TWI585951B - Memory structure - Google Patents

Memory structure Download PDF

Info

Publication number
TWI585951B
TWI585951B TW104144593A TW104144593A TWI585951B TW I585951 B TWI585951 B TW I585951B TW 104144593 A TW104144593 A TW 104144593A TW 104144593 A TW104144593 A TW 104144593A TW I585951 B TWI585951 B TW I585951B
Authority
TW
Taiwan
Prior art keywords
memory
substrate
contact window
doped region
layer
Prior art date
Application number
TW104144593A
Other languages
Chinese (zh)
Other versions
TW201724473A (en
Inventor
永井享浩
Original Assignee
力晶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 力晶科技股份有限公司 filed Critical 力晶科技股份有限公司
Priority to TW104144593A priority Critical patent/TWI585951B/en
Priority to CN201610086854.5A priority patent/CN106935586A/en
Application granted granted Critical
Publication of TWI585951B publication Critical patent/TWI585951B/en
Publication of TW201724473A publication Critical patent/TW201724473A/en

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices

Landscapes

  • Semiconductor Memories (AREA)

Description

記憶體結構Memory structure

本發明是有關於一種半導體元件結構,且特別是有關於一種記憶體結構。The present invention relates to a semiconductor device structure, and more particularly to a memory structure.

記憶體為用以儲存資訊或資料的半導體元件,廣泛地應用於個人電腦、行動電話、網路等方面,已成為生活中不可或缺的重要電子產品。由於電腦微處理器的功能越來越強,軟體所進行的程式與運算也隨之增加,且各種資料儲存量也日趨增加,因此記憶體的容量需求也就越來越高。Memory is a semiconductor component used to store information or data. It is widely used in personal computers, mobile phones, and the Internet. It has become an indispensable electronic product in life. As the functions of computer microprocessors become stronger and stronger, the programs and operations performed by software are also increased, and the storage of various data is increasing, so the capacity requirements of memory are becoming higher and higher.

在目前記憶體元件不斷微小化的趨勢下,業界積極地在有限的空間中提升記憶體元件的積集度,也因而使得記憶體元件的結構與製程日趨複雜。因此,在記憶體元件的製作過程中,常需要使用許多光罩來完成記憶體元件的製作,進而造成製造成本大幅地提高。Under the current trend of miniaturization of memory components, the industry actively promotes the accumulation of memory components in a limited space, which in turn makes the structure and process of memory components increasingly complex. Therefore, in the fabrication process of the memory device, it is often necessary to use a plurality of photomasks to complete the fabrication of the memory component, thereby causing a substantial increase in manufacturing cost.

本發明提供一種記憶體結構,其結構簡單且製程的複雜度低,進而可有效地降低製造成本。The invention provides a memory structure, which has a simple structure and a low process complexity, thereby effectively reducing manufacturing costs.

本發明提出一種記憶體結構,包括基底、選擇閘極結構、第一重摻雜區、第二重摻雜區及浮置接觸窗。選擇閘極結構設置於基底上。第一重摻雜區與第二重摻雜區分別設置於選擇閘極結構一側與另一側的基底中。浮置接觸窗設置於第一重摻雜區與選擇閘極結構之間的基底上,且與基底相互隔離。The present invention provides a memory structure including a substrate, a selective gate structure, a first heavily doped region, a second heavily doped region, and a floating contact window. The gate structure is selected to be disposed on the substrate. The first heavily doped region and the second heavily doped region are respectively disposed in the substrate on one side and the other side of the selective gate structure. The floating contact window is disposed on the substrate between the first heavily doped region and the selected gate structure, and is isolated from the substrate.

依照本發明的一實施例所述,在上述之記憶體結構中,選擇閘極結構包括選擇閘極及介電層。選擇閘極設置於基底上。介電層設置於選擇閘極與基底之間。According to an embodiment of the invention, in the memory structure, selecting a gate structure includes selecting a gate and a dielectric layer. The selection gate is disposed on the substrate. The dielectric layer is disposed between the selection gate and the substrate.

依照本發明的一實施例所述,在上述之記憶體結構中,浮置接觸窗的頂面例如是高於選擇閘極結構的頂面。According to an embodiment of the invention, in the above memory structure, the top surface of the floating contact window is, for example, higher than the top surface of the selective gate structure.

依照本發明的一實施例所述,在上述之記憶體結構中,浮置接觸窗例如是橫越主動區。In accordance with an embodiment of the invention, in the memory structure described above, the floating contact window is, for example, traversing the active area.

依照本發明的一實施例所述,在上述之記憶體結構中,浮置接觸窗與基底之間例如是不具有金屬矽化物層。According to an embodiment of the invention, in the above memory structure, the floating contact window and the substrate, for example, do not have a metal telluride layer.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括介電結構。介電結構設置於浮置接觸窗與基底之間,可用以隔離浮置接觸窗與基底。According to an embodiment of the invention, in the memory structure described above, a dielectric structure is further included. A dielectric structure is disposed between the floating contact window and the substrate to isolate the floating contact window from the substrate.

依照本發明的一實施例所述,在上述之記憶體結構中,介電結構可為單層結構或多層結構。According to an embodiment of the invention, in the above memory structure, the dielectric structure may be a single layer structure or a multilayer structure.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括第一輕摻雜區。第一輕摻雜區設置於第一重摻雜區與選擇閘極結構之間的基底中。According to an embodiment of the invention, in the memory structure, the first lightly doped region is further included. The first lightly doped region is disposed in the substrate between the first heavily doped region and the selected gate structure.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括第二輕摻雜區。第二輕摻雜區設置於第二重摻雜區與選擇閘極結構之間的基底中。According to an embodiment of the invention, in the memory structure, the second lightly doped region is further included. The second lightly doped region is disposed in the substrate between the second heavily doped region and the selected gate structure.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括第一接觸窗。第一接觸窗電性連接至第一重摻雜區。According to an embodiment of the invention, in the memory structure, the first contact window is further included. The first contact window is electrically connected to the first heavily doped region.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括第一內連線結構及第二內連線結構。第一內連線結構電性連接於第一接觸窗。第二內連線結構電性連接於浮置接觸窗。According to an embodiment of the present invention, in the memory structure, the first interconnect structure and the second interconnect structure are further included. The first interconnect structure is electrically connected to the first contact window. The second interconnect structure is electrically connected to the floating contact window.

依照本發明的一實施例所述,在上述之記憶體結構中,位於第二內連線結構側邊的第一內連線結構可位於第二內連線結構的一側、位於第二內連線結構的兩側或環繞第二內連線結構。According to an embodiment of the present invention, in the memory structure, the first interconnect structure located on the side of the second interconnect structure may be located on one side of the second interconnect structure and located in the second The sides of the wiring structure or surround the second interconnect structure.

依照本發明的一實施例所述,在上述之記憶體結構中,部分第一內連線結構可位於第二內連線結構的上方。According to an embodiment of the invention, in the memory structure, a portion of the first interconnect structure may be located above the second interconnect structure.

依照本發明的一實施例所述,在上述之記憶體結構中,更包括第二接觸窗。第二接觸窗電性連接至第二重摻雜區。According to an embodiment of the invention, in the memory structure, a second contact window is further included. The second contact window is electrically connected to the second heavily doped region.

依照本發明的一實施例所述,在上述之記憶體結構中,記憶體結構可用於作為一次可程式化記憶體(OTP memory)、多次可程式化記憶體(MTP memory)或快閃記憶體(flash memory)。According to an embodiment of the invention, in the memory structure, the memory structure can be used as an OTP memory, a multi-programmable memory (MTP memory) or a flash memory. Flash memory.

基於上述,由於本發明所提出的記憶體結構是使用浮置接觸窗來進行電荷的儲存,所以記憶體結構具有簡單的結構,且可藉由簡易的製程形成,進而可有效地降低製造成本。Based on the above, since the memory structure proposed by the present invention uses a floating contact window for storing the electric charge, the memory structure has a simple structure and can be formed by a simple process, thereby effectively reducing the manufacturing cost.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。The above described features and advantages of the invention will be apparent from the following description.

圖1為本發明第一實施例的記憶體結構的剖面圖。圖2為圖1中的浮置接觸窗與主動區的示意圖。圖3為本發明第二實施例的記憶體結構的剖面圖。圖4為本發明第三實施例的記憶體結構的剖面圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a structure of a memory according to a first embodiment of the present invention. 2 is a schematic view of the floating contact window and the active area of FIG. 1. Figure 3 is a cross-sectional view showing the structure of a memory according to a second embodiment of the present invention. Fig. 4 is a cross-sectional view showing the structure of a memory according to a third embodiment of the present invention.

請參照圖1,記憶體結構100包括基底102、選擇閘極結構104、重摻雜區106、重摻雜區108及浮置接觸窗110。記憶體結構100可用於作為一次可程式化記憶體、多次可程式化記憶體或快閃記憶體。基底102例如是半導體基底,如矽基底等。Referring to FIG. 1 , the memory structure 100 includes a substrate 102 , a selective gate structure 104 , a heavily doped region 106 , a heavily doped region 108 , and a floating contact window 110 . The memory structure 100 can be used as a one-time programmable memory, multiple programmable memory or flash memory. The substrate 102 is, for example, a semiconductor substrate such as a germanium substrate or the like.

選擇閘極結構104設置於基底102上。選擇閘極結構104包括選擇閘極112及介電層114,且更可包括間隙壁116。選擇閘極112設置於基底102上。選擇閘極112的材料例如是摻雜多晶矽等導體材料。選擇閘極112的形成方法例如是化學氣相沉積法。介電層114設置於選擇閘極112與基底102之間,可作為閘介電層使用。介電層114的材料例如是氧化矽。介電層114的形成方法例如是熱氧化法。間隙壁116設置於選擇閘極112的側壁上。間隙壁116的材料例如是氮化矽。間隙壁116的形成方法例如是先形成覆蓋選擇閘極112的間隙壁材料層(未繪示),再對間隙壁材料層進行回蝕刻製程而形成。The select gate structure 104 is disposed on the substrate 102. The select gate structure 104 includes a select gate 112 and a dielectric layer 114 and may further include a spacer 116. The selection gate 112 is disposed on the substrate 102. The material of the gate 112 is selected, for example, as a conductor material such as doped polysilicon. The method of forming the gate 112 is, for example, a chemical vapor deposition method. The dielectric layer 114 is disposed between the selection gate 112 and the substrate 102 and can be used as a gate dielectric layer. The material of the dielectric layer 114 is, for example, ruthenium oxide. The method of forming the dielectric layer 114 is, for example, a thermal oxidation method. The spacers 116 are disposed on the sidewalls of the selection gate 112. The material of the spacers 116 is, for example, tantalum nitride. The method for forming the spacers 116 is formed by first forming a spacer material layer (not shown) covering the selection gate 112, and then performing an etch back process on the spacer material layer.

重摻雜區106、108分別設置於選擇閘極結構104一側與另一側的基底102中。重摻雜區106、108分別可為N型重摻雜區或P型重摻雜區。在此實施例中,重摻雜區106、108是以N型重摻雜區為例來進行說明。重摻雜區106、108的形成方法例如是離子植入法。The heavily doped regions 106, 108 are respectively disposed in the substrate 102 on one side of the selection gate structure 104 and on the other side. The heavily doped regions 106, 108 may each be an N-type heavily doped region or a P-type heavily doped region. In this embodiment, the heavily doped regions 106, 108 are described by taking an N-type heavily doped region as an example. The method of forming the heavily doped regions 106, 108 is, for example, an ion implantation method.

浮置接觸窗110設置於重摻雜區106與選擇閘極結構104之間的基底102上,且與基底102相互隔離。浮置接觸窗110可用於儲存電荷。由於記憶體結構100是使用浮置接觸窗110來進行電荷的儲存,所以記憶體結構100具有簡單的結構,且可藉由簡易的製程形成,進而可有效地降低製造成本。浮置接觸窗110的頂面例如是高於選擇閘極結構104的頂面。浮置接觸窗110與基底102之間例如是不具有金屬矽化物層,因此不會產生電荷被金屬矽化物層所捕獲的情況,而能夠有效地進行記憶體的操作。此外,請參照圖2,浮置接觸窗110例如是橫越主動區AA,藉此可防止漏電流產生。浮置接觸窗110的材料例如是導體材料,如鎢等金屬或摻雜多晶矽。在此實施例中,浮置接觸窗110的材料是以鎢為例來進行說明。浮置接觸窗110的形成方法例如是金屬鑲嵌法。The floating contact window 110 is disposed on the substrate 102 between the heavily doped region 106 and the select gate structure 104 and is isolated from the substrate 102. The floating contact window 110 can be used to store charge. Since the memory structure 100 uses the floating contact window 110 for charge storage, the memory structure 100 has a simple structure and can be formed by a simple process, thereby effectively reducing manufacturing costs. The top surface of the floating contact window 110 is, for example, higher than the top surface of the select gate structure 104. For example, since the floating contact window 110 and the substrate 102 do not have a metal telluride layer, the charge is not captured by the metal telluride layer, and the operation of the memory can be performed efficiently. In addition, referring to FIG. 2, the floating contact window 110 is, for example, traversing the active area AA, thereby preventing leakage current from being generated. The material of the floating contact window 110 is, for example, a conductor material such as a metal such as tungsten or a doped polysilicon. In this embodiment, the material of the floating contact window 110 is exemplified by tungsten. The method of forming the floating contact window 110 is, for example, a damascene method.

另外,請參照圖1,記憶體結構100更可選擇性地包括輕摻雜區118、輕摻雜區120、介電結構122、介電層124、接觸窗蝕刻終止層(CESL)126、介電層結構128、金屬矽化物層130a~130c、接觸窗132、接觸窗134、阻障層136a~136c、金屬內連線138、140、142中的至少一者。In addition, referring to FIG. 1 , the memory structure 100 further selectively includes a lightly doped region 118 , a lightly doped region 120 , a dielectric structure 122 , a dielectric layer 124 , a contact etch stop layer (CESL ) 126 , and At least one of the electrical layer structure 128, the metal telluride layers 130a-130c, the contact window 132, the contact window 134, the barrier layers 136a-136c, and the metal interconnects 138, 140, 142.

輕摻雜區118設置於重摻雜區106與選擇閘極結構104之間的基底102中。輕摻雜區120設置於重摻雜區108與選擇閘極結構104之間的基底102中。輕摻雜區118、120的摻雜濃度與深度例如是小於重摻雜區106、108的摻雜濃度與深度。輕摻雜區118、120可為N型輕摻雜區或P型輕摻雜區。在此實施例中,輕摻雜區118、120是以N型輕摻雜區為例來進行說明。輕摻雜區118、120的形成方法例如是離子植入法。Lightly doped region 118 is disposed in substrate 102 between heavily doped region 106 and select gate structure 104. The lightly doped region 120 is disposed in the substrate 102 between the heavily doped region 108 and the select gate structure 104. The doping concentration and depth of the lightly doped regions 118, 120 are, for example, less than the doping concentration and depth of the heavily doped regions 106, 108. The lightly doped regions 118, 120 can be N-type lightly doped regions or P-type lightly doped regions. In this embodiment, the lightly doped regions 118 and 120 are described by taking an N-type lightly doped region as an example. The method of forming the lightly doped regions 118, 120 is, for example, an ion implantation method.

介電結構122設置於浮置接觸窗110與基底102之間,可用以隔離浮置接觸窗110與基底102。介電結構122可為單層結構或多層結構。在此實施例中,介電結構122是以單層的原子層沉積(ALD)氧化矽層為例進行說明,然而本發明並不以此為限。在其他實施例中,介電結構122亦可為多層結構。所屬技術領域具有通常知識者可基於可靠度與製造成本的考量來調整介電結構122的層數與型態。The dielectric structure 122 is disposed between the floating contact window 110 and the substrate 102 and can be used to isolate the floating contact window 110 from the substrate 102. The dielectric structure 122 can be a single layer structure or a multilayer structure. In this embodiment, the dielectric structure 122 is exemplified by a single layer atomic layer deposition (ALD) ruthenium oxide layer, but the invention is not limited thereto. In other embodiments, the dielectric structure 122 can also be a multi-layer structure. Those skilled in the art can adjust the number and type of dielectric structures 122 based on reliability and manufacturing cost considerations.

以下,以圖1、圖3與圖4的實施例來對介電結構的不同態樣進行比較說明,但本發明並不以此為限。此外,在圖3的記憶體結構100a與圖4的記憶體結構100b中,與圖1的記憶體結構100相似的構件的材料、配置方式與功效等請參照圖1的實施例的說明,於此不再贅述。Hereinafter, different aspects of the dielectric structure will be described in comparison with the embodiments of FIGS. 1, 3 and 4, but the invention is not limited thereto. In the memory structure 100a of FIG. 3 and the memory structure 100b of FIG. 4, the materials, arrangement, and efficacy of the components similar to the memory structure 100 of FIG. 1 are described with reference to the embodiment of FIG. This will not be repeated here.

請參照圖1,介電結構122的形成方法包括以下步驟。形成穿過介電層結構128、接觸窗蝕刻終止層126與介電層124的接觸窗開口110a,其中接觸窗開口110a是用於形成浮置接觸窗110。接著,再於接觸窗開口110a中形成介電結構122。在圖1的實施例中,由於介電結構122是在接觸窗開口110a形成之後才形成,因此可靠度較佳。此外,介電結構122也會分別形成在接觸窗開口132a、134a中。因此,相較於圖3與圖4的實施例,圖1的實施例為了使後續形成於接觸窗開口132a、134a中的接觸窗132、134能夠分別電性連接至重摻雜區106、108,因此會多進行一道光罩製程來移除位於接觸窗開口132a、134a底部的介電結構122。因此,相較於圖3與圖4的實施例,圖1的實施例的製造成本較高。Referring to FIG. 1, a method of forming the dielectric structure 122 includes the following steps. A contact opening 110a is formed through the dielectric layer structure 128, the contact etch stop layer 126 and the dielectric layer 124, wherein the contact opening 110a is for forming the floating contact window 110. Next, a dielectric structure 122 is formed in the contact opening 110a. In the embodiment of FIG. 1, since the dielectric structure 122 is formed after the contact opening 110a is formed, reliability is preferred. In addition, dielectric structures 122 are also formed in contact openings 132a, 134a, respectively. Thus, in contrast to the embodiment of FIGS. 3 and 4, the embodiment of FIG. 1 is configured to electrically connect the contact windows 132, 134 subsequently formed in the contact openings 132a, 134a to the heavily doped regions 106, 108, respectively. Thus, a reticle process is performed to remove the dielectric structure 122 at the bottom of the contact window openings 132a, 134a. Thus, the embodiment of Figure 1 is more expensive to manufacture than the embodiment of Figures 3 and 4.

請參照圖3,在記憶體結構100a中,介電結構122a包括原子層沉積氧化矽層123與介電層124所形成的雙層結構。原子層沉積氧化矽層123與介電層124依序設置於基底102上。在圖3的實施例中,在形成原子層沉積氧化矽層123與介電層124之後,再於原子層沉積氧化矽層123與介電層124中形成接觸窗開口110a。由於接觸窗開口110a是停止在介電層124中,所以在製程上較不易控制接觸窗開口110a底部的停止位置。因此,在將圖1的實施例與圖3的實施例進行比較時,圖1的實施例的可靠度較佳,但圖3的實施例的製造成本較低。Referring to FIG. 3, in the memory structure 100a, the dielectric structure 122a includes a two-layer structure formed by an atomic layer deposited yttrium oxide layer 123 and a dielectric layer 124. The atomic layer deposited yttrium oxide layer 123 and the dielectric layer 124 are sequentially disposed on the substrate 102. In the embodiment of FIG. 3, after the atomic layer deposition of the hafnium oxide layer 123 and the dielectric layer 124 is formed, the contact opening 110a is formed in the atomic layer deposition of the hafnium oxide layer 123 and the dielectric layer 124. Since the contact opening 110a is stopped in the dielectric layer 124, it is less convenient to control the stop position of the bottom of the contact opening 110a in the process. Therefore, the reliability of the embodiment of Fig. 1 is better when the embodiment of Fig. 1 is compared with the embodiment of Fig. 3, but the manufacturing cost of the embodiment of Fig. 3 is low.

請參照圖4,在記憶體結構100b中,以單層介電層124作為介電結構。在圖4的實施例中,在形成介電層124之後,再於介電層124中形成接觸窗開口110a。由於接觸窗開口110a是停止在介電層124中,所以在製程上較不易控制接觸窗開口110a底部的停止位置。此外,在將圖3的實施例與圖4的實施例進行比較時,由於圖4的實施例並不具有圖3中的原子層沉積氧化矽層123,因此圖3的實施例的可靠度較佳,但圖4的實施例的製造成本較低。Referring to FIG. 4, in the memory structure 100b, a single dielectric layer 124 is used as the dielectric structure. In the embodiment of FIG. 4, after the dielectric layer 124 is formed, a contact opening 110a is formed in the dielectric layer 124. Since the contact opening 110a is stopped in the dielectric layer 124, it is less convenient to control the stop position of the bottom of the contact opening 110a in the process. In addition, when the embodiment of FIG. 3 is compared with the embodiment of FIG. 4, since the embodiment of FIG. 4 does not have the atomic layer deposited yttria layer 123 of FIG. 3, the reliability of the embodiment of FIG. 3 is higher. Preferably, the embodiment of Figure 4 is less expensive to manufacture.

請繼續參照圖1,介電層124設置於重摻雜區106與選擇閘極結構104之間的基底102上。因此,在形成金屬矽化物層130時,由於尚未在介電層124中形成接觸窗開口110a,所以介電層124會覆蓋住位於重摻雜區106與選擇閘極結構104之間的基底102,而可用以防止在重摻雜區106與選擇閘極結構104之間的基底102上形成金屬矽化物層。介電層124例如是藉由含磷四乙氧基矽烷(P-TEOS)所形成的氧化矽層。Referring to FIG. 1 , a dielectric layer 124 is disposed on the substrate 102 between the heavily doped region 106 and the select gate structure 104 . Therefore, when the metal telluride layer 130 is formed, since the contact opening 110a has not been formed in the dielectric layer 124, the dielectric layer 124 covers the substrate 102 between the heavily doped region 106 and the selective gate structure 104. It can be used to prevent the formation of a metal telluride layer on the substrate 102 between the heavily doped region 106 and the select gate structure 104. The dielectric layer 124 is, for example, a ruthenium oxide layer formed by phosphorus-containing tetraethoxy decane (P-TEOS).

接觸窗蝕刻終止層126設置於介電層124與金屬矽化物層130a~130c上。接觸窗蝕刻終止層126的材料例如是氮化矽。接觸窗蝕刻終止層126的形成方法例如是化學氣相沉積法。The contact etch stop layer 126 is disposed on the dielectric layer 124 and the metal sulphide layers 130a-130c. The material of the contact etch stop layer 126 is, for example, tantalum nitride. The method of forming the contact etch stop layer 126 is, for example, a chemical vapor deposition method.

介電層結構128設置於接觸窗蝕刻終止層126上。介電層結構128例如是由多層介電層所形成的結構。介電層結構128的材料例如是氧化矽。介電層結構128的形成方法例如是化學氣相沉積法。在此實施例中,記憶體結構100的導電構件(如接觸窗132、134、浮置接觸窗110與內連線結構138、140、142等)是以設置於介電層結構128中為例來進行說明。The dielectric layer structure 128 is disposed on the contact etch stop layer 126. The dielectric layer structure 128 is, for example, a structure formed of a plurality of dielectric layers. The material of the dielectric layer structure 128 is, for example, ruthenium oxide. The method of forming the dielectric layer structure 128 is, for example, a chemical vapor deposition method. In this embodiment, the conductive members of the memory structure 100 (such as the contact windows 132, 134, the floating contact windows 110 and the interconnect structures 138, 140, 142, etc.) are exemplified in the dielectric layer structure 128. To explain.

金屬矽化物層130a~130c分別設置於重摻雜區106、重摻雜區108與選擇閘極112上。金屬矽化物層130a~130c的材料例如是矽化鈦、矽化鈷、矽化鎳、矽化鈀、矽化鉑或矽化鉬。金屬矽化物層130a~130c例如是進行自行對金屬矽化物(self-aligned silicide,salicide)製程而形成。Metal telluride layers 130a-130c are disposed on heavily doped region 106, heavily doped region 108, and select gate 112, respectively. The material of the metal telluride layers 130a to 130c is, for example, titanium telluride, cobalt telluride, nickel telluride, palladium telluride, platinum telluride or molybdenum telluride. The metal telluride layers 130a to 130c are formed, for example, by a self-aligned silicide (salicide) process.

接觸窗132、134分別電性連接至重摻雜區106、108。接觸窗132、134分別可藉由金屬矽化物層130a、130b電性連接至重摻雜區106、108。接觸窗132可作為源極線使用,且接觸窗134可作為位元線使用。接觸窗132、134的材料例如是導體材料,如鎢等金屬或摻雜多晶矽。在此實施例中,接觸窗132、134的材料是以鎢為例來進行說明。接觸窗132、134的形成方法例如是金屬鑲嵌法。此外,接觸窗132、134與浮置接觸窗110可藉由相同製程同時形成。Contact windows 132, 134 are electrically coupled to heavily doped regions 106, 108, respectively. Contact windows 132, 134 can be electrically connected to heavily doped regions 106, 108, respectively, by metal telluride layers 130a, 130b. Contact window 132 can be used as a source line, and contact window 134 can be used as a bit line. The material of the contact windows 132, 134 is, for example, a conductor material such as a metal such as tungsten or a doped polysilicon. In this embodiment, the material of the contact windows 132, 134 is exemplified by tungsten. The method of forming the contact windows 132, 134 is, for example, a damascene method. In addition, the contact windows 132, 134 and the floating contact window 110 can be simultaneously formed by the same process.

另一方面,由於浮置接觸窗110與接觸窗132之間會產生耦合效應,因此可有效地提升浮置接觸窗110與接觸窗132之間的耦合率(coupling ratio)與電容比(capacitance ratio),進而能夠以低電壓進行記憶體元件的操作。藉此,記憶體結構100可藉由源極側注入(source side injection,SSI)的方式來進行程式化操作。On the other hand, since a coupling effect occurs between the floating contact window 110 and the contact window 132, the coupling ratio and the capacitance ratio between the floating contact window 110 and the contact window 132 can be effectively improved. Further, the operation of the memory element can be performed at a low voltage. Thereby, the memory structure 100 can be programmed by means of source side injection (SSI).

阻障層136a~136c分別可設置於接觸窗132、浮置接觸窗110與接觸窗134的兩側與底部。阻障層136a~136c的材料例如是TiN或TaN。阻障層136a~136c的形成方法例如是物理氣相沉積法或化學氣相沉積法。The barrier layers 136a-136c may be respectively disposed on the two sides and the bottom of the contact window 132, the floating contact window 110, and the contact window 134. The material of the barrier layers 136a to 136c is, for example, TiN or TaN. The formation method of the barrier layers 136a to 136c is, for example, a physical vapor deposition method or a chemical vapor deposition method.

內連線結構138電性連接於接觸窗132,可用以作為源極線使用。內連線結構138包括導體層144與阻障層146。阻障層146可設置於導體層144的兩側與底部。導體層144的材料例如是銅或鋁等金屬。導體層144的形成方法例如是金屬鑲嵌法。阻障層146的材料例如是TiN或TaN。阻障層146的形成方法例如是物理氣相沉積法或化學氣相沉積法。此外,圖1中的內連線結構138所具有的導體層144的層數僅為舉例說明,於此技術領域具有通常知識者可依照產品設計需求來調整內連線結構138中的導體層144的層數。The interconnect structure 138 is electrically connected to the contact window 132 and can be used as a source line. The interconnect structure 138 includes a conductor layer 144 and a barrier layer 146. The barrier layer 146 may be disposed on both sides and the bottom of the conductor layer 144. The material of the conductor layer 144 is, for example, a metal such as copper or aluminum. The method of forming the conductor layer 144 is, for example, a damascene method. The material of the barrier layer 146 is, for example, TiN or TaN. The formation method of the barrier layer 146 is, for example, a physical vapor deposition method or a chemical vapor deposition method. In addition, the number of layers of the conductor layer 144 of the interconnect structure 138 of FIG. 1 is merely illustrative, and those skilled in the art can adjust the conductor layer 144 in the interconnect structure 138 in accordance with product design requirements. The number of layers.

內連線結構140電性連接於浮置接觸窗110,可用於儲存電荷。內連線結構140包括導體層148與阻障層150。阻障層150可設置於導體層148的兩側與底部。導體層148的材料例如是銅或鋁等金屬。導體層148的形成方法例如是金屬鑲嵌法。阻障層150的材料例如是TiN或TaN。阻障層150的形成方法例如是物理氣相沉積法或化學氣相沉積法。The interconnect structure 140 is electrically connected to the floating contact window 110 and can be used to store charges. The interconnect structure 140 includes a conductor layer 148 and a barrier layer 150. The barrier layer 150 may be disposed on both sides and the bottom of the conductor layer 148. The material of the conductor layer 148 is, for example, a metal such as copper or aluminum. The method of forming the conductor layer 148 is, for example, a damascene method. The material of the barrier layer 150 is, for example, TiN or TaN. The formation method of the barrier layer 150 is, for example, a physical vapor deposition method or a chemical vapor deposition method.

此外,由於內連線結構138、140之間會產生耦合效應,因此可進一步地提升耦合率與電容比,而能夠進一步地降低記憶體元件的操作電壓。此外,部分內連線結構138可位於內連線結構140的上方,以進一步提高耦合率與電容比。In addition, since a coupling effect occurs between the interconnect structures 138 and 140, the coupling ratio and the capacitance ratio can be further increased, and the operating voltage of the memory device can be further reduced. Additionally, a portion of the interconnect structure 138 can be positioned over the interconnect structure 140 to further increase the coupling ratio to capacitance ratio.

另一方面,位於內連線結構140側邊的內連線結構138可位於內連線結構140的一側、位於內連線結構140的兩側或環繞內連線結構140。上述三種情況的內連線結構138、140之間的耦合面積、耦合率與電容比由小到大遞增,且記憶胞尺寸由小到大遞增。因此,所屬技術領域具有通常知識者可基於耦合面積、耦合率、電容比以及記憶胞尺寸的考量,來選擇內連線結構138的設置方式。在此實施例中,內連線結構138是以位於內連線結構140的兩側為例來進行說明。On the other hand, the interconnect structure 138 on the side of the interconnect structure 140 may be located on one side of the interconnect structure 140, on either side of the interconnect structure 140, or around the interconnect structure 140. In the above three cases, the coupling area, the coupling ratio and the capacitance ratio between the interconnect structures 138 and 140 are increased from small to large, and the memory cell size is increased from small to large. Therefore, those skilled in the art can select the arrangement of the interconnect structure 138 based on the consideration of the coupling area, the coupling ratio, the capacitance ratio, and the memory cell size. In this embodiment, the interconnect structure 138 is illustrated on the two sides of the interconnect structure 140 as an example.

內連線結構142電性連接於接觸窗134,可用以作為位元線使用。內連線結構142包括導體層152與阻障層154。阻障層154可設置於導體層152的兩側與底部。導體層152的材料例如是銅或鋁等金屬。導體層152的形成方法例如是金屬鑲嵌法。阻障層154的材料例如是TiN或TaN。阻障層154的形成方法例如是物理氣相沉積法或化學氣相沉積法。The interconnect structure 142 is electrically connected to the contact window 134 and can be used as a bit line. The interconnect structure 142 includes a conductor layer 152 and a barrier layer 154. The barrier layer 154 may be disposed on both sides and the bottom of the conductor layer 152. The material of the conductor layer 152 is, for example, a metal such as copper or aluminum. The method of forming the conductor layer 152 is, for example, a damascene method. The material of the barrier layer 154 is, for example, TiN or TaN. The formation method of the barrier layer 154 is, for example, a physical vapor deposition method or a chemical vapor deposition method.

此外,圖1中的內連線結構138、140、142所具有的導體層144、148、152的層數僅為舉例說明,於此技術領域具有通常知識者可依照產品設計需求來調整內連線結構138、140、142中的導體層144、148、152的層數。舉例來說,可同時增加內連線結構138、140中的導體層144、148的層數來提高內連線結構138、140之間的耦合面積,以進一步地提高耦合率與電容比。In addition, the number of layers of the conductor layers 144, 148, and 152 of the interconnect structure 138, 140, 142 in FIG. 1 is merely an example, and those skilled in the art can adjust the interconnection according to product design requirements. The number of layers of conductor layers 144, 148, 152 in line structures 138, 140, 142. For example, the number of layers of conductor layers 144, 148 in interconnect structures 138, 140 can be increased simultaneously to increase the coupling area between interconnect structures 138, 140 to further increase the coupling ratio to capacitance ratio.

綜上所述,由於上述實施例的記憶體結構是使用浮置接觸窗來進行電荷的儲存,所以記憶體結構具有簡單的結構,且可藉由簡易的製程形成,進而可有效地降低製造成本。In summary, since the memory structure of the above embodiment uses a floating contact window for storing the charge, the memory structure has a simple structure and can be formed by a simple process, thereby effectively reducing the manufacturing cost. .

雖然本發明已以實施例揭露如上,然其並非用以限定本發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。Although the present invention has been disclosed in the above embodiments, it is not intended to limit the present invention, and any one of ordinary skill in the art can make some changes and refinements without departing from the spirit and scope of the present invention. The scope of the invention is defined by the scope of the appended claims.

100、100a、100b‧‧‧記憶體結構100, 100a, 100b‧‧‧ memory structure

102‧‧‧基底102‧‧‧Base

104‧‧‧選擇閘極結構104‧‧‧Select gate structure

106、108‧‧‧重摻雜區106, 108‧‧‧ heavily doped area

110‧‧‧浮置接觸窗110‧‧‧Floating contact window

110a、132a、134a‧‧‧接觸窗開口110a, 132a, 134a‧‧‧ contact window openings

112‧‧‧選擇閘極112‧‧‧Select gate

114‧‧‧介電層114‧‧‧Dielectric layer

116‧‧‧間隙壁116‧‧‧ spacer

118、120‧‧‧輕摻雜區118, 120‧‧‧Lightly doped area

122、122a‧‧‧介電結構122, 122a‧‧‧ dielectric structure

123‧‧‧原子層沉積氧化矽層123‧‧‧Atomic layer deposition of yttrium oxide layer

124‧‧‧介電層124‧‧‧ dielectric layer

126‧‧‧接觸窗蝕刻終止層126‧‧‧Contact window etch stop layer

128‧‧‧介電層結構128‧‧‧Dielectric layer structure

130a~130c‧‧‧金屬矽化物層130a~130c‧‧‧metal telluride layer

132、134‧‧‧接觸窗132, 134‧‧‧Contact window

136a~136c、146、150、154‧‧‧阻障層136a~136c, 146, 150, 154‧ ‧ barrier layer

138、140、142‧‧‧內連線結構138, 140, 142‧‧‧ interconnection structure

144、148、152‧‧‧導體層144, 148, 152‧‧‧ conductor layers

AA‧‧‧主動區AA‧‧‧Active Area

圖1為本發明第一實施例的記憶體結構的剖面圖。 圖2為圖1中的浮置接觸窗與主動區的示意圖。 圖3為本發明第二實施例的記憶體結構的剖面圖。 圖4為本發明第三實施例的記憶體結構的剖面圖。BRIEF DESCRIPTION OF THE DRAWINGS Figure 1 is a cross-sectional view showing a structure of a memory according to a first embodiment of the present invention. 2 is a schematic view of the floating contact window and the active area of FIG. 1. Figure 3 is a cross-sectional view showing the structure of a memory according to a second embodiment of the present invention. Fig. 4 is a cross-sectional view showing the structure of a memory according to a third embodiment of the present invention.

100‧‧‧記憶體結構 100‧‧‧ memory structure

102‧‧‧基底 102‧‧‧Base

104‧‧‧選擇閘極結構 104‧‧‧Select gate structure

106、108‧‧‧重摻雜區 106, 108‧‧‧ heavily doped area

110‧‧‧浮置接觸窗 110‧‧‧Floating contact window

110a、132a、134a‧‧‧接觸窗開口 110a, 132a, 134a‧‧‧ contact window openings

112‧‧‧選擇閘極 112‧‧‧Select gate

114‧‧‧介電層 114‧‧‧Dielectric layer

116‧‧‧間隙壁 116‧‧‧ spacer

118、120‧‧‧輕摻雜區 118, 120‧‧‧Lightly doped area

122‧‧‧介電結構 122‧‧‧Dielectric structure

124‧‧‧介電層 124‧‧‧ dielectric layer

126‧‧‧接觸窗蝕刻終止層 126‧‧‧Contact window etch stop layer

128‧‧‧介電層結構 128‧‧‧Dielectric layer structure

130a~130c‧‧‧金屬矽化物層 130a~130c‧‧‧metal telluride layer

132、134‧‧‧接觸窗 132, 134‧‧‧Contact window

136a~136c、146、150、154‧‧‧阻障層 136a~136c, 146, 150, 154‧ ‧ barrier layer

138、140、142‧‧‧內連線結構 138, 140, 142‧‧‧ interconnection structure

144、148、152‧‧‧導體層 144, 148, 152‧‧‧ conductor layers

Claims (14)

一種記憶體結構,包括:一基底;一選擇閘極結構,設置於該基底上;一第一重摻雜區與一第二重摻雜區,分別設置於該選擇閘極結構一側與另一側的該基底中;一浮置接觸窗,設置於該第一重摻雜區與該選擇閘極結構之間的該基底上,且與該基底相互隔離;以及一介電結構,設置於該浮置接觸窗與該基底之間,以隔離該浮置接觸窗與該基底。 A memory structure includes: a substrate; a selective gate structure disposed on the substrate; a first heavily doped region and a second heavily doped region disposed on one side of the selective gate structure and another a floating contact window disposed on the substrate between the first heavily doped region and the selected gate structure and isolated from the substrate; and a dielectric structure disposed on the substrate The floating contact window is interposed between the substrate and the substrate to isolate the floating contact window from the substrate. 如申請專利範圍第1項所述的記憶體結構,其中該選擇閘極結構包括:一選擇閘極,設置於該基底上;以及一介電層,設置於該選擇閘極與該基底之間。 The memory structure of claim 1, wherein the select gate structure comprises: a select gate disposed on the substrate; and a dielectric layer disposed between the select gate and the substrate . 如申請專利範圍第1項所述的記憶體結構,其中該浮置接觸窗的頂面高於該選擇閘極結構的頂面。 The memory structure of claim 1, wherein a top surface of the floating contact window is higher than a top surface of the selective gate structure. 如申請專利範圍第1項所述的記憶體結構,其中該浮置接觸窗橫越主動區。 The memory structure of claim 1, wherein the floating contact window traverses the active area. 如申請專利範圍第1項所述的記憶體結構,其中該浮置接觸窗與該基底之間不具有金屬矽化物層。 The memory structure of claim 1, wherein the floating contact window and the substrate do not have a metal telluride layer. 如申請專利範圍第1項所述的記憶體結構,其中該介電結構為單層結構或多層結構。 The memory structure according to claim 1, wherein the dielectric structure is a single layer structure or a multilayer structure. 如申請專利範圍第1項所述的記憶體結構,更包括一第一輕摻雜區,設置於該第一重摻雜區與該選擇閘極結構之間的該基底中。 The memory structure of claim 1, further comprising a first lightly doped region disposed in the substrate between the first heavily doped region and the selected gate structure. 如申請專利範圍第1項所述的記憶體結構,更包括一第二輕摻雜區,設置於該第二重摻雜區與該選擇閘極結構之間的該基底中。 The memory structure of claim 1, further comprising a second lightly doped region disposed in the substrate between the second heavily doped region and the selected gate structure. 如申請專利範圍第1項所述的記憶體結構,更包括一第一接觸窗,電性連接至該第一重摻雜區。 The memory structure of claim 1, further comprising a first contact window electrically connected to the first heavily doped region. 如申請專利範圍第9項所述的記憶體結構,更包括:一第一內連線結構,電性連接於該第一接觸窗;以及一第二內連線結構,電性連接於該浮置接觸窗。 The memory structure of claim 9, further comprising: a first interconnect structure electrically connected to the first contact window; and a second interconnect structure electrically connected to the float Set the contact window. 如申請專利範圍第10項所述的記憶體結構,其中位於該第二內連線結構側邊的該第一內連線結構位於該第二內連線結構的一側、位於該第二內連線結構的兩側或環繞該第二內連線結構。 The memory structure of claim 10, wherein the first interconnecting structure located on a side of the second interconnecting structure is located on one side of the second interconnecting structure and located in the second The two sides of the wiring structure or surround the second interconnect structure. 如申請專利範圍第10項所述的記憶體結構,其中部分該第一內連線結構位於該第二內連線結構的上方。 The memory structure of claim 10, wherein a portion of the first interconnect structure is above the second interconnect structure. 如申請專利範圍第1項所述的記憶體結構,更包括一第二接觸窗,電性連接至該第二重摻雜區。 The memory structure of claim 1, further comprising a second contact window electrically connected to the second heavily doped region. 如申請專利範圍第1項所述的記憶體結構,其用於作為一次可程式化記憶體、多次可程式化記憶體或快閃記憶體。The memory structure according to claim 1, which is used as a one-time programmable memory, a plurality of programmable memory or a flash memory.
TW104144593A 2015-12-31 2015-12-31 Memory structure TWI585951B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104144593A TWI585951B (en) 2015-12-31 2015-12-31 Memory structure
CN201610086854.5A CN106935586A (en) 2015-12-31 2016-02-16 Memory structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104144593A TWI585951B (en) 2015-12-31 2015-12-31 Memory structure

Publications (2)

Publication Number Publication Date
TWI585951B true TWI585951B (en) 2017-06-01
TW201724473A TW201724473A (en) 2017-07-01

Family

ID=59443953

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104144593A TWI585951B (en) 2015-12-31 2015-12-31 Memory structure

Country Status (2)

Country Link
CN (1) CN106935586A (en)
TW (1) TWI585951B (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200631131A (en) * 2005-02-16 2006-09-01 Powerchip Semiconductor Corp Method for manufacturing semiconductor device and plug
US20120074483A1 (en) * 2010-09-23 2012-03-29 Globalfoundries Singapore Pte. Ltd. Eeprom cell
US8269266B2 (en) * 2006-04-04 2012-09-18 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100508164C (en) * 2005-08-16 2009-07-01 力晶半导体股份有限公司 Nonvolatile memory unit, manufacturing method, and operation method
JP2007115773A (en) * 2005-10-18 2007-05-10 Nec Electronics Corp Semiconductor memory device and method of manufacturing same
JP5621381B2 (en) * 2010-07-28 2014-11-12 富士通セミコンダクター株式会社 Semiconductor device and manufacturing method thereof

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW200631131A (en) * 2005-02-16 2006-09-01 Powerchip Semiconductor Corp Method for manufacturing semiconductor device and plug
US8269266B2 (en) * 2006-04-04 2012-09-18 Renesas Electronics Corporation Semiconductor device and a method of manufacturing the same
US20120074483A1 (en) * 2010-09-23 2012-03-29 Globalfoundries Singapore Pte. Ltd. Eeprom cell

Also Published As

Publication number Publication date
CN106935586A (en) 2017-07-07
TW201724473A (en) 2017-07-01

Similar Documents

Publication Publication Date Title
US11508745B2 (en) Three-dimensional memory device having a shielding layer and method for forming the same
US9064957B2 (en) Semiconductor devices and methods of forming the same
TWI450390B (en) Nonvolatile memory devices that use resistance materials and internal electrodes, and related methods and processing systems
KR102432894B1 (en) Semiconductor device
US8952452B2 (en) Semiconductor devices and method of manufacturing the same
US11749759B2 (en) Decoupling FinFET capacitors
CN110088906B (en) High-k dielectric layer in three-dimensional memory device and method of forming the same
US20130056823A1 (en) Semiconductor devices
KR102300699B1 (en) Semiconductor device including a repeater/buffer at upper metal routing layers and methods of manufacturing the same
CN106252326A (en) Contact structures in the pre-metal dielectric of integrated circuit or interlevel dielectric layer
US11257864B2 (en) RRAM structure with only part of variable resistive layer covering bottom electrode and method of fabricating the same
US20230038604A1 (en) Manufacturing method of resistive random access memory device
US20160118331A1 (en) Semiconductor device and method of manufacturing the same
US20160093742A1 (en) Semiconductor device
CN108022933B (en) Flash memory device and method of manufacturing the same
TW202203458A (en) Semiconductor structure
US11271000B2 (en) Method for fabricating semiconductor device
US20230238462A1 (en) Dual-layer channel transistor and methods of forming same
TWI585951B (en) Memory structure
KR102611247B1 (en) Semiconducting metal oxide transistors having a patterned gate and methods for forming the same
CN104952835A (en) Semiconductor device
TWI572074B (en) Resistive random access memory and method for manufacturing the same
US11818966B2 (en) Resistive random access memory and manufacturing method thereof
WO2024125228A1 (en) EMBEDDED ReRAM WITH BACKSIDE CONTACT