TWI582933B - Fabrication process for making embedded package structure - Google Patents
Fabrication process for making embedded package structure Download PDFInfo
- Publication number
- TWI582933B TWI582933B TW104125344A TW104125344A TWI582933B TW I582933 B TWI582933 B TW I582933B TW 104125344 A TW104125344 A TW 104125344A TW 104125344 A TW104125344 A TW 104125344A TW I582933 B TWI582933 B TW I582933B
- Authority
- TW
- Taiwan
- Prior art keywords
- layer
- conductive pattern
- conductive
- pattern layer
- package structure
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 37
- 238000004519 manufacturing process Methods 0.000 title claims description 27
- 229910052751 metal Inorganic materials 0.000 claims description 46
- 239000002184 metal Substances 0.000 claims description 46
- 238000001704 evaporation Methods 0.000 claims description 13
- 230000008020 evaporation Effects 0.000 claims description 13
- 238000001459 lithography Methods 0.000 claims description 10
- 239000010949 copper Substances 0.000 description 17
- 238000004544 sputter deposition Methods 0.000 description 16
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 15
- 229910052802 copper Inorganic materials 0.000 description 15
- 239000000463 material Substances 0.000 description 15
- 229910000679 solder Inorganic materials 0.000 description 15
- 239000000758 substrate Substances 0.000 description 15
- 238000009713 electroplating Methods 0.000 description 11
- 229920005989 resin Polymers 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 239000003989 dielectric material Substances 0.000 description 7
- 238000010329 laser etching Methods 0.000 description 7
- 238000007747 plating Methods 0.000 description 7
- 235000012431 wafers Nutrition 0.000 description 7
- 238000007740 vapor deposition Methods 0.000 description 5
- 238000005516 engineering process Methods 0.000 description 3
- 238000012536 packaging technology Methods 0.000 description 3
- 238000007517 polishing process Methods 0.000 description 3
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 2
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 2
- CPFNXHQBAHTVKB-UHFFFAOYSA-N [Ti].[Cu].[W] Chemical compound [Ti].[Cu].[W] CPFNXHQBAHTVKB-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000005530 etching Methods 0.000 description 2
- 239000003292 glue Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 238000003475 lamination Methods 0.000 description 2
- 239000005011 phenolic resin Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000007639 printing Methods 0.000 description 2
- 230000027756 respiratory electron transport chain Effects 0.000 description 2
- 229910052707 ruthenium Inorganic materials 0.000 description 2
- 229910001220 stainless steel Inorganic materials 0.000 description 2
- 239000010935 stainless steel Substances 0.000 description 2
- 239000002390 adhesive tape Substances 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005553 drilling Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 238000005272 metallurgy Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000006855 networking Effects 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000008054 signal transmission Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/50—Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
- H01L21/56—Encapsulations, e.g. encapsulation layers, coatings
- H01L21/568—Temporary substrate used as encapsulation process aid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/04105—Bonding areas formed on an encapsulation of the semiconductor or solid-state body, e.g. bonding areas on chip-scale packages
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/19—Manufacturing methods of high density interconnect preforms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/18—High density interconnect [HDI] connectors; Manufacturing methods related thereto
- H01L2224/23—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process
- H01L2224/25—Structure, shape, material or disposition of the high density interconnect connectors after the connecting process of a plurality of high density interconnect connectors
- H01L2224/251—Disposition
- H01L2224/2518—Disposition being disposed on at least two different sides of the body, e.g. dual array
Landscapes
- Structures For Mounting Electric Components On Printed Circuit Boards (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Description
本發明係關於一種封裝結構的製造方法,特別關於一種嵌埋式封裝結構的製造方法。 The present invention relates to a method of fabricating a package structure, and more particularly to a method of fabricating an embedded package structure.
在高度資訊化社會的今日,多媒體應用市場不斷地急速擴張,積體電路封裝技術也隨之朝電子裝置的數位化、網路化、區域連接化以及使用人性化的趨勢發展。為達成上述的要求,電子元件必須配合高速處理化、多功能化、積集化(Integrated)以及小型輕量化等多方面之要求,也因此積體電路封裝技術也跟著朝向微型化、高密度化發展。其中球格陣列式構裝(Ball Grid Array,BGA)、晶片尺寸構裝(Chip-Scale Package,CSP)、覆晶構裝(Flip Chip Package,F/C)、多晶片模組(Multi-Chip Module,MCM)等高密度積體電路封裝技術也因應而生。 In today's highly information society, the multimedia application market continues to expand rapidly, and the integrated circuit packaging technology has also evolved toward the digitalization, networking, regional connectivity and user-friendliness of electronic devices. In order to achieve the above requirements, electronic components must meet the requirements of high-speed processing, multi-function, integration, and small size and light weight. Therefore, integrated circuit packaging technology is also becoming miniaturized and high-density. development of. Among them, Ball Grid Array (BGA), Chip-Scale Package (CSP), Flip Chip Package (F/C), Multi-Chip Module (Multi-Chip) Module, MCM) and other high-density integrated circuit packaging technology also came into being.
其中覆晶構裝技術主要係在形成有多個晶片的晶圓上對外的接點(通常是晶圓銲墊)上形成球底金屬層(UBM,Under Bump Metallurgy),接著於球底金屬層之上形成凸塊或植入銲球以作為後續晶片(或晶圓)與基板(substrate)電性導通之連接介面。由於覆晶構裝技術係可應用於高接腳數(High Pin Count)之晶片封裝結構,並同時具有縮小封裝面積及縮短訊號傳輸路徑等多項優點,所以覆晶構裝技術已經廣泛地應用在晶片封裝領域。 The flip chip mounting technology mainly forms a ball bottom metal layer (UBM, Under Bump Metallurgy) on the external contact (usually a wafer pad) on a wafer on which a plurality of wafers are formed, and then on the bottom metal layer. A bump or implanted solder ball is formed thereon as a connection interface for subsequent electrical connection between the wafer (or wafer) and the substrate. Since the flip chip mounting technology can be applied to a high pin count chip package structure, and has many advantages such as reducing the package area and shortening the signal transmission path, the flip chip mounting technology has been widely used in The field of chip packaging.
再者,為了能在有限的基板面積中創造出更大的空間以提升電子裝置的功能,習知技術係將電子元件嵌埋於基板內,以形成一嵌埋式封裝結構。使用者可以依據其需求,選用具有合適之介電係數及電阻值的基板材料,以調整電路特性。藉由縮短電路佈局、減少非嵌埋式電子單元的使用數量,並減少訊號 傳輸距離來提升嵌埋式封裝結構的工作性能。 Moreover, in order to create a larger space in a limited substrate area to enhance the function of the electronic device, conventional techniques embed electronic components in the substrate to form an embedded package structure. The user can select the substrate material with a suitable dielectric constant and resistance value according to his needs to adjust the circuit characteristics. Reduce circuit layout, reduce the number of non-embedded electronic units, and reduce signals The transmission distance is used to improve the performance of the embedded package structure.
以下,請參照第1A圖至第1I圖以簡單說明一般嵌埋式封裝結構的製造方法。首先,如第1A圖所示,係於一基板10上經過鑽孔、電鍍一第一金屬層11以及塞孔之後,再以微影蝕刻技術將部分的第一金屬層11移除,以露出部分基板10。再如第1B圖所示,利用雷射蝕刻或是沖壓方式,將露出於第一金屬層11的基板10移除,以形成複數開孔101。再如第1C圖所示,將上述經過加工的基板10放置固定於一例如膠帶的載體12上,並將電子元件131及132對準相對應的開孔101而固定於載體12。再如第1D圖所示,以一介電材料14填入並固定上述之基板10、第一金屬層11以及電子元件131、132,再於介電材料14之第一表面141形成一第二金屬層15。再如第1E圖所示,由於上述之介電材料14已固定基板10、第一金屬層11以及電子元件131、132,因此可移除載體12,並由第二金屬層15相對之另一側同樣填入介電材料14,並於介電材料14之第二表面142形成一第三金屬層16。 Hereinafter, a method of manufacturing a general embedded package structure will be briefly described with reference to FIGS. 1A to 1I. First, as shown in FIG. 1A, after drilling, plating a first metal layer 11 and a plug hole on a substrate 10, a portion of the first metal layer 11 is removed by a photolithography technique to expose Part of the substrate 10. Further, as shown in FIG. 1B, the substrate 10 exposed to the first metal layer 11 is removed by laser etching or stamping to form a plurality of openings 101. Further, as shown in FIG. 1C, the processed substrate 10 is placed and fixed on a carrier 12 such as an adhesive tape, and the electronic components 131 and 132 are aligned with the corresponding opening 101 to be fixed to the carrier 12. Further, as shown in FIG. 1D, the substrate 10, the first metal layer 11, and the electronic components 131 and 132 are filled and fixed by a dielectric material 14, and a second surface 141 is formed on the first surface 141 of the dielectric material 14. Metal layer 15. As further shown in FIG. 1E, since the dielectric material 14 described above has fixed the substrate 10, the first metal layer 11, and the electronic components 131, 132, the carrier 12 can be removed and the second metal layer 15 is opposite to the other. The side is also filled with a dielectric material 14 and a third metal layer 16 is formed on the second surface 142 of the dielectric material 14.
再如第1F圖所示,利用雷射蝕刻移除部分之第二金屬層15、部分之介電材料14以及部分之第三金屬層16,以分別形成孔洞H1~H13。再如第1G圖所示,於孔洞H1~H13中電鍍金屬以填滿,使得對應的第一金屬層11、第二金屬層15以及第三金屬層16得以電性連接。再如第1H圖所示,再以微影蝕刻技術移除部分的第二金屬層15及第三金屬層16。最後如第1I圖所示,於第二金屬層15及第三金屬層16上適當的位置分別形成一防焊層17,如此才完成一嵌埋式封裝結構1。 Further, as shown in FIG. 1F, a portion of the second metal layer 15, a portion of the dielectric material 14, and a portion of the third metal layer 16 are removed by laser etching to form holes H1 to H13, respectively. Further, as shown in FIG. 1G, the metal is plated in the holes H1 to H13 to be filled, so that the corresponding first metal layer 11, second metal layer 15, and third metal layer 16 are electrically connected. Further, as shown in FIG. 1H, a portion of the second metal layer 15 and the third metal layer 16 are removed by a photolithography technique. Finally, as shown in FIG. 1I, a solder resist layer 17 is formed on the second metal layer 15 and the third metal layer 16 at appropriate positions, so that an embedded package structure 1 is completed.
上述之嵌埋式封裝結構1具有下列幾項技術缺陷。第一,由電子元件131、132之中心分別至第二金屬層15及第三金屬層16之距離相同,換言之,嵌埋式封裝結構1為一對稱結構,必須如上述第1D圖及第1E圖所示,執行雙面增層工序,如此將會致使良率降低。 The above-described embedded package structure 1 has the following technical defects. First, the distance from the center of the electronic components 131 and 132 to the second metal layer 15 and the third metal layer 16 is the same. In other words, the embedded package structure 1 has a symmetrical structure, and must be as shown in FIG. 1D and 1E. As shown in the figure, performing a double-sided layering process will result in a decrease in yield.
第二,如上述第1F圖所示,由於電子元件之球底金屬層(UBM)必須經過雷射蝕刻製程,因此其厚度通常需達到1 毫米,才能承受該製程所遭遇的破壞。另外,如上述第1G圖所示,其係為盲孔電鍍製程,而因為此製程的緣故,電子元件之球底金屬層(UBM)必須限定為銅金屬,而導致設計彈性度不足。 Second, as shown in the above FIG. 1F, since the bottom metal layer (UBM) of the electronic component must be subjected to a laser etching process, the thickness thereof usually needs to be 1 Millimeter to withstand the damage suffered by the process. In addition, as shown in the above FIG. 1G, it is a blind via plating process, and because of this process, the ball metal layer (UBM) of the electronic component must be limited to copper metal, resulting in insufficient design flexibility.
有鑒於此,本發明之一目的在於提供一種嵌埋式封裝結構的製造方法,使得具有不同球底金屬層(UBM)的晶片皆能適用。 In view of the above, it is an object of the present invention to provide a method of fabricating an embedded package structure such that a wafer having a different ball-bottom metal layer (UBM) can be applied.
另外,本發明之另一目的在於提供一種嵌埋式封裝結構的製造方法,無需限制球底金屬層之厚度,而可使得設計更為彈性。 In addition, another object of the present invention is to provide a method for fabricating an embedded package structure, which can make the design more flexible without limiting the thickness of the metal layer of the ball bottom.
再者,本發明之又一目的在於提供一種嵌埋式封裝結構的製造方法,其可縮短製造時間。 Furthermore, it is still another object of the present invention to provide a method of fabricating an embedded package structure that can reduce manufacturing time.
為達上述目的,本發明提供一種嵌埋式封裝結構的製造方法,其包括下列步驟。步驟S01係形成一第一導電圖案層於一載板上。步驟S02係形成一第一導電柱層於該第一導電圖案層上,並露出部分之該第一導電圖案層。步驟S03係形成一導電結合層於露出之該第一導電圖案層。步驟S04係將一電子元件與該導電結合層連接。步驟S05係形成一第一介電層覆蓋該電子元件、該第一導電柱層及該第一導電圖案層,並露出該第一導電柱層之一表面。步驟S06係形成一第二導電圖案層於該第一介電層及該第一導電柱層上。步驟S07係形成一第二導電柱層於該第二導電圖案層上。步驟S08係形成一第二介電層覆蓋該第一介電層、該第二導電圖案層及該第二導電柱層,並露出該第二導電柱層之一表面。步驟S09係移除該載板,以形成一嵌埋式封裝結構。 To achieve the above object, the present invention provides a method of fabricating an embedded package structure comprising the following steps. Step S01 forms a first conductive pattern layer on a carrier. Step S02 is to form a first conductive pillar layer on the first conductive pattern layer, and expose a portion of the first conductive pattern layer. Step S03 forms a conductive bonding layer on the exposed first conductive pattern layer. Step S04 connects an electronic component to the conductive bonding layer. Step S05 is to form a first dielectric layer covering the electronic component, the first conductive pillar layer and the first conductive pattern layer, and expose a surface of the first conductive pillar layer. Step S06 is to form a second conductive pattern layer on the first dielectric layer and the first conductive pillar layer. Step S07 forms a second conductive pillar layer on the second conductive pattern layer. Step S08 is to form a second dielectric layer covering the first dielectric layer, the second conductive pattern layer and the second conductive pillar layer, and expose a surface of the second conductive pillar layer. Step S09 removes the carrier to form an embedded package structure.
另外,為達上述目的,本發明提供另一種嵌埋式封裝結構的製造方法,其包括下列步驟。步驟S11係形成一第一導電圖案層於一載板上。步驟S12係形成一固定層覆蓋部分之第一導電圖案層。步驟S13係將一電子元件設置於該固定層上,並露出至少一電性連接墊。步驟S14係形成一第一導電柱層於露出之該第一導電圖案層及該電性連接墊上。步驟S15係形成一第一介電層覆蓋該 電子元件、該第一導電柱層及該第一導電圖案層,並露出該第一導電柱層之一表面。步驟S16係形成一第二導電圖案層於該第一介電層及該第一導電柱層上。步驟S17係形成一第二導電柱層於該第二導電圖案層上。步驟S18係形成一第二介電層覆蓋該第一介電層、該第二導電圖案層及該第二導電柱層,並露出該第二導電柱層之一表面。步驟S19係移除該載板,以形成一嵌埋式封裝結構。 Further, in order to achieve the above object, the present invention provides a method of manufacturing another embedded package structure comprising the following steps. Step S11 forms a first conductive pattern layer on a carrier. Step S12 is to form a first conductive pattern layer of a fixed layer covering portion. In step S13, an electronic component is disposed on the fixed layer, and at least one electrical connection pad is exposed. Step S14 is to form a first conductive pillar layer on the exposed first conductive pattern layer and the electrical connection pad. Step S15 is to form a first dielectric layer to cover the An electronic component, the first conductive pillar layer and the first conductive pattern layer, and exposing a surface of one of the first conductive pillar layers. Step S16 is to form a second conductive pattern layer on the first dielectric layer and the first conductive pillar layer. Step S17 forms a second conductive pillar layer on the second conductive pattern layer. Step S18 is to form a second dielectric layer covering the first dielectric layer, the second conductive pattern layer and the second conductive pillar layer, and expose one surface of the second conductive pillar layer. Step S19 removes the carrier to form an embedded package structure.
依據本發明之一實施例,其中第一導電圖案層及該第二導電圖案層至少其中之一的厚度係小於7微米。 According to an embodiment of the invention, at least one of the first conductive pattern layer and the second conductive pattern layer has a thickness of less than 7 micrometers.
依據本發明之一實施例,其中電子元件與該第一介電層之該第一表面之間具有一第一距離,該電子元件與該第二介電層之該第四表面之間具有一第二距離,該第一距離係異於該第二距離。 According to an embodiment of the invention, a first distance between the electronic component and the first surface of the first dielectric layer, and a fourth surface between the electronic component and the fourth surface of the second dielectric layer The second distance, the first distance being different from the second distance.
承上所述,依據本發明之嵌埋式封裝結構的製程係利用層疊的方式所製造,其無需使用基板,不需要使用雷射蝕刻等較費時的工序來使電子元件嵌埋於基板中,即可製造出嵌埋式封裝結構。由於捨棄了雷射蝕刻的工序,因此電子元件的選用將不會受限於球底金屬層的厚度而更為彈性。 As described above, the process of the embedded package structure according to the present invention is manufactured by lamination, which eliminates the need for a substrate and eliminates the need for time-consuming processes such as laser etching to embed electronic components in the substrate. An embedded package structure can be manufactured. Since the laser etching process is discarded, the selection of the electronic components will not be more limited by the thickness of the metal layer of the ball bottom.
1、2、3‧‧‧嵌埋式封裝結構 1, 2, 3‧‧‧ embedded package structure
10‧‧‧基板 10‧‧‧Substrate
101‧‧‧開孔 101‧‧‧ opening
11‧‧‧第一金屬層 11‧‧‧First metal layer
12‧‧‧載體 12‧‧‧ Carrier
131、132‧‧‧電子元件 131, 132‧‧‧ Electronic components
14‧‧‧介電材料 14‧‧‧ dielectric materials
141、251、351‧‧‧第一表面 141, 251, 351‧‧‧ first surface
142、252、352‧‧‧第二表面 142, 252, 352‧‧‧ second surface
15‧‧‧第二金屬層 15‧‧‧Second metal layer
16‧‧‧第三金屬層 16‧‧‧ Third metal layer
17‧‧‧防焊層 17‧‧‧ solder mask
20、30‧‧‧載板 20, 30‧‧‧ carrier board
21、31‧‧‧第一導電圖案層 21, 31‧‧‧ first conductive pattern layer
211、221、261、271、311、321、361、371‧‧‧表面 211, 221, 261, 271, 311, 321, 361, 371 ‧ ‧ surface
22、32‧‧‧第一導電柱層 22, 32‧‧‧ first conductive column
23‧‧‧導電結合層 23‧‧‧Electrical bonding layer
24、24A、34‧‧‧電子元件 24, 24A, 34‧‧‧ Electronic components
241、341‧‧‧電性連接墊 241, 341‧‧‧ electrical connection pads
241A‧‧‧銅柱凸塊 241A‧‧‧ copper stud bump
25、35‧‧‧第一介電層 25, 35‧‧‧ first dielectric layer
26、36‧‧‧第二導電圖案層 26, 36‧‧‧Second conductive pattern layer
27、37‧‧‧第二導電柱層 27, 37‧‧‧Second conductive column
28、38‧‧‧第二介電層 28, 38‧‧‧Second dielectric layer
281、381‧‧‧第三表面 281, 381‧‧‧ third surface
282、382‧‧‧第四表面 282, 382‧‧‧ fourth surface
33‧‧‧固定層 33‧‧‧Fixed layer
D01、D11‧‧‧第一距離 D01, D11‧‧‧ first distance
D02、D12‧‧‧第二距離 D02, D12‧‧‧Second distance
H1~H13‧‧‧孔洞 H1~H13‧‧‧ hole
第1A圖至第1I圖係顯示習知一種嵌埋式封裝結構的製作程序示意圖。 1A to 1I are schematic views showing a manufacturing procedure of a conventional embedded package structure.
第2圖係顯示依據本發明第一實施例之一嵌埋式封裝結構之一示意圖。 2 is a schematic view showing one of the embedded package structures according to the first embodiment of the present invention.
第3圖係顯示第一實施例之電子元件的另一態樣示意圖。 Fig. 3 is a view showing another aspect of the electronic component of the first embodiment.
第4圖係顯示依據本發明第二實施例之一嵌埋式封裝結構之一示意圖。 Figure 4 is a schematic view showing one of the embedded package structures according to the second embodiment of the present invention.
第5圖係顯示本發明第一實施例之嵌埋式封裝結構之製造方法之一流程圖。 Fig. 5 is a flow chart showing a method of manufacturing the embedded package structure of the first embodiment of the present invention.
第6A圖至第6I圖係顯示本發明第一實施例嵌埋式封裝結構的製作程序示意圖。 6A to 6I are views showing a manufacturing procedure of the embedded package structure according to the first embodiment of the present invention.
第7圖係顯示本發明第二實施例之嵌埋式封裝結構之製造方法之一流程圖。 Fig. 7 is a flow chart showing a method of manufacturing the embedded package structure of the second embodiment of the present invention.
第8A圖至第8I圖係顯示本發明第二實施例嵌埋式封裝結構的製作程序示意圖。 8A to 8I are views showing a manufacturing procedure of the embedded package structure of the second embodiment of the present invention.
以下將透過實施例來解釋本發明內容,本發明的實施例並非用以限制本發明須在如實施例所述之任何特定的環境、應用或特殊方式方能實施。因此,關於實施例之說明僅為闡釋本發明之目的,而非用以限制本發明。須說明者,以下實施例及圖式中,與本發明非直接相關之元件已省略而未繪示;且圖式中各元件間之尺寸關係僅為求容易瞭解,非用以限制實際比例。另外,以下實施例中,相同的元件將以相同的元件符號加以說明。 The present invention is not limited by the embodiment, and the embodiment of the present invention is not intended to limit the invention to any specific environment, application or special mode as described in the embodiments. Therefore, the description of the embodiments is merely illustrative of the invention and is not intended to limit the invention. It should be noted that, in the following embodiments and drawings, components that are not directly related to the present invention have been omitted and are not shown; and the dimensional relationships between the components in the drawings are merely for ease of understanding and are not intended to limit the actual ratio. In the following embodiments, the same elements will be described with the same element symbols.
請參照第2圖所示,其係依據本發明第一實施例之一嵌埋式封裝結構2之一示意圖。嵌埋式封裝結構2包括一第一導電圖案層21、一第一導電柱層22、一導電結合層23、一電子元件24、一第一介電層25、一第二導電圖案層26、一第二導電柱層27以及一第二介電層28。 Referring to FIG. 2, it is a schematic diagram of an embedded package structure 2 according to a first embodiment of the present invention. The embedded package structure 2 includes a first conductive pattern layer 21, a first conductive pillar layer 22, a conductive bonding layer 23, an electronic component 24, a first dielectric layer 25, and a second conductive pattern layer 26. A second conductive pillar layer 27 and a second dielectric layer 28.
第一介電層25之材質係可包括酚醛基樹脂(Novolac-Based Resin)、環氧基樹脂(Epoxy-Based Resin)、矽基樹脂(Silicone-Based Resin),其具有相對之一第一表面251及一第二表面252。 The material of the first dielectric layer 25 may include a Novolac-Based Resin, an Epoxy-Based Resin, and a Silicone-Based Resin having a first surface. 251 and a second surface 252.
第一導電圖案層21係設置於第一介電層25中,且第一導電圖案層21之一表面211係暴露於第一介電層25之第一表面251,且暴露於第一介電層25之第一表面251的第一導電圖案層21,實質上係與第一介電層25之第一表面251為同一平面。其中,第一導電圖案層21之材質係為金屬,例如但不限於銅,其係可以電鍍、濺鍍或蒸鍍等方式形成,故其厚度可小於1毫米(mm),較佳者,第一導電圖案層21之厚度係小於7微米(um)。於本實施例中,第一導電圖案層21係可包括導電線路以及電性連接墊。 The first conductive pattern layer 21 is disposed in the first dielectric layer 25, and one surface 211 of the first conductive pattern layer 21 is exposed to the first surface 251 of the first dielectric layer 25 and exposed to the first dielectric The first conductive pattern layer 21 of the first surface 251 of the layer 25 is substantially the same plane as the first surface 251 of the first dielectric layer 25. The material of the first conductive pattern layer 21 is a metal, such as but not limited to copper, which may be formed by electroplating, sputtering or evaporation, so the thickness thereof may be less than 1 mm (mm), preferably, the first The thickness of a conductive pattern layer 21 is less than 7 micrometers (um). In this embodiment, the first conductive pattern layer 21 may include a conductive line and an electrical connection pad.
第一導電柱層22係設置於第一介電層25中,並與第 一導電圖案層21電性連接。第一導電柱層22之一表面221係露出於第一介電層25之第二表面252,且暴露於第一介電層25之第二表面252的第一導電柱層22,實質上係與第一介電層25之第二表面252為同一平面。其中,第一導電柱層22係可以電鍍、濺鍍或蒸鍍等方式形成,其材質係為金屬,例如但不限於銅。 The first conductive pillar layer 22 is disposed in the first dielectric layer 25, and the first A conductive pattern layer 21 is electrically connected. One surface 221 of the first conductive pillar layer 22 is exposed on the second surface 252 of the first dielectric layer 25 and exposed to the first conductive pillar layer 22 of the second surface 252 of the first dielectric layer 25, substantially The second surface 252 of the first dielectric layer 25 is in the same plane. The first conductive pillar layer 22 may be formed by plating, sputtering or vapor deposition, and the material thereof is metal, such as but not limited to copper.
電子元件24係設置於第一介電層25中,且具有複數電性連接墊241,其係朝向部分之第一導電圖案層21而設置,並藉由導電結合層23而與對應之第一導電圖案層21電性連接。其中,電性連接墊241之材質例如但不限於銅(Cu)、鈦鎢銅(TiWCu)鋁(Al)或其他金屬電性連接墊。於本實施例中,電子元件24係可為主動元件或為被動元件,於此不加以限定。所謂的主動元件,例如但不限於晶片(chip)、晶粒(die)或積體電路(integrated circuit,IC)。而所謂的被動元件則例如但不限於電容器或電阻器。另外,導電結合層23例如但不限於錫膏、錫球或金凸塊等用於導電連接之材料。如為錫膏,其例如係以印刷、點錫膏或噴錫膏等方式形成於第一導電圖案層21。 The electronic component 24 is disposed in the first dielectric layer 25 and has a plurality of electrical connection pads 241 disposed toward the first conductive pattern layer 21 of the portion, and corresponding to the first layer by the conductive bonding layer 23 The conductive pattern layer 21 is electrically connected. The material of the electrical connection pad 241 is, for example but not limited to, copper (Cu), titanium tungsten copper (TiWCu) aluminum (Al) or other metal electrical connection pads. In this embodiment, the electronic component 24 can be an active component or a passive component, which is not limited herein. The so-called active components are, for example but not limited to, a chip, a die, or an integrated circuit (IC). The so-called passive components are for example but not limited to capacitors or resistors. In addition, the conductive bonding layer 23 is, for example but not limited to, a solder paste, a solder ball, or a gold bump or the like for electrically connecting. In the case of a solder paste, it is formed on the first conductive pattern layer 21 by, for example, printing, solder paste or solder paste.
第二介電層28之材質係可包括酚醛基樹脂(Novolac-Based Resin)、環氧基樹脂(Epoxy-Based Resin)、矽基樹脂(Silicone-Based Resin),其係具有相對之一第三表面281及一第四表面282。 The material of the second dielectric layer 28 may include a Novolac-Based Resin, an Epoxy-Based Resin, and a Silicone-Based Resin, which have a relative third. Surface 281 and a fourth surface 282.
第二導電圖案層26係設置於第二介電層28中,且第二導電圖案層26之一表面261係露出於第二介電層28之第三表面281。第二導電圖案層26係與露出於第一介電層25之第二表面252的第一導電柱層22電性連接。暴露於第二介電層28之第三表面281的第二導電圖案層26,實質上係與第二介電層28之第三表面281為同一平面。其中,第二導電圖案層26之材質係為金屬,例如但不限於銅,其係可以電鍍、濺鍍或蒸鍍等方式形成,故其厚度可小於1毫米(mm),較佳者,第二導電圖案層26之厚度係小於7微米(um)。 The second conductive pattern layer 26 is disposed in the second dielectric layer 28 , and one surface 261 of the second conductive pattern layer 26 is exposed on the third surface 281 of the second dielectric layer 28 . The second conductive pattern layer 26 is electrically connected to the first conductive pillar layer 22 exposed on the second surface 252 of the first dielectric layer 25. The second conductive pattern layer 26 exposed to the third surface 281 of the second dielectric layer 28 is substantially flush with the third surface 281 of the second dielectric layer 28. The material of the second conductive pattern layer 26 is a metal, such as but not limited to copper, which may be formed by electroplating, sputtering or vapor deposition, so the thickness thereof may be less than 1 mm (mm), preferably, the first The thickness of the second conductive pattern layer 26 is less than 7 micrometers (um).
第二導電柱層27係設置於第二介電層28中,並與第 二導電圖案層26電性連接,且第二導電柱層27之一表面271係露出於第二介電層28之第四表面282。暴露於第二介電層28之第四表面282的第二導電柱層27,實質上係與第二介電層28之第四表面282為同一平面。其中,第二導電柱層27係可以電鍍、濺鍍或蒸鍍等方式形成,其材質係為金屬,例如但不限於銅。 The second conductive pillar layer 27 is disposed in the second dielectric layer 28, and The two conductive pattern layers 26 are electrically connected, and one surface 271 of the second conductive pillar layer 27 is exposed on the fourth surface 282 of the second dielectric layer 28. The second conductive pillar layer 27 exposed to the fourth surface 282 of the second dielectric layer 28 is substantially flush with the fourth surface 282 of the second dielectric layer 28. The second conductive pillar layer 27 can be formed by plating, sputtering or vapor deposition, and the material thereof is metal, such as but not limited to copper.
另外,值得一提的是,電子元件24與第一介電層25之第一表面251之間具有一第一距離D01,而電子元件24與第二介電層28之第四表面282之間具有一第二距離D02,於本實施例中,第一距離D01係異於第二距離D02。換言之,嵌埋式封裝結構由側向觀之係為一非對稱式構裝,也因此電子元件24之電性連接墊241與第一導電圖案層21之間的距離較短,而可縮短電子傳遞路徑,進而可增加其電性效能。 In addition, it is worth mentioning that the electronic component 24 has a first distance D01 between the first surface 251 of the first dielectric layer 25 and the fourth surface 282 of the electronic component 24 and the second dielectric layer 28. There is a second distance D02. In this embodiment, the first distance D01 is different from the second distance D02. In other words, the embedded package structure is an asymmetric structure from the lateral view, and thus the distance between the electrical connection pads 241 of the electronic component 24 and the first conductive pattern layer 21 is shorter, and the electrons can be shortened. Passing the path, which in turn increases its electrical performance.
請再參照第3圖所示,其係顯示第一實施例之電子元件的另一種態樣。在本實施例中,電子元件24A係可為一銅柱凸塊晶粒(Cu post die/Cu-pillar die),其具有作為電性連接墊之複數銅柱凸塊241A可有效地縮短錫球或錫膏之間的間距,而可增加電子元件24A的腳位數量。 Referring again to Fig. 3, it shows another aspect of the electronic component of the first embodiment. In this embodiment, the electronic component 24A can be a Cu post die/Cu-pillar die having a plurality of copper pillar bumps 241A as electrical connection pads to effectively shorten the solder balls. Or the spacing between the solder pastes, and the number of pins of the electronic component 24A can be increased.
以下,請參照第4圖所示,以說明本發明第二實施例之一嵌埋式封裝結構3。 Hereinafter, please refer to FIG. 4 for explaining the embedded package structure 3 of the second embodiment of the present invention.
嵌埋式封裝結構3包括一第一導電圖案層31、一第一導電柱層32、一固定層33、一電子元件34、一第一介電層35、一第二導電圖案層36、一第二導電柱層37以及一第二介電層38。 The embedded package structure 3 includes a first conductive pattern layer 31, a first conductive pillar layer 32, a fixed layer 33, an electronic component 34, a first dielectric layer 35, a second conductive pattern layer 36, and a first conductive layer 32. The second conductive pillar layer 37 and a second dielectric layer 38.
第一介電層35之材質係可包括酚醛基樹脂、環氧基樹脂、矽基樹脂,其具有相對之一第一表面351及一第二表面352。 The material of the first dielectric layer 35 may include a phenolic resin, an epoxy resin, a ruthenium-based resin having a first surface 351 and a second surface 352.
第一導電圖案層31係設置於第一介電層35中,且第一導電圖案層31之一表面311係暴露於第一介電層35之第一表面351,且暴露於第一介電層35之第一表面351的第一導電圖案層31,實質上係與第一介電層35之第一表面351為同一平面。其中,第一導電圖案層31之材質係為金屬,例如但不限於銅,其係可以電鍍、濺鍍或蒸鍍等方式形成,故其厚度可小於1毫米(mm), 較佳者,第一導電圖案層31之厚度係小於7微米(um)。於本實施例中,第一導電圖案層31係可包括導電線路以及電性連接墊。 The first conductive pattern layer 31 is disposed in the first dielectric layer 35, and one surface 311 of the first conductive pattern layer 31 is exposed to the first surface 351 of the first dielectric layer 35 and exposed to the first dielectric The first conductive pattern layer 31 of the first surface 351 of the layer 35 is substantially the same plane as the first surface 351 of the first dielectric layer 35. The material of the first conductive pattern layer 31 is a metal, such as but not limited to copper, which can be formed by electroplating, sputtering or evaporation, so that the thickness can be less than 1 mm (mm). Preferably, the thickness of the first conductive pattern layer 31 is less than 7 micrometers (um). In the embodiment, the first conductive pattern layer 31 may include a conductive line and an electrical connection pad.
第一導電柱層32係設置於第一介電層35中,並與第一導電圖案層31電性連接。第一導電柱層32之一表面321係露出於第一介電層35之第二表面352,且暴露於第一介電層35之第二表面352的第一導電柱層32,實質上係與第一介電層35之第二表面352為同一平面。其中,第一導電柱層32係可以電鍍、濺鍍或蒸鍍等方式形成,其材質係為金屬,例如但不限於銅。 The first conductive pillar layer 32 is disposed in the first dielectric layer 35 and electrically connected to the first conductive pattern layer 31. One surface 321 of the first conductive pillar layer 32 is exposed on the second surface 352 of the first dielectric layer 35, and is exposed to the first conductive pillar layer 32 of the second surface 352 of the first dielectric layer 35, substantially The second surface 352 of the first dielectric layer 35 is in the same plane. The first conductive pillar layer 32 may be formed by plating, sputtering or vapor deposition, and the material thereof is metal, such as but not limited to copper.
電子元件34係設置於第一介電層35中,且具有複數電性連接墊341,其係朝向第一導電圖案層31之另一側而設置。電子元件34係藉由固定層33而與對應之第一導電圖案層31連接。固定層33例如但不限於結合膠(glue)或結合薄膜(film)。值得一提的是,部分的第一導電柱層32係電性連接於電性連接墊341。 The electronic component 34 is disposed in the first dielectric layer 35 and has a plurality of electrical connection pads 341 disposed toward the other side of the first conductive pattern layer 31. The electronic component 34 is connected to the corresponding first conductive pattern layer 31 by the pinned layer 33. The pinned layer 33 is, for example but not limited to, a glue or a bonding film. It is worth mentioning that a portion of the first conductive pillar layer 32 is electrically connected to the electrical connection pad 341.
電子元件34之電性連接墊341之材質例如但不限於銅、鈦鎢銅、鋁或其他金屬電性連接墊。於本實施例中,電子元件34係可為主動元件及/或被動元件,於此不加以限定。所謂的主動元件,例如但不限於晶片、晶粒或積體電路。而所謂的被動元件則例如但不限於電容器或電阻器。 The material of the electrical connection pad 341 of the electronic component 34 is, for example but not limited to, copper, titanium tungsten copper, aluminum or other metal electrical connection pads. In this embodiment, the electronic component 34 can be an active component and/or a passive component, which is not limited herein. So-called active components such as, but not limited to, wafers, dies or integrated circuits. The so-called passive components are for example but not limited to capacitors or resistors.
第二介電層38之材質係可包括酚醛基樹脂、環氧基樹脂、矽基樹脂,其係具有相對之一第三表面381及一第四表面382。 The material of the second dielectric layer 38 may include a phenolic resin, an epoxy resin, a ruthenium-based resin having a third surface 381 and a fourth surface 382 opposite to each other.
第二導電圖案層36係設置於第二介電層38中,且第二導電圖案層36之一表面361係露出於第二介電層38之第三表面381。第二導電圖案層36係與露出於第一介電層35之第二表面352的第一導電柱層32電性連接。暴露於第二介電層38之第三表面381的第二導電圖案層36,實質上係與第二介電層38之第三表面381為同一平面。其中,第二導電圖案層36之材質係為金屬,例如但不限於銅,其係可以電鍍、濺鍍或蒸鍍等方式形成,故其厚度可小於1毫米(mm),較佳者,第二導電圖案層36之厚度係小於7微米(um)。 The second conductive pattern layer 36 is disposed in the second dielectric layer 38 , and one surface 361 of the second conductive pattern layer 36 is exposed on the third surface 381 of the second dielectric layer 38 . The second conductive pattern layer 36 is electrically connected to the first conductive pillar layer 32 exposed on the second surface 352 of the first dielectric layer 35 . The second conductive pattern layer 36 exposed to the third surface 381 of the second dielectric layer 38 is substantially flush with the third surface 381 of the second dielectric layer 38. The material of the second conductive pattern layer 36 is a metal, such as but not limited to copper, which can be formed by electroplating, sputtering or evaporation, so the thickness can be less than 1 mm (mm), preferably, the first The thickness of the two conductive pattern layers 36 is less than 7 micrometers (um).
第二導電柱層37係設置於第二介電層38中,並與第二導電圖案層36電性連接,且第二導電柱層37之一表面371係露出於第二介電層38之第四表面382。暴露於第二介電層38之第四表面382的第二導電柱層37,實質上係與第二介電層38之第四表面382為同一平面。其中,第二導電柱層37係可以電鍍、濺鍍或蒸鍍等方式形成,其材質係為金屬,例如但不限於銅。 The second conductive pillar layer 37 is disposed in the second dielectric layer 38 and electrically connected to the second conductive pattern layer 36, and one surface 371 of the second conductive pillar layer 37 is exposed to the second dielectric layer 38. Fourth surface 382. The second conductive pillar layer 37 exposed to the fourth surface 382 of the second dielectric layer 38 is substantially flush with the fourth surface 382 of the second dielectric layer 38. The second conductive pillar layer 37 may be formed by plating, sputtering or vapor deposition, and the material thereof is metal, such as but not limited to copper.
另外,與第一實施例相同,電子元件34與第一介電層35之第一表面351之間具有一第一距離D11,而電子元件34與第二介電層38之第四表面382之間具有一第二距離D12,於本實施例中,第一距離D11係異於第二距離D12。換言之,嵌埋式封裝結構3由側向觀之係為一非對稱式構裝,也因此電子元件34之電性連接墊341與第一導電圖案層31之間的距離較短,而可縮短電子傳遞路徑,進而可增加其電性效能。 In addition, as in the first embodiment, the electronic component 34 has a first distance D11 between the first surface 351 of the first dielectric layer 35 and the fourth surface 382 of the electronic component 34 and the second dielectric layer 38. There is a second distance D12 between them. In the embodiment, the first distance D11 is different from the second distance D12. In other words, the embedded package structure 3 is an asymmetric structure from the lateral view, and thus the distance between the electrical connection pads 341 of the electronic component 34 and the first conductive pattern layer 31 is shorter, and can be shortened. The electron transfer path, in turn, increases its electrical performance.
請參照第5圖所示,其係本發明第一實施例之嵌埋式封裝結構2之製造方法之一流程圖,其包括步驟S01至步驟S09。以下,請搭配第6A圖至第6I圖以說明嵌埋式封裝結構2之製造方法。 Referring to FIG. 5, it is a flowchart of a manufacturing method of the embedded package structure 2 according to the first embodiment of the present invention, which includes steps S01 to S09. Hereinafter, please refer to FIGS. 6A to 6I to explain the manufacturing method of the embedded package structure 2.
步驟S01,如第6A圖所示,形成一第一導電圖案層21於一載板20上。其中,載板20係為一金屬載板,例如但不限於不鏽鋼鍍銅。第一導電圖案層21係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於載板20。 In step S01, as shown in FIG. 6A, a first conductive pattern layer 21 is formed on a carrier 20. The carrier 20 is a metal carrier such as, but not limited to, stainless steel copper. The first conductive pattern layer 21 can be formed on the carrier 20 by techniques such as electroplating, sputtering, evaporation, or a lithography process.
步驟S02,如第6B圖所示,形成一第一導電柱層22於第一導電圖案層21上。其中,第一導電柱層22並非完全覆蓋第一導電圖案層21,亦即部分的第一導電圖案層21係露出的。第一導電柱層22係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第一導電圖案層21上。 Step S02, as shown in FIG. 6B, a first conductive pillar layer 22 is formed on the first conductive pattern layer 21. The first conductive pillar layer 22 does not completely cover the first conductive pattern layer 21, that is, a part of the first conductive pattern layer 21 is exposed. The first conductive pillar layer 22 can be formed on the first conductive pattern layer 21 by a technique such as electroplating, sputtering, evaporation, or a lithography process.
步驟S03,如第6C圖所示,形成一導電結合層23於露出之第一導電圖案層21。導電結合層23例如但不限於錫膏、錫球或金凸塊等用於導電連接之材料。如為錫膏,其例如係以印刷、點錫膏或噴錫膏等方式形成於第一導電圖案層21。 Step S03, as shown in FIG. 6C, a conductive bonding layer 23 is formed on the exposed first conductive pattern layer 21. The conductive bonding layer 23 is, for example but not limited to, a solder paste, a solder ball, or a gold bump or the like for electrically connecting. In the case of a solder paste, it is formed on the first conductive pattern layer 21 by, for example, printing, solder paste or solder paste.
步驟S04,如第6D圖所示,將一電子元件24與導電結 合層23連接。其係可利用回銲製程以使導電結合層23將電子元件24之電性連接墊241與第一導電圖案層21電性連接。 Step S04, as shown in FIG. 6D, an electronic component 24 and a conductive junction The layer 23 is connected. The electrical bonding layer 23 electrically connects the electrical connection pads 241 of the electronic component 24 to the first conductive pattern layer 21 by using a reflow process.
步驟S05,如第6E圖所示,形成一第一介電層25覆蓋電子元件24、第一導電柱層22及第一導電圖案層21,並經研磨後露出第一導電柱層22之一表面221。 Step S05, as shown in FIG. 6E, a first dielectric layer 25 is formed to cover the electronic component 24, the first conductive pillar layer 22 and the first conductive pattern layer 21, and is polished to expose one of the first conductive pillar layers 22. Surface 221.
步驟S06,如第6F圖所示,形成一第二導電圖案層26於第一介電層25及第一導電柱層22上。第二導電圖案層26係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第一介電層25及第一導電柱層22上。 Step S06, as shown in FIG. 6F, a second conductive pattern layer 26 is formed on the first dielectric layer 25 and the first conductive pillar layer 22. The second conductive pattern layer 26 can be formed on the first dielectric layer 25 and the first conductive pillar layer 22 by techniques such as electroplating, sputtering, evaporation, or a lithography process.
步驟S07,如第6G圖所示,形成一第二導電柱層27於第二導電圖案層26上。第二導電柱層27係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第二導電圖案層26上。 Step S07, as shown in FIG. 6G, a second conductive pillar layer 27 is formed on the second conductive pattern layer 26. The second conductive pillar layer 27 can be formed on the second conductive pattern layer 26 by a technique such as electroplating, sputtering, evaporation, or a lithography process.
步驟S08,如第6H圖所示,形成一第二介電層28覆蓋第一介電層25、第二導電圖案層26及第二導電柱層27,並經研磨製程後露出第二導電柱層27之一表面271。 Step S08, as shown in FIG. 6H, forming a second dielectric layer 28 covering the first dielectric layer 25, the second conductive pattern layer 26, and the second conductive pillar layer 27, and exposing the second conductive pillar after the polishing process One surface 271 of layer 27.
步驟S09,搭配第6H圖與第6I圖所示,移除載板20並作180度翻轉後,以形成一嵌埋式封裝結構2。其中,載板20係可以例如但不限於應用蝕刻製程(Etching process)、剝離製程(Debonding process)或研磨製程移除之。 In step S09, as shown in FIG. 6H and FIG. 6I, the carrier 20 is removed and flipped 180 degrees to form an embedded package structure 2. The carrier 20 can be removed, for example, but not limited to, by an etching process, a debonding process, or a polishing process.
請參照第7圖所示,其係本發明第二實施例之嵌埋式封裝結構3之製造方法之一流程圖,其包括步驟S11至步驟S19。以下,請搭配第8A圖至第8I圖以說明嵌埋式封裝結構3之製造方法。 Referring to FIG. 7, a flow chart of a method for manufacturing the embedded package structure 3 of the second embodiment of the present invention includes steps S11 to S19. Hereinafter, please refer to FIGS. 8A to 8I to illustrate a method of manufacturing the embedded package structure 3.
步驟S11,如第8A圖所示,形成一第一導電圖案層31於一載板30上。其中,載板30係為一金屬載板,例如但不限於不鏽鋼鍍銅。第一導電圖案層31係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於載板30。 Step S11, as shown in FIG. 8A, a first conductive pattern layer 31 is formed on a carrier 30. The carrier 30 is a metal carrier such as, but not limited to, stainless steel copper. The first conductive pattern layer 31 can be formed on the carrier 30 by plating, sputtering, evaporation, or a lithography process.
步驟S12,如第8B圖所示,形成一固定層33覆蓋部分之第一導電圖案層31。固定層33例如但不限於結合膠或結合薄膜,其可應用塗佈製程或點膠製程而形成於第一導電圖案層31。 Step S12, as shown in FIG. 8B, a first conductive pattern layer 31 covering a portion of the fixed layer 33 is formed. The pinned layer 33 is formed, for example but not limited to, a bonding glue or a bonding film, which may be formed on the first conductive pattern layer 31 by a coating process or a dispensing process.
步驟S13,如第8C圖所示,將一電子元件34設置於固 定層33上,並露出至少一電性連接墊341。於本實施例中,電子元件34即係藉由固定層33之黏性而固定於載板30之上。 Step S13, as shown in FIG. 8C, an electronic component 34 is disposed on the solid The layer 33 is fixed and at least one electrical connection pad 341 is exposed. In the present embodiment, the electronic component 34 is fixed on the carrier 30 by the adhesiveness of the fixing layer 33.
步驟S14,如第8D圖所示,形成一第一導電柱層32於露出之第一導電圖案層31及電性連接墊341上。其中,第一導電柱層32係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第一導電圖案層31及電性連接墊341上。 Step S14, as shown in FIG. 8D, a first conductive pillar layer 32 is formed on the exposed first conductive pattern layer 31 and the electrical connection pad 341. The first conductive pillar layer 32 can be formed on the first conductive pattern layer 31 and the electrical connection pad 341 by using techniques such as electroplating, sputtering, evaporation, or a lithography process.
步驟S15,如第8E圖所示,形成一第一介電層35覆蓋電子元件34、第一導電柱層32及第一導電圖案層31,並經研磨後露出第一導電柱層32之一表面321。 Step S15, as shown in FIG. 8E, a first dielectric layer 35 is formed to cover the electronic component 34, the first conductive pillar layer 32 and the first conductive pattern layer 31, and is polished to expose one of the first conductive pillar layers 32. Surface 321.
步驟S16,如第8F圖所示,形成一第二導電圖案層36於第一介電層35及第一導電柱層32上。第二導電圖案層36係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第一介電層35及第一導電柱層32上。 Step S16, as shown in FIG. 8F, a second conductive pattern layer 36 is formed on the first dielectric layer 35 and the first conductive pillar layer 32. The second conductive pattern layer 36 can be formed on the first dielectric layer 35 and the first conductive pillar layer 32 by techniques such as electroplating, sputtering, evaporation, or a lithography process.
步驟S17,如第8G圖所示,形成一第二導電柱層37於第二導電圖案層36上。第二導電柱層37係可應用電鍍、濺鍍、蒸鍍或搭配微影蝕刻製程等技術形成於第二導電圖案層36上。 Step S17, as shown in FIG. 8G, a second conductive pillar layer 37 is formed on the second conductive pattern layer 36. The second conductive pillar layer 37 can be formed on the second conductive pattern layer 36 by a technique such as electroplating, sputtering, evaporation, or a lithography process.
步驟S18,如第8H圖所示,形成一第二介電層38覆蓋第一介電層35、第二導電圖案層36及第二導電柱層37,並經研磨後露出第二導電柱層37之一表面371。 Step S18, as shown in FIG. 8H, a second dielectric layer 38 is formed to cover the first dielectric layer 35, the second conductive pattern layer 36, and the second conductive pillar layer 37, and is polished to expose the second conductive pillar layer. One of the surfaces 371 of 37.
步驟S19,如第8H圖與第8I圖所示,移除載板30並作180度翻轉後,以形成一嵌埋式封裝結構3。其中,載板30係可以例如但不限於應用蝕刻製程、剝離製程或研磨製程移除之。 Step S19, as shown in FIG. 8H and FIG. 8I, the carrier 30 is removed and flipped 180 degrees to form an embedded package structure 3. The carrier 30 can be removed, for example, but not limited to, by an etching process, a lift process, or a polishing process.
綜上所述,依據本發明之一種嵌埋式封裝結構的製造方法係利用層疊的方式所製造,其無需使用基板,不需要使用雷射蝕刻等費時的工序來使電子元件嵌埋於基板中,即可製造出嵌埋式封裝結構。由於捨棄了雷射蝕刻的工序,因此電子元件的選用將不會受限於球底金屬層的厚度而更為彈性。另外,由於本發明之嵌埋式封裝結構由側面觀之係為非對稱式,亦即電子元件與第一導電圖案層之間的距離較短,而可縮短電子傳遞路徑,進而可增加其電性效能。 In summary, the manufacturing method of the embedded package structure according to the present invention is manufactured by lamination, which does not require the use of a substrate, and does not require a time-consuming process such as laser etching to embed the electronic component in the substrate. , the embedded package structure can be manufactured. Since the laser etching process is discarded, the selection of the electronic components will not be more limited by the thickness of the metal layer of the ball bottom. In addition, since the embedded package structure of the present invention is asymmetric from the side view, that is, the distance between the electronic component and the first conductive pattern layer is short, the electron transfer path can be shortened, thereby increasing the power thereof. Sexual effectiveness.
本發明符合發明專利之要件,爰依法提出專利申請。惟,以上所述者僅為本發明之較佳實施例,自不能以此限制本案之申請專利範圍。舉凡熟悉本案技藝之人士,爰依本案發明精神所作之等效修飾或變化,皆應包括於以下之申請專利範圍內。 The invention complies with the requirements of the invention patent, and proposes a patent application according to law. However, the above description is only a preferred embodiment of the present invention, and it is not possible to limit the scope of the patent application of the present invention. Any person who is familiar with the skill of the case, equivalent modifications or changes made in accordance with the spirit of the invention shall be included in the scope of the following patent application.
2‧‧‧嵌埋式封裝結構 2‧‧‧ embedded package structure
21‧‧‧第一導電圖案層 21‧‧‧First conductive pattern layer
211、221、261、271‧‧‧表面 211, 221, 261, 271‧‧‧ surface
22‧‧‧第一導電柱層 22‧‧‧First conductive column
23‧‧‧導電結合層 23‧‧‧Electrical bonding layer
24‧‧‧電子元件 24‧‧‧Electronic components
241‧‧‧電性連接墊 241‧‧‧Electrical connection pads
25‧‧‧第一介電層 25‧‧‧First dielectric layer
251‧‧‧第一表面 251‧‧‧ first surface
252‧‧‧第二表面 252‧‧‧ second surface
26‧‧‧第二導電圖案層 26‧‧‧Second conductive pattern layer
27‧‧‧第二導電柱層 27‧‧‧Second conductive column
28‧‧‧第二介電層 28‧‧‧Second dielectric layer
281‧‧‧第三表面 281‧‧‧ third surface
282‧‧‧第四表面 282‧‧‧ fourth surface
D01‧‧‧第一距離 D01‧‧‧First distance
D02‧‧‧第二距離 D02‧‧‧Second distance
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104125344A TWI582933B (en) | 2015-08-05 | 2015-08-05 | Fabrication process for making embedded package structure |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104125344A TWI582933B (en) | 2015-08-05 | 2015-08-05 | Fabrication process for making embedded package structure |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201707177A TW201707177A (en) | 2017-02-16 |
TWI582933B true TWI582933B (en) | 2017-05-11 |
Family
ID=58609276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104125344A TWI582933B (en) | 2015-08-05 | 2015-08-05 | Fabrication process for making embedded package structure |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI582933B (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201227884A (en) * | 2010-12-17 | 2012-07-01 | Advanced Semiconductor Eng | Embedded semiconductor package component and manufacturing methods thereof |
TW201407745A (en) * | 2012-08-01 | 2014-02-16 | Advanced Semiconductor Eng | Semiconductor package and manufacturing method thereof |
TW201501227A (en) * | 2013-06-28 | 2015-01-01 | Stats Chippac Ltd | Semiconductor device and method of stacking semiconductor die on a fan-out WLCSP |
-
2015
- 2015-08-05 TW TW104125344A patent/TWI582933B/en active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201227884A (en) * | 2010-12-17 | 2012-07-01 | Advanced Semiconductor Eng | Embedded semiconductor package component and manufacturing methods thereof |
TW201407745A (en) * | 2012-08-01 | 2014-02-16 | Advanced Semiconductor Eng | Semiconductor package and manufacturing method thereof |
TW201501227A (en) * | 2013-06-28 | 2015-01-01 | Stats Chippac Ltd | Semiconductor device and method of stacking semiconductor die on a fan-out WLCSP |
Also Published As
Publication number | Publication date |
---|---|
TW201707177A (en) | 2017-02-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8410614B2 (en) | Semiconductor device having a semiconductor element buried in an insulating layer and method of manufacturing the same | |
US6872589B2 (en) | High density chip level package for the packaging of integrated circuits and method to manufacture same | |
US8209856B2 (en) | Printed wiring board and method for manufacturing the same | |
KR100834657B1 (en) | Electronic device substrate and its fabrication method, and electronic device and its fabrication method | |
US10242972B2 (en) | Package structure and fabrication method thereof | |
KR101084924B1 (en) | Semiconductor device and manufacturing method thereof | |
US20030197285A1 (en) | High density substrate for the packaging of integrated circuits | |
JP2005506678A (en) | Microelectronic package with integrated heat sink and build-up layer | |
US20150245478A1 (en) | Wiring substrate and method of manufacturing wiring substrate | |
US9425066B2 (en) | Circuit substrate | |
US20090102050A1 (en) | Solder ball disposing surface structure of package substrate | |
CN111613586B (en) | Electronic device and method for manufacturing electronic device | |
KR20240017393A (en) | Semiconductor device and manufacturing method thereof | |
TWI419630B (en) | Embedded printed circuit board and method of manufacturing the same | |
TW201618257A (en) | Semiconductor package | |
TWI437932B (en) | Embedded interposer carrier structure and fabricating method thereof, and flip chip structure and fabricating method thereof | |
TWI621194B (en) | Testing board component | |
US9373576B2 (en) | Flip chip pad geometry for an IC package substrate | |
US7544599B2 (en) | Manufacturing method of solder ball disposing surface structure of package substrate | |
TWI582933B (en) | Fabrication process for making embedded package structure | |
TWI618213B (en) | Embedded package structure | |
TWI675387B (en) | Film capacitor structure and semiconductor device having the same | |
US9974166B2 (en) | Circuit board and manufacturing method thereof | |
US9596767B2 (en) | Electronic component, method of manufacturing electronic component, and electronic device | |
KR100963618B1 (en) | Semiconductor package and method of manufacturing the semiconductor package |