unit and liquid crystal display device
WO2017154977A1 (en) Organic el display device
TWI589048B (en) Light emitting device
JP2006171228A (en) Color filter for self-luminous display device
JP2017525988A (en) Patterned glass light guide and display device having the same
JP6302855B2 (en) Insect repellent, insect repellent system, and insect repellent method
KR20180012634A (en) Liquid crystal display panel and liquid crystal display apparatus comprising same
JP2008171820A (en) Anode panel of field emission type backlight unit, and field emission type backlight unit equipped with this
JP2016162578A (en) Light emission device
JP6843491B2 (en) Laminates, methods for manufacturing laminates, image display devices, methods for manufacturing image display devices, and methods for improving the light transmittance of polarizing plates
KR101510563B1 (en) Antireflection film
JP2005322489A (en) Electroluminescent element and electroluminescent display device
TW202331373A (en) Backlight unit with emission modification
KR20130027706A (en) Liquid crystal display device
Park et al. Optimization of Light-Output Characteristics of Flat Fluores-cent Lamps (FFLs) by Using Micro-lens Arrays
KR20050120136A (en) Light-polarizing film with high permeability for improving an interference light of a color organic light emitting diode
JP2005134470A (en) Liquid crystal display device
TWM345180U (en) Flat light source apparatus