TWI585895B - Semiconductor processing element regeneration method - Google Patents

Semiconductor processing element regeneration method Download PDF

Info

Publication number
TWI585895B
TWI585895B TW104141785A TW104141785A TWI585895B TW I585895 B TWI585895 B TW I585895B TW 104141785 A TW104141785 A TW 104141785A TW 104141785 A TW104141785 A TW 104141785A TW I585895 B TWI585895 B TW I585895B
Authority
TW
Taiwan
Prior art keywords
semiconductor processing
processing element
gas
sic
coating layer
Prior art date
Application number
TW104141785A
Other languages
Chinese (zh)
Other versions
TW201633450A (en
Inventor
Joung Il Kim
Original Assignee
Tokai Carbon Korea Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Korea Co Ltd filed Critical Tokai Carbon Korea Co Ltd
Publication of TW201633450A publication Critical patent/TW201633450A/en
Application granted granted Critical
Publication of TWI585895B publication Critical patent/TWI585895B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic System

Description

半導體處理元件再生方法 Semiconductor processing element regeneration method

本發明涉及半導體處理元件再生方法,尤其是涉及除去沉積在包括TaC塗膜層半導體處理元件上的SiC層,再生半導體處理元件的方法。 BACKGROUND OF THE INVENTION 1. Field of the Invention This invention relates to a method of regenerating a semiconductor processing element, and more particularly to a method of removing a SiC layer deposited on a semiconductor processing element including a TaC coating layer and regenerating the semiconductor processing element.

為了製造半導體及顯示器,根據處理順序,通過薄膜的沉積、圖案化及腐蝕處理被製造。當反應物質及原材料以氣體形式流入到反應室內部,進行沉積處理時,基板佈置在反應室內部,如同用於佈置基板的襯托器、聚焦環的很多組件被安裝在反應室內部。例如,襯托器作為在沉積處理中,用於支持基板的手段,在上部形成帶狀物,是可支撐一個或者多個基板的一個元件。一般地,半導體處理元件由加工性良好的石墨材料構成。但是,如同SiC沉積處理或者用於製造LED處理,在高溫處理中,為了保障穩定性,可使用由SiC或者TaC被塗膜的石墨半導體處理元件。 In order to manufacture semiconductors and displays, they are manufactured by deposition, patterning, and etching of thin films according to the processing order. When the reaction material and the raw material flow into the inside of the reaction chamber in the form of a gas, and the deposition process is performed, the substrate is disposed inside the reaction chamber, and many components such as a susceptor for arranging the substrate and the focus ring are installed inside the reaction chamber. For example, the susceptor, as a means for supporting the substrate in the deposition process, forms a ribbon at the upper portion, which is an element that can support one or more substrates. Generally, a semiconductor processing element is composed of a graphite material having good workability. However, like SiC deposition processing or for manufacturing LED processing, in high temperature processing, in order to secure stability, a graphite semiconductor processing element coated with SiC or TaC may be used.

在半導體處理中,半導體基板外的很多元件暴露在半導體處理的反應氣體中,因此,沉積物也沉積在元件的表面。例如,當襯托器被用於SiC沉積處理時,SiC 被沉積一定厚度以上的時候,因襯托器表面和SiC沉積層的熱膨脹率差異發生裂化,或者SiC沉積層的一部分可被切去。或者,當襯托器被用於製造LED元件的處理時,因附在襯托器表面的顆粒,可降低LED的品質。 In semiconductor processing, many components outside the semiconductor substrate are exposed to the semiconductor processed reaction gas, and therefore, deposits are also deposited on the surface of the component. For example, when a susceptor is used for SiC deposition processing, SiC When it is deposited to a certain thickness or more, cracking occurs due to a difference in thermal expansion rate between the susceptor surface and the SiC deposited layer, or a part of the SiC deposited layer may be cut off. Alternatively, when the susceptor is used for the process of manufacturing the LED element, the quality of the LED can be reduced due to the particles attached to the surface of the susceptor.

為了防止上述問題,使用在沉積處理的半導體處理元件,要執行用於除去沉積在半導體處理元件表面的沉積物或者顆粒的處理。在具有TaC塗膜層的半導體處理元件的TaC塗膜層上,SiC被沉積時,因SiC的耐化學性強,所以由物理方法除去。現在被使用的物理研磨方法可以是,例如,利用研磨裝置的方法,或者如同記載在韓國申請專利第10-0756640號的噴射乾冰的方法。 In order to prevent the above problem, a process for removing deposits or particles deposited on the surface of the semiconductor processing element is performed using the semiconductor processing element in the deposition process. When SiC is deposited on the TaC coating layer of the semiconductor processing element having the TaC coating layer, SiC is physically removed because of its strong chemical resistance. The physical polishing method to be used at present may be, for example, a method using a polishing device, or a method of spraying dry ice as described in Korean Patent Application No. 10-0756640.

但是,物理研磨方法具有給半導體處理元件的TaC層帶來損傷,可使石墨母材被露出的缺點。還有,當使用物理研磨方法時,為了除去殘餘顆粒必須執行濕式沖洗,所以需要更多的處理時間,可降低生產性。 However, the physical polishing method has the disadvantage of causing damage to the TaC layer of the semiconductor processing element and allowing the graphite base material to be exposed. Also, when the physical grinding method is used, wet rinsing must be performed in order to remove residual particles, so more processing time is required, and productivity can be lowered.

本發明的目的是不經過附加地後處理,可無損傷的除去TaC塗膜層的SiC沉積層提供包括由包括氫氣的氣體、包括氯氣的氣體及不活性氣體形成的群被選擇的至少任意一個氣體條件下,或者真空條件下,由1700-2700℃熱處理半導體處理元件步驟的半導體處理元件再生方法。 It is an object of the present invention to provide a SiC deposited layer which can remove the TaC coating layer without damage without additional post-treatment, and at least one selected from the group consisting of a gas including hydrogen gas, a gas including chlorine gas, and an inert gas. A semiconductor processing element regeneration method for heat-treating a semiconductor processing element step from 1700 to 2700 ° C under a gas condition or under vacuum.

但是,本發明所要解決的課題不限於以上提及的課題,沒有提及的另外其他課題,可從以下的記載明確地被所屬技術領域中具有通常知識者理解。 However, the problem to be solved by the present invention is not limited to the above-mentioned problems, and other problems that are not mentioned can be clearly understood from the following description by those skilled in the art.

按照一個實施例,本發明的半導體處理元件再生方法,包括步驟:包括TaC塗膜層,在該TaC塗膜層準備形成有SiC沉積層的半導體處理元件;及在由包括氫氣的氣體、包括氯氣的氣體及不活性氣體形成的群中被選擇的至少任意一個氣體條件下,或者真空條件下,以1700-2700℃熱處理該半導體處理元件。 According to one embodiment, a semiconductor processing element regeneration method of the present invention comprises the steps of: including a TaC coating layer on which a semiconductor processing element formed with a SiC deposition layer is prepared; and a gas including hydrogen gas, including chlorine gas The semiconductor processing element is heat-treated at 1700-2700 ° C under at least one of the selected gas and inert gas groups, or under vacuum conditions.

所述由包括氫氣的氣體、包括氯氣的氣體及不活性氣體形成的群可包括H2、HCl、Cl2、Ar、Ne、Kr、Xe,及N2The group formed of a gas including hydrogen, a gas including chlorine, and an inert gas may include H 2 , HCl, Cl 2 , Ar, Ne, Kr, Xe, and N 2 .

熱處理該半導體處理元件的步驟,可切斷該SiC沉積層和該TaC塗膜層之間的化學結合。 The step of heat treating the semiconductor processing element can cut the chemical bond between the SiC deposited layer and the TaC coating layer.

所述半導體處理元件再生方法,其步驟還包括:在包括氫氣氣體的條件下,以1700-2700℃乾式沖洗該半導體處理元件。 The semiconductor processing element regeneration method, the method further comprising: dryly rinsing the semiconductor processing element at 1700-2700 ° C under conditions including hydrogen gas.

在所述半導體處理元件再生方法,乾式沖洗該半導體處理元件之前,該TaC塗膜層中,包括碳的殘留物可遺留在該TaC塗膜層表面上。 In the semiconductor processing element regeneration method, a residue including carbon in the TaC coating layer may remain on the surface of the TaC coating layer before the semiconductor processing element is dry-rinsed.

乾式沖洗該半導體處理元件的步驟,可昇華該包括碳的殘留物。 The step of dry rinsing the semiconductor processing element can sublimate the residue including carbon.

在該半導體處理元件再生方法,熱處理該半導體處理元件之後,包括碳的殘留物的厚度可以是0.001-1μm。 In the semiconductor processing element reproducing method, after heat treating the semiconductor processing element, the thickness of the residue including carbon may be 0.001 to 1 μm.

該半導體處理元件的SiC沉積層厚度可以是0.001-1000μm。 The thickness of the SiC deposited layer of the semiconductor processing element may be 0.001 to 1000 μm.

該半導體處理元件可包括由室壁、基板支撐架、環、氣體分散系統元件,及傳輸模組元件形成的群中被選擇的至少任意一個。 The semiconductor processing component can include at least one selected from the group consisting of a chamber wall, a substrate support, a ring, a gas dispersion system component, and a transfer module component.

按照一個實施例,本發明的再生半導體處理元件,其包括:TaC塗膜層,且作為通過除去沉積形成在該TaC塗膜層的SiC沉積層的再生程序的半導體處理元件,包括碳的殘留物厚度是0.001-1μm。 According to one embodiment, the regenerated semiconductor processing element of the present invention comprises: a TaC coating layer, and as a semiconductor processing element for removing a deposition process of a SiC deposited layer formed on the TaC coating layer, including carbon residue The thickness is 0.001 to 1 μm.

該再生程序可由該半導體處理元件再生方法被執行。 The regeneration process can be performed by the semiconductor processing element regeneration method.

該半導體處理元件可包括由室壁、基板支撐架、環、氣體分散系統元件,及傳輸模組元件形成的群中被選擇的至少任意一個。 The semiconductor processing component can include at least one selected from the group consisting of a chamber wall, a substrate support, a ring, a gas dispersion system component, and a transfer module component.

本發明的半導體處理元件再生方法,可不損傷TaC塗膜層除去SiC沉積層,所以可防止根據TaC塗膜層損傷的石墨母材露出和異物的發生。 In the method for regenerating the semiconductor processing element of the present invention, the SiC deposited layer can be removed without damaging the TaC coating layer, so that the graphite base material which is damaged by the TaC coating layer and the occurrence of foreign matter can be prevented from occurring.

還有,本發明的半導體處理元件再生方法,不需要如濕式沖洗的後處理,所以可縮短處理時間。 Further, the semiconductor processing element reproducing method of the present invention does not require post-processing such as wet rinsing, so that the processing time can be shortened.

10‧‧‧半導體處理元件 10‧‧‧Semiconductor processing components

11‧‧‧石墨母材 11‧‧‧Graphite base metal

12‧‧‧TaC層 12‧‧‧TaC layer

20‧‧‧SiC沉積層 20‧‧‧SiC deposit

210、220‧‧‧步驟 210, 220‧‧‧ steps

310、320‧‧‧步驟 310, 320‧‧‧ steps

510、520、530、540‧‧‧步驟 510, 520, 530, 540‧ ‧ steps

610、620、630、640‧‧‧步驟 610, 620, 630, 640‧ ‧ steps

第1圖是示出根據本發明的一個實施例的半導體處理元件再生方法的模擬圖。 Fig. 1 is a simulation diagram showing a semiconductor processing element reproducing method according to an embodiment of the present invention.

第2圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 2 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with an embodiment of the present invention.

第3圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Figure 3 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with one embodiment of the present invention.

第4圖是示出根據本發明的一個實施例的半導體處理元件再生方法的模擬圖。 Fig. 4 is a simulation diagram showing a semiconductor processing element reproducing method according to an embodiment of the present invention.

第5圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Fig. 5 is a flow chart showing a method of reproducing a semiconductor processing element according to an embodiment of the present invention.

第6圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Figure 6 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with one embodiment of the present invention.

第7圖是示出根據本發明的一個實施例,SiC被沉積的襯托器的電子顯微鏡照片。 Fig. 7 is an electron micrograph showing a susceptor in which SiC is deposited according to an embodiment of the present invention.

第8圖是示出根據本發明的一個實施例的再生襯托器的電子顯微鏡照片。 Fig. 8 is an electron micrograph showing a reproduction susceptor according to an embodiment of the present invention.

以下,參考附圖對實施例進行詳細地說明。示出在各圖的相同參考符號表示相同的元件。 Hereinafter, embodiments will be described in detail with reference to the accompanying drawings. The same reference numerals are used in the drawings to refer to the same elements.

在以下說明的實施例中,可附加多樣的變更。以下說明的實施例不限於實施形態,應該理解為,包括對這些的所有變更、均等物或者代替物。 In the embodiments described below, various changes can be added. The embodiments described below are not limited to the embodiments, and it should be understood that all modifications, equivalents, or substitutes are included.

在實施例中使用的用語,只是為了說明特定的實施例而被使用,而不是意圖限定實施例。除了明確的指定意思以外,單數的表現包括複數的表現。在本說明書中,「包括」或者「具有」等用語是為了指定說明書上記載的特徵、數值、步驟、動作、構成要素、元件或者這些組合的存在,並且要理解為,不是預先排除一個或者其以上的其他特徵,或者數位、步驟、動作、構成要素、元件或者這些組合的存在或者附加可能性。 The terms used in the embodiments are used for the purpose of illustrating particular embodiments and are not intended to limit the embodiments. In addition to the explicit designation of the meaning, the singular expression includes the plural. In the present specification, the terms "including" or "having" are used to designate the features, numerical values, steps, actions, components, elements or combinations of the combinations described in the specification, and it is understood that the Other features, or digits, steps, acts, components, elements or combinations of these or additional possibilities.

除了被定義為其他,包括技術或者科學用語,這裡所使用的所有用語與實施例所屬領域的技藝人士一般的理解,具有相同的意思。一般使用的,如被定義在字典的用語被解釋成與相關技術上下文具有相同的意思,並且除了在本案中明確地定義以外,不能解釋成理想的或者過度形式的意思。 All the terms used herein have the same meaning as commonly understood by those skilled in the art to which the embodiments pertain, unless otherwise defined. The terms generally used, such as those defined in the dictionary, are interpreted as having the same meaning as the relevant technical context, and are not to be interpreted as ideal or excessive forms, except as explicitly defined in this context.

還有,參考附圖進行說明時,與圖的符號無關,相同的構成要素賦予相同的參考符號,對此的重複說明給予省略。在說明實施例時,對相關公開技術的具體說明,被判斷為模糊實施例的說明時,其詳細地說明給予省略。 In the description of the drawings, the same components are denoted by the same reference numerals, and the repeated description thereof will be omitted. In the description of the embodiments, the detailed description of the related art is judged to be a description of the ambiguous embodiment, and the detailed description thereof will be omitted.

第1圖是示出根據本發明的一個實施例的半導體處理元件再生方法的模擬圖。 Fig. 1 is a simulation diagram showing a semiconductor processing element reproducing method according to an embodiment of the present invention.

包括塗膜在石墨母材11表面的TaC層12的半導體處理元件10,按照被使用在SiC沉積處理,SiC沉積層20被疊層。疊層在半導體處理元件10表面的SiC 沉積層20,可通過按照本發明的半導體處理元件再生方法被除去。 The semiconductor processing element 10 including the TaC layer 12 coated on the surface of the graphite base material 11 is laminated in accordance with the SiC deposition treatment in accordance with the SiC deposition treatment. SiC laminated on the surface of the semiconductor processing element 10 The deposited layer 20 can be removed by the semiconductor processing element regeneration method according to the present invention.

第2圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 2 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with an embodiment of the present invention.

在步驟210中,準備包括TaC塗膜層,且在該TaC塗膜層形成SiC沉積層的半導體處理元件。 In step 210, a semiconductor processing element including a TaC coating layer and a SiC deposited layer is formed on the TaC coating layer.

該半導體處理元件可以是在SiC沉積處理中,為了支撐晶片被使用的半導體處理元件,可以是形成在半導體處理元件的整個,或者一部分表面的SiC沉積層。形成在該半導體處理元件TaC塗膜層上的SiC沉積層可以是以0.001-1000μm,較佳地是0.001-500μm,更較佳地是1-200μm的不均勻的厚度被形成,並且其厚度可根據半導體處理元件的使用處理有所不同。 The semiconductor processing element may be a semiconductor processing element used to support a wafer in a SiC deposition process, and may be a SiC deposition layer formed over the entire or a portion of the surface of the semiconductor processing element. The SiC deposited layer formed on the coating layer of the semiconductor processing element TaC may be formed with a non-uniform thickness of 0.001 to 1000 μm, preferably 0.001 to 500 μm, more preferably 1 to 200 μm, and the thickness thereof may be The processing is different depending on the use of the semiconductor processing element.

為了防止因形成在該半導體處理元件表面上的不均勻厚度的SiC沉積層可發生的問題,有必要除去SiC沉積層,並且除去SiC沉積層可使用本發明的半導體處理元件再生處理。 In order to prevent problems that may occur due to the uneven thickness of the SiC deposition layer formed on the surface of the semiconductor processing element, it is necessary to remove the SiC deposition layer, and the removal of the SiC deposition layer can be performed using the semiconductor processing element regeneration process of the present invention.

在步驟220中,該半導體處理元件在由包括氫氣的氣體、包括氯氣的氣體,及不活性氣體形成的群中被選擇的至少任意一個氣體條件下,由1700-2700℃被熱處理。 In step 220, the semiconductor processing element is heat treated at 1700-2700 ° C under at least any one of a gas selected from the group consisting of a gas including hydrogen gas, a gas including chlorine gas, and an inert gas.

為了除去形成在該半導體處理元件TaC塗膜層上的SiC沉積層,該半導體處理元件佈置在反應室,在反應室內流入由包括氫氣的氣體、包括氯氣的氣體,及不 活性氣體形成的群中被選擇的至少任意一個氣體,反應室內的半導體處理元件可由1700-2700℃被熱處理。該反應室可將流入的氣體用另外的處理裝置排出去,且可被使用為至少提供2700℃的熱。當該半導體處理元件佈置在該反應室內時,封閉反應室,並且流入由包括氫氣的氣體、包括氯氣的氣體,及不活性氣體形成的群中被選擇的至少任意一個氣體。 In order to remove the SiC deposition layer formed on the coating layer of the semiconductor processing element TaC, the semiconductor processing element is disposed in the reaction chamber, and flows into a gas including hydrogen gas, including chlorine gas, in the reaction chamber, and At least any one selected from the group consisting of active gases, the semiconductor processing element in the reaction chamber may be heat treated at 1700-2700 °C. The reaction chamber can vent the influent gas with additional processing equipment and can be used to provide at least 2700 °C heat. When the semiconductor processing element is disposed in the reaction chamber, the reaction chamber is closed, and at least any one selected from the group consisting of a gas including hydrogen, a gas including chlorine, and an inert gas flows.

在本發明可被使用的由包括氫氣的氣體、包括氯氣的氣體,及不活性氣體形成的群,可包括如H2、HCl、Cl2、Ar、Ne、Kr、Xe,及N2。按照所使用的氣體種類,熱處理的溫度可有所不同,如使用H2氣體時,可在1700-2700℃,較佳地在2000-2700℃被熱處理。使用Ar氣體時,可在1700-2700℃,較佳地在2300-2700℃被熱處理。使用HCl氣體時,可在1700-2700℃,較佳地在1800-2700℃被熱處理。使用Ne氣體時,可在1700-2700℃,較佳地在2300-2700℃被熱處理。使用N2氣體時,可在1700-2700℃,較佳地在2300-2700℃被熱處理。該氣體的流入量可按照反應室的容量變化,較佳地可由1-100slm被流入。 The group formed of a gas including hydrogen, a gas including chlorine, and an inert gas which can be used in the present invention may include, for example, H 2 , HCl, Cl 2 , Ar, Ne, Kr, Xe, and N 2 . The heat treatment temperature may vary depending on the type of gas used, and may be heat treated at 1700-2700 ° C, preferably 2000-2700 ° C when H 2 gas is used. When Ar gas is used, it may be heat-treated at 1700-2700 ° C, preferably 2300-2700 ° C. When HCl gas is used, it may be heat-treated at 1700-2700 ° C, preferably at 1800-2700 ° C. When Ne gas is used, it may be heat-treated at 1700-2700 ° C, preferably 2300-2700 ° C. When N 2 gas is used, it may be heat-treated at 1700-2700 ° C, preferably 2300-2700 ° C. The influx of the gas may vary depending on the capacity of the reaction chamber, preferably from 1 to 100 slm.

熱處理該半導體處理元件的步驟,可切斷該SiC沉積層和該Tac塗膜層之間的化學鍵合。TaC塗膜層在高溫也穩定,所以鍵合經該熱處理,石墨和TaC塗膜層之間的鍵合不被減弱。但是,SiC沉積層比起TaC塗膜層,在高溫不穩定,並且SiC沉積層和TaC塗膜層之間的 化學鍵合是共價鍵,所以由鍵合能量以上的高溫處理,可切斷SiC層和TaC塗膜層之間的化學鍵合。如果,由該熱處理切斷SiC沉積層和TaC塗膜層之間的化學鍵合,SiC沉積層可容易地被除去。 The step of heat treating the semiconductor processing element cuts the chemical bond between the SiC deposited layer and the Tac coating layer. The TaC coating layer is also stable at a high temperature, so bonding of the bonding between the graphite and the TaC coating layer is not attenuated by the heat treatment. However, the SiC deposited layer is unstable at high temperatures compared to the TaC coating layer, and between the SiC deposited layer and the TaC coated layer The chemical bonding is a covalent bond, so that the chemical bonding between the SiC layer and the TaC coating layer can be cut by high temperature treatment of the bonding energy or higher. If the chemical bonding between the SiC deposited layer and the TaC coating layer is cut by the heat treatment, the SiC deposited layer can be easily removed.

按照本發明的一個實施例,當使用包括H的氣體時,SiC可與H反應被昇華。因此,較佳地提供H原子數相當於SiC內C原子數的2倍至16倍的包括H的氣體。在這種情況下,TaC塗膜層也不發生化學反應,並且只切斷SiC沉積層和TaC塗膜層之間的化學鍵合,SiC沉積層可被除去。 According to an embodiment of the present invention, when a gas including H is used, SiC may be sublimed by reacting with H. Therefore, it is preferable to provide a gas including H having a number of H atoms equivalent to 2 to 16 times the number of C atoms in SiC. In this case, the TaC coating layer does not undergo a chemical reaction, and only the chemical bonding between the SiC deposited layer and the TaC coating layer is cut, and the SiC deposited layer can be removed.

該熱處理步驟可被執行10-300分鐘,較佳地是10-60分鐘,最佳地是20-30分鐘。當該熱處理被執行於不足10分鐘時,很難除去SiC沉積層,且被執行於超過300分鐘時,可給TaC塗膜層帶來損傷。在熱處理步驟期間,溫度每分鐘可升溫1-100℃,較佳的每分鐘升溫5-20℃,使達到1700-2700℃。每分鐘超過100℃時,可給TaC塗膜層帶來損傷。半導體處理元件上的SiC沉積層可通過該熱處理,大部分昇華且被除去。 This heat treatment step can be carried out for 10 to 300 minutes, preferably 10 to 60 minutes, and most preferably 20 to 30 minutes. When the heat treatment is performed for less than 10 minutes, it is difficult to remove the SiC deposited layer, and when it is performed for more than 300 minutes, damage can be caused to the TaC coating layer. During the heat treatment step, the temperature may be raised from 1 to 100 ° C per minute, preferably from 5 to 20 ° C per minute to a temperature of 1700 to 2700 ° C. When it exceeds 100 ° C per minute, it can cause damage to the TaC coating layer. The SiC deposited layer on the semiconductor processing element can be mostly sublimated and removed by this heat treatment.

按照本發明的一個實施例,可使用半導體處理元件再生方法的半導體處理元件可包括由室壁、基板支撐架、環、氣體分散系統元件,及傳輸模組元件形成的群中被選擇的至少任意一個。例如,該半導體處理元件可包括室壁、安裝在室內部的板、基板支撐架(substrate supports)(可被提及為襯托器的基板支撐架)、扣件 (fasteners)、加熱元件(heating elements)、電漿顯示螢幕(plasma screens)、襯墊(liners)、環。還有,例如,該氣體分散系統(gas distribution systems)還可包括噴頭(showerheads)、擋板(baffles)、噴嘴(nozzles)環等,該傳輸模組元件可包括機械臂(robotic arms)扣件、內部及外部室壁。在本發明可被使用的該半導體處理元件不限於上述的示例,只要是用在半導體工程的元件可任意包括。 According to an embodiment of the present invention, a semiconductor processing element that can use a semiconductor processing element regeneration method can include at least any selected from the group consisting of a chamber wall, a substrate support frame, a ring, a gas dispersion system element, and a transmission module element. One. For example, the semiconductor processing component can include a chamber wall, a board mounted inside the chamber, a substrate supports (a substrate holder that can be referred to as a susceptor), and a fastener (fasteners), heating elements, plasma screens, liners, rings. Also, for example, the gas distribution systems may further include showerheads, baffles, nozzle rings, etc., and the transmission module components may include robotic arms fasteners. , internal and external walls. The semiconductor processing element which can be used in the present invention is not limited to the above examples, and may be arbitrarily included as long as it is used in semiconductor engineering.

第3圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Figure 3 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with one embodiment of the present invention.

在步驟310中,準備包括TaC塗膜層,在該TaC塗膜層形成SiC沉積層的半導體處理元件。 In step 310, a semiconductor processing element including a TaC coating layer on which a SiC deposited layer is formed is prepared.

該半導體處理元件可以是在SiC沉積處理中,為了支撐晶片被使用的半導體處理元件,可以是形成在半導體處理元件的整個,或者一部分表面的SiC沉積層。形成在該半導體處理元件TaC塗膜層上的SiC沉積層,可由不均勻的厚度被形成。形成在該半導體處理元件的TaC塗膜層上的SiC沉積層可以是以0.001-1000μm,較佳地是0.001-500μm,更較佳地是1-200μm的不均勻的厚度被形成,並且其厚度可根據半導體處理元件的使用處理有所不同。 The semiconductor processing element may be a semiconductor processing element used to support a wafer in a SiC deposition process, and may be a SiC deposition layer formed over the entire or a portion of the surface of the semiconductor processing element. The SiC deposited layer formed on the coating layer of the semiconductor processing element TaC may be formed of a non-uniform thickness. The SiC deposited layer formed on the TaC coating layer of the semiconductor processing element may be formed with a non-uniform thickness of 0.001 to 1000 μm, preferably 0.001 to 500 μm, more preferably 1 to 200 μm, and a thickness thereof. The processing may vary depending on the use of the semiconductor processing element.

為了防止因形成在該半導體處理元件表面上的不均勻厚度的SiC沉積層可發生的問題,有必要除去 SiC沉積層,並且除去SiC沉積層可使用本發明的半導體處理元件再生處理。 In order to prevent problems that may occur due to uneven thickness of the SiC deposited layer formed on the surface of the semiconductor processing element, it is necessary to remove The SiC deposition layer, and the removal of the SiC deposition layer, can be reprocessed using the semiconductor processing element of the present invention.

在步驟320中,該半導體處理元件,在真空條件下,由1700-2700℃被熱處理。 In step 320, the semiconductor processing element is heat treated from 1700 to 2700 ° C under vacuum.

為了除去形成在該半導體處理元件TaC塗膜層上的SiC沉積層,該半導體處理元件佈置在反應室,除去反應室內的空氣,可形成真空條件。在真空條件下,反應室內的半導體處理元件可由1700-2700℃被熱處理。該反應室可具備將室內可形成真空狀態的另外的裝置,至少可被使用為提供2700℃的熱。 In order to remove the SiC deposited layer formed on the coating layer of the semiconductor processing element TaC, the semiconductor processing element is disposed in the reaction chamber, and the air in the reaction chamber is removed to form a vacuum condition. The semiconductor processing element in the reaction chamber can be heat treated at 1700-2700 ° C under vacuum conditions. The reaction chamber may be provided with additional means for creating a vacuum in the chamber, at least for providing heat at 2700 °C.

熱處理該半導體處理元件的步驟,可切斷該SiC沉積層和該Tac塗膜層之間的化學鍵合。TaC塗膜層在高溫也穩定,所以鍵合經該熱處理,石墨和TaC塗膜層之間的鍵合不被減弱。但是,SiC沉積層比起TaC塗膜層,在高溫不穩定,並且SiC沉積層和TaC塗膜層之間的化學鍵合是共價鍵,所以由鍵合能量以上的高溫處理,可切斷SiC層和TaC塗膜層之間的化學鍵合。如果,由該熱處理切斷SiC沉積層和TaC塗膜層之間的化學鍵合,SiC沉積層可容易地被除去。 The step of heat treating the semiconductor processing element cuts the chemical bond between the SiC deposited layer and the Tac coating layer. The TaC coating layer is also stable at a high temperature, so bonding of the bonding between the graphite and the TaC coating layer is not attenuated by the heat treatment. However, the SiC deposited layer is unstable at a high temperature compared to the TaC coating layer, and the chemical bonding between the SiC deposited layer and the TaC coating layer is a covalent bond, so the SiC can be cut by high temperature treatment above the bonding energy. Chemical bonding between the layer and the TaC coating layer. If the chemical bonding between the SiC deposited layer and the TaC coating layer is cut by the heat treatment, the SiC deposited layer can be easily removed.

該熱處理步驟可被執行10-300分鐘,較佳地是10-60分鐘,最佳地是20-30分鐘。當該熱處理被執行於不足10分鐘時,很難除去SiC沉積層,且被執行於超過300分鐘時,可給TaC塗膜層帶來損傷。熱處理步驟期間,溫度每分鐘可升溫1-100℃,較佳地每分鐘升溫5-20 ℃,使達到1700-2700℃。每分鐘超過100℃時,可給TaC塗膜層帶來損傷。半導體處理元件上的SiC沉積層可通過該熱處理,大部分昇華且被除去。 This heat treatment step can be carried out for 10 to 300 minutes, preferably 10 to 60 minutes, and most preferably 20 to 30 minutes. When the heat treatment is performed for less than 10 minutes, it is difficult to remove the SiC deposited layer, and when it is performed for more than 300 minutes, damage can be caused to the TaC coating layer. During the heat treatment step, the temperature can be raised by 1-100 ° C per minute, preferably 5-20 per minute. °C, so that it reaches 1700-2700 °C. When it exceeds 100 ° C per minute, it can cause damage to the TaC coating layer. The SiC deposited layer on the semiconductor processing element can be mostly sublimated and removed by this heat treatment.

第4圖是示出根據本發明的一個實施例的半導體處理元件再生方法的模擬圖。 Fig. 4 is a simulation diagram showing a semiconductor processing element reproducing method according to an embodiment of the present invention.

包括塗膜在石墨母材11表面的TaC層12的半導體處理元件10,按照被使用在SiC沉積處理,SiC沉積層20被疊層。疊層在半導體處理元件10表面的SiC沉積層20,可通過按照本發明的半導體處理元件再生方法被除去。 The semiconductor processing element 10 including the TaC layer 12 coated on the surface of the graphite base material 11 is laminated in accordance with the SiC deposition treatment in accordance with the SiC deposition treatment. The SiC deposition layer 20 laminated on the surface of the semiconductor processing element 10 can be removed by the semiconductor processing element regeneration method according to the present invention.

第5圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Fig. 5 is a flow chart showing a method of reproducing a semiconductor processing element according to an embodiment of the present invention.

在步驟510中,準備包括TaC塗膜層,在該TaC塗膜層形成SiC沉積層的半導體處理元件。在步驟520中,該半導體處理元件在由包括氫氣的氣體、包括氯氣的氣體,及不活性氣體形成的群中被選擇的至少任意一個氣體條件下,由1700-2700℃被熱處理。對該步驟510及520的更為詳細的內容,可參考上述的步驟210及220。 In step 510, a semiconductor processing element including a TaC coating layer on which a SiC deposited layer is formed is prepared. In step 520, the semiconductor processing element is heat treated at 1700-2700 ° C under at least any one of a gas selected from the group consisting of a gas including hydrogen gas, a gas including chlorine gas, and an inert gas. For more details on the steps 510 and 520, reference may be made to steps 210 and 220 above.

在步驟530中,該半導體處理元件的SiC沉積層被除去。 In step 530, the SiC deposited layer of the semiconductor processing element is removed.

該半導體處理元件上的SiC沉積層,是因熱處理與TaC塗膜層的化學鍵合被切斷的狀態,所以,大部分的SiC沉積物昇華且被除去。即使,剩下的一些SiC沉積 物也是共價鍵被切斷的狀態,所以可由物理方法容易地被除去。在本發明可使用的物理方法是不給TaC塗膜層帶來損傷的柔軟的方法,可使用用刷子抹去,或者給SiC沉積層施加輕微衝擊的方法。 The SiC deposited layer on the semiconductor processing element is in a state of being cut by chemical bonding between the heat treatment and the TaC coating layer, and therefore, most of the SiC deposit is sublimated and removed. Even the remaining SiC deposits Since the substance is also in a state in which the covalent bond is cut, it can be easily removed by a physical method. The physical method which can be used in the present invention is a soft method which does not cause damage to the TaC coating layer, and a method of wiping off with a brush or applying a slight impact to the SiC deposited layer can be used.

在步驟540中,該半導體處理元件在包括氫氣的氣體條件下,由1700-2700℃被乾式沖洗。 In step 540, the semiconductor processing element is dry rinsed from 1700 to 2700 ° C under a gas condition including hydrogen.

當以柔軟的物理方法除去SiC沉積層時,半導體處理元件的TaC塗膜層表面上可留有包括碳的殘留物。該半導體處理元件上的殘留物厚度可以是0.001-1μm。該殘留物可包括碳,殘留物的厚度可以是0.001-1μm,較佳地是0.001-0.5μm。該殘留物在包括氫氣的氣體條件下,可由1700-2700℃乾式沖洗,且被昇華。例如,SiC與H反應,可產生如SiH2、C2H2,或者CH4氣體,最終SiC可被昇華。 When the SiC deposited layer is removed by a soft physical method, a residue including carbon may remain on the surface of the TaC coating layer of the semiconductor processing element. The residue on the semiconductor processing element may have a thickness of 0.001 to 1 μm. The residue may include carbon, and the thickness of the residue may be 0.001 to 1 μm, preferably 0.001 to 0.5 μm. The residue can be dry rinsed from 1700-2700 ° C under subgas conditions including hydrogen and sublimed. For example, SiC reacts with H to produce, for example, SiH 2 , C 2 H 2 , or CH 4 gas, and finally SiC can be sublimed.

該乾式沖洗步驟可被執行10-300分鐘,較佳地是10-60分鐘,最佳地是20-30分鐘。當該乾式沖洗被執行於不足10分鐘時,很難除去SiC沉積層,且被執行於超過300分鐘時,可給TaC塗膜層帶來損傷。乾式沖洗步驟期間,溫度每分鐘可升溫1-100℃,較佳地每分鐘升溫5-20℃,使達到1700-2700℃。每分鐘超過100℃時,可給TaC塗膜層帶來損傷。 The dry rinsing step can be carried out for 10 to 300 minutes, preferably 10 to 60 minutes, and most preferably 20 to 30 minutes. When the dry rinsing is performed for less than 10 minutes, it is difficult to remove the SiC deposited layer, and when it is performed for more than 300 minutes, damage can be caused to the TaC coating layer. During the dry rinsing step, the temperature may be raised from 1 to 100 ° C per minute, preferably from 5 to 20 ° C per minute to a temperature of 1700 to 2700 ° C. When it exceeds 100 ° C per minute, it can cause damage to the TaC coating layer.

第6圖是示出根據本發明的一個實施例的半導體處理元件再生方法的流程圖。 Figure 6 is a flow chart showing a method of reproducing a semiconductor processing element in accordance with one embodiment of the present invention.

在步驟610中,準備包括TaC塗膜層,在該TaC塗膜層形成SiC沉積層的半導體處理元件。在步驟620中,該半導體處理元件在真空條件下,由1700-2700℃被熱處理。對該步驟610及620的更為詳細的內容,可參考上述的步驟310及320。 In step 610, a semiconductor processing element including a TaC coating layer on which a SiC deposited layer is formed is prepared. In step 620, the semiconductor processing element is heat treated from 1700 to 2700 ° C under vacuum. For more details on the steps 610 and 620, reference may be made to steps 310 and 320 above.

在步驟630中,該半導體處理元件的SiC沉積層被除去。在步驟640中,該半導體處理元件在包括氫氣的氣體條件下,由1700-2700℃被乾式沖洗。對該步驟630及640的更詳細的內容,可參考上述的步驟530及540。 In step 630, the SiC deposited layer of the semiconductor processing element is removed. In step 640, the semiconductor processing element is dry rinsed from 1700 to 2700 ° C under a gas condition including hydrogen. For more details on steps 630 and 640, reference may be made to steps 530 and 540 above.

對本發明的半導體處理元件再生方法,熱處理該半導體處理元件,或者乾式沖洗步驟之後,該半導體處理元件上的殘留物的厚度可以是0.001-1μm。該殘留物可包括碳,殘留物的厚度可以是0.001-1μm,較佳地是0.001-0.5μm。按照本發明的一個實施例,當熱處理步驟和乾式沖洗步驟都被進行時,熱處理步驟之後的殘留物厚度可以是0.001-1μm,較佳地是0.001-0.5μm,乾式沖洗步驟之後的殘留物厚度可以是0.001-0.5μm,較佳地是0.001-0.1μm。 For the semiconductor processing element reproducing method of the present invention, after heat treating the semiconductor processing element, or after the dry rinsing step, the thickness of the residue on the semiconductor processing element may be 0.001 to 1 μm. The residue may include carbon, and the thickness of the residue may be 0.001 to 1 μm, preferably 0.001 to 0.5 μm. According to an embodiment of the present invention, when both the heat treatment step and the dry rinsing step are performed, the residue thickness after the heat treatment step may be 0.001 to 1 μm, preferably 0.001 to 0.5 μm, and the residue thickness after the dry rinsing step It may be 0.001 to 0.5 μm, preferably 0.001 to 0.1 μm.

本發明的再生半導體處理元件包括TaC塗膜層,且作為通過除去沉積形成在該TaC塗膜層的SiC沉積層的再生程序的半導體處理元件,該包括碳的殘留物厚度可以是0.001-1μm。該殘留物的厚度可以是 0.001-1μm,較佳地是0.001-0.5μm,並且該再生程序可由上述的半導體處理元件再生方法被執行。 The regenerated semiconductor processing element of the present invention includes a TaC coating layer, and as a semiconductor processing element for removing a deposition process of depositing a SiC deposited layer formed on the TaC coating layer, the residue including carbon may have a thickness of 0.001 to 1 μm. The thickness of the residue can be 0.001-1 μm, preferably 0.001 to 0.5 μm, and the regeneration procedure can be performed by the semiconductor processing element regeneration method described above.

按照本發明的一個實施例,可使用半導體處理元件再生方法的半導體處理元件可包括由室壁、基板支撐架、環、氣體分散系統元件,及傳輸模組元件形成的群中被選擇的至少任意一個。例如,該半導體處理元件可包括室壁、安裝在室內部的板、基板支撐架(可被提及為襯托器的基板支撐架)、扣件、加熱元件、電漿顯示螢幕、襯墊、環。還有,例如,該氣體分散系統還可包括噴頭、擋板、噴嘴環等,該傳輸模組元件可包括機械臂扣件、內部及外部室壁。在本發明可被使用的該半導體處理元件不限於上述的示例,只要是用在半導體工程的元件可任意包括。 According to an embodiment of the present invention, a semiconductor processing element that can use a semiconductor processing element regeneration method can include at least any selected from the group consisting of a chamber wall, a substrate support frame, a ring, a gas dispersion system element, and a transmission module element. One. For example, the semiconductor processing component can include a chamber wall, a plate mounted inside the chamber, a substrate support frame (a substrate support that can be referred to as a susceptor), a fastener, a heating element, a plasma display screen, a gasket, a ring . Also, for example, the gas dispersion system can further include a spray head, a baffle, a nozzle ring, etc., and the transfer module element can include a mechanical arm fastener, inner and outer chamber walls. The semiconductor processing element which can be used in the present invention is not limited to the above examples, and may be arbitrarily included as long as it is used in semiconductor engineering.

<實施例:熱處理> <Example: Heat treatment>

作為可被使用的半導體處理元件,在本發明準備了襯托器,並且這包括塗膜在石墨母材表面的TaC層。該襯托器被用在SiC沉積處理,利用電子顯微鏡測定的SiC沉積層的厚度為50μm。 As a semiconductor processing element that can be used, a susceptor is prepared in the present invention, and this includes a TaC layer coated on the surface of the graphite base material. This susceptor was used in the SiC deposition treatment, and the thickness of the SiC deposited layer measured by an electron microscope was 50 μm.

該襯托器佈置在反應室內,注入H2氣體之後,以20℃/min速度升溫,將溫度上升至2000℃熱處理60分鐘。熱處理之後,測定了襯托器表面的SiC沉積層的厚度。在襯托器表面的相當部分沒有發現SiC殘留物,剩餘的一些殘留物的厚度被測定為0.01μm。在該實 施例中,作為半導體處理元件使用了襯托器,但是不限於此,只要是用於半導體處理的元件可不受限制的被使用。 The susceptor was placed in the reaction chamber, and after injecting H 2 gas, the temperature was raised at a rate of 20 ° C/min, and the temperature was raised to 2000 ° C for 60 minutes. After the heat treatment, the thickness of the SiC deposited layer on the surface of the susceptor was measured. No SiC residue was found in a considerable portion of the surface of the susceptor, and the thickness of some remaining residues was determined to be 0.01 μm. In this embodiment, a susceptor is used as the semiconductor processing element, but is not limited thereto, as long as the element for semiconductor processing can be used without limitation.

該實施例變更注入的氣體、溫度及時間,反覆地被執行,並且下表表示各個實施例中的條件及結果。 This embodiment changes the injected gas, temperature and time, and is repeatedly performed, and the following table shows the conditions and results in the respective examples.

<實施例:熱處理及乾式沖洗> <Example: Heat treatment and dry rinsing>

作為可被使用的半導體處理元件,在本發明準備了襯托器,並且這包括塗膜在石墨母材表面的TaC層。該襯托器被用在SiC沉積處理,利用電子顯微鏡測定的SiC沉積層的厚度為50μm。該襯托器佈置在反應室內,注入Ar氣體之後,以20℃/min速度升溫,將溫度上升至2300℃熱處理60分鐘。通過熱處理,大部分的SiC沉積層被昇華。即使,剩下的SiC沉積物也是共價鍵被切斷的狀態,所以由柔軟的物理方法,如輕輕地抹去的方式被除去。除去SiC沉積層之後,測定了TaC塗膜層上的殘留物的厚度。在襯托器表面的相當部分沒有發現SiC殘留物,剩餘的一些殘留物的厚度被測定為0.01μm。接著,該襯托器再次佈置在反應室內,注入HCl氣體之後,以20℃/min速度升溫,將溫度上升至1800℃乾式沖洗20分 鐘。乾式沖洗處理之後,測定了襯托器表面的SiC沉積層的厚度。在襯托器表面的相當部分沒有發現SiC殘留物,剩餘的一些殘留物的厚度被測定為0.01μm。在該實施例中,作為半導體處理元件使用了襯托器,但是不限於此,只要是用於半導體處理的元件可不受限制的被使用。 As a semiconductor processing element that can be used, a susceptor is prepared in the present invention, and this includes a TaC layer coated on the surface of the graphite base material. This susceptor was used in the SiC deposition treatment, and the thickness of the SiC deposited layer measured by an electron microscope was 50 μm. The susceptor was placed in the reaction chamber, and after Ar gas was injected, the temperature was raised at a rate of 20 ° C/min, and the temperature was raised to 2300 ° C for 60 minutes. Most of the SiC deposited layer is sublimated by heat treatment. Even if the remaining SiC deposit is in a state where the covalent bond is cut, it is removed by a soft physical method such as gentle wiping off. After the SiC deposited layer was removed, the thickness of the residue on the TaC coating layer was measured. No SiC residue was found in a considerable portion of the surface of the susceptor, and the thickness of some remaining residues was determined to be 0.01 μm. Then, the susceptor is again disposed in the reaction chamber, and after injecting HCl gas, the temperature is raised at a rate of 20 ° C / min, and the temperature is raised to 1800 ° C for dry rinsing for 20 minutes. bell. After the dry rinsing treatment, the thickness of the SiC deposited layer on the surface of the susceptor was measured. No SiC residue was found in a considerable portion of the surface of the susceptor, and the thickness of some remaining residues was determined to be 0.01 μm. In this embodiment, a susceptor is used as the semiconductor processing element, but is not limited thereto, as long as the element for semiconductor processing can be used without limitation.

該實施例變更注入的氣體、溫度及時間,反覆地被執行,並且下表表示各個實施例中的條件及結果。 This embodiment changes the injected gas, temperature and time, and is repeatedly performed, and the following table shows the conditions and results in the respective examples.

第7圖是示出根據本發明的一個實施例,SiC被沉積的襯托器的電子顯微鏡照片。SiC沉積層20疊層在包括塗膜在石墨母材11表面的TaC層12的襯托器10。 Fig. 7 is an electron micrograph showing a susceptor in which SiC is deposited according to an embodiment of the present invention. The SiC deposited layer 20 is laminated on the susceptor 10 including the TaC layer 12 coated on the surface of the graphite base material 11.

第8圖是示出根據本發明的一個實施例的再生襯托器的電子顯微鏡照片。經過本發明的再生處理後,在襯托器表面幾乎發現不了SiC沉積層。 Fig. 8 is an electron micrograph showing a reproduction susceptor according to an embodiment of the present invention. After the regeneration treatment of the present invention, almost no SiC deposited layer was found on the surface of the susceptor.

綜上,實施例雖然由限定的實施例和圖被說明,但是所屬技術領域具有通常知識者可從上述的說明多樣地修正及變更。例如,由說明的技術與說明的方法和其他順序被執行,及/或由說明的系統、結構、裝置、回路等,構成要素與說民的方法和其他形態被鍵合或者組合,或者由其他構成要素或者均等物對置或者置換,也可達到適當的結果。 In the above, the embodiments are described with reference to the embodiments and the drawings, and those skilled in the art can variously modify and change from the above description. For example, the methods and other sequences described are illustrated and/or illustrated by the described techniques, structures, devices, circuits, etc., and the components and other methods are bonded or combined, or by other Appropriate results can also be achieved if the constituent elements or equivalents are opposed or replaced.

所以,其他具體實施方式、其他實施例及與專利請求範圍均等的,也屬於後述的專利請求範圍的範圍。 Therefore, other specific embodiments, other embodiments, and equivalents to the scope of patent claims are also within the scope of the patent claims described below.

10‧‧‧半導體處理元件 10‧‧‧Semiconductor processing components

11‧‧‧石墨母材 11‧‧‧Graphite base metal

12‧‧‧TaC層 12‧‧‧TaC layer

20‧‧‧SiC沉積層 20‧‧‧SiC deposit

Claims (12)

一種半導體處理元件再生方法,其步驟包括:準備包括TaC塗膜層的半導體處理元件,在該TaC塗膜層上形成有SiC沉積層;在選自由包括氫的氣體、包括氯的氣體以及不活性氣體所組成的群組的至少任意一個氣體條件下,或者真空條件下,以1700-2700℃對該半導體處理元件進行熱處理。 A semiconductor processing element regeneration method, the method comprising: preparing a semiconductor processing element including a TaC coating layer on which a SiC deposition layer is formed; selected from a gas including hydrogen, a gas including chlorine, and an inactive The semiconductor processing element is heat-treated at 1700 to 2700 ° C under at least one of the gas conditions of the group of gases or under vacuum. 如請求項1所述之半導體處理元件再生方法,其中該由包括氫的氣體、包括氯的氣體以及不活性氣體所組成的群包括:H2、HCl、Cl2、Ar、Ne、Kr、Xe,及N2The semiconductor processing element regeneration method according to claim 1, wherein the group consisting of a gas including hydrogen, a gas including chlorine, and an inert gas includes: H 2 , HCl, Cl 2 , Ar, Ne, Kr, Xe , and N 2 . 如請求項1所述之半導體處理元件再生方法,其中熱處理該半導體處理元件的步驟是切斷該SiC沉積層和該TaC塗膜層之間的化學結合。 The semiconductor processing element reproducing method according to claim 1, wherein the step of heat-treating the semiconductor processing element is to cut a chemical bond between the SiC deposited layer and the TaC coating layer. 如請求項1所述之半導體處理元件再生方法,其步驟還包括:在包括氫氣的氣體條件下,以1700-2700℃乾式沖洗該半導體處理元件。 The semiconductor processing element regeneration method of claim 1, the method further comprising: dry-rinsing the semiconductor processing element at 1700-2700 ° C under a gas condition including hydrogen. 如請求項4所述之半導體處理元件再生方法,其中乾式沖洗該半導體處理元件之前,該TaC塗膜層中,包括碳的殘留物遺留在該TaC塗膜層表面上。 The method of regenerating a semiconductor processing element according to claim 4, wherein a residue including carbon remains on the surface of the TaC coating layer before the semiconductor processing element is dry-rinsed. 如請求項5所述之半導體處理元件再生方法,其中乾式沖洗該半導體處理元件的步驟是昇華該包括碳的殘留物。 The semiconductor processing element regeneration method of claim 5, wherein the step of dry rinsing the semiconductor processing element is to sublimate the residue including carbon. 如請求項1所述之半導體處理元件再生方法,其中熱處理該半導體處理元件之後,包括碳的殘留物的厚度是0.001-1μm。 The method of regenerating a semiconductor processing element according to claim 1, wherein after the heat treatment of the semiconductor processing element, the thickness of the residue including carbon is 0.001 to 1 μm. 如請求項1所述之半導體處理元件再生方法,其中該半導體處理元件的SiC沉積層厚度是0.001-500μm。 The semiconductor processing element reproducing method according to claim 1, wherein the SiC deposited layer thickness of the semiconductor processing element is 0.001 to 500 μm. 如請求項1所述之半導體處理元件再生方法,其中該半導體處理元件包括:由室壁、基板支撐架、環、氣體分散系統元件以及傳輸模組元件所組成的群組中被選擇的至少任意一個。 The semiconductor processing element regeneration method of claim 1, wherein the semiconductor processing element comprises at least any selected from the group consisting of a chamber wall, a substrate support frame, a ring, a gas dispersion system component, and a transmission module component. One. 一種再生半導體處理元件,其包括:包括TaC塗膜層的半導體處理元件,該半導體處理元件通過除去沉積形成在該TaC塗膜層上的SiC沉積層的再生程序;以及碳的殘留物,其厚度是0.001-1μm。 A regenerative semiconductor processing element comprising: a semiconductor processing element including a TaC coating layer, the semiconductor processing element removing a deposition process of depositing a SiC deposited layer formed on the TaC coating layer; and a residue of carbon, a thickness thereof It is 0.001-1 μm. 如請求項10所述之再生半導體處理元件,其中該再生程序是以根據請求項1至請求項8中任一項的半導體處理元件再生方法執行。 The regenerative semiconductor processing element according to claim 10, wherein the reproduction program is executed by the semiconductor processing element reproduction method according to any one of claims 1 to 8. 如請求項10所述之再生半導體處理元件,其中該半導體處理元件包括:由室壁、基板支撐架、環、氣體分散系統元件以及傳輸模組元件所組成的群組中被選擇的至少任意一個。 The regenerated semiconductor processing component of claim 10, wherein the semiconductor processing component comprises: at least one selected from the group consisting of a chamber wall, a substrate support, a ring, a gas dispersion system component, and a transmission module component. .
TW104141785A 2014-12-12 2015-12-11 Semiconductor processing element regeneration method TWI585895B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20140179667 2014-12-12
KR1020150164251A KR101752175B1 (en) 2014-12-12 2015-11-23 Method for refairing semiconductor processing components

Publications (2)

Publication Number Publication Date
TW201633450A TW201633450A (en) 2016-09-16
TWI585895B true TWI585895B (en) 2017-06-01

Family

ID=56107594

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141785A TWI585895B (en) 2014-12-12 2015-12-11 Semiconductor processing element regeneration method

Country Status (3)

Country Link
KR (1) KR101752175B1 (en)
TW (1) TWI585895B (en)
WO (1) WO2016093431A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130327274A1 (en) * 2012-06-07 2013-12-12 Mitsubishi Electric Corporation Substrate support and semiconductor manufacturing apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3004696B2 (en) * 1989-08-25 2000-01-31 アプライド マテリアルズ インコーポレーテッド Cleaning method for chemical vapor deposition equipment
JP4608884B2 (en) * 2004-01-08 2011-01-12 信越半導体株式会社 Method for forming surface protective film of jig for heat treatment
JP4632290B2 (en) * 2004-03-23 2011-02-16 日本碍子株式会社 Cleaning method for aluminum nitride susceptor
JP5542560B2 (en) * 2010-07-20 2014-07-09 株式会社ニューフレアテクノロジー Semiconductor manufacturing apparatus and susceptor cleaning method
JP5697246B2 (en) * 2011-04-13 2015-04-08 イビデン株式会社 Epitaxial growth susceptor, epitaxial growth apparatus using the same, and epitaxial growth method using the same
JP2013207057A (en) * 2012-03-28 2013-10-07 Hitachi Kokusai Electric Inc Substrate processing apparatus, substrate manufacturing method, and substrate processing apparatus cleaning method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130327274A1 (en) * 2012-06-07 2013-12-12 Mitsubishi Electric Corporation Substrate support and semiconductor manufacturing apparatus

Also Published As

Publication number Publication date
KR20160072018A (en) 2016-06-22
TW201633450A (en) 2016-09-16
WO2016093431A1 (en) 2016-06-16
KR101752175B1 (en) 2017-06-29

Similar Documents

Publication Publication Date Title
JP4938754B2 (en) Method for depositing a diamond layer on a graphite substrate
KR100755804B1 (en) Cleaning method of apparatus for depositing Al-containing metal film and Al-containing metal nitride film
TWI667364B (en) A part for semiconductor manufacturing with sic deposition layer and manufacturing method the same
JP2007531304A5 (en)
US20220162757A1 (en) Plasma treatment device and method for manufacturing semiconductor device
TWI415170B (en) Method for maintaining semiconductor manufacturing apparatus, semiconductor manufacturing apparatus, and method for manufacturing semiconductor
TW200406827A (en) Manufacturing method of silicon epi-wafer
KR102017138B1 (en) Method for Recycling of SiC Product and Recycled SiC Product
JP6141953B2 (en) Method for recycling semiconductor process parts
TWI585895B (en) Semiconductor processing element regeneration method
KR100966832B1 (en) Manufacturing method for semiconductor wafer supporting device
TW200522191A (en) Method for removing a composite coating containing tantalum deposition and arc sprayed aluminum from ceramic substrates
KR101326106B1 (en) Extending method of cleaning period for thin film deposition apparatus
KR101983751B1 (en) Method for regenerating member within silicon single crystal pulling apparatus
KR20210020355A (en) Manufacturing method of susceptor for wafer
KR102071500B1 (en) Method of fabricating semiconductor device
JP4947393B2 (en) Manufacturing method of semiconductor substrate
JP2019091848A (en) Method for cleaning component in furnace of vapor phase growth device
CN116364805A (en) Semiconductor processing method and semiconductor processing equipment
TWI462162B (en) Cleaning method of apparatus for depositing carbon containing film
TW200805464A (en) Manufacturing process of recycled wafer
JP2008182001A (en) Manufacturing method for semiconductor device
JP2002203833A (en) Method for manufacturing semiconductor device
KR20010029920A (en) A tool for semiconductor manufacturing apparatus and method for using the same
JP2002285337A (en) Method for producing semiconductor device