TWI578852B - A system for providing an output current to one or more light emitting diodes - Google Patents

A system for providing an output current to one or more light emitting diodes Download PDF

Info

Publication number
TWI578852B
TWI578852B TW104128177A TW104128177A TWI578852B TW I578852 B TWI578852 B TW I578852B TW 104128177 A TW104128177 A TW 104128177A TW 104128177 A TW104128177 A TW 104128177A TW I578852 B TWI578852 B TW I578852B
Authority
TW
Taiwan
Prior art keywords
terminal
signal
voltage
switch
control element
Prior art date
Application number
TW104128177A
Other languages
Chinese (zh)
Other versions
TW201703588A (en
Inventor
Jun Zhou
lie-yi Fang
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Publication of TW201703588A publication Critical patent/TW201703588A/en
Application granted granted Critical
Publication of TWI578852B publication Critical patent/TWI578852B/en

Links

Landscapes

  • Dc-Dc Converters (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Description

用於向一個或多個發光二極體提供輸出電流的系統 System for providing output current to one or more light emitting diodes

本發明涉及電路領域,更具體地涉及一種用於向一個或多個發光二極體提供輸出電流的系統。 The present invention relates to the field of circuits, and more particularly to a system for providing an output current to one or more light emitting diodes.

目前,發光二極體(Light-Emitting Diode,以下簡稱LED)照明技術已日趨成熟。LED由於具有發光效率高、使用壽命長等特點,在照明領域被廣泛使用以取代傳統的白熾燈。但是,當使用LED取代白熾燈時,由於LED燈驅動電路一般不具有過壓保護功能或者過壓保護精度不高,導致LED燈驅動電路容易被損壞或者無法被高效利用。為了實現高精度過壓保護,需要在LED燈驅動電路中增加複雜的週邊線路,不但會使成本提高另一方面會造成其印刷電路尺寸大,無法直接放入燈頭介面內。 At present, the lighting technology of Light-Emitting Diode (LED) has become increasingly mature. LEDs are widely used in the field of lighting to replace traditional incandescent lamps due to their high luminous efficiency and long service life. However, when an LED is used in place of an incandescent lamp, since the LED lamp driving circuit generally does not have an overvoltage protection function or the overvoltage protection accuracy is not high, the LED lamp driving circuit is easily damaged or cannot be efficiently utilized. In order to achieve high-precision overvoltage protection, it is necessary to add complicated peripheral lines in the LED lamp driving circuit, which not only increases the cost, but also causes the printed circuit to be large in size and cannot be directly placed in the lamp head interface.

鑒於以上所述的一個或多個問題,本發明提供了一種用於向一個或多個發光二極體提供輸出電流的系統。 In view of one or more of the problems described above, the present invention provides a system for providing an output current to one or more light emitting diodes.

根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統,包括:開關控制元件,被配置為根據與調製信號、退磁信號、以及參考信號相關聯的資訊生成控制信號,並利用所述控制信號來控制系統功率開關的截止與導通,其中系統功率開關被連接到發光二極體的第一二極體端子和電感器的第一電感器端子,發光二極體還包括第二二極體端子,電感器還包括第二電感器端子,並且一個或多個發光二極體與 輸出電容器並聯連接在第二二極體端子和第二電感器端子之間。 A system for providing an output current to one or more light emitting diodes in accordance with an embodiment of the invention includes a switch control element configured to generate a control signal based on information associated with a modulated signal, a demagnetized signal, and a reference signal And using the control signal to control the cut-off and conduction of the system power switch, wherein the system power switch is connected to the first diode terminal of the light-emitting diode and the first inductor terminal of the inductor, and the light-emitting diode is further Including a second diode terminal, the inductor further includes a second inductor terminal, and one or more light emitting diodes The output capacitor is connected in parallel between the second diode terminal and the second inductor terminal.

根據本發明實施例的控制上述用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法,包括:通過檢測該系統的輸入電壓,生成輸入電壓檢測信號;通過檢測該系統中的系統功率開關處於導通狀態的持續時間,生成第一時間量;通過檢測與該系統功率開關連接的電感器的退磁時間,生成第二時間量;基於輸入電壓檢測信號、第一時間量、和第二時間量,利用取決於該系統的電路結構的預定等式計算表徵該系統的輸出電壓的表徵電壓;以及根據表徵電壓控制該系統功率開關處於截止或者正常工作狀態,從而控制該系統的輸出電壓。所述正常工作狀態為系統功率開關的截止與導通由脈寬調變信號控制的狀態。 A method of controlling an output voltage of a system for providing an output current to one or more light emitting diodes according to an embodiment of the present invention, comprising: generating an input voltage detection signal by detecting an input voltage of the system; The duration of the system power switch in the on state, generating a first amount of time; generating a second amount of time by detecting a demagnetization time of the inductor connected to the system power switch; detecting the signal based on the input voltage, the first amount of time, And a second amount of time, calculating a characterization voltage characterizing the output voltage of the system using a predetermined equation dependent on a circuit configuration of the system; and controlling the system power switch to be in an off or normal operating state based on the characterization voltage, thereby controlling the system The output voltage. The normal working state is a state in which the cutoff and conduction of the system power switch are controlled by the pulse width modulation signal.

根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統通過根據與調製信號、退磁信號、以及參考信號相關聯的資訊生成控制信號並利用控制信號來控制系統功率開關的截止與導通,提供了精度較高的過壓保護功能。另外,根據本發明實施例的控制上述用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法也提供了精度較高的過壓保護功能。 A system for providing an output current to one or more light emitting diodes according to embodiments of the present invention controls a system power switch by generating a control signal based on information associated with the modulation signal, the demagnetization signal, and the reference signal and utilizing the control signal The cut-off and turn-on provides higher accuracy overvoltage protection. Additionally, the method of controlling the output voltage of the system for providing output current to one or more of the light emitting diodes in accordance with an embodiment of the present invention also provides a more accurate overvoltage protection function.

100、200、500‧‧‧提供輸出電流的系統 100, 200, 500‧‧‧ systems for output current

102、202、502‧‧‧交流整流元件 102, 202, 502‧‧‧ AC rectifying elements

104‧‧‧控制器元件 104‧‧‧Controller components

106、208、508‧‧‧電流輸出元件 106, 208, 508‧‧‧ current output components

VAC‧‧‧交流輸入電壓 V AC ‧‧‧AC input voltage

VBULK‧‧‧直流電壓 V BULK ‧‧‧ DC voltage

1062‧‧‧系統功率開關 1062‧‧‧System Power Switch

1064、L1‧‧‧電感器 1064, L1‧‧‧Inductors

1066、RS‧‧‧感測電阻器 1066, RS‧‧ ‧ sense resistor

1068、D1‧‧‧二極體 1068, D1‧‧‧ diode

VOUT‧‧‧輸出電壓 V OUT ‧‧‧ output voltage

COUT‧‧‧輸出電容 C OUT ‧‧‧ output capacitor

204、504‧‧‧電阻分壓元件 204, 504‧‧‧resistive voltage dividing components

206、506‧‧‧開關控制元件 206, 506‧‧‧Switch control components

202-1‧‧‧第一整流元件端子 202-1‧‧‧First rectifying element terminal

202-2‧‧‧第二整流元件端子 202-2‧‧‧Second rectifier component terminal

202-3、502-3‧‧‧第三整流元件端子 202-3, 502-3‧‧‧3rd rectifying element terminal

202-4‧‧‧第四整流元件端子 202-4‧‧‧4th rectifying element terminal

IL‧‧‧流過電感器L1的電流波形 I L ‧‧‧current waveform flowing through inductor L1

204-1、504-1‧‧‧第一分壓元件端子 204-1, 504-1‧‧‧First voltage divider terminal

204-2‧‧‧第二分壓元件端子 204-2‧‧‧Second voltage divider terminal

204-3‧‧‧第三分壓元件端子 204-3‧‧‧ Third voltage divider terminal

VIN‧‧‧第一控制元件端子 VIN‧‧‧First control element terminal

GATE‧‧‧第二控制元件端子 GATE‧‧‧second control element terminal

CS‧‧‧第三控制元件端子 CS‧‧‧third control element terminal

GND‧‧‧第四控制元件端子 GND‧‧‧4th control element terminal

208-1‧‧‧第一輸出元件端子 208-1‧‧‧First output component terminal

208-2‧‧‧第二輸出元件端子 208-2‧‧‧second output component terminal

208-3‧‧‧第三輸出元件端子 208-3‧‧‧third output component terminal

208-4‧‧‧第四輸出元件端子 208-4‧‧‧fourth output component terminal

208-5‧‧‧第五輸出元件端子 208-5‧‧‧5th output component terminal

R1、R2‧‧‧電阻器 R1, R2‧‧‧ resistors

K0、K1、K2‧‧‧開關 K0, K1, K2‧‧‧ switch

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VVIN‧‧‧電壓信號 V VIN ‧‧‧ voltage signal

L1‧‧‧電感器 L1‧‧‧Inductors

RS‧‧‧感測電阻器 RS‧‧‧Sense Resistors

VDD‧‧‧芯片供電腳 VDD‧‧‧ chip power supply

VD‧‧‧為系統功率開關MOSFET的汲極處的電壓波形 VD‧‧‧ is the voltage waveform at the drain of the system power switching MOSFET

Demag‧‧‧退磁檢測模組的輸出波形 Output waveform of Demag‧‧‧ Demagnetization Detection Module

TON‧‧‧系統功率開關MOSFET的導通時間 T ON ‧‧‧System Power Switch MOSFET On Time

TOFF‧‧‧系統功率開關MOSFET的截止時間 T OFF ‧‧‧System power switching MOSFET cut-off time

TDemag‧‧‧電感器L1的退磁時間 T Demag ‧‧‧Demagnetization time of inductor L1

IPK‧‧‧流過電感器L1的最大電流值 I PK ‧‧‧Maximum current value flowing through inductor L1

PWM_G‧‧‧PWM信號生成模組後的邏輯控制模組的輸出波形 Output waveform of logic control module after PWM_G‧‧‧PWM signal generation module

SP‧‧‧採樣脈衝信號 SP‧‧‧Sampling pulse signal

VD‧‧‧漏極處的電壓 V D ‧‧‧voltage at the drain

C0‧‧‧電容器 C0‧‧‧ capacitor

VO_SENSE‧‧‧輸出信號 V O_SENSE ‧‧‧Output signal

從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖是傳統的用於向一個或多個發光二極體提供輸出電流的系統(BUCK電路)的電路圖;第2圖是根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖;第3圖是第2圖所示的系統電路中的工作波形圖;第4圖是第2圖所示的系統電路中的過壓保護(Over Voltage Protection,OVP)模組的電路圖; 第5圖是根據本發明另一實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖;第6圖是第5圖所示的系統電路中的工作波形圖;第7圖是第5圖所示的系統電路中的過壓保護(OVP)模組的電路圖。 The invention can be better understood from the following description of specific embodiments of the invention, in which: FIG. 1 is a conventional system for providing an output current to one or more light-emitting diodes (BUCK circuit) FIG. 2 is a circuit diagram of a system for providing an output current to one or more light emitting diodes according to an embodiment of the present invention; and FIG. 3 is an operational waveform diagram of the system circuit shown in FIG. 2; Figure 4 is a circuit diagram of an Over Voltage Protection (OVP) module in the system circuit shown in Figure 2; Figure 5 is a circuit diagram of a system for providing an output current to one or more light-emitting diodes according to another embodiment of the present invention; Figure 6 is a diagram showing the operation waveforms of the system circuit shown in Figure 5; Figure 7 is a circuit diagram of an overvoltage protection (OVP) module in the system circuit shown in Figure 5.

下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明絕不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention are described in detail below. In the following detailed description, numerous specific details are set forth However, it will be apparent to those skilled in the art that the present invention may be practiced without some of the details. The following description of the embodiments is merely provided to provide a better understanding of the invention. The present invention is in no way limited to any specific configurations and algorithms presented below, but without departing from the spirit and scope of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessary obscuring the invention.

LED燈被廣泛用於照明應用。為了使LED燈的亮度恒定,通常向LED燈提供基本恒定的電流。第1圖是傳統的用於向一個或多個發光二極體提供輸出電流的系統(BUCK電路)的電路圖。 LED lights are widely used in lighting applications. In order to keep the brightness of the LED lamp constant, a substantially constant current is typically supplied to the LED lamp. Figure 1 is a circuit diagram of a conventional system (BUCK circuit) for providing an output current to one or more light emitting diodes.

如第1圖所示,用於向一個或多個發光二極體提供輸出電流的系統100包括交流整流元件102、控制器元件104、以及電流輸出元件106。具體地,交流整流元件102接收交流輸入電壓VAC,並將交流輸入電壓VAC變換為直流電壓VBULK,以向一個或多個LED燈提供電流。控制器元件104通過第二控制元件端子GATE向電流輸出元件106中的系統功率開關1062輸出控制信號,以控制系統功率開關1062的導通與截止,從而調節流過一個或多個LED燈的電流(或稱輸出電流)。當系統功率開關1062導通時,流過電流輸出元件106中的電感器1064的電流被電流輸出元件106中的感測電阻器1066感測到,從而使得電流感測信號被控制器元件104通過第三控制元件端子CS接收到。作為回應, 控制器元件104根據電流感測信號生成控制信號,以控制系統功率開關1062的導通與截止。當系統功率開關1062截止時,在電流輸出元件106中的電感器1064、二極體1068、以及連接在電流輸出元件106的兩個輸出端之間的一個或多個發光二極體之間形成了電流回路。 As shown in FIG. 1, a system 100 for providing an output current to one or more light emitting diodes includes an AC rectifying element 102, a controller element 104, and a current output element 106. Specifically, the AC rectifying element 102 receives the AC input voltage V AC and converts the AC input voltage V AC to a DC voltage V BULK to provide current to one or more LED lamps. The controller component 104 outputs a control signal to the system power switch 1062 in the current output component 106 via the second control component terminal GATE to control the conduction and deactivation of the system power switch 1062 to regulate the current flowing through the one or more LED lamps ( Or output current). When system power switch 1062 is turned on, the current flowing through inductor 1064 in current output element 106 is sensed by sense resistor 1066 in current output element 106 such that the current sense signal is passed by controller element 104. The three control element terminals CS are received. In response, controller component 104 generates a control signal based on the current sense signal to control the turn-on and turn-off of system power switch 1062. When the system power switch 1062 is turned off, an inductor 1064, a diode 1068, and one or more light emitting diodes connected between the two output terminals of the current output element 106 are formed between the current output element 106. The current loop.

在第1圖所示的系統中,當電流輸出元件106的兩個輸出端之間沒有連接LED燈時(即,兩個輸出端開路時),電流輸出元件106的兩個輸出端之間的輸出電壓VOUT會過高,從而導致電流輸出元件106中的輸出電容COUT容易被損壞。所以,需要在第1圖所示的系統中提供用於電流輸出元件106的兩個輸出端開路時的過壓保護。但是,在第1圖所示的系統中,控制器元件104無法直接測量到電流輸出元件106的兩個輸出端之間的輸出電壓VOUT,因而無法準確地控制電流輸出元件106的兩個輸出端開路時的輸出電壓。 In the system shown in Figure 1, when there is no LED light connected between the two outputs of the current output element 106 (i.e., when the two outputs are open), between the two outputs of the current output element 106 The output voltage V OUT will be too high, causing the output capacitor C OUT in the current output element 106 to be easily damaged. Therefore, it is necessary to provide overvoltage protection for the open circuit of the two output terminals of the current output element 106 in the system shown in FIG. However, in the system shown in FIG. 1, the controller component 104 cannot directly measure the output voltage V OUT between the two output terminals of the current output component 106, and thus cannot accurately control the two outputs of the current output component 106. The output voltage when the terminal is open.

為了解決第1圖所示的系統中存在的一個或多個問題,提出了下面參考圖第2圖-第7圖詳細描述的根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統。 In order to solve one or more problems existing in the system shown in FIG. 1, a method for one or more light emitting diodes according to an embodiment of the present invention, which is described in detail below with reference to FIGS. 2 to 7 is proposed. A system that provides output current.

第2圖是根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖。如第2圖所示,用於向一個或多個發光二極體提供輸出電流的系統200包括交流整流元件202、電阻分壓元件204、開關控制元件206、以及電流輸出元件208。交流整流元件202包括第一、第二、第三、以及第四整流元件端子202-1、202-2、202-3、202-4。電阻分壓元件204包括第一、第二、以及第三分壓元件端子204-1、204-2、204-3。開關控制元件206包括第一、第二、第三、以及第四控制元件端子VIN、GATE、CS、GND。電流輸出元件208包括第一、第二、第三、第四、以及第五輸出元件端子208-1、208-2、208-3、208-4、208-5。 2 is a circuit diagram of a system for providing an output current to one or more light emitting diodes in accordance with an embodiment of the present invention. As shown in FIG. 2, system 200 for providing an output current to one or more light emitting diodes includes an AC rectifying element 202, a resistive dividing element 204, a switching control element 206, and a current output element 208. The AC rectifying element 202 includes first, second, third, and fourth rectifying element terminals 202-1, 202-2, 202-3, and 202-4. The resistor divider element 204 includes first, second, and third voltage divider component terminals 204-1, 204-2, 204-3. The switch control element 206 includes first, second, third, and fourth control element terminals VIN, GATE, CS, GND. Current output component 208 includes first, second, third, fourth, and fifth output component terminals 208-1, 208-2, 208-3, 208-4, 208-5.

如第2圖所示,交流整流元件202的第一和第二整流元件端子202-1、202-2分別與交流電源的兩端連接,第三和第四整流元件 端子202-3、202-4分別與電阻分壓元件204的第一和第二分壓元件端子204-1、204-2連接。電阻分壓元件204的第三分壓元件端子204-3與開關控制元件206的第一控制元件端子VIN連接。開關控制元件206的第二控制元件端子GATE與電流輸出元件208的第二輸出元件端子208-2連接,第三控制元件端子CS與電流輸出元件208的第三輸出元件端子208-3連接,第四控制元件端子GND接地。電流輸出元件208的第一輸出元件端子208-1與電阻分壓元件204的第一分壓元件端子204-1連接,第四輸出元件端子208-4接地。電流輸出元件208中的輸出電容COUT與一個或多個發光二極體(LED)並聯連接在電流輸出元件208的第一輸出元件端子208-1和第五輸出元件端子208-5之間(第一輸出元件端子208-1和第五輸出元件端子208-5是電流輸出元件208的兩個輸出端)。 As shown in Fig. 2, the first and second rectifying element terminals 202-1, 202-2 of the AC rectifying element 202 are respectively connected to both ends of an alternating current power source, and the third and fourth rectifying element terminals 202-3, 202- 4 is connected to the first and second voltage dividing element terminals 204-1, 204-2 of the resistor dividing element 204, respectively. The third voltage dividing element terminal 204-3 of the resistance dividing element 204 is connected to the first control element terminal VIN of the switching control element 206. The second control element terminal GATE of the switch control element 206 is connected to the second output element terminal 208-2 of the current output element 208, and the third control element terminal CS is connected to the third output element terminal 208-3 of the current output element 208, The four control element terminals GND are grounded. The first output element terminal 208-1 of the current output element 208 is connected to the first voltage dividing element terminal 204-1 of the resistance dividing element 204, and the fourth output element terminal 208-4 is grounded. An output capacitor C OUT in current output element 208 is coupled in parallel with one or more light emitting diodes (LEDs) between first output element terminal 208-1 and fifth output element terminal 208-5 of current output element 208 ( The first output element terminal 208-1 and the fifth output element terminal 208-5 are the two output terminals of the current output element 208).

在第2圖所示的系統中,交流整流元件202接收交流輸入電壓VAC,並將交流輸入電壓VAC整流為直流電壓VBULK,以向一個或多個LED提供直流電流。電阻分壓元件204通過電阻器R1和R2對直流電壓VBULK進行分壓,以生成進入開關控制元件206的電壓信號。由電阻分壓元件204對直流電壓VBULK進行分壓得到的電壓信號經由電阻分壓元件204的第三分壓元件端子204-3和開關控制元件206的第一控制元件端子VIN進入電壓控制元件206。電壓控制元件206通過第二控制元件端子GATE向電流輸出元件208中的系統功率開關MOSFET輸出驅動信號,以控制系統功率開關金屬氧化物半導體場效應晶體(Metal-Oxide-Semiconductor Field-Effect Transistor,以下簡稱MOSFET)的導通與截止。當系統功率開關MOSFET導通時,流過電流輸出元件208中的電感器L1的電流被電流輸出元件208中的感測電阻器RS感測到,從而使得感測電流被開關控制元件206通過第三控制元件端子CS接收到。作為回應,開關控制元件206根據與感測電流相關的資訊生成控制信號,以控制系統功率開關MOSFET的導通與截止。當系統功率開關MOSFET截止時,在電流輸出元件208中的電感器L1、二極體D1、以及連接在電流輸出元件 208的兩個輸出端之間的一個或多個發光二極體之間形成了電流回路。 In the system shown in FIG. 2, the AC rectifying element 202 receives the AC input voltage V AC and rectifies the AC input voltage V AC to a DC voltage V BULK to provide a DC current to one or more LEDs. The resistor divider element 204 divides the DC voltage V BULK through resistors R1 and R2 to generate a voltage signal that enters the switch control element 206. The voltage signal obtained by dividing the DC voltage V BULK by the resistor voltage dividing element 204 enters the voltage control element via the third voltage dividing element terminal 204-3 of the resistor dividing element 204 and the first control element terminal VIN of the switching control element 206 206. The voltage control element 206 outputs a drive signal to the system power switch MOSFET in the current output element 208 through the second control element terminal GATE to control the system power switch metal oxide semiconductor field effect crystal (Metal-Oxide-Semiconductor Field-Effect Transistor, below Referred to as MOSFET) on and off. When the system power switch MOSFET is turned on, the current flowing through the inductor L1 in the current output element 208 is sensed by the sense resistor RS in the current output element 208 such that the sense current is passed by the switch control element 206 through the third The control element terminal CS is received. In response, switch control component 206 generates a control signal based on information related to the sense current to control the turn-on and turn-off of the system power switch MOSFET. When the system power switch MOSFET is turned off, an inductor L1, a diode D1 in the current output element 208, and one or more light emitting diodes connected between the two output terminals of the current output element 208 are formed. The current loop.

具體地,如第2圖所示,系統功率開關MOSFET的閘極作為電流輸出元件208的第二輸出元件端子208-2;系統功率開關MOSFET的汲極與二極體D1的第一二極體端子和電感器L1的第一電感器端子連接;二極體D1的第二二極體端子作為電流輸出元件208的第一輸出元件端子208-1;系統功率開關MOSFET的源極作為電流輸出元件208的第三輸出元件端子208-3,並且經由感測電阻器RS接地;電感器L1的第二電感器端子作為電流輸出元件208的第五輸出元件端子208-5;一個或多個發光二極體與輸出電容器COUT並聯連接在電流輸出元件208的第一輸出元件端子208-1和第五輸出元件端子208-5之間。 Specifically, as shown in FIG. 2, the gate of the system power switching MOSFET serves as the second output element terminal 208-2 of the current output element 208; the drain of the system power switching MOSFET and the first diode of the diode D1 The terminal is connected to the first inductor terminal of the inductor L1; the second diode terminal of the diode D1 serves as the first output component terminal 208-1 of the current output component 208; and the source of the system power switching MOSFET serves as the current output component a third output element terminal 208-3 of 208, and grounded via a sense resistor RS; a second inductor terminal of inductor L1 as a fifth output element terminal 208-5 of current output element 208; one or more illuminations The pole body is connected in parallel with the output capacitor C OUT between the first output element terminal 208-1 and the fifth output element terminal 208-5 of the current output element 208.

在本實施例中,如第2圖所示,開關控制元件206可以包括過壓保護模組、脈寬調變(Pulse Width Modulation,以下簡稱PWM)信號生成模組、邏輯控制模組、閘極驅動模組、退磁檢測模組、以及電流感測模組。其中,過壓保護模組基於來自電阻分壓元件204的電壓信號、來自退磁檢測模組的退磁信號、以及來自邏輯控制模組的控制信號生成過壓保護信號,退磁檢測模組基於與電流輸出元件208中的電感器L1的退磁情況相關的電流或電壓信號生成退磁信號,電流感測模組基於通過電流輸出元件208中的感測電阻器RS得到的感測電流生成感測信號,PWM信號生成模組基於退磁信號和感測信號生成脈寬調變信號,邏輯控制模組基於脈寬調變信號和過壓保護信號進行邏輯運算生成控制信號,閘極驅動模組基於控制信號生成驅動信號用以控制電流輸出元件208中的系統功率開關MOSFET的導通與截止。電流輸出元件208中的系統功率開關MOSFET在處於正常工作狀態時,其截止與導通由脈寬調變信號(PWM)控制,以控制並調節流過一個或多個發光二極體的電流。 In this embodiment, as shown in FIG. 2, the switch control component 206 may include an overvoltage protection module, a Pulse Width Modulation (PWM) signal generation module, a logic control module, and a gate. Drive module, demagnetization detection module, and current sensing module. The overvoltage protection module generates an overvoltage protection signal based on a voltage signal from the resistor divider component 204, a demagnetization signal from the demagnetization detection module, and a control signal from the logic control module, and the demagnetization detection module is based on the current output. A current or voltage signal related to the demagnetization condition of the inductor L1 in the component 208 generates a demagnetization signal, and the current sensing module generates a sensing signal based on the sensing current obtained by the sensing resistor RS in the current output component 208, the PWM signal The generating module generates a pulse width modulation signal based on the demagnetization signal and the sensing signal, and the logic control module performs a logic operation to generate a control signal based on the pulse width modulation signal and the overvoltage protection signal, and the gate driving module generates a driving signal based on the control signal. Used to control the turn-on and turn-off of the system power switching MOSFET in the current output component 208. When the system power switching MOSFET in current output component 208 is in a normal operating state, its turn-off and turn-on are controlled by a pulse width modulation signal (PWM) to control and regulate the current flowing through one or more of the light emitting diodes.

第3圖是第2圖所示的系統電路中的工作波形圖。在第3圖中,PWM_G波形為PWM信號生成模組後的邏輯控制模組的輸出波形,閘極(GATE)波形為閘極驅動模組的輸出波形,IL波形為流過電感器 L1的電流波形,VD波形為系統功率開關MOSFET的汲極處的電壓波形,Demag波形為退磁檢測模組的輸出波形。TON為系統功率開關MOSFET處於導通狀態的持續時間(即,系統功率開關MOSFET的導通時間),TOFF為系統功率開關MOSFET處於截止狀態的持續時間(即,系統功率開關MOSFET的截止時間),TDemag為電感器L1的退磁時間,且TDemag小於TOFFFig. 3 is a diagram showing the operation waveforms in the system circuit shown in Fig. 2. In Fig. 3, the PWM_G waveform is the output waveform of the logic control module after the PWM signal generation module, the gate (GATE) waveform is the output waveform of the gate drive module, and the I L waveform is flowing through the inductor L1. The current waveform, the VD waveform is the voltage waveform at the drain of the system power switching MOSFET, and the Demag waveform is the output waveform of the demagnetization detection module. T ON is the duration in which the system power switching MOSFET is in an on state (ie, the on-time of the system power switching MOSFET), and T OFF is the duration in which the system power switching MOSFET is in an off state (ie, the off time of the system power switching MOSFET), T Demag is the demagnetization time of inductor L1, and T Demag is less than T OFF .

在第2圖所示的系統中,當開關控制元件206的第二控制元件端子GATE的輸出電壓為高電平(即,第3圖中的GATE波形為邏輯高)時,電流輸出元件208中的系統功率開關MOSFET導通,流過電流輸出元件208中的電感器L1的電流線性上升(流過電感器L1的電流值可根據公式(1)得出)。在電流輸出元件208中,流過電感器L1的電流通過系統功率開關MOSFET流經感測電阻器RS到地,在感測電阻器RS上產生的電壓值(即,在開關控制元件206的第三控制元件端子CS處感測到的電壓值為VCS)可根據公式(2)得出。當VCS達到設定值或TON達到設定值時,開關控制元件206的第二控制元件端子GATE的輸出電壓變為低電平(即,第3圖中的GATE波形變為邏輯低),電流輸出元件208中的系統功率開關MOSFET截止。此時,電流輸出元件208中的電感器L1通過二極體D1、一個或多個發光二極體、以及輸出電容器COUT進行退磁,經過TDemag時間後退磁結束,流過電感器L1的電流變為零。開關控制元件206可以通過檢測流過電流輸出元件208中的電感器L1的電流來確定電感器L1的退磁起始點與結束點,從而得到退磁時間TDemag(可以根據公式(3)得出退磁時間,其中IPK是流過電感器L1的最大電流值)。另外,由於第2圖所示的電路系統本質上是對BUCK電路的改進,所以輸出電壓VOUT與由交流整流元件202輸出的直流電壓VBULK之間的關係如公式(4)所示。 In the system shown in FIG. 2, when the output voltage of the second control element terminal GATE of the switch control element 206 is at a high level (ie, the GATE waveform in FIG. 3 is logic high), the current output element 208 is The system power switch MOSFET is turned on, and the current flowing through the inductor L1 in the current output element 208 rises linearly (the current value flowing through the inductor L1 can be obtained according to the formula (1)). In the current output element 208, the current flowing through the inductor L1 flows through the sense resistor RS to ground through the system power switching MOSFET, and the voltage value generated on the sense resistor RS (ie, at the switch control element 206) The voltage value sensed at the three control element terminals CS is V CS ) and can be derived from equation (2). When V CS reaches the set value or T ON reaches the set value, the output voltage of the second control element terminal GATE of the switch control element 206 becomes a low level (ie, the GATE waveform in FIG. 3 becomes a logic low), the current The system power switch MOSFET in output element 208 is turned off. At this time, the inductor L1 in the current output element 208 is demagnetized by the diode D1, the one or more light emitting diodes, and the output capacitor C OUT , and the current flowing through the inductor L1 after the demagnetization is completed after the T Demag time. Becomes zero. The switch control element 206 can determine the demagnetization start point and the end point of the inductor L1 by detecting the current flowing through the inductor L1 in the current output element 208, thereby obtaining the demagnetization time T Demag (demagnetization can be obtained according to the formula (3) Time, where I PK is the maximum current value flowing through inductor L1). Further, since the circuit system shown in Fig. 2 is essentially an improvement of the BUCK circuit, the relationship between the output voltage V OUT and the DC voltage V BULK outputted from the AC rectifying element 202 is as shown in the formula (4).

也就是說,基於由交流整流元件202輸出的電壓VBULK、系統功率開關MOSFET的導通時間TON、和電感器L1的退磁時間TDemag的資訊,可以由公式(4)來計算出輸出電壓VOUTThat is, based on the information of the voltage V BULK output by the AC rectifying element 202, the on-time T ON of the system power switching MOSFET, and the demagnetization time T Demag of the inductor L1, the output voltage V can be calculated by the equation (4). OUT .

第4圖是第2圖所示的系統電路中的過壓保護(OVP)模組的電路圖。如第4圖所示,過壓保護模組包括開關K1、K2、低通濾波器、以及比較器。其中,開關K1連接在電阻分壓元件204的第三分壓元件端子204-3與低通濾波器的第一濾波器端子之間,開關K2連接在低通濾波器的第一濾波器端子與地之間,低通濾波器還包括第二濾波器端子,該第二濾波器端子與比較器的第一比較器端子連接,比較器還包括第二比較器端子,該第二比較器端子向邏輯控制模組提供過壓保護信號。 Figure 4 is a circuit diagram of an overvoltage protection (OVP) module in the system circuit shown in Figure 2. As shown in FIG. 4, the overvoltage protection module includes switches K1, K2, a low pass filter, and a comparator. Wherein, the switch K1 is connected between the third voltage dividing element terminal 204-3 of the resistance voltage dividing element 204 and the first filter terminal of the low pass filter, and the switch K2 is connected to the first filter terminal of the low pass filter and Between ground, the low pass filter further includes a second filter terminal, the second filter terminal being coupled to the first comparator terminal of the comparator, the comparator further comprising a second comparator terminal, the second comparator terminal The logic control module provides an overvoltage protection signal.

在第4圖所示的過壓保護模組中,在PWM_G為高電平、電流輸出元件208中的系統功率開關MOSFET導通期間,開關K1導通,由交流整流元件202輸出的直流電壓VBULK經過電阻分壓元件204中的電阻器R1、R2的分壓生成的電壓信號被輸入到低通濾波器。在電流輸出元件208中的系統功率開關MOSFET截止至電感器L1退磁結束的時間段內(即,TDemag內),開關K1截止,開關K2導通,地信號被輸入至低通濾波器。在其它時間段內,開關K1和K2均不導通。低通濾波器對來自電阻分壓元件204中的電壓信號進行平滑濾波,並輸出近似直流的電壓信號。這裡,開關K1和K2可以是例如:互補金屬氧化物半導體(Complementary Metal-Oxide-Semiconductor,CMOS)開關。 In the overvoltage protection module shown in FIG. 4, when PWM_G is at a high level and the system power switch MOSFET in the current output element 208 is turned on, the switch K1 is turned on, and the DC voltage V BULK outputted by the AC rectifying element 202 passes. A voltage signal generated by voltage division of the resistors R1, R2 in the resistor divider element 204 is input to a low pass filter. During the period in which the system power switching MOSFET in the current output element 208 is turned off to the end of the demagnetization of the inductor L1 (i.e., within T Demag ), the switch K1 is turned off, the switch K2 is turned on, and the ground signal is input to the low pass filter. During the other time periods, switches K1 and K2 are not conducting. The low pass filter smooth filters the voltage signal from the resistor divider element 204 and outputs a substantially DC voltage signal. Here, the switches K1 and K2 may be, for example, a Complementary Metal-Oxide-Semiconductor (CMOS) switch.

第2圖所示的系統通過電阻分壓元件204中的電阻器R1、R2檢測VBULK再結合TON、TDemag等計算,即可得到實際的輸出電壓值VOUT。具體地,經由開關控制元件206的第一控制元件端子VIN進入其中的過壓保護模組的電壓信號VVIN由公式(5)示出,第4圖所示的低通濾波器的輸出信號VO_SENSE由公式(6)得出。結合公式(4)-(6),可得到公式(7)示出的VO_SENSE與VOUT之間的關係。 The system shown in Fig. 2 detects the V BULK by the resistors R1 and R2 in the resistor divider element 204 and combines the calculations of T ON and T Demag to obtain the actual output voltage value V OUT . Specifically, the voltage signal V VIN of the overvoltage protection module entering the first control element terminal VIN via the switch control element 206 is shown by the formula (5), and the output signal V of the low pass filter shown in FIG. O_SENSE is derived from equation (6). Combining equations (4)-(6), the relationship between V O_SENSE and V OUT shown in equation (7) can be obtained.

當VO_SENSE高於預定的參考電壓VREF(即,V OUT >×V REF )時,第2圖所示的系統即可以識別出輸出電壓VOUT發生了過壓情況,因此開關控制元件206控制第二控制元件端子GATE的輸出,使系統功率開關MOSFET截止(關閉),立即切斷向電流輸出元件208的輸出端的能量傳輸,從而實現了高精度的過壓保護。 When V O_SENSE is higher than a predetermined reference voltage V REF (ie, V OUT > × V REF ), the system shown in Fig. 2 can recognize that the output voltage V OUT has an overvoltage condition, so the switch control element 206 controls the output of the second control element terminal GATE to turn off the system power switch MOSFET (off) The energy transfer to the output of the current output element 208 is immediately cut off, thereby achieving high precision overvoltage protection.

第5圖是根據本發明另一實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖。如第5圖所示,用於向一個或多個發光二極體提供輸出電流的系統500與第2圖所示的系統電路基本相同,除了以下兩點以外:(1)電阻分壓元件504的第一分壓元件端子504-1連接到電流輸出元件508中的系統功率開關MOSFET的汲極,而非交流整流元件502的第三整流元件端子502-3;(2)開關控制元件506除了包括過壓保護模組、脈寬調變(PWM)信號生成模組、邏輯控制模組、閘極驅動模組、退磁檢測模組、以及電流感測模組以外,還包括採樣脈衝模組。 Figure 5 is a circuit diagram of a system for providing an output current to one or more light emitting diodes in accordance with another embodiment of the present invention. As shown in FIG. 5, the system 500 for supplying an output current to one or more light-emitting diodes is substantially the same as the system circuit shown in FIG. 2 except for the following two points: (1) Resistive voltage dividing element 504 The first voltage dividing element terminal 504-1 is connected to the drain of the system power switching MOSFET in the current output element 508 instead of the third rectifying element terminal 502-3 of the alternating current rectifying element 502; (2) the switching control element 506 is Including an overvoltage protection module, a pulse width modulation (PWM) signal generation module, a logic control module, a gate drive module, a demagnetization detection module, and a current sensing module, and a sampling pulse module.

在本實施例中,如第5圖所示,過壓保護模組基於來自電阻分壓元件504的電壓信號、來自退磁檢測模組的退磁信號、來自採樣脈衝模組的採樣脈衝信號SP、以及來自邏輯控制模組的控制信號生成過壓保護信號,退磁檢測模組基於與電流輸出元件508中的電感器L1的退磁情況相關的電流或電壓信號生成退磁信號,採樣脈衝模組基於退磁信號生成高電平的持續時間小於退磁信號的高電平的持續時間的採樣脈衝信號SP,電流感測模組基於通過電流輸出元件508中的感測電阻器RS得到的感測電流生成感測信號,PWM信號生成模組基於退磁信號和感測信號生成脈寬調變信號,邏輯控制模組基於脈寬調變信號和過壓保護信號進行邏輯運算生成控制信號,閘極驅動模組基於控制信號生成驅動信號用以控制電流輸出元件508中的系統功率開關MOSFET的導通與截止。電流輸出元件508中的系統功率開關MOSFET在處於正常工作狀態時,其截止與導通由脈寬調變信號(PWM)控制,以控制並調節流過一個或多個發光二極體的電流。 In this embodiment, as shown in FIG. 5, the overvoltage protection module is based on a voltage signal from the resistor divider element 504, a demagnetization signal from the demagnetization detection module, a sample pulse signal SP from the sampling pulse module, and The control signal from the logic control module generates an overvoltage protection signal, and the demagnetization detection module generates a demagnetization signal based on a current or voltage signal related to the demagnetization condition of the inductor L1 in the current output component 508, and the sampling pulse module generates a demagnetization signal based on the demagnetization signal. a sampling pulse signal SP having a duration of a high level that is less than a duration of a high level of the demagnetization signal, the current sensing module generating a sensing signal based on the sensing current obtained by the sensing resistor RS in the current output element 508, The PWM signal generating module generates a pulse width modulation signal based on the demagnetization signal and the sensing signal, and the logic control module performs a logic operation to generate a control signal based on the pulse width modulation signal and the overvoltage protection signal, and the gate driving module generates the control signal based on the control signal. The drive signal is used to control the turn-on and turn-off of the system power switch MOSFET in current output component 508. When the system power switching MOSFET in current output component 508 is in a normal operating state, its turn-off and turn-on are controlled by a pulse width modulation signal (PWM) to control and regulate the current flowing through one or more of the light emitting diodes.

在第5圖所示的系統電路中,當電流輸出元件508中的系統功率開關MOSFET導通時,該系統功率開關MOSFET的汲極處的電壓VD接近於零;當電流輸出元件508中的系統功率開關MOSFET截止時,該系統功率開關MOSFET的汲極處的電壓VD接近於由交流整流元件502對交流輸入電壓VAC進行整流得到的直流電壓VBULK(VD=VBULK+VD1,VD1是電流輸出元件508中的二極體D1的正向導通電壓,例如,約為1V)。 In the system circuit shown in FIG. 5, when the system power switch MOSFET in the current output element 508 is turned on, the voltage V D at the drain of the system power switch MOSFET is close to zero; when the system in the current output element 508 When the power switch MOSFET is turned off, the voltage V D at the drain of the system power switching MOSFET is close to the DC voltage V BULK (V D = V BULK + V D1 , which is obtained by rectifying the AC input voltage V AC by the AC rectifying element 502, V D1 is the forward voltage of the diode D1 in the current output element 508, for example, about 1V).

第6圖是第5圖所示的系統電路中的工作波形圖。在第6圖中,PWM_G波形為PWM信號生成模組後的邏輯控制模組的輸出波形,GATE波形為閘極驅動模組(即,開關控制元件506的第二控制元件端子GATE)的輸出波形,IL波形為流過電感器L1的電流波形,VD波形為系統功率開關MOSFET的汲極處的電壓波形,Demag波形為退磁檢測模組的輸出波形,SP波形為採樣脈衝模組的輸出波形。TON為系統功率開 關MOSFET處於導通狀態的持續時間,TOFF為系統功率開關MOSFET處於截止狀態的持續時間,TDemag為電感器L1的退磁時間,且TDemag小於TOFF。採樣脈衝模組輸出的採樣脈衝信號SP處於高電平的持續時間Tsp小於電感器L1的退磁時間TDemag,以確保採樣在退磁時間段內結束。 Fig. 6 is a diagram showing the operation waveforms in the system circuit shown in Fig. 5. In Fig. 6, the PWM_G waveform is the output waveform of the logic control module after the PWM signal generation module, and the GATE waveform is the output waveform of the gate drive module (ie, the second control element terminal GATE of the switch control element 506). The I L waveform is the current waveform flowing through the inductor L1, the VD waveform is the voltage waveform at the drain of the system power switching MOSFET, the Demag waveform is the output waveform of the demagnetization detecting module, and the SP waveform is the output waveform of the sampling pulse module. . T ON is the duration of the system power switching MOSFET in the on state, T OFF is the duration of the system power switching MOSFET in the off state, T Demag is the demagnetization time of the inductor L1, and T Demag is less than T OFF . The sampling pulse signal SP outputted by the sampling pulse module is at a high level for a duration Tsp smaller than the demagnetization time T Demag of the inductor L1 to ensure that the sampling ends within the demagnetization period.

第7圖是第5圖所示的系統電路中的過壓保護(OVP)模組的電路圖。如第7圖所示,過壓保護模組包括開關K0、電容器C0、緩衝器、開關K1、K2、低通濾波器、以及比較器。其中,開關K0連接在電阻分壓元件504的第三分壓元件端子504-3與緩衝器的第一緩衝器端子之間,電容器C0連接在緩衝器的第一緩衝器端子與地之間,緩衝器還包括第二緩衝器端子,開關K1連接在緩衝器的第二緩衝器端子與低通濾波器的第一濾波器端子之間,開關K2連接在低通濾波器的第一濾波器端子與地之間,低通濾波器還包括第二濾波器端子,第二濾波器端子與比較器的第一比較器端子連接,比較器還包括第二比較器端子,第二比較器端子向邏輯控制模組提供過壓保護信號。 Figure 7 is a circuit diagram of an overvoltage protection (OVP) module in the system circuit shown in Figure 5. As shown in FIG. 7, the overvoltage protection module includes a switch K0, a capacitor C0, a buffer, switches K1, K2, a low pass filter, and a comparator. Wherein, the switch K0 is connected between the third voltage dividing element terminal 504-3 of the resistor dividing element 504 and the first buffer terminal of the buffer, and the capacitor C0 is connected between the first buffer terminal of the buffer and the ground. The buffer further includes a second buffer terminal, the switch K1 being coupled between the second buffer terminal of the buffer and the first filter terminal of the low pass filter, the switch K2 being coupled to the first filter terminal of the low pass filter Between ground and ground, the low pass filter further includes a second filter terminal, the second filter terminal is coupled to the first comparator terminal of the comparator, the comparator further includes a second comparator terminal, and the second comparator terminal is logic The control module provides an overvoltage protection signal.

在第7圖所示的過壓保護模組中,從電流輸出元件508中的系統功率開關MOSFET截止到電感器L1退磁結束之前的時間段內提供給開關K0的採樣脈衝信號SP為高電平,電流輸出元件508中的系統功率開關MOSFET的汲極處的電壓VD經過電阻分壓元件504中的電阻器R1、R2的分壓生成的電壓信號被採樣至電容器C0;在採樣脈衝信號SP為低電平時,電容器C0的電壓被保持。這裡,緩衝器可以是例如類比電壓跟隨器。 In the overvoltage protection module shown in FIG. 7, the sampling pulse signal SP supplied to the switch K0 is high level from the time when the system power switching MOSFET in the current output element 508 is turned off until the end of the demagnetization of the inductor L1. The voltage V D at the drain of the system power switching MOSFET in the current output element 508 is sampled to the capacitor C0 via the voltage division generated by the voltage divider of the resistors R1, R2 in the resistor divider element 504; at the sampling pulse signal SP When low, the voltage of capacitor C0 is maintained. Here, the buffer can be, for example, an analog voltage follower.

另外,當PWM_G為高電平、電流輸出元件508中的系統功率開關MOSFET導通期間,開關K1導通,緩衝器的輸出連接至低通濾波器的輸入。在電流輸出元件508中的系統功率開關MOSFET截止至電感器L1退磁結束期間,開關K1截止,開關K2導通,地信號被輸入至低通濾波器。在其它時間段內,開關K1和K2均不導通。低通濾波器對輸入 到其的信號進行平滑濾波,並輸出近似直流的電壓信號。開關K0、開關K1、和K2可以是例如CMOS開關。 In addition, when PWM_G is high and the system power switch MOSFET in current output element 508 is on, switch K1 is turned on and the output of the buffer is connected to the input of the low pass filter. During the end of the system power switching MOSFET in current output element 508 to the end of demagnetization of inductor L1, switch K1 is turned off, switch K2 is turned on, and the ground signal is input to the low pass filter. During the other time periods, switches K1 and K2 are not conducting. Low pass filter pair input The signal to it is smoothed and outputs a voltage signal that approximates DC. The switch K0, the switches K1, and K2 may be, for example, CMOS switches.

第5圖所示的系統通過電阻分壓元件504中的電阻器R1、R2檢測VD(在電流輸出元件508中的電感器L1退磁期間,VD=VBULK+VD1,近似為VBULK)再結合TON、TDemag等計算,即可得到實際的輸出電壓VOUT。這裡,由低通濾波器輸出的VO_SENSE近似為公式(8): The system shown in Figure 5 detects V D through resistors R1, R2 in resistor divider element 504 (during the demagnetization of inductor L1 in current output component 508, V D = V BULK + V D1 , approximately V BULK ) Combined with calculations such as T ON and T Demag , the actual output voltage V OUT can be obtained. Here, V O_SENSE output by the low-pass filter is approximated by equation (8):

當VO_SENSE高於預定的參考電壓VREF(即,V OUT >×V REF )時,第5圖所示的系統即可以識別出輸出電壓VOUT發生了過壓情況,因此開關控制元件506控制第二控制元件端子GATE的輸出,使系統功率開關MOSFET截止(關閉),立即切斷向電流輸出元件508的輸出端的能量傳輸,從而實現了高精度的過壓保護。 When V O_SENSE is higher than a predetermined reference voltage V REF (ie, V OUT > × V REF ), the system shown in Fig. 5 can recognize that the output voltage V OUT has an overvoltage condition, so the switch control element 506 controls the output of the second control element terminal GATE to turn off the system power switch MOSFET (off) The energy transfer to the output of the current output element 508 is immediately cut off, thereby achieving high-precision overvoltage protection.

本領域技術人員將理解,還存在可用於實現本發明實施例的更多可選實施方式和改進方式,並且上述實施方式和示例僅是一個或多個實施例的說明。因此,本發明的範圍僅由所附申請專利範圍限制。 Those skilled in the art will appreciate that there are many more alternative embodiments and improvements that can be used to implement the embodiments of the present invention, and that the above-described embodiments and examples are merely illustrative of one or more embodiments. Therefore, the scope of the invention is limited only by the scope of the appended claims.

VBULK‧‧‧直流電壓 V BULK ‧‧‧ DC voltage

K1、K2‧‧‧開關 K1, K2‧‧‧ switch

R1、R2‧‧‧電阻器 R1, R2‧‧‧ resistors

VREF‧‧‧參考電壓 V REF ‧‧‧reference voltage

VIN‧‧‧第一控制元件端子 VIN‧‧‧First control element terminal

VO_SENSE‧‧‧輸出信號 V O_SENSE ‧‧‧Output signal

PWM_G‧‧‧PWM信號生成模組後的邏輯控制模組的輸出波形 Output waveform of logic control module after PWM_G‧‧‧PWM signal generation module

OVP‧‧‧系統電路中的過壓保護 Overvoltage protection in OVP‧‧‧ system circuits

Demag‧‧‧退磁檢測模組的輸出波形 Output waveform of Demag‧‧‧ Demagnetization Detection Module

Claims (6)

一種用於向一個或多個發光二極體提供輸出電流的系統,包括:開關控制元件,被配置為根據與脈寬調變信號、退磁信號、以及參考信號相關聯的資訊生成控制信號,並利用所述控制信號來控制系統功率開關的截止與導通;交流整流元件,被配置為對來自交流電源的交流信號進行整流以生成整流信號;電阻分壓元件,被配置為對所述整流信號進行分壓以生成進入所述開關控制元件的電壓信號;其中,所述系統功率開關被連接到二極體的第一二極體端子和電感器的第一電感器端子,所述二極體還包括第二二極體端子,所述電感器還包括第二電感器端子,並且所述一個或多個發光二極體與輸出電容器並聯連接在所述第二二極體端子和所述第二電感器端子之間;其中,所述交流整流元件包括第一、第二、第三、及第四整流元件端子,所述第一和第二整流元件端子分別與所述交流電源的兩端連接,所述第三和第四整流元件端子分別與所述電阻分壓元件的第一和第二分壓元件端子連接,其中所述第四整流元件端子還連接到地,所述電阻分壓元件還包括第三分壓元件端子,所述第三分壓元件端子向所述開關控制元件提供進入所述開關控制元件的所述電壓信號;其中,所述開關控制元件包括第一控制元件開關、第二控制元件開關、低通濾波器、以及比較器,所述第一控制元件開關連接在所述電阻分壓元件的所述第三分壓元件端子與所述低通濾波器的第一濾波器端子之間,所述第二控制元件開關連接在所述低通濾波器的所述第一濾波器端子與地之間,所述低通濾波器還包括第二濾波器端子,所述第二濾波器端子與所述比較器的第一比較器端子連接,所述比較器還包括第二比較器端子,所述第二比較器端子向所述系統功率開關提供所述控制信號;其中,所述第一控制元件開關在所述控制信號為高電平時處於導通狀 態,並且在所述控制信號為低電平時處於截止狀態,所述第二控制元件開關在所述退磁信號為高電平時處於導通狀態,並且在所述退磁信號為低電平時處於截止狀態。 A system for providing an output current to one or more light emitting diodes, comprising: a switch control element configured to generate a control signal based on information associated with a pulse width modulation signal, a demagnetization signal, and a reference signal, and Using the control signal to control off and on of the system power switch; the AC rectifying element configured to rectify the AC signal from the AC power source to generate a rectified signal; the resistor divider element configured to perform the rectified signal Dividing to generate a voltage signal into the switching control element; wherein the system power switch is coupled to a first diode terminal of the diode and a first inductor terminal of the inductor, the diode further The second diode terminal is included, the inductor further includes a second inductor terminal, and the one or more light emitting diodes are connected in parallel with the output capacitor at the second diode terminal and the second Between the inductor terminals; wherein the AC rectifying element includes first, second, third, and fourth rectifying element terminals, the first and second rectifying The terminal terminals are respectively connected to both ends of the alternating current power source, and the third and fourth rectifier component terminals are respectively connected to the first and second voltage dividing component terminals of the resistor voltage dividing component, wherein the fourth rectifier component The terminal is further connected to the ground, the resistor voltage dividing element further comprising a third voltage dividing component terminal, the third voltage dividing component terminal providing the switching control component with the voltage signal entering the switching control component; wherein The switch control element includes a first control element switch, a second control element switch, a low pass filter, and a comparator, the first control element switch being coupled to the third voltage dividing element of the resistance voltage dividing element Between the terminal and the first filter terminal of the low pass filter, the second control element switch is coupled between the first filter terminal of the low pass filter and ground, the low pass filtering The device also includes a second filter terminal coupled to the first comparator terminal of the comparator, the comparator further including a second comparator terminal, the second comparator terminal The system power switch provides the control signal; wherein said first switching control element is turned to a high level state in the control signal And in an off state when the control signal is low, the second control element switch is in an on state when the demagnetization signal is at a high level, and is in an off state when the demagnetization signal is at a low level. 一種用於向一個或多個發光二極體提供輸出電流的系統,包括:開關控制元件,被配置為根據與脈寬調變信號、退磁信號、以及參考信號相關聯的資訊生成控制信號,並利用所述控制信號來控制系統功率開關的截止與導通;交流整流元件,被配置為對來自交流電源的交流信號進行整流以生成整流信號;電阻分壓元件,被配置為對所述整流信號進行分壓以生成進入所述開關控制元件的電壓信號;其中,所述系統功率開關被連接到二極體的第一二極體端子和電感器的第一電感器端子,所述二極體還包括第二二極體端子,所述電感器還包括第二電感器端子,並且所述一個或多個發光二極體與輸出電容器並聯連接在所述第二二極體端子和所述第二電感器端子之間;其中,所述交流整流元件包括第一、第二、第三、及第四整流元件端子,所述第一和第二整流元件端子分別與所述交流電源的兩端連接,所述第三和第四整流元件端子分別與所述二極體的所述第二二極體端子和所述電阻分壓元件的第二分壓元件端子連接,所述第四整流元件端子還連接到地,所述電阻分壓元件還包括第一分壓元件端子和第三分壓組件端子,其中,所述第一分壓元件端子與所述二極體的所述第一二極體端子、以及所述系統功率開關的汲極連接,所述第三分壓組件端子向所述開關控制元件提供進入所述開關控制元件的所述電壓信號;其中,所述開關控制元件包括第一控制元件開關、元件電容器、緩衝器、第二控制元件開關、第三控制元件開關、低通濾波器、以及比較器,所述第一控制元件開關連接在所述電阻分壓元件的所述第三分壓組件端子與所述緩衝器的第一緩衝器端子之間,所述元件電容器連接在所述緩衝器 的所述第一緩衝器端子與地之間,所述緩衝器還包括第二緩衝器端子,所述第二控制元件開關連接在所述緩衝器的所述第二緩衝器端子與所述低通濾波器的第一濾波器端子之間,所述第三控制元件開關連接在所述低通濾波器的所述第一濾波器端子與地之間,所述低通濾波器還包括第二濾波器端子,所述第二濾波器端子與所述比較器的第一比較器端子連接,所述比較器還包括第二比較器端子,所述第二比較器端子向所述系統功率開關提供所述控制信號;其中,所述開關控制元件還被配置為根據所述退磁信號生成採樣信號,所述採樣信號處於高電平的持續時間小於所述退磁信號處於高電平的持續時間,所述第一控制元件開關在所述採樣信號為高電平時處於導通狀態,並且在所述採樣信號為低電平時處於截止狀態,所述第二控制元件開關在所述脈寬調變信號為高電平時處於導通狀態,並且在所述脈寬調變信號為低電平時處於截止狀態,所述第三控制元件開關在所述退磁信號為高電平時處於導通狀態,並且在所述退磁信號為低電平時處於截止狀態。 A system for providing an output current to one or more light emitting diodes, comprising: a switch control element configured to generate a control signal based on information associated with a pulse width modulation signal, a demagnetization signal, and a reference signal, and Using the control signal to control off and on of the system power switch; the AC rectifying element configured to rectify the AC signal from the AC power source to generate a rectified signal; the resistor divider element configured to perform the rectified signal Dividing to generate a voltage signal into the switching control element; wherein the system power switch is coupled to a first diode terminal of the diode and a first inductor terminal of the inductor, the diode further The second diode terminal is included, the inductor further includes a second inductor terminal, and the one or more light emitting diodes are connected in parallel with the output capacitor at the second diode terminal and the second Between the inductor terminals; wherein the AC rectifying element includes first, second, third, and fourth rectifying element terminals, the first and second rectifying The terminal terminals are respectively connected to both ends of the alternating current power source, and the third and fourth rectifying element terminals respectively correspond to the second diode terminal of the diode and the second portion of the resistor dividing component The pressing element terminal is connected, the fourth rectifying element terminal is further connected to the ground, the resistive voltage dividing element further includes a first voltage dividing element terminal and a third voltage dividing component terminal, wherein the first voltage dividing element terminal and The first diode terminal of the diode and the drain connection of the system power switch, the third voltage dividing component terminal providing the switch control element with the entry into the switch control element a voltage signal; wherein the switch control element includes a first control element switch, an element capacitor, a buffer, a second control element switch, a third control element switch, a low pass filter, and a comparator, the first control element a switch connected between the third voltage dividing component terminal of the resistor voltage dividing element and a first buffer terminal of the buffer, the component capacitor being connected to the buffer Between the first buffer terminal and the ground, the buffer further includes a second buffer terminal, the second control element switch being connected to the second buffer terminal of the buffer and the low Between the first filter terminals of the pass filter, the third control element switch is coupled between the first filter terminal of the low pass filter and ground, and the low pass filter further includes a second a filter terminal, the second filter terminal being coupled to a first comparator terminal of the comparator, the comparator further comprising a second comparator terminal, the second comparator terminal providing the system power switch The control signal; wherein the switch control element is further configured to generate a sampling signal according to the demagnetization signal, wherein the sampling signal is at a high level for a duration that is less than a duration of the demagnetization signal being at a high level, The first control element switch is in an on state when the sampling signal is at a high level, and is in an off state when the sampling signal is at a low level, and the second control element switch is in the pulse width modulation When the number is high, it is in an on state, and when the pulse width modulation signal is low, it is in an off state, and the third control element switch is in an on state when the demagnetization signal is at a high level, and in the When the demagnetization signal is low, it is in the off state. 根據申請專利範圍第2項所述的系統,其中,所述退磁信號處於高電平的持續時間小於所述脈寬調變信號處於低電平的持續時間。 The system of claim 2, wherein the demagnetization signal is at a high level for a duration that is less than a duration of the pulse width modulation signal being at a low level. 一種控制用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法,包括:通過檢測所述系統的輸入電壓,生成輸入電壓檢測信號;通過檢測所述系統中的系統功率開關處於導通狀態的持續時間,生成第一時間量;通過檢測與所述系統功率開關連接的電感器的退磁時間,生成第二時間量;基於所述輸入電壓檢測信號、所述第一時間量、和所述第二時間量,利用預定等式計算所述系統的輸出電壓: 其中,V OUT 是所述系統的輸出電壓,V BULK 是所述系統對交流輸入電壓進行整流得到的直流輸入電壓,T ON 是代表所述系統功率開關處於導通狀態的持續時間的所述第一時間量,T Dmeag 是代表所述電感器的退磁時間的所述第二時間量。 A method of controlling an output voltage of a system for providing an output current to one or more light emitting diodes, comprising: generating an input voltage detection signal by detecting an input voltage of the system; by detecting system power in the system a duration of the switch in an on state, generating a first amount of time; generating a second amount of time by detecting a demagnetization time of the inductor connected to the system power switch; detecting the signal based on the input voltage, the first amount of time And the second amount of time, calculating the output voltage of the system using a predetermined equation: Wherein V OUT is the output voltage of the system, V BULK is the DC input voltage obtained by rectifying the AC input voltage by the system, and T ON is the first time representing the duration of the system power switch being in the on state. The amount of time, T Dmeag , is the second amount of time representative of the demagnetization time of the inductor. 一種控制用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法,包括:通過檢測所述系統的輸入電壓,生成輸入電壓檢測信號;通過檢測所述系統中的系統功率開關處於導通狀態的持續時間,生成第一時間量;通過檢測與所述系統功率開關連接的電感器的退磁時間,生成第二時間量;基於所述輸入電壓檢測信號、所述第一時間量、和所述第二時間量,利用取決於所述系統的電路結構的預定等式計算表徵所述系統的輸出電壓的表徵電壓;以及根據所述表徵電壓來控制所述系統功率開關處於截止或者正常工作狀態,從而控制所述系統的輸出電壓,所述正常工作狀態為所述系統功率開關的截止與導通由脈寬調變信號控制的狀態;其中,利用以下等式計算所述表徵電壓: 其中,V O_SENSE 是所述表徵電壓,V VIN 是代表所述輸入電壓檢測信號的電壓值,T ON 是代表所述系統功率開關處於導通狀態的持續時間的所述第一時間量,T Dmeag 是代表所述電感器的退磁時間的所述第二時間量。 A method of controlling an output voltage of a system for providing an output current to one or more light emitting diodes, comprising: generating an input voltage detection signal by detecting an input voltage of the system; by detecting system power in the system a duration of the switch in an on state, generating a first amount of time; generating a second amount of time by detecting a demagnetization time of the inductor connected to the system power switch; detecting the signal based on the input voltage, the first amount of time And the second amount of time, calculating a characterization voltage characterizing an output voltage of the system using a predetermined equation dependent on a circuit configuration of the system; and controlling the system power switch to be off or according to the characterization voltage a normal operating state, thereby controlling an output voltage of the system, the normal operating state being a state in which the cutoff and conduction of the system power switch are controlled by a pulse width modulation signal; wherein the characterized voltage is calculated using the following equation: Wherein, V O_SENSE is the characteristic voltage, V VIN is a voltage value representing the input voltage detection signal, and T ON is the first time amount representing a duration of the system power switch being in an on state, T Dmeag is The second amount of time representative of the demagnetization time of the inductor. 根據申請專利範圍第5項所述的方法,其中,如果所述表徵電壓高於預定電壓,則控制所述系統功率開關處於截止狀態,否則控制所述系統功率開關處於正常工作狀態。 The method of claim 5, wherein if the characterization voltage is higher than a predetermined voltage, controlling the system power switch to be in an off state, otherwise controlling the system power switch to be in a normal operating state.
TW104128177A 2015-07-10 2015-08-27 A system for providing an output current to one or more light emitting diodes TWI578852B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510405031.XA CN104918392B (en) 2015-07-10 2015-07-10 System for providing from output current to one or more light emitting diodes

Publications (2)

Publication Number Publication Date
TW201703588A TW201703588A (en) 2017-01-16
TWI578852B true TWI578852B (en) 2017-04-11

Family

ID=54086966

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104128177A TWI578852B (en) 2015-07-10 2015-08-27 A system for providing an output current to one or more light emitting diodes

Country Status (2)

Country Link
CN (1) CN104918392B (en)
TW (1) TWI578852B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678948B (en) * 2018-06-12 2019-12-01 義守大學 Lighting system and driving circuit thereof

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105357794B (en) * 2015-10-27 2017-10-31 昂宝电子(上海)有限公司 System for providing from output current to one or more light emitting diodes
CN105392231B (en) * 2015-12-03 2017-10-31 昂宝电子(上海)有限公司 System for providing from output current to one or more light emitting diodes
CN108923390B (en) 2016-03-29 2020-01-07 昂宝电子(上海)有限公司 System and method for overvoltage protection of LED lighting
CN106527557B (en) * 2016-11-25 2018-02-27 上海中嘉衡泰医疗科技有限公司 A kind of baseline adjusted circuit of software control
CN109152142A (en) * 2018-09-25 2019-01-04 杰华特微电子(杭州)有限公司 Switching Power Supply and LED drive circuit
CN109586598A (en) * 2018-12-29 2019-04-05 杰华特微电子(杭州)有限公司 A kind of power supply circuit, control circuit and Switching Power Supply

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2011045097A1 (en) * 2009-09-21 2011-04-21 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one led
US8525442B2 (en) * 2008-10-20 2013-09-03 Tridonic Ag Operating circuit for LEDs
CN104166107A (en) * 2014-08-18 2014-11-26 上海晶丰明源半导体有限公司 Demagnetization detecting control module and demagnetization detecting system
CN103199499B (en) * 2013-04-22 2015-05-13 上海晶丰明源半导体有限公司 Overvoltage protection circuit in LED (Light Emitting Diode) driving power supply, and LED driving power supply

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203233150U (en) * 2013-04-22 2013-10-09 上海晶丰明源半导体有限公司 Overvoltage protection circuit in LED drive power supply and LED drive power supply
CN103956900B (en) * 2014-04-23 2017-08-11 广州昂宝电子有限公司 System and method for the output current regulation in power converting system
CN104302053B (en) * 2014-10-09 2017-10-10 泉芯电子技术(深圳)有限公司 LED constant current source output detection control circuit and its control method
CN104660022B (en) * 2015-02-02 2017-06-13 昂宝电子(上海)有限公司 The system and method that overcurrent protection is provided for supply convertor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8525442B2 (en) * 2008-10-20 2013-09-03 Tridonic Ag Operating circuit for LEDs
WO2011045097A1 (en) * 2009-09-21 2011-04-21 Osram Gesellschaft mit beschränkter Haftung Circuit arrangement for operating at least one led
CN103199499B (en) * 2013-04-22 2015-05-13 上海晶丰明源半导体有限公司 Overvoltage protection circuit in LED (Light Emitting Diode) driving power supply, and LED driving power supply
CN104166107A (en) * 2014-08-18 2014-11-26 上海晶丰明源半导体有限公司 Demagnetization detecting control module and demagnetization detecting system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI678948B (en) * 2018-06-12 2019-12-01 義守大學 Lighting system and driving circuit thereof
US10674584B2 (en) 2018-06-12 2020-06-02 I-Shou University Lighting system and driving circuit thereof

Also Published As

Publication number Publication date
CN104918392A (en) 2015-09-16
TW201703588A (en) 2017-01-16
CN104918392B (en) 2018-03-16

Similar Documents

Publication Publication Date Title
TWI578852B (en) A system for providing an output current to one or more light emitting diodes
TWI583120B (en) A system and method for providing an output current to one or more light emitting diodes
TWI578847B (en) A system for providing an output current to one or more light emitting diodes
CN102740555B (en) Lighting device for solid-state light source and illumination apparatus including same
TWI527494B (en) Driving circuits, methods and controllers for driving light source
US9699853B2 (en) Method and apparatus for dimmable LED driver
TWI611726B (en) System and method for current regulation in a light emitting diode illumination system
TWI471065B (en) Buck -converter for preparation of a current for at least one led
TW201630468A (en) Linear LED driver and control method thereof
KR101626694B1 (en) Two-line dimmer switch
US20190364640A1 (en) Detection circuit and detection method for a triac dimmer
TW201328417A (en) Driving circuits, methods and controllers thereof for driving light sources
TW201511610A (en) Driving circuit for driving LED load
CN103687163B (en) Light emitting diode driving device and operation method thereof
TW201401743A (en) Constant current control buck converter without current sense
TWI604757B (en) Line voltage compensation system for LED constant current control
JP2014116163A (en) Power supply circuit and illumination device
TWI492662B (en) A device for driving a light - emitting diode
TW201320813A (en) Light source apparatus and driving apparatus thereof
JP2017021970A (en) Lighting device, luminaire and vehicle using the same
TWI418125B (en) Switched-mode power supplies and control methods thereof
TWM485511U (en) LED driver circuit
TWM508182U (en) A LED drive circuit
TW201632029A (en) LED drive system and LED drive method
KR20100121310A (en) Power supply for led