TWI584001B - Camera,actuator device and method of image stabilization - Google Patents

Camera,actuator device and method of image stabilization Download PDF

Info

Publication number
TWI584001B
TWI584001B TW101136137A TW101136137A TWI584001B TW I584001 B TWI584001 B TW I584001B TW 101136137 A TW101136137 A TW 101136137A TW 101136137 A TW101136137 A TW 101136137A TW I584001 B TWI584001 B TW I584001B
Authority
TW
Taiwan
Prior art keywords
camera
actuators
lens
actuator
stage
Prior art date
Application number
TW101136137A
Other languages
Chinese (zh)
Other versions
TW201319628A (en
Inventor
羅曼C 古提瑞茲
羅伯J 凱威特
劉小雷
派特K 梁
何西A 曼德玆
寇奈流 薩哈利亞
亞歷山卓F 德姆巴瑞恩
派托奈爾 格歐瑞克 畢吉歐
Original Assignee
數位光學Mems有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US13/247,906 external-priority patent/US8855476B2/en
Priority claimed from US13/247,895 external-priority patent/US9019390B2/en
Application filed by 數位光學Mems有限公司 filed Critical 數位光學Mems有限公司
Publication of TW201319628A publication Critical patent/TW201319628A/en
Application granted granted Critical
Publication of TWI584001B publication Critical patent/TWI584001B/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/08Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light
    • G02B26/0816Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements
    • G02B26/0833Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD
    • G02B26/0841Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the direction of light by means of one or more reflecting elements the reflecting element being a micromechanical device, e.g. a MEMS mirror, DMD the reflecting element being moved or deformed by electrostatic means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B5/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B5/02Lateral adjustment of lens
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/681Motion detection
    • H04N23/6812Motion detection based on additional sensors, e.g. acceleration sensors
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/68Control of cameras or camera modules for stable pick-up of the scene, e.g. compensating for camera body vibrations
    • H04N23/682Vibration or motion blur correction
    • H04N23/685Vibration or motion blur correction performed by mechanical compensation
    • H04N23/687Vibration or motion blur correction performed by mechanical compensation by shifting the lens or sensor position
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0007Movement of one or more optical elements for control of motion blur
    • G03B2205/0015Movement of one or more optical elements for control of motion blur by displacing one or more optical elements normal to the optical axis
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B2205/00Adjustment of optical system relative to image or object surface other than for focusing
    • G03B2205/0053Driving means for the movement of one or more optical element

Description

相機、致動器裝置及影像穩定化之方法 Camera, actuator device, and image stabilization method

本發明大體上係關於光學裝置,且更特定言之係關於一種以MEMS為基礎之影像穩定化系統。 The present invention relates generally to optical devices and, more particularly, to a MEMS based image stabilization system.

本申請案主張於2011年9月28日申請之美國申請案第13/247,906號及2011年9月28日申請之美國申請案第13/247,895號之優先權。此等申請案之全部內容併入本文中。 The present application claims priority to U.S. Application Serial No. 13/247,906, filed on Sep. 28, 2011, and Serial No. 13/247,895, filed on Sep. 28, 2011. The entire contents of these applications are incorporated herein.

具有諸如變焦、自動聚焦及高解析度之特徵之蜂巢式相機之爆炸性增長已威脅使全自動數位相機過時。但是由於此等小型相機遷移至更高的百萬像素密度及變焦能力,所以所得影像品質招致吾人不滿。實際上,即使當有意識地嘗試時,用人手使一相機保持靜止在實際上係不可能的,此係因為人手具有在7 Hz至11 Hz之範圍中之峰值之一自然顫動。取決於曝光時間以及每一影像像素之角視場,相機之此大致上10 Hz振動將會對影像品質產生愈來愈大的影響。因此,行動電話相機之像素密度之增加自相機抖動引入愈來愈多的影像模糊。 The explosive growth of cellular cameras with features such as zoom, auto focus, and high resolution has threatened to make fully automated digital cameras obsolete. However, due to the migration of these small cameras to higher megapixel densities and zoom capabilities, the resulting image quality has caused us dissatisfaction. In fact, even when consciously trying, it is practically impossible to keep a camera still by hand, because the human hand has a natural jitter in one of the peaks in the range of 7 Hz to 11 Hz. Depending on the exposure time and the angular field of view of each image pixel, this approximately 10 Hz vibration of the camera will have an ever-increasing effect on image quality. As a result, the increase in pixel density of mobile phone cameras has introduced more and more image blurring from camera shake.

因此,數位相機之以MEMS為基礎之運動感測器經發展以解決由人手顫動所致的影像降級。例如,以MEMS為基礎之陀螺儀可用以感測相機運動。回應於所感測的運動,一影像穩定化系統嘗試移動透鏡或影像感測器以最小化或消除影像之所得運動引發之模糊。然而,所得致動係使用 習知致動器予以執行。 Therefore, MEMS-based motion sensors for digital cameras have been developed to address image degradation caused by human hand flutter. For example, a MEMS-based gyroscope can be used to sense camera motion. In response to the sensed motion, an image stabilization system attempts to move the lens or image sensor to minimize or eliminate blurring caused by the resulting motion of the image. However, the resulting actuation system is used Conventional actuators are implemented.

因此,此項技術需要以MEMS為基礎之影像穩定化系統。 Therefore, this technology requires a MEMS-based image stabilization system.

根據本發明之一第一態樣,提供一種相機,其包含:複數個靜電致動器;及一光學影像穩定化(OIS)演算法模組,其可操作以命令該複數個致動器回應於該相機之運動而致動該至少一透鏡。 In accordance with a first aspect of the present invention, a camera is provided comprising: a plurality of electrostatic actuators; and an Optical Image Stabilization (OIS) algorithm module operative to command the plurality of actuators to respond The at least one lens is actuated by movement of the camera.

根據本發明之一第二態樣,提供一種影像穩定化之方法,其包含:感測一相機之一運動;基於所感測的運動,判定穩定化一相機透鏡之一所要透鏡致動;將該所要透鏡致動轉變為所要切向致動;及使用複數個切向致動器根據該等所要切向致動切向地致動該至少一透鏡。 According to a second aspect of the present invention, a method of image stabilization is provided, comprising: sensing a motion of a camera; determining, based on the sensed motion, a lens actuation of one of the stabilized camera lenses; The desired lens actuation is converted to the desired tangential actuation; and the plurality of tangential actuators are used to tangentially actuate the at least one lens in response to the desired tangential actuation.

根據本發明之一第三態樣,提供一種致動器裝置,其包含:一載物台,其經彈性地支撐以在一平面內移動;三個或三個以上致動器,其等各耦合至該載物台之一外周邊且可操作以在其等經致動時施加作用於該平面內且切向於該載物台之一力;及一外部框架,其包圍並支撐該載物台及該等致動器。 According to a third aspect of the present invention, there is provided an actuator apparatus comprising: a stage elastically supported to move in a plane; three or more actuators, each of which Coupled to an outer periphery of the stage and operable to apply a force acting in the plane and tangential to the stage when it is actuated; and an outer frame that surrounds and supports the load The table and the actuators.

自下文本發明之一些例示性實施例之詳細描述之一考量(尤其在結合隨附圖式作出此考量之情況下)可獲得本發明之新穎致動器裝置之上述及許多其他特徵及優點以及該等致動器裝置之若干使用方法之一更佳理解,其中相同的參考數字係用以識別本發明之圖式之一或多者中所圖解說明 之相同元件。 The above and many other features and advantages of the novel actuator device of the present invention are obtained from the consideration of a detailed description of some exemplary embodiments of the present invention, in particular in conjunction with the drawings. One of several ways of using the actuator devices is better understood, wherein the same reference numerals are used to identify one or more of the drawings of the present invention. The same components.

以靜電MEMS為基礎之透鏡致動經利用以提供一有效影像穩定化系統。在一實施例中,可在諸如一透鏡之一光學元件周圍安置少至三個致動器以藉由利用切向致動實現影像穩定化。現在參考該等圖式,一影像穩定化固定器100包含藉由一圓形安裝載物台110界定以接納諸如一透鏡或透鏡群組(未圖解說明)之一光學元件之一中心孔隙105。定名為一致動器1、一致動器2及一致動器3之三個致動器對稱地安置在孔隙105周圍。每一致動器以一切向方式致動載物台110。換言之,藉由每一致動器引入之一線性位移120界定切向於圍封一孔隙中心118之一圓之一向量方向。例如,線性位移120切向於藉由安裝載物台110界定之圓。 Electrostatic MEMS-based lens actuation is utilized to provide an effective image stabilization system. In one embodiment, as few as three actuators can be placed around an optical component such as a lens to achieve image stabilization by utilizing tangential actuation. Referring now to the drawings, an image stabilization fixture 100 includes a central aperture 105 defined by a circular mounting stage 110 to receive one of an optical element such as a lens or group of lenses (not illustrated). Three actuators designated as the actuator 1, the actuator 2, and the actuator 3 are symmetrically disposed around the aperture 105. Each actuator actuates the stage 110 in an all-directional manner. In other words, by one of the linear displacements 120 introduced by each actuator, a vector direction tangentially enclosing one of the centers of the apertures 118 is defined. For example, the linear displacement 120 is tangential to a circle defined by the mounting stage 110.

考慮界定於孔隙105之中心118處之一笛卡耳座標系統(Cartesian coordinate system)更佳地瞭解所得切向致動。載物台110及致動器1、2及3位於藉由x及y方向界定之一平面中。z方向在中心118處自該平面法向突出。如本文使用,如藉由方向115指示,一切向位移被視為每一致動器之正位移。在此方面,每一致動器因此具有正位移及負位移。如圖2A中所見,若致動器1、2及3各引入一相等的位移且致動器1及2切向負位移且致動器3切向正位移,則載物台110之所得切向致動係在正x方向上。相反地,若全部該等致動器1及2正位移而致動器3相等負位移,則載物台110之所得切向致動係在負x方向上,如圖2C中所示。或 者,若致動器3保持中性,致動器1負向地致動一給定量,且致動器2正向地致動相同量,則載物台110之凈致動係在正y方向上,如圖2B中所示。相反地,若致動器3保持中性但針對致動器1及2切換之正位移及負位移如圖2D中所示般切換,則載物台110之凈致動係在負y方向上。以此方式,切向致動可實現載物台110在該等致動器之行程限制內之任何所要量的x及y位移。 Considering the Cartesian coordinate system defined at the center 118 of the aperture 105, the resulting tangential actuation is better understood. Stage 110 and actuators 1, 2 and 3 are located in one of the planes defined by the x and y directions. The z-direction protrudes from the plane normal at the center 118. As used herein, as indicated by direction 115, the all-direction displacement is considered to be the positive displacement of each actuator. In this respect, each actuator thus has a positive displacement and a negative displacement. As seen in Figure 2A, if the actuators 1, 2, and 3 each introduce an equal displacement and the actuators 1 and 2 are tangentially negatively displaced and the actuator 3 is tangentially displaced, the resulting cut of the stage 110 The actuation system is in the positive x direction. Conversely, if all of the actuators 1 and 2 are displaced and the actuator 3 is equally negatively displaced, the resulting tangential actuation of the stage 110 is in the negative x-direction, as shown in Figure 2C. or If the actuator 3 remains neutral, the actuator 1 is actuated negatively for a given amount, and the actuator 2 is positively actuated by the same amount, then the net actuation of the stage 110 is positive. Direction is as shown in Figure 2B. Conversely, if the actuator 3 remains neutral but the positive and negative displacements for the actuators 1 and 2 are switched as shown in Figure 2D, the net actuation of the stage 110 is in the negative y-direction. . In this manner, tangential actuation can achieve any desired amount of x and y displacement of the stage 110 within the travel limits of the actuators.

切向致動亦可引入載物台110圍繞z軸之一旋轉。例如,若致動器1、2及3各引入相等量的負位移,則該載物台110之凈致動係圖2E中之一順時針旋轉(負θ)。相反地,若圖2E之致動如圖2F中所示般全部反轉使得全部切向致動皆為正,則載物台110之凈致動係一逆時針z軸旋轉(正θ)。以此方式,可按需要在x及y平面中平移載物台110且在θ方向上旋轉載物台110。 Tangential actuation can also be introduced to rotate the stage 110 about one of the z-axes. For example, if the actuators 1, 2, and 3 each introduce an equal amount of negative displacement, the net actuation of the stage 110 is one of the clockwise rotations (negative θ) in Figure 2E. Conversely, if the actuation of Figure 2E is all reversed as shown in Figure 2F such that all tangential actuations are positive, the net actuation of stage 110 is a counterclockwise z-axis rotation (positive θ). In this manner, stage 110 can be translated in the x and y planes as needed and stage 110 can be rotated in the θ direction.

可在一局部座標系統中表示藉由每一致動器1至3引入之切向位移。例如,致動器3之x方向切向位移可定名為在具有相同於藉由圖1之方向115表示之正方向之L3方向上之位移。類似地,致動器1及2之切向位移可分別藉由局部線性座標L1及L2表示。取決於自中心118至每一致動器之有效切向致動點之徑向距離R,來自致動器1之在維度L1上之位移、來自致動器2之在維度L2上之位移及來自致動器3之在維度L3上之位移(尺寸)可全部與載物台110在x及y維度上之平移以及載物台110之在θ上之一旋轉有關。在此方面,可展示一座標變換為如下: The tangential displacement introduced by each of the actuators 1 through 3 can be represented in a partial coordinate system. For example, the actuator tangential direction of x 3 can be displaced in the predetermined displacement of the named third direction to the same direction by the positive direction of FIG 1115 represents the sum of L. Similarly, the tangential displacement of actuators 1 and 2 can be represented by local linear coordinates L 1 and L 2 , respectively. It depends upon the effective cut from the center of each actuator 118 to the actuator to move radially of the point from the R, L 1 from the displacement of the actuator in the dimension of 1, from the actuator in the dimension of the displacement of the 2 L 2 and from the actuator 3 is displaced in the L dimension (size) of the entire 3 translational and can stage 110 in the x and y dimensions of the stage 110, and one relating to rotation on θ. In this regard, a flag can be displayed as follows:

L3=RSinθ+X L 3 =RSin θ +X

上述座標變換假定透鏡中性位置係在原點,但在該中性位置自該原點移位之情況下可相應地予以修改。使用此等座標變換,可透過一對應切向致動定址起因於相機之抖動或其他非預期物理干擾之載物台110在x,y平面中之一所偵測平移或旋轉。 The above coordinate transformation assumes that the neutral position of the lens is at the origin, but can be modified accordingly if the neutral position is displaced from the origin. Using such coordinate transformations, a translation or rotation detected by one of the x, y planes of the stage 110 caused by camera shake or other unintended physical interference can be addressed by a corresponding tangential actuation.

可使用任何合適致動器以建構諸如一梳狀致動器或一間隙閉合致動器之致動器1、2及3。一偏壓梳狀致動器提供諸如+/- 50微米之具有吸引力的行程特性且可如於2010年11月15日申請之共同讓與之美國申請案第12/946,670號('670申請案)中所論述般予以實施,該案之內容以引用之方式併入本文。在此一實施例中,每一致動器具有一固定部分121及一可移動部分122。在圖1之影像穩定化裝置100中,固定部分121與一外部框架125整合且包含朝可移動部分122徑向延伸之複數個固定梳支撐件112。類似地,可移動部分122包含朝固定部分121徑向延伸之複數個梳支撐件113。梳支撐件112及113彼此交替以支撐複數個梳114。為圖解清楚起見,在圖1中並未展示梳114,而是在圖4A至圖4C中以特寫圖展示梳114。 Any suitable actuator can be used to construct actuators 1, 2 and 3 such as a comb actuator or a gap closure actuator. A biased comb actuator provides an attractive stroke characteristic, such as +/- 50 microns, and can be applied as disclosed in the U.S. Application Serial No. 12/946,670 (the '670 application) filed on Nov. 15, 2010. It is implemented as discussed in the case, and the contents of this case are incorporated herein by reference. In this embodiment, each actuator has a fixed portion 121 and a movable portion 122. In the image stabilization device 100 of FIG. 1, the fixed portion 121 is integral with an outer frame 125 and includes a plurality of fixed comb supports 112 that extend radially toward the movable portion 122. Similarly, the movable portion 122 includes a plurality of comb supports 113 that extend radially toward the fixed portion 121. The comb supports 112 and 113 alternate with each other to support a plurality of combs 114. For the sake of clarity of illustration, the comb 114 is not shown in Figure 1, but the comb 114 is shown in close-up in Figures 4A-4C.

如圖3中更詳細所見,每一致動器1至3透過一對應撓曲件106驅動載物台110。為容許自相對致動器移動,每一撓 曲件106可在徑向方向上具有相對較大撓性,同時在切向方向上(對應於圖1之線性位移120)相對較硬。例如,撓曲件106可包括具有在切向方向上對準之一縱軸之一V形折疊撓曲件。此一V形撓曲件允許一徑向撓曲相對於位移120仍相對較硬。以此方式,達成載物台110之一「偽運動學」放置,其將中心118精確地定位在一靜止狀態,從而又在影像穩定化期間達成所要的x-y平面平移及θ旋轉。 As seen in more detail in FIG. 3, each of the actuators 1 through 3 drives the stage 110 through a corresponding flexure 106. To allow movement from the relative actuator, each scratch The curved piece 106 can have a relatively large flexibility in the radial direction while being relatively stiff in the tangential direction (corresponding to the linear displacement 120 of Figure 1). For example, flexure 106 can include a V-folded flexure having one of the longitudinal axes aligned in a tangential direction. This V-shaped flexure allows a radial deflection to be relatively stiff relative to the displacement 120. In this manner, a "pseudo-kinematic" placement of the stage 110 is achieved which accurately positions the center 118 in a stationary state, thereby achieving the desired x-y plane translation and θ rotation during image stabilization.

可使用諸如'670申請案中論述之一線性部署完成使用達成致動器1至3之一偏壓部署狀態之一MEMS程序之梳114之製造。如圖4A之特寫圖中所見,構成每一梳114之指叉型指狀物可製造為一完全指叉型狀態。換言之,梳114之指狀物最初經安置使得相關聯之固定梳支撐件112及可移動梳支撐件113隔開達約梳114中之指狀物之長度。因此,跨圖4A之處於未部署狀態之梳114施加一電壓差將不會導致載物台110相對於框架125之任何平面內直線移動,且因此不會導致耦合至載物台110之一透鏡之任何對應的X、Y或θ移動。為了對致動留出空間,應如圖4B中所示般分開及部署每一梳114。 Fabrication of the comb 114 using one of the MEMS programs that achieve one of the actuators 1 to 3 biased deployment states can be accomplished using a linear deployment such as one discussed in the '670 application. As seen in the close-up view of Fig. 4A, the interdigitated fingers constituting each of the combs 114 can be manufactured in a full interdigitated state. In other words, the fingers of the comb 114 are initially positioned such that the associated fixed comb support 112 and movable comb support 113 are spaced apart by the length of the fingers in the comb 14. Therefore, applying a voltage difference across the comb 114 in the undeployed state of FIG. 4A will not cause linear movement of the stage 110 relative to the frame 125, and thus will not result in coupling to one of the stages of the stage 110. Any corresponding X, Y or θ movement. In order to make room for actuation, each comb 114 should be separated and deployed as shown in Figure 4B.

如圖4B中圖解說明,在一實施例中,可藉由以下步驟實現此部署:在一箭頭400之方向上將該梳支撐件113(且因此,圖1之可移動部分122)移動至可與相關聯固定梳支撐件112共面、平行且相隔一選定距離之一部署位置且接著將可移動部分122固定在該部署位置中以相對於固定部分121實質上共面、直線移動。如圖4C中圖解說明,當因此 部署時,如藉由一雙向箭頭405指示,跨梳114施加及移除一合適電壓差將導致彈性支撐之可移動部分122朝固定部分121及遠離固定部分121之一實質上直線及共面移動,且因此,導致耦合至載物台110之一元件之一對應X、Y及/或θ移動。 As illustrated in Figure 4B, in one embodiment, this deployment can be accomplished by moving the comb support 113 (and, therefore, the movable portion 122 of Figure 1) to the direction of an arrow 400. A position is deployed coplanar, parallel, and spaced apart by a selected distance from the associated fixed comb support 112 and then the movable portion 122 is secured in the deployed position to move substantially coplanarly and linearly relative to the fixed portion 121. As illustrated in Figure 4C, when When deployed, as indicated by a double arrow 405, applying and removing a suitable voltage difference across the comb 114 will cause the resiliently supported movable portion 122 to move substantially linearly and coplanarly toward one of the fixed portion 121 and away from the fixed portion 121. And, thus, causing one of the elements coupled to the stage 110 to move corresponding to X, Y, and/or θ.

存在用於將可移動部分122部署至該部署位置且將其鎖定或固定在該部署位置中之若干不同的方法及設備。例如,如圖3中所見,一部署方法可涉及框架125上之一共面偏心(over-center)閂鎖300及一支點304。閂鎖300係用一閂鎖撓曲件306耦合至框架125。一共面部署槓桿308透過一部署撓曲件310耦合至可移動部分122。部署槓桿308具有經組態以與閂鎖300接合之一凸輪表面312。此外,槓桿308具有用於與支點304接合以使該槓桿相對於支點304旋轉移動之一缺口。 There are several different methods and apparatus for deploying the moveable portion 122 to the deployment location and locking or securing it in the deployment location. For example, as seen in FIG. 3, a deployment method may involve a coplanar over-center latch 300 and a fulcrum 304 on the frame 125. The latch 300 is coupled to the frame 125 with a latch flexure 306. A coplanar deployment lever 308 is coupled to the movable portion 122 through a deployment flexure 310. The deployment lever 308 has a cam surface 312 that is configured to engage the latch 300. Additionally, the lever 308 has a notch for engaging the fulcrum 304 to rotationally move the lever relative to the fulcrum 304.

在一例示性部署中,如圖3中所示,在一箭頭314之方向上施加一加速脈衝於可移動部分122同時使該框架125保持靜止。此脈衝導致部署槓桿308圍繞支點304旋轉朝向閂鎖300。該部署槓桿308圍繞該支點304之旋轉引起凸輪表面312如圖5中所見般接合閂鎖300。最初,槓桿308係在一未部署位置501中,但開始旋轉至中間位置502中使得凸輪表面312偏壓閂鎖300且拉伸閂鎖撓曲件306。為圖解清楚起見,展示大部分切除之部署撓曲件310。槓桿308之繼續旋轉容許閂鎖撓曲件306向下拉回閂鎖300以將槓桿308閂鎖至一閂鎖位置503中。為產生使槓桿308旋轉且使可移動部 分122位移之加速脈衝,一小針或另一MEMS裝置可插入一拉環315(圖3)中且相應地經致動。在一替代性實施例中,可使用諸如2010年11月15日申請之共同讓與之美國申請案第12/946,657號中描述之毛細管作用部署可移動部分122,該案之內容以引用之方式併入本文。類似地,在'670申請案中描述替代性部署及閂鎖結構及方法。 In an exemplary deployment, as shown in FIG. 3, an acceleration pulse is applied to the movable portion 122 in the direction of arrow 314 while the frame 125 remains stationary. This pulse causes the deployment lever 308 to rotate about the fulcrum 304 toward the latch 300. Rotation of the deployment lever 308 about the fulcrum 304 causes the cam surface 312 to engage the latch 300 as seen in FIG. Initially, the lever 308 is in an un deployed position 501, but begins to rotate into the intermediate position 502 such that the cam surface 312 biases the latch 300 and stretches the latch flexure 306. For the sake of clarity of illustration, most of the resected deployment flexures 310 are shown. Continued rotation of the lever 308 allows the latch flexure 306 to pull back the latch 300 to latch the lever 308 into a latched position 503. In order to generate the lever 308 to rotate and make the movable portion With a 122-pulse acceleration pulse, a small pin or another MEMS device can be inserted into a pull ring 315 (Fig. 3) and actuated accordingly. In an alternative embodiment, the movable portion 122 can be deployed using capillary action as described in commonly assigned U.S. Application Serial No. 12/946,657, filed on Nov. 15, 2010, the content of which is incorporated by reference. Incorporated herein. Similarly, alternative deployment and latching structures and methods are described in the '670 application.

該部署及閂鎖可導致梳114如圖4B中所示般相對完全地敞開。在此一位置中,相對於膨脹,梳114可僅有效地收縮。在此方面,可期望收縮及膨脹二者以得到上文關於致動器1、2及3論述之正切向移動及負切向移動二者。因此,在影像穩定化期間之一預設狀態可涉及跨梳114施加某種程度之電壓以達成如圖4C中所示之中間指叉。以此方式,若梳電壓降低至圖4C之預設操作電壓位準以下,則梳114將膨脹。相反地,若梳電壓相對於該預設操作位準而增加,則梳114將收縮。以此方式,如箭頭405指示,可藉由致動器1、2及3施加正致動及負致動二者。 This deployment and latching can cause the comb 114 to be relatively completely open as shown in Figure 4B. In this position, the comb 114 can only effectively contract relative to expansion. In this regard, both contraction and expansion may be desired to achieve both tangential and negative tangential movements discussed above with respect to actuators 1, 2, and 3. Thus, one of the preset states during image stabilization may involve applying a certain degree of voltage across the comb 114 to achieve the intermediate yoke as shown in Figure 4C. In this manner, if the comb voltage drops below the preset operating voltage level of Figure 4C, the comb 114 will expand. Conversely, if the comb voltage increases relative to the predetermined operational level, the comb 114 will contract. In this manner, both the positive and negative actuations can be applied by actuators 1, 2 and 3 as indicated by arrow 405.

在跨梳114施加該預設電壓之前,該等致動器可處於一「行程開始」、「斷電」或「停妥(parked)」狀態。在「停妥」狀態中,影像穩定化處於非操作中但不影響中心118。如關於圖2F論述,致動器1、2及3之各者之一適當位移產生θ上之一正旋轉,但未產生x-y平面平移。因此,每一梳114處之此一位移足以自圖4B中所示之部署但非作用中狀態前進至圖4C之預設操作狀態。圖6A展示致動器1、2及3自停妥狀態前進至作用中光學影像穩定化狀態之旋 轉。如圖6B中圖解說明,在梳114已偏壓至其等操作電壓之後,對該等致動器1、2及3之各者之各自操作電壓選擇性地施加受控制的增加或降低將導致如上文結合圖2A至圖2F論述之載物台110(及因此中心118)之一確定性移動。如圖6C中所示,為了在未執行成像時節省電力,可再次將致動器1、2及3停妥在其等非作用中狀態中。 The actuators may be in a "stroke start", "power down" or "parked" state prior to applying the preset voltage across the comb 114. In the "stopped" state, image stabilization is inactive but does not affect center 118. As discussed with respect to Figure 2F, one of each of the actuators 1, 2, and 3 is properly displaced to produce one of the positive rotations on θ, but no x-y plane translation is produced. Thus, this displacement at each comb 114 is sufficient to advance from the deployed but inactive state shown in Figure 4B to the preset operational state of Figure 4C. Figure 6A shows the rotation of the actuators 1, 2 and 3 from the rest state to the active optical image stabilization state. turn. As illustrated in Figure 6B, selectively applying a controlled increase or decrease in the respective operating voltages of the respective actuators 1, 2 and 3 after the comb 114 has been biased to its operating voltage will result in One of the stages 110 (and thus the center 118) discussed above in connection with Figures 2A-2F is deterministically movable. As shown in FIG. 6C, in order to save power when imaging is not performed, the actuators 1, 2, and 3 can be stopped again in their inactive state.

可參考圖6D及圖6E更佳地瞭解致動器1、2及3自其等停妥狀態至其等作用中光學影像穩定化之部署。可有利地使用致動器裝置之斷電狀態以在裝置不活動之週期期間保護該裝置不受作用在載物台及撓曲件上之衝擊力及平面內下垂效應。因此,在一些實施例中,一或多個鎖定臂308(其各者具有安置於其上之一鎖定特徵部428)可耦合至載物台110之周邊,且對應的複數個互補鎖定特徵部430可耦合至(例如)外部框架125且經配置以在該載物台110經旋轉安置在停妥或斷電狀態時接合該等鎖定臂308上之互補鎖定特徵部428之一對應者。圖6F係鎖定特徵部430與互補鎖定特徵部428接合之一視圖,而圖6G展示處於部署狀態之此等特徵部。在圖6G中,虛線輪廓432劃界在致動器裝置之操作狀態且在一影像穩定化操作期間一鎖定臂308及一鎖定特徵部428之一端部分之周邊之運動範圍,且圖解說明在此操作期間在該臂308、該鎖定特徵部428及該互補鎖定特徵部430之間將不會發生干擾。 The deployment of the actuators 1, 2, and 3 from their rest state to their optical image stabilization can be better understood with reference to FIGS. 6D and 6E. The power-off state of the actuator device can be advantageously utilized to protect the device from impact forces and in-plane sag effects on the stage and flexure during periods of device inactivity. Thus, in some embodiments, one or more locking arms 308 (each having a locking feature 428 disposed thereon) can be coupled to the perimeter of the stage 110 and corresponding to a plurality of complementary locking features 430 can be coupled to, for example, the outer frame 125 and configured to engage one of the complementary locking features 428 on the locking arms 308 when the stage 110 is rotationally disposed in a rest or power down state. Figure 6F is a view in which the locking feature 430 is engaged with the complementary locking feature 428, while Figure 6G shows these features in a deployed state. In FIG. 6G, the dashed outline 432 is bounded in the operational state of the actuator device and the range of motion of the perimeter of one of the locking arms 308 and a locking feature 428 during an image stabilization operation, and is illustrated herein. No interference will occur between the arm 308, the locking feature 428 and the complementary locking feature 430 during operation.

圖7中展示一控制系統700使用切向致動控制影像穩定化之一方塊圖。在影像穩定化中,習知在相機之預期運動與 非預期抖動之間進行區分。例如,一使用者可刻意地在一90度運動範圍內移動一相機以使不同的主體成像。若未偵測到此刻意移動,則該影像穩定化系統將具有使透鏡旋轉90度之不可能且非所要的任務以補償此預期運動。一種區分相機之非預期抖動之方式係使用預測一相機之預期運動之一追蹤迴路。在一實施例中,控制系統700包含基於先前量測的相機移動預測一當前透鏡位置之一追蹤濾波器,諸如卡爾曼濾波器705。 A block diagram of a control system 700 using tangential actuation to control image stabilization is shown in FIG. In image stabilization, the expected motion of the camera is Distinguish between unintended jitter. For example, a user can deliberately move a camera over a 90 degree range of motion to image different subjects. If this intentional movement is not detected, the image stabilization system will have an impossible and undesirable task of rotating the lens by 90 degrees to compensate for this expected motion. One way to distinguish unintended jitter from the camera is to track the loop using one of the expected motions of a predictive camera. In an embodiment, control system 700 includes a tracking filter, such as Kalman filter 705, that predicts a current lens position based on previous measurements.

卡爾曼濾波器705需要相機運動之某種量測以對相機相對於非預期抖動之預期移動為何作出預測。因此,諸如以MEMS為基礎之陀螺儀710之一慣性感測器量測相機上之某個參考點(諸如先前論述之孔隙中心118)之速度。如自來自陀螺儀710之縱傾及側傾量測獲得之中心118之x,y平面速度可分別定名為xg及yg。此等慣性量測可藉由自分析相機影像獲得之運動估計補充。因此,一相機影像處理器720亦可對中心118之x,y平面速度(其等可分別定名為xc及yc)作出估計。卡爾曼濾波器自陀螺儀710及相機影像處理器720接收速度估計以對該等速度估計進行濾波以因此對透鏡中心118之x,y平面速度作出預測。針對該x,y平面中之參考位置速度之此卡爾曼濾波器預測可分別定名為x0及y0。該等速度估計透過高通濾波器725濾波以移除陀螺儀漂移且在積分器730中求得其之積分並在放大器735中乘以一適當的比例因數以獲得位置估計740。在此方面,估計740表示在不存在抖動之情況下卡爾曼濾波器705所預測之 透鏡中心118之預期位置。估計740與實際透鏡位置之間之任何差值被視為抖動且應藉由影像穩定化控制系統700補償。應明白,可實施不包含此一預測追蹤迴路之控制系統700之實施例。例如,來自陀螺儀710之慣性量測可僅經高通濾波以提供預期相機速度之一粗略估計。可如上文論述般求得此等速度估計之積分以獲得位置估計740。 The Kalman filter 705 requires some measure of camera motion to make a prediction of why the camera is expected to move relative to unintended jitter. Thus, an inertial sensor, such as one of the MEMS-based gyroscopes 710, measures the speed of a reference point on the camera, such as the previously described aperture center 118. The x, y plane velocities, such as from the center 118 obtained from the pitch and roll measurements of the gyroscope 710, may be designated x g and y g , respectively . These inertial measurements can be supplemented by motion estimates obtained from the analysis camera image. Thus, a camera image processor 720 can also estimate the x, y plane velocity of the center 118 (which may be designated x c and y c , respectively ). The Kalman filter receives velocity estimates from gyroscope 710 and camera image processor 720 to filter the velocity estimates to thereby predict the x, y plane velocity of lens center 118. This Kalman filter prediction for the reference position velocity in the x, y plane can be named x 0 and y 0 , respectively . The velocity estimates are filtered through a high pass filter 725 to remove the gyroscope drift and are integrated in the integrator 730 and multiplied by an appropriate scaling factor in the amplifier 735 to obtain a position estimate 740. In this regard, the estimate 740 represents the expected position of the lens center 118 predicted by the Kalman filter 705 in the absence of jitter. Any difference between the estimate 740 and the actual lens position is considered jitter and should be compensated by the image stabilization control system 700. It will be appreciated that embodiments of control system 700 that do not include such a predictive tracking loop may be implemented. For example, inertial measurements from gyroscope 710 may only be high pass filtered to provide a rough estimate of one of the expected camera speeds. The integration of these velocity estimates can be obtained as discussed above to obtain a position estimate 740.

為獲得實際透鏡位置(或等效地,諸如中心118之某個參考點之位置),使每一致動器與一位置感測器相關聯。例如,致動器1可與感測早前所論述之L1位移之一位置感測器741相關聯。在此方面,位置感測器741可感測跨梳114之電容以對該L1位移作出估計。或者,可使用其他類型的位置感測器,諸如霍爾感測器(Hall sensor)。類似地,致動器2及3與對應的位置感測器742及743相關聯。位置感測器742因此感測L2位移,而感測器743感測L3位移。接著,可在對應的類比轉數位轉換器745中數位化此等所感測的位移且將此等所感測的位移呈遞至一座標轉譯器750。可藉由在使θ等於零之情況下逆算先前論述之方程式而將切向致動L1至L3轉換為一感測位置xs、ys。接著,使用加法器755判定所感測的位置與卡爾曼濾波器預測的位置之間之差值。接著,可在控制器760及補償器765中對來自加法器755之輸出進行濾波以得到應致動透鏡以補償相機之抖動之所得x及y座標。 To obtain the actual lens position (or equivalently, such as the location of a reference point of the center 118), each actuator is associated with a position sensor. For example, the actuator 1 may be one of L 1 senses the displacement of the position sensor 741 associated with the earlier discussed. In this regard, position sensor 741 can sense across the comb capacitor 114 in a displacement of the estimate made by the L. Alternatively, other types of position sensors can be used, such as a Hall sensor. Similarly, actuators 2 and 3 are associated with corresponding position sensors 742 and 743. The position sensor 742 thus senses the L 2 displacement, while the sensor 743 senses the L 3 displacement. The sensed displacements can then be digitized in the corresponding analog-to-digital converter 745 and the sensed displacements presented to a standard translator 750. The tangential actuations L 1 through L 3 can be converted to a sensing position x s , y s by recalculating the previously discussed equations with θ equal to zero. Next, an adder 755 is used to determine the difference between the sensed position and the position predicted by the Kalman filter. The output from adder 755 can then be filtered in controller 760 and compensator 765 to obtain the resulting x and y coordinates of the camera that should be actuated to compensate for camera shake.

一轉譯器770將該等x及y座標轉譯為如上文方程式中描述θ等於零之切向座標L1、L2及L3。因此,來自轉譯器770 之輸出表示致動器1至3之所要致動。卡爾曼濾波器預測及所得所要致動之產生以一相對較慢資料速率發生的原因在於需要大量計算。但是將致動器1至3驅動至所要的致動程度之實際致動可以一相對較高資料速率發生。因此,圖7中之一分隔線771指示控制系統700之一數位域分割為相對較高資料速率及相對較低資料速率。類似地,一分隔線772指示控制系統700分割為數位域及類比域。 The like a translator 770 translates coordinates x and y in the equation described above cut θ to zero the coordinate L 1, L 2 and L 3. Thus, the output from translator 770 represents the actuation of actuators 1 through 3. The reason for the Kalman filter prediction and the resulting actuation to occur at a relatively slow data rate is that a large amount of computation is required. However, the actual actuation of the actuators 1 through 3 to the desired degree of actuation can occur at a relatively high data rate. Thus, one of the separation lines 771 in FIG. 7 indicates that the digital domain of one of the control systems 700 is segmented into a relatively high data rate and a relatively low data rate. Similarly, a separation line 772 indicates that the control system 700 is partitioned into a digital domain and an analog domain.

可使用對應的加法器775判定致動器1、2及3之所要致動程度與實際致動之間之差值。接著,一對應控制器780因此判定用於其致動器之一適當控制信號。接著,可使用數位轉類比轉換器(DAC)785將所得數位控制信號轉換為類比控制信號。如此項技術中已知,一靜電梳狀致動器通常需要諸如透過電荷泵獲得之升壓電壓位準。因此,藉由一對應驅動器電路790回應於DAC 785中產生之類比控制信號驅動每一致動器1至3。以此方式,控制系統700可使用感測笛卡耳x,y平面中之相機運動之陀螺儀710以僅使用三個切向MEMS致動器有利地達成影像穩定化。 A corresponding adder 775 can be used to determine the difference between the degree of actuation of the actuators 1, 2, and 3 and the actual actuation. Next, a corresponding controller 780 thus determines an appropriate control signal for one of its actuators. The resulting digital control signal can then be converted to an analog control signal using a digital to analog converter (DAC) 785. As is known in the art, an electrostatic comb actuator typically requires a boost voltage level such as that obtained by a charge pump. Therefore, each of the actuators 1 to 3 is driven by a corresponding driver circuit 790 in response to an analog control signal generated in the DAC 785. In this manner, control system 700 can advantageously achieve image stabilization using a gyroscope 710 that senses camera motion in the Cartesian x, y plane to use only three tangential MEMS actuators.

可使用若干替代性實施例實施使用系統700之影像穩定化。在此方面,自卡爾曼濾波器705透過轉譯器770及750之數位分量及信號路徑之彙總可定名為一OIS演算法模組。該OIS演算法模組可實施於各種積體電路架構中。如圖8中所示,一相機800之一實施例包含一MEMS驅動器積體電路(IC)810內之一OIS演算法模組805。相機800包含如上文論述用於影像穩定化之MEMS切向致動器以及用於自 動聚焦(AF)目的及變焦目的之致動器。此等MEMS致動器統一地展示為一MEMS模組815。驅動器IC 810用來自一AF驅動器830之AF命令820以及來自一光學影像穩定化(OIS)驅動器835之平面內切向致動命令825驅動MEMS模組815。MEMS模組815包含諸如關於圖7論述之位置感測器使得驅動器IC 810可接收平面內切向致動器位置840。 Image stabilization using system 700 can be implemented using a number of alternative embodiments. In this regard, the sum of the digital components and signal paths from the Kalman filter 705 through the translators 770 and 750 can be named an OIS algorithm module. The OIS algorithm module can be implemented in various integrated circuit architectures. As shown in FIG. 8, one embodiment of a camera 800 includes an OIS algorithm module 805 within a MEMS driver integrated circuit (IC) 810. Camera 800 includes a MEMS tangential actuator for image stabilization as discussed above and for self Actuator for moving focus (AF) purposes and zooming purposes. These MEMS actuators are collectively shown as a MEMS module 815. The driver IC 810 drives the MEMS module 815 with an AF command 820 from an AF driver 830 and an in-plane tangential actuation command 825 from an optical image stabilization (OIS) driver 835. The MEMS module 815 includes a position sensor such as that discussed with respect to FIG. 7 such that the driver IC 810 can receive an in-plane tangential actuator position 840.

諸如一I2C匯流排845之一匯流排將驅動器IC 810耦合至其他相機組件。然而,應明白,可利用其他匯流排協定。在相機800中,陀螺儀710、成像器720、一影像處理器850及一微控制器單元(MCU)855全部耦合至I2C匯流排845。因為I2C協定係一主從式協定,所以模組805在驅動器IC 810中之位置提供如本文將進一步描述之較低延時。圖9展示用於相機800之所得控制迴路。匯流排主控器可為如藉由主控器模組900表示之ISP或MCU。OIS演算法模組805係一簡化版本,其中省略追蹤濾波器且藉由對來自陀螺儀710之縱傾及側傾速率進行高通濾波910而近似計算相機之預期運動。因為一主從式匯流排上之資料流始終自從動至主動或自主動至從動,所以來自陀螺儀710之旋轉速率首先流動至主控器模組900且接著流動至驅動器IC 810。在此方面,主控器模組900控制陀螺儀710及驅動器IC 810二者。為圖解清楚起見,僅展示用於OIS演算法模組805之一單個組合通道。因此,一轉譯器920表示圖7之轉譯器770及750。在轉譯器920內相對於一透鏡中性位置925轉譯實際及所要透鏡位置。 A busbar, such as one of the I 2 C bus bars 845, couples the driver IC 810 to other camera components. However, it should be understood that other bus arrangements can be utilized. In camera 800, gyroscope 710, imager 720, an image processor 850, and a microcontroller unit (MCU) 855 are all coupled to I 2 C bus 845. Because the I 2 C protocol is a master-slave protocol, the location of the module 805 in the driver IC 810 provides a lower latency as will be further described herein. FIG. 9 shows the resulting control loop for camera 800. The bus master can be an ISP or MCU as represented by the master module 900. The OIS algorithm module 805 is a simplified version in which the tracking filter is omitted and the expected motion of the camera is approximated by high pass filtering 910 of the pitch and roll rates from the gyroscope 710. Since the data stream on a master-slave bus is always active to active or self-active to slave, the rate of rotation from the gyroscope 710 first flows to the master module 900 and then to the driver IC 810. In this regard, the master module 900 controls both the gyroscope 710 and the driver IC 810. For the sake of clarity of illustration, only a single combined channel for one of the OIS algorithm modules 805 is shown. Thus, a translator 920 represents the translators 770 and 750 of FIG. The actual and desired lens position is translated relative to a lens neutral position 925 within the translator 920.

圖10中展示匯流排845上之所得資料訊務。影像穩定化必須汲取一定的電流且因此可期望僅在一使用者拍攝一數位照片時開始影像穩定化。此時,OIS資料訊務在一初始步驟1000中開始,其中主控器模組900作為I2C匯流排主控器。此時,陀螺儀710可開始對相機移動採取慣性量測且如步驟1005表示般,OIS驅動器835可命令MEMS致動器815自一停妥狀態轉變為一作用中狀態。接著,在一步驟1010中,主控器模組900讀取6位元組的陀螺儀資料使得可在一步驟1015中將該資料寫入至驅動器IC。接著,在一步驟1020中,OIS演算法模組805可判定適當的致動量以定址相機抖動。若使用者已完成拍攝數位照片(如在一步驟1025中所判定),則在步驟1030結束程序。否則,重複步驟1010至1025。一次循環(步驟1010至1020)之通信時間取決於匯流排時脈週期及資料寬度。若匯流排845可在每個10 μs的時脈循環中容納3個位元組,則循環時間係10 μs×2×6×8+步驟1020之演算法計算時間,從而等於0.96 ms+演算法計算時間。 The resulting data traffic on bus 845 is shown in FIG. Image stabilization must capture a certain amount of current and it is therefore desirable to begin image stabilization only when a user takes a digital photo. At this point, the OIS data service begins in an initial step 1000 in which the master module 900 acts as an I 2 C bus master. At this point, the gyroscope 710 can begin to take inertial measurements on camera movement and as represented by step 1005, the OIS driver 835 can command the MEMS actuator 815 to transition from a stopped state to an active state. Next, in a step 1010, the master module 900 reads the 6-bit gyro data so that the data can be written to the driver IC in a step 1015. Next, in a step 1020, the OIS algorithm module 805 can determine the appropriate amount of actuation to address the camera shake. If the user has finished taking a digital photo (as determined in step 1025), the process ends at step 1030. Otherwise, steps 1010 through 1025 are repeated. The communication time for one cycle (steps 1010 to 1020) depends on the bus cycle period and the data width. If the bus 845 can accommodate 3 bytes in each 10 μs clock cycle, the cycle time is 10 μs × 2 × 6 × 8 + the algorithm calculation time of step 1020, which is equal to 0.96 ms + algorithm calculation time.

圖11中展示其中OIS演算法模組805定位於ISP 850內之一替代性控制架構。類似於圖9,ISP 850中之一自動聚焦演算法模組940控制驅動器IC 810中之AF驅動器830。驅動器IC 810、陀螺儀710、成像器720、ISP 850及MCU 855全部使用I2C匯流排845進行通信。圖12展示所得控制迴路。OIS演算法模組805又係一簡化版本,其中省略追蹤濾波器且藉由對來自陀螺儀710之縱傾及側傾速率進行高通濾波 910而近似計算相機之預期運動。ISP 850控制陀螺儀710及驅動器IC 810二者。為圖解清楚起見,僅展示用於OIS演算法模組805之一單個組合通道。 An alternative control architecture in which the OIS algorithm module 805 is located within the ISP 850 is shown in FIG. Similar to FIG. 9, one of the ISP 850 autofocus algorithm modules 940 controls the AF driver 830 in the driver IC 810. Driver IC 810, gyroscope 710, imager 720, ISP 850, and MCU 855 all communicate using I 2 C bus 845. Figure 12 shows the resulting control loop. The OIS algorithm module 805 is in turn a simplified version in which the tracking filter is omitted and the expected motion of the camera is approximated by high pass filtering 910 of the pitch and roll rates from the gyroscope 710. The ISP 850 controls both the gyroscope 710 and the driver IC 810. For the sake of clarity of illustration, only a single combined channel for one of the OIS algorithm modules 805 is shown.

圖13中展示用於圖11及圖12之實施例之匯流排845上之所得資料訊務。回應於一作用中圖像拍攝模式之調用,OIS資料訊務在一初始步驟1300中開始,其中ISP 850作為I2C匯流排主控器。或者,MCU 855可充當主控器。在步驟1300的同時或之後,陀螺儀710可開始對相機移動採取慣性量測且如步驟1305表示般,OIS驅動器835可命令MEMS致動器815自一停妥狀態轉變為一作用中狀態。接著,在一步驟1310中,ISP 850讀取6位元組的陀螺儀資料。此外,在一步驟1315中,ISP 850自轉譯器920讀取當前透鏡位置作為六個位元組的資料。接著,在一步驟1320中,OIS演算法模組805可判定適當的致動量以定址相機抖動,隨之在一步驟1325中,ISP 850因此可用六位元組的致動命令寫入驅動器IC。若使用者已完成拍攝數位照片(如在一步驟1330中所判定),則在步驟1335結束程序。否則,重複步驟1310至1325。一次循環(步驟1310至1325)之通信時間取決於匯流排時脈週期及資料寬度。若匯流排845可在每個10 μs的時脈循環中容納3個位元組,則循環時間係10 μs×3×6×8+步驟1320之演算法計算時間,從而等於1.44 ms+演算法計算時間。因此,在一主從式匯流排協定系統中,如先前論述般將OIS演算法模組805定位於IC驅動器810中係較快的。相比而言,將OIS演算法805定位於ISP 850中需要資料移動之一額外步驟。 The resulting data traffic for use on the bus 845 of the embodiment of Figures 11 and 12 is shown in FIG. In response to a call to an active image capture mode, the OIS data traffic begins in an initial step 1300 in which the ISP 850 acts as an I 2 C bus master. Alternatively, the MCU 855 can act as a master. Simultaneously with or after step 1300, gyroscope 710 may begin to take inertial measurements on camera movement and, as represented by step 1305, OIS driver 835 may command MEMS actuator 815 to transition from a stopped state to an active state. Next, in a step 1310, the ISP 850 reads the 6-bit gyro data. Further, in a step 1315, the ISP 850 reads the current lens position from the translator 920 as data for six bytes. Next, in a step 1320, the OIS algorithm module 805 can determine the appropriate amount of actuation to address the camera shake, and in a step 1325, the ISP 850 can therefore write the driver IC with a six-byte actuation command. If the user has finished taking a digital photo (as determined in step 1330), the process ends at step 1335. Otherwise, steps 1310 through 1325 are repeated. The communication time for one cycle (steps 1310 to 1325) depends on the bus cycle period and the data width. If the bus 845 can accommodate 3 bytes in each 10 μs clock cycle, the cycle time is 10 μs × 3 × 6 × 8 + the algorithm calculation time of step 1320, which is equal to 1.44 ms + algorithm calculation time. Thus, in a master-slave busbar protocol system, positioning the OIS algorithm module 805 in the IC driver 810 as previously discussed is faster. In contrast, positioning the OIS algorithm 805 in the ISP 850 requires an extra step of data movement.

如熟習此項技術者現在將明白且取決於手中的特定應用,可在不脫離本發明之精神及範疇之情況下對本發明之致動器裝置之材料、設備、組態及使用方法作出許多修改、替代及變動,且鑑於此,由於本文圖解說明且描述之特定實施例僅僅作為本發明之一些實例,所以本發明之範疇不應限於該等特定實施例之範疇,而係應與下文隨附申請專利範圍及其功能等效物之範疇完全相稱。 Many modifications to the materials, equipment, configurations, and methods of use of the actuator device of the present invention can be made without departing from the spirit and scope of the present invention, as will be apparent to those skilled in the art. And the scope of the present invention should not be limited to the scope of the specific embodiments, but should be accompanied by the following description, and the specific embodiments illustrated and described herein are merely examples of the present invention. The scope of the patent application and its functional equivalents are fully commensurate.

1‧‧‧致動器 1‧‧‧Actuator

2‧‧‧致動器 2‧‧‧Actuator

3‧‧‧致動器 3‧‧‧Actuator

100‧‧‧影像穩定化配件/影像穩定化裝置 100‧‧‧Image Stabilization Accessories/Image Stabilizer

105‧‧‧中心孔隙 105‧‧‧Center aperture

106‧‧‧撓曲件 106‧‧‧Flexing pieces

110‧‧‧圓形安裝載物台 110‧‧‧Circular mounting stage

112‧‧‧固定梳支撐件 112‧‧‧Fixed comb support

113‧‧‧可移動梳支撐件 113‧‧‧Removable comb support

114‧‧‧梳 114‧‧ comb

115‧‧‧方向 115‧‧‧ Direction

118‧‧‧孔隙中心/透鏡中心 118‧‧‧Pore Center/Lens Center

120‧‧‧線性位移 120‧‧‧linear displacement

121‧‧‧固定部分 121‧‧‧Fixed part

122‧‧‧可移動部分 122‧‧‧ movable part

125‧‧‧外部框架 125‧‧‧External framework

300‧‧‧共面偏心閂鎖 300‧‧‧Coplanar eccentric latch

302‧‧‧閂鎖 302‧‧‧Latch

304‧‧‧支點 304‧‧‧ pivot

306‧‧‧閂鎖撓曲件 306‧‧‧Latch flexure

308‧‧‧部署槓桿/閂鎖槓桿/鎖定臂 308‧‧‧Deploying lever/latch lever/locking arm

310‧‧‧部署撓曲件 310‧‧‧Deploying flexures

312‧‧‧凸輪表面 312‧‧‧ cam surface

314‧‧‧箭頭 314‧‧‧ arrow

315‧‧‧拉環 315‧‧‧ pull ring

400‧‧‧箭頭 400‧‧‧ arrow

405‧‧‧箭頭 405‧‧‧ arrow

428‧‧‧鎖定特徵部 428‧‧‧Locking feature

430‧‧‧互補鎖定特徵部 430‧‧‧Complementary locking feature

432‧‧‧虛線輪廓 432‧‧‧dotted outline

501‧‧‧未部署位置 501‧‧‧Undeployed location

502‧‧‧中間位置 502‧‧‧ intermediate position

503‧‧‧閂鎖位置 503‧‧‧Latch position

700‧‧‧影像穩定化控制系統 700‧‧‧Image Stabilization Control System

705‧‧‧卡爾曼濾波器 705‧‧‧ Kalman filter

710‧‧‧陀螺儀 710‧‧‧Gyro

720‧‧‧相機影像處理器/成像器 720‧‧‧ Camera Image Processor/Imager

725‧‧‧高通濾波器 725‧‧‧High-pass filter

730‧‧‧積分器 730‧‧‧ integrator

735‧‧‧放大器 735‧‧Amplifier

740‧‧‧位置估計 740‧‧‧Location Estimate

741‧‧‧位置感測器 741‧‧‧ position sensor

742‧‧‧位置感測器 742‧‧‧ position sensor

743‧‧‧位置感測器 743‧‧‧ position sensor

745‧‧‧類比轉數位轉換器(ADC) 745‧‧‧ Analog to Digital Converter (ADC)

750‧‧‧座標轉譯器 750‧‧‧Coordinate Translator

755‧‧‧加法器 755‧‧‧Adder

760‧‧‧控制器 760‧‧‧ Controller

765‧‧‧補償器 765‧‧‧ compensator

770‧‧‧轉譯器 770‧‧‧Translator

771‧‧‧分隔線 771‧‧‧ separate line

772‧‧‧分隔線 772‧‧‧ separate line

780‧‧‧控制器 780‧‧‧ controller

785‧‧‧數位轉類比轉換器(DAC) 785‧‧‧Digital to analog converter (DAC)

790‧‧‧驅動器電路 790‧‧‧Drive circuit

800‧‧‧相機 800‧‧‧ camera

805‧‧‧光學影像穩定化(OIS)演算法模組 805‧‧‧Optical Image Stabilization (OIS) Algorithm Module

810‧‧‧驅動器積體電路(IC) 810‧‧‧Drive integrated circuit (IC)

815‧‧‧微機電系統(MEMS)模組 815‧‧‧Micro Electro Mechanical Systems (MEMS) Modules

820‧‧‧自動聚焦(AF)命令 820‧‧‧Auto Focus (AF) command

825‧‧‧平面內切向致動命令 825‧‧‧In-plane tangential actuation command

830‧‧‧自動聚焦(AF)驅動器 830‧‧‧Auto Focus (AF) Driver

835‧‧‧光學影像穩定化(OIS)驅動器 835‧‧‧Optical Image Stabilization (OIS) Driver

840‧‧‧平面內切向致動器位置 840‧‧‧In-plane tangential actuator position

845‧‧‧I2C匯流排 845‧‧‧I 2 C busbar

850‧‧‧影像處理器(ISP) 850‧‧ Image Processor (ISP)

855‧‧‧微控制器單元(MCU) 855‧‧‧Microcontroller Unit (MCU)

900‧‧‧主控器模組 900‧‧‧Master Module

910‧‧‧高通濾波 910‧‧‧High-pass filtering

920‧‧‧轉譯器 920‧‧‧Translator

925‧‧‧透鏡中性位置 925‧‧‧ lens neutral position

940‧‧‧自動聚焦(AF)演算法模組 940‧‧‧Auto Focus (AF) Algorithm Module

R‧‧‧半徑距離 R‧‧‧radius distance

圖1係利用切向致動之一例示性影像穩定化裝置之一平面圖;圖2A至圖2F係圖解說明使用圖1之例示性影像穩定化裝置以實現一光學元件之平面內平移及旋轉移動之向量圖;圖3係圖1之裝置中之一致動器之一透視圖;圖4A係圖3之致動器中之一梳之指叉型指狀物之一部分平面圖,其展示在部署該致動器以供操作使用之前的指狀物;圖4B係圖3之致動器中之一梳之指叉型指狀物之一部分平面圖,其展示在已部署該致動器之後的指狀物;圖4C係圖3之致動器中之一梳已偏壓至一操作位置之後該梳之指叉型指狀物之一部分平面圖;圖5係圖3之一致動器閂鎖之一平面圖,其展示在該致動器閂鎖與致動器槓桿接合中之各個階段;圖6A至圖6C係圖解說明圖1之裝置之介於一「停妥」狀 態與一「操作」狀態之間之一載物台之平面內旋轉移動之向量圖;圖6D係處於停妥狀態之載物台之一平面圖;圖6E係處於操作狀態之載物台之一平面圖;圖6F係圖6D之鎖定載物台臂之一特寫圖。 1 is a plan view of an exemplary image stabilization device utilizing tangential actuation; FIGS. 2A-2F illustrate the use of the exemplary image stabilization device of FIG. 1 to achieve in-plane translation and rotational movement of an optical component. Figure 3 is a perspective view of one of the actuators of the apparatus of Figure 1; Figure 4A is a partial plan view of one of the fingers of the comb of Figure 3, shown in the deployment The actuator is a finger prior to operation; FIG. 4B is a partial plan view of one of the fingers of the comb of FIG. 3 showing the fingers after the actuator has been deployed Figure 4C is a partial plan view of one of the fingers of the comb after one of the actuators of Figure 3 has been biased to an operating position; Figure 5 is a plan view of one of the actuator latches of Figure 3. , which is shown in various stages in the engagement of the actuator latch with the actuator lever; FIGS. 6A-6C illustrate the "stop" shape of the device of FIG. A vector diagram of the in-plane rotational movement of the stage between an "operating" state and a "operating" state; Figure 6D is a plan view of one of the stages in a stopped state; Figure 6E is a plan view of one of the stages in an operational state Figure 6F is a close-up view of one of the locking stage arms of Figure 6D.

圖6G係圖6E之未鎖定載物台臂之一特寫圖。 Figure 6G is a close-up view of one of the unlocked stage arms of Figure 6E.

圖7係使用切向致動器之一影像穩定化系統之一方塊圖;圖8係圖7之系統之在一驅動器積體電路中實施光學影像穩定化演算法之一實施例之一方塊圖;圖9圖解說明圖8之驅動器積體電路之更多細節;圖10係藉由圖8及圖9之系統執行之影像穩定化程序之一流程圖;圖11係圖7之系統之在一影像處理器積體電路中實施光學影像穩定化演算法之一實施例之一方塊圖;圖12圖解說明圖11之驅動器及影像處理器積體電路之更多細節;及圖13係藉由圖11及圖12之系統執行之影像穩定化程序之一流程圖。 Figure 7 is a block diagram of an image stabilization system using a tangential actuator; Figure 8 is a block diagram of one embodiment of an optical image stabilization algorithm implemented in a driver integrated circuit of the system of Figure 7. Figure 9 illustrates more details of the driver integrated circuit of Figure 8; Figure 10 is a flow chart of the image stabilization procedure performed by the systems of Figures 8 and 9; Figure 11 is a system of Figure 7 A block diagram of one embodiment of an optical image stabilization algorithm implemented in an image processor integrated circuit; FIG. 12 illustrates more details of the driver and image processor integrated circuit of FIG. 11; and FIG. 13 is a diagram 11 and FIG. 12 is a flowchart of one of the image stabilization programs executed by the system.

1‧‧‧致動器 1‧‧‧Actuator

2‧‧‧致動器 2‧‧‧Actuator

3‧‧‧致動器 3‧‧‧Actuator

100‧‧‧影像穩定化配件/影像穩定化裝置 100‧‧‧Image Stabilization Accessories/Image Stabilizer

105‧‧‧中心孔隙 105‧‧‧Center aperture

106‧‧‧撓曲件 106‧‧‧Flexing pieces

110‧‧‧圓形安裝載物台 110‧‧‧Circular mounting stage

112‧‧‧固定梳支撐件 112‧‧‧Fixed comb support

113‧‧‧可移動梳支撐件 113‧‧‧Removable comb support

115‧‧‧方向 115‧‧‧ Direction

118‧‧‧孔隙中心/透鏡中心 118‧‧‧Pore Center/Lens Center

120‧‧‧線性位移 120‧‧‧linear displacement

121‧‧‧固定部分 121‧‧‧Fixed part

122‧‧‧可移動部分 122‧‧‧ movable part

125‧‧‧外部框架 125‧‧‧External framework

Claims (19)

一種相機,其包括:複數個整體形成之靜電致動器,每一致動器經組態以施加一力於至少一透鏡上,其中每一致動器包含一固定部分、一可移動部分及一閂鎖,該可移動部分經組態以相對於該固定部分在該致動器可操作之一第一位置上及該致動器不可操作之一第二位置之間移動,該閂鎖經組態以將該可移動部分閂鎖於該第一位置;一光學影像穩定化(OIS)演算法模組,其經組態以命令該複數個致動器回應於該相機之運動而致動該至少一透鏡;及一驅動器積體電路,其可操作以回應於該OIS演算法模組之命令而驅動該等致動器。 A camera comprising: a plurality of integrally formed electrostatic actuators, each actuator configured to apply a force to at least one lens, wherein each actuator comprises a fixed portion, a movable portion and a latch a lock, the moveable portion being configured to move relative to the fixed portion between a first position at which the actuator is operable and a second position at which the actuator is inoperable, the latch being configured Latching the movable portion to the first position; an optical image stabilization (OIS) algorithm module configured to command the plurality of actuators to actuate the at least one in response to movement of the camera a lens; and a driver integrated circuit operative to drive the actuators in response to commands from the OIS algorithm module. 如請求項1之相機,其中每一致動器經組態以施加一切向力於該至少一透鏡上,且其中該OIS演算法模組經組態以命令該複數個致動器回應於該相機之該運動而切向地致動該至少一透鏡。 The camera of claim 1, wherein each actuator is configured to apply a full force to the at least one lens, and wherein the OIS algorithm module is configured to command the plurality of actuators to respond to the camera The movement tangentially actuates the at least one lens. 如請求項2之相機,其進一步包括:複數個位置感測器,其等對應於該複數個致動器,每一位置感測器量測其對應致動器之一切向位移;及一轉譯器模組,其可操作以將來自該等位置感測器之該等切向位移轉譯為該透鏡之一位移,其中該OIS演算法模組亦回應於該透鏡位移。 The camera of claim 2, further comprising: a plurality of position sensors corresponding to the plurality of actuators, each position sensor measuring an all-direction displacement of the corresponding actuator; and a translation The module is operable to translate the tangential displacements from the position sensors into one of the displacements of the lens, wherein the OIS algorithm module is also responsive to the lens displacement. 如請求項1之相機,其中該OIS演算法模組係整合於該驅 動器積體電路中,且其中該OIS演算法模組經組態以命令該驅動器積體電路施加一加速脈衝於該可移動部分以將該可移動部分閂鎖於該第一位置。 The camera of claim 1, wherein the OIS algorithm module is integrated in the drive The actuator integrated circuit, and wherein the OIS algorithm module is configured to command the driver integrated circuit to apply an acceleration pulse to the movable portion to latch the movable portion to the first position. 如請求項1之相機,其進一步包括:一成像器,其經組態以數位化透過該至少一透鏡獲取之一影像;及一影像處理器積體電路,其可操作以處理該數位化影像,其中該OIS演算法模組係整合於該影像處理器積體電路中。 The camera of claim 1, further comprising: an imager configured to digitally acquire an image through the at least one lens; and an image processor integrated circuit operable to process the digitized image The OIS algorithm module is integrated in the image processor integrated circuit. 如請求項1之相機,其中該相機係整合至一蜂巢式電話中。 The camera of claim 1, wherein the camera is integrated into a cellular phone. 如請求項6之相機,其中該等致動器係靜電梳狀致動器。 The camera of claim 6, wherein the actuators are electrostatic comb actuators. 如請求項7之相機,其進一步包括:一圓形載物台,其接納該至少一透鏡,其中該複數個致動器包括對稱地安置在該圓形載物台外部之三個致動器。 The camera of claim 7, further comprising: a circular stage that receives the at least one lens, wherein the plurality of actuators comprises three actuators symmetrically disposed outside the circular stage . 如請求項1之相機,其中該OIS演算法模組包含用於預測該相機之一預期運動之一卡爾曼濾波器。 The camera of claim 1, wherein the OIS algorithm module includes a Kalman filter for predicting one of the expected motions of the camera. 如請求項9之相機,其進一步包括:一陀螺儀,其中該陀螺儀量測該相機之一縱傾及側傾,且其中該卡爾曼濾波器基於該所量測的縱傾及側傾而預測該相機之一預期運動,其中該OIS演算法模組經組態以基於由該卡爾曼濾波 器預測之該相機之該預期運動與該相機之一非預期抖動之間的一差值而命令該複數個致動器致動該至少一透鏡。 The camera of claim 9, further comprising: a gyroscope, wherein the gyroscope measures one of the tilt and roll of the camera, and wherein the Kalman filter is based on the measured trim and roll Predicting one of the expected motions of the camera, wherein the OIS algorithm module is configured to be based on the Kalman filter The controller predicts a difference between the expected motion of the camera and an unintended jitter of the camera to command the plurality of actuators to actuate the at least one lens. 如請求項1之相機,其中該OIS演算法模組基於一相對較低資料速率命令該複數個致動器,且其中該相機進一步包含用於基於該等OIS演算法模組命令以一相對較高資料速率控制該等致動器之至少一控制器。 The camera of claim 1, wherein the OIS algorithm module commands the plurality of actuators based on a relatively lower data rate, and wherein the camera further includes a command for a relative command based on the OIS algorithm modules The high data rate controls at least one controller of the actuators. 一種影像穩定化之方法,其包括:使用一陀螺儀感測一相機之一運動;基於該所感測的運動,判定穩定化一相機透鏡之一所要透鏡致動;將該所要透鏡致動轉譯為所要切向致動;使用複數個切向致動器根據該所要切向致動切向地致動該至少一透鏡;及在切向地致動該透鏡前移動該複數個切向致動器每一者之一可移動部分以被閂鎖在一第一位置,在該第一位置該切向致動器可操作以致動該透鏡;對來自該陀螺儀之所感測相機運動進行濾波以提供該透鏡之一預期位置之一預測;藉由該複數個切向致動器感測切向致動;將該等切向致動轉譯為一當前透鏡位置;及自該預期透鏡位置減去該當前透鏡位置以提供歸因於非預期相機運動之一透鏡位置誤差,其中該所要透鏡致動藉由定址該非預期相機運動而穩定化該透鏡。 A method for image stabilization, comprising: sensing a motion of a camera using a gyroscope; determining, based on the sensed motion, a lens actuation of one of the stabilized camera lenses; translating the desired lens actuation into Steeringly tangentially actuating; tangentially actuating the at least one lens responsively to the desired tangential actuation; and moving the plurality of tangential actuators prior to tangentially actuating the lens One of each movable portion is latched in a first position in which the tangential actuator is operable to actuate the lens; the sensed camera motion from the gyroscope is filtered to provide Determining one of the expected positions of the lens; sensing tangential actuation by the plurality of tangential actuators; translating the tangential actuations into a current lens position; and subtracting the position from the expected lens position The current lens position provides a lens position error due to unintended camera motion, wherein the desired lens actuation stabilizes the lens by addressing the unintended camera motion. 如請求項12之方法,其中該濾波係一卡爾曼濾波。 The method of claim 12, wherein the filtering is a Kalman filter. 如請求項12之方法,其中該濾波係一高通濾波。 The method of claim 12, wherein the filtering is a high pass filtering. 如請求項12之方法,其中該切向致動係一MEMS靜電梳狀切向致動,且其中該複數個切向致動器之每一者之該可移動部分係藉由施加一加速脈衝至該可移動部分以導致該可移動部分之一槓桿接合一閂鎖而移動至該第一位置。 The method of claim 12, wherein the tangential actuation is a MEMS electrostatic comb tangential actuation, and wherein the movable portion of each of the plurality of tangential actuators is applied by applying an acceleration pulse Moving to the first position to the movable portion to cause one of the movable portions to leverage a latch. 一種致動器裝置,其包括:一載物台,其經彈性地支撐以在一平面內移動,其中該載物台包含設置於該平面上之一平面安裝結構,該平面安裝結構經調適以支撐一光學元件;三個或三個以上致動器,其等之各者耦合至該載物台之一外周邊且可操作以在經致動時沿著一直線施加作用於該平面中且切向於該載物台之一線性力;插入介於每一致動器及該載物台之該外周邊之間之一撓曲件;其中該等撓曲件之至少兩者耦合至該外周邊之一共同位置;其中當該等線性力施加至該等撓曲件時,該等線性力經組態以合作以實現該載物台在該平面內於任何平移及/或任何旋轉方向上之移動;及一外部框架,其包圍並支撐該載物台及該等致動器。 An actuator device comprising: a stage elastically supported for movement in a plane, wherein the stage includes a planar mounting structure disposed on the plane, the planar mounting structure being adapted Supporting an optical element; three or more actuators, each of which is coupled to an outer periphery of the stage and operable to apply to the plane along the line when actuated and cut a linear force to one of the stages; a flexure between each of the actuators and the outer periphery of the stage; wherein at least two of the flexures are coupled to the outer periphery One of a common position; wherein when the linear forces are applied to the flexures, the linear forces are configured to cooperate to effect the stage in any translation and/or any direction of rotation in the plane Moving; and an outer frame that surrounds and supports the stage and the actuators. 如請求項16之致動器裝置,其中該載物台、該等致動器及該外部框架經安置大體上彼此共面。 The actuator device of claim 16, wherein the stage, the actuators, and the outer frame are disposed substantially coplanar with one another. 如請求項16之致動器裝置,其中該等撓曲件之至少一者係一向後彎曲(recurvate)的撓曲件,且其中每一撓曲件係耦合至該載物台之一經延伸部分,該經延伸部分沿著在該等致動器之兩者之間通過之一線延伸。 The actuator device of claim 16, wherein at least one of the flex members is a recurvated flexure, and wherein each flexure is coupled to one of the extended portions of the stage The extended portion extends along a line between the two actuators. 如請求項16之致動器裝置,其中該等致動器之至少一者包括:一固定框架;一移動框架,其經彈性地支撐以相對於該固定框架往復移動;及複數個直線指叉型齒,其等交替地附接至該固定框架及該移動框架且經定向以相對於該載物台之一切向方向朝向彼此及遠離彼此往復移動。 The actuator device of claim 16, wherein at least one of the actuators comprises: a fixed frame; a moving frame elastically supported to reciprocate relative to the fixed frame; and a plurality of linear fingers The teeth, which are alternately attached to the fixed frame and the moving frame, are oriented to reciprocate toward each other and away from each other with respect to all directions of the stage.
TW101136137A 2011-09-28 2012-09-28 Camera,actuator device and method of image stabilization TWI584001B (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/247,906 US8855476B2 (en) 2011-09-28 2011-09-28 MEMS-based optical image stabilization
US13/247,895 US9019390B2 (en) 2011-09-28 2011-09-28 Optical image stabilization using tangentially actuated MEMS devices

Publications (2)

Publication Number Publication Date
TW201319628A TW201319628A (en) 2013-05-16
TWI584001B true TWI584001B (en) 2017-05-21

Family

ID=47116353

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101136137A TWI584001B (en) 2011-09-28 2012-09-28 Camera,actuator device and method of image stabilization

Country Status (3)

Country Link
CN (2) CN106569310B (en)
TW (1) TWI584001B (en)
WO (1) WO2013049688A2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9917991B2 (en) 2014-10-24 2018-03-13 Apple Inc. Camera actuator
KR20160055003A (en) * 2014-11-07 2016-05-17 삼성전기주식회사 Lens Driving Module
EP3492958B1 (en) * 2015-04-02 2022-03-30 Corephotonics Ltd. Dual voice coil motor structure in a dual-optical module camera
DE102015209030B4 (en) * 2015-05-18 2023-06-07 Robert Bosch Gmbh Micromechanical device and method of making a micromechanical device
US10382698B2 (en) 2015-09-30 2019-08-13 Apple Inc. Mobile zoom using multiple optical image stabilization cameras
US10516348B2 (en) * 2015-11-05 2019-12-24 Mems Drive Inc. MEMS actuator package architecture
CN106302988B (en) * 2016-07-29 2017-12-19 广东欧珀移动通信有限公司 Falling protection method, device and the mobile terminal of mobile terminal
CN106060367B (en) * 2016-07-29 2017-11-24 广东欧珀移动通信有限公司 Dual camera camera control method, device and filming apparatus
CN106101559B (en) * 2016-07-29 2017-12-19 广东欧珀移动通信有限公司 Control method, control device and electronic installation
US10473949B2 (en) * 2017-01-30 2019-11-12 Semiconductor Components Industries, Llc Systems and methods for an optical image stabilizer system
CN109343293A (en) * 2018-08-27 2019-02-15 中国科学院苏州纳米技术与纳米仿生研究所 Electrostatic drive and Optical devices
CN110049235A (en) * 2019-03-06 2019-07-23 杭州电子科技大学 A kind of optical anti-vibration MEMS actuator
CN112399043B (en) * 2019-08-16 2022-04-12 华为技术有限公司 Optical image stabilizer, optical image stabilizer system and control method
WO2022141485A1 (en) * 2020-12-31 2022-07-07 欧菲光集团股份有限公司 Optical anti-shake driver, camera module, and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6493631B1 (en) * 2001-05-31 2002-12-10 Mlho, Inc. Geophysical inertial navigation system
US20040149035A1 (en) * 2001-05-02 2004-08-05 Cenk Acar Non-resonant four degrees-of-freedom micromachined gyroscope
US20050156481A1 (en) * 2004-01-20 2005-07-21 Guangya Zhou Optical scanning using vibratory diffraction gratings
US20070263996A1 (en) * 2006-05-08 2007-11-15 Takafumi Iwasaki Actuator, and lens unit and camera with the same
US20080152332A1 (en) * 2006-12-20 2008-06-26 Jun-Mo Koo Hand-shake correction method and apparatus of camera module for use in mobile device
US20080198249A1 (en) * 2007-02-19 2008-08-21 Konica Minolta Opto, Inc. Image sensor device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7170665B2 (en) * 2002-07-24 2007-01-30 Olympus Corporation Optical unit provided with an actuator
JP3896745B2 (en) * 1999-12-17 2007-03-22 コニカミノルタフォトイメージング株式会社 Drive device
US6754243B2 (en) * 2000-08-09 2004-06-22 Jds Uniphase Corporation Tunable distributed feedback laser
US8691099B2 (en) * 2001-12-13 2014-04-08 John Gritters Process for fabricating MEMS devices
US7702227B2 (en) * 2005-08-16 2010-04-20 Canon Kabushiki Kaisha Optical device having blur correction function
JP4219383B2 (en) * 2006-12-28 2009-02-04 日本航空電子工業株式会社 Comb-type electrostatic actuator
US8098289B2 (en) * 2007-05-02 2012-01-17 Lite-On Technology Corporation Micro-optical image stabilizer
CN101482640B (en) * 2008-01-09 2012-06-20 鸿富锦精密工业(深圳)有限公司 Lens module

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040149035A1 (en) * 2001-05-02 2004-08-05 Cenk Acar Non-resonant four degrees-of-freedom micromachined gyroscope
US6493631B1 (en) * 2001-05-31 2002-12-10 Mlho, Inc. Geophysical inertial navigation system
US20050156481A1 (en) * 2004-01-20 2005-07-21 Guangya Zhou Optical scanning using vibratory diffraction gratings
US20070263996A1 (en) * 2006-05-08 2007-11-15 Takafumi Iwasaki Actuator, and lens unit and camera with the same
US20080152332A1 (en) * 2006-12-20 2008-06-26 Jun-Mo Koo Hand-shake correction method and apparatus of camera module for use in mobile device
US20080198249A1 (en) * 2007-02-19 2008-08-21 Konica Minolta Opto, Inc. Image sensor device

Also Published As

Publication number Publication date
WO2013049688A2 (en) 2013-04-04
CN106569310B (en) 2019-11-22
CN103842875B (en) 2016-11-09
CN106569310A (en) 2017-04-19
CN103842875A (en) 2014-06-04
WO2013049688A3 (en) 2013-06-27
TW201319628A (en) 2013-05-16

Similar Documents

Publication Publication Date Title
TWI584001B (en) Camera,actuator device and method of image stabilization
US10558057B2 (en) MEMS-based optical image stabilization
CN111355872B (en) Camera module, anti-shake subassembly and terminal
US9019390B2 (en) Optical image stabilization using tangentially actuated MEMS devices
US11237405B2 (en) Camera module having stabilizer providing stabilization function and electronic device including the camera module
US8941192B2 (en) MEMS actuator device deployment
KR100584424B1 (en) Optical image stabilizer for camera lens assembly
US20160212332A1 (en) Three-axis ois for super-resolution imaging
TWI650283B (en) Multiple degree of freedom actuator device, and method for operating a camera
US20140028897A1 (en) Camera Orientation Sensing Using Camera Module Processor
EP2122406A1 (en) A device for providing stabilized images in a hand held camera
CN109343293A (en) Electrostatic drive and Optical devices
CN116209947A (en) Camera actuator with moving coil and dynamic flex circuit
WO2014017112A1 (en) Shake amount detection device, imaging device and shake amount detection method
US8616791B2 (en) Rotationally deployed actuator devices
CN111656240B (en) MEMS actuation system
CN115917422A (en) MEMS component process flow
US20120119324A1 (en) Mems isolation structures
CN111527439B (en) MEMS actuation system
JP4952289B2 (en) DRIVE DEVICE, IMAGING UNIT, AND IMAGING DEVICE
JP2019161539A (en) Imaging device and control method thereof
CN114326005A (en) MEMS actuation system
US20230097412A1 (en) MEMS Assembly and Process Flow
JP2009034779A (en) Driving unit, imaging unit, imaging device, and manufacturing method for driving unit
KR20150140682A (en) Arcuate motion control in electrostatic actuators