TWI578847B - A system for providing an output current to one or more light emitting diodes - Google Patents
A system for providing an output current to one or more light emitting diodes Download PDFInfo
- Publication number
- TWI578847B TWI578847B TW105100307A TW105100307A TWI578847B TW I578847 B TWI578847 B TW I578847B TW 105100307 A TW105100307 A TW 105100307A TW 105100307 A TW105100307 A TW 105100307A TW I578847 B TWI578847 B TW I578847B
- Authority
- TW
- Taiwan
- Prior art keywords
- signal
- voltage
- current
- terminal
- output
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B45/00—Circuit arrangements for operating light-emitting diodes [LED]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B20/00—Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
- Y02B20/30—Semiconductor lamps, e.g. solid state lamps [SSL] light emitting diodes [LED] or organic LED [OLED]
Landscapes
- Dc-Dc Converters (AREA)
- Circuit Arrangement For Electric Light Sources In General (AREA)
Description
本發明涉及電路領域,更具體地涉及一種用於向一個或多個發光二極體提供輸出電流的系統。 The present invention relates to the field of circuits, and more particularly to a system for providing an output current to one or more light emitting diodes.
目前,發光二極體(Light Emitting Diode,LED)照明技術已日趨成熟。LED由於具有發光效率高、使用壽命長等特點,在照明領域被廣泛用以取代傳統的白熾燈。但是,當使用LED取代白熾燈時,由於LED驅動電路一般不具有過壓保護功能或者過壓保護精度不高,導致LED驅動電路容易被損壞或者無法被高效利用。為了實現高精度過壓保護,需要在LED驅動電路中增加複雜的週邊線路,這一方面成本高另一方面會造成其印刷電路尺寸大,無法直接放入燈頭介面內。 At present, the lighting technology of Light Emitting Diode (LED) has become increasingly mature. LEDs are widely used in the field of lighting to replace traditional incandescent lamps due to their high luminous efficiency and long service life. However, when an LED is used in place of an incandescent lamp, since the LED driving circuit generally does not have an overvoltage protection function or the overvoltage protection accuracy is not high, the LED driving circuit is easily damaged or cannot be efficiently utilized. In order to achieve high-precision overvoltage protection, it is necessary to add complicated peripheral circuits in the LED driving circuit, which is high in cost and on the other hand, the printed circuit is large in size and cannot be directly placed in the lamp head interface.
鑒於以上所述的一個或多個問題,本發明提供了一種新穎的用於向一個或多個發光二極體提供輸出電流的系統、以及控制用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法。 In view of one or more of the problems described above, the present invention provides a novel system for providing an output current to one or more light emitting diodes, and control for providing an output to one or more light emitting diodes The method of current output voltage of the system.
根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統包括:開關控制元件,被配置為根據與感測信號、退磁信號、以及參考信號相關聯的資訊生成控制信號,並利用所述控制信號來控制系統功率開關的截止與導通,其中所述系統功率開關被連接到二極體的第一二極體端子和電感器的第一電感器端子,所述二極體還包括第二二極體端子,所述電感器還包括第二電感器端子,並且所述一個或多個發光二極體與輸出電容並聯連接在所述第二二極體端子和所述第二電感器端子之 間,所述感測信號是通過感測流過所述系統功率開關的電流生成的,所述退磁信號是通過感測流過所述電感器的電流生成的,並且所述參考信號是預定信號。 A system for providing an output current to one or more light emitting diodes in accordance with an embodiment of the invention includes a switch control element configured to generate a control signal based on information associated with the sensed signal, the demagnetization signal, and the reference signal And controlling, by the control signal, a cutoff and a conduction of a system power switch, wherein the system power switch is connected to a first diode terminal of the diode and a first inductor terminal of the inductor, the diode The body further includes a second diode terminal, the inductor further includes a second inductor terminal, and the one or more light emitting diodes are connected in parallel with the output capacitor at the second diode terminal and the Second inductor terminal The sensing signal is generated by sensing a current flowing through the system power switch, the demagnetization signal is generated by sensing a current flowing through the inductor, and the reference signal is a predetermined signal .
根據本發明實施例的控制用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法包括:利用表徵所述一個或多個發光二極體是否處於工作狀態的控制信號生成輸出電壓檢測信號;將所述輸出電壓檢測信號指示的電壓與參考信號指示的電壓進行比較,並根據比較結果判斷所述系統的輸出電壓是否高於預定電壓值;在所述系統的輸出電壓高於預定電壓值的情況下,利用所述控制信號關閉所述系統中的系統功率開關。 A method of controlling an output voltage of a system for providing an output current to one or more light emitting diodes in accordance with an embodiment of the present invention includes generating a control signal that characterizes whether the one or more light emitting diodes are in an active state Outputting a voltage detection signal; comparing a voltage indicated by the output voltage detection signal with a voltage indicated by the reference signal, and determining, according to the comparison result, whether an output voltage of the system is higher than a predetermined voltage value; a high output voltage of the system In the event of a predetermined voltage value, the system power switch in the system is turned off using the control signal.
根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統、以及控制用於向一個或多個發光二極體提供輸出電流的系統的輸出電壓的方法能夠提供高精度的過壓保護功能。 A system for providing an output current to one or more light emitting diodes according to an embodiment of the present invention, and a method of controlling an output voltage of a system for supplying an output current to one or more light emitting diodes can provide high precision Overvoltage protection.
100、200‧‧‧系統 100, 200‧‧‧ system
1068、D1‧‧‧二極體 1068, D1‧‧‧ diode
102、202‧‧‧交流整流元件 102, 202‧‧‧ AC rectifying components
VOUT‧‧‧輸出電壓 VOUT‧‧‧ output voltage
104‧‧‧控制器元件 104‧‧‧Controller components
COUT‧‧‧輸出電容 COUT‧‧‧ output capacitor
106、208‧‧‧電流輸出元件 106, 208‧‧‧ Current output components
204‧‧‧電阻分壓元件 204‧‧‧Resistor voltage dividing element
VAC‧‧‧交流輸入電壓 VAC‧‧‧AC input voltage
206‧‧‧開關控制元件 206‧‧‧Switch control components
VBULK‧‧‧直流電壓 VBULK‧‧‧ DC voltage
202-1‧‧‧第一整流元件端子 202-1‧‧‧First rectifying element terminal
GATE‧‧‧端子 GATE‧‧‧ terminal
202-2‧‧‧第二整流元件端子 202-2‧‧‧Second rectifier component terminal
1062‧‧‧系統功率開關 1062‧‧‧System Power Switch
202-3‧‧‧第三整流元件端子 202-3‧‧‧3rd rectifying element terminal
1064‧‧‧電感器 1064‧‧‧Inductors
202-4‧‧‧第四整流元件端子 202-4‧‧‧4th rectifying element terminal
1066‧‧‧感測電阻器 1066‧‧‧Sensor Resistors
VIN‧‧‧第一控制元件端子 VIN‧‧‧First control element terminal
204-1‧‧‧第一分壓元件端子 204-1‧‧‧First voltage divider terminal
GATE‧‧‧(第二控制元件)端子 GATE‧‧ (second control element) terminal
204-2‧‧‧第二分壓元件端子 204-2‧‧‧Second voltage divider terminal
CS‧‧‧(第三控制元件)端子 CS‧‧‧ (third control element) terminal
204-3‧‧‧第三分壓元件端子 204-3‧‧‧ Third voltage divider terminal
GND‧‧‧第四控制元件端子 GND‧‧‧4th control element terminal
208-1‧‧‧第一輸出元件端子 208-1‧‧‧First output component terminal
VDD‧‧‧第五控制元件端子 VDD‧‧‧ fifth control element terminal
208-2‧‧‧第二輸出元件端子 208-2‧‧‧second output component terminal
R1、R2、R3‧‧‧電阻器 R1, R2, R3‧‧‧ resistors
208-3‧‧‧第三輸出元件端子 208-3‧‧‧third output component terminal
VOUT_OVP‧‧‧臨界OVP電壓 VOUT_OVP‧‧‧critical OVP voltage
208-4‧‧‧第四輸出元件端子 208-4‧‧‧fourth output component terminal
VVIN‧‧‧電壓信號 VVIN‧‧‧ voltage signal
208-5‧‧‧第五輸出元件端子 208-5‧‧‧5th output component terminal
L1‧‧‧電感器 L1‧‧‧Inductors
RS‧‧‧感測電阻器 RS‧‧‧Sense Resistors
VCS‧‧‧電壓值 VCS‧‧‧ voltage value
TDemag‧‧‧電感器L1的退磁時間 Demagnetization time of TDemag‧‧‧Inductor L1
GM1‧‧‧第一跨導放大器 GM1‧‧‧First Transconductance Amplifier
C、C1‧‧‧電容器 C, C1‧‧‧ capacitor
GM2‧‧‧第二跨導放大器 GM2‧‧‧Second Transconductance Amplifier
COMP1‧‧‧比較器 COMP1‧‧‧ comparator
K1‧‧‧開關 K1‧‧‧ switch
I_source、I_sink‧‧‧電流 I_source, I_sink‧‧‧ current
Vth_ovp‧‧‧OVP閾值電壓 Vth_ovp‧‧‧OVP threshold voltage
Vramp‧‧‧電壓(電壓檢測信號) Vramp‧‧‧ voltage (voltage detection signal)
IPK‧‧‧流過電感器L1的電流IL的最大值 I PK ‧‧‧Maximum current I L flowing through inductor L1
VOUT_PK‧‧‧電流輸出元件208的兩個輸出端之間的輸出電壓VOUT的最大值 The maximum value of the output voltage VOUT between the two outputs of the VOUT_PK‧‧ current output element 208
TON‧‧‧系統功率開關1062金屬氧化物半導體場效應晶體(MOSFET)處於導通狀態的持續時間 TON‧‧‧System Power Switch 1062 Metal Oxide Semiconductor Field Effect Crystal (MOSFET) is in the on state for the duration
TOFF‧‧‧為系統功率開關1062金屬氧化物半導體場效應晶體(MOSFET)處於截止狀態的持續時間 TOFF‧‧‧ is the duration of the system power switch 1062 metal oxide semiconductor field effect transistor (MOSFET) in the off state
從下面結合附圖對本發明的具體實施方式的描述中可以更好地理解本發明,其中:第1圖是傳統的用於向一個或多個發光二極體提供輸出電流的系統(BUCK電路)的電路圖;第2圖是根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖;第3圖是第2圖所示的系統電路中的工作波形圖;第4圖是第2圖所示的系統電路中的過壓保護(Over Voltage Protection,OVP)模組的電路圖。 The invention can be better understood from the following description of specific embodiments of the invention, in which: FIG. 1 is a conventional system for providing an output current to one or more light-emitting diodes (BUCK circuit) FIG. 2 is a circuit diagram of a system for providing an output current to one or more light emitting diodes according to an embodiment of the present invention; and FIG. 3 is an operational waveform diagram of the system circuit shown in FIG. 2; Figure 4 is a circuit diagram of an Over Voltage Protection (OVP) module in the system circuit shown in Figure 2.
下面將詳細描述本發明的各個方面的特徵和示例性實施例。在下面的詳細描述中,提出了許多具體細節,以便提供對本發明的全面理解。但是,對於本領域技術人員來說很明顯的是,本發明可以在不需要這些具體細節中的一些細節的情況下實施。下面對實施例的描述僅僅是為了通過示出本發明的示例來提供對本發明的更好的理解。本發明決不限於下面所提出的任何具體配置和演算法,而是在不脫離本發明的精神的前提下覆蓋了元素、部件和演算法的任何修改、替換和改進。在附圖和下面的描述中,沒有示出公知的結構和技術,以便避免對本發明造成不必要的模糊。 Features and exemplary embodiments of various aspects of the invention are described in detail below. In the following detailed description, numerous specific details are set forth However, it will be apparent to those skilled in the art that the present invention may be practiced without some of the details. The following description of the embodiments is merely provided to provide a better understanding of the invention. The present invention is in no way limited to any specific configurations and algorithms presented below, but without departing from the spirit and scope of the invention. In the drawings and the following description, well-known structures and techniques are not shown in order to avoid unnecessary obscuring the invention.
為了使LED的亮度恒定,通常向LED提供基本恒定的電流。第1圖是傳統的用於向一個或多個發光二極體提供輸出電流的系統(BUCK電路)的電路圖。 In order to keep the brightness of the LED constant, a substantially constant current is typically supplied to the LED. Figure 1 is a circuit diagram of a conventional system (BUCK circuit) for providing an output current to one or more light emitting diodes.
如第1圖所示,用於向一個或多個發光二極體提供輸出電流的系統100包括交流整流元件102、控制器元件104、以及電流輸出元件106。具體地,當一個或多個LED連接在交流整流元件102的兩個連接端之間時:交流整流元件102接收交流輸入電壓VAC,並將交流輸入電壓VAC變換為直流電壓VBULK,以向一個或多個LED提供電流。控制器元件104通過GATE端子向電流輸出元件106中的系統功率開關1062輸出控制信號,以控制系統功率開關1062的導通與截止,從而調節流過一個或多個LED的電流(或稱為輸出電流)。當系統功率開關1062導通時,流過電流輸出元件106中的電感器1064的電流被電流輸出元件106中的感測電阻器1066感測到,從而使得電流感測信號被控制器元件104通過CS端子接收到。作為回應,控制器元件104根據電流感測信號生成控制信號,以控制系統功率開關1062的導通與截止。當系統功率開關1062截止時,在電流輸出元件106中的電感器1064、二極體1068、以及連接在電流輸出元件106的兩個輸出端之間的一個或多個LED之間形成了電流回路。 As shown in FIG. 1, a system 100 for providing an output current to one or more light emitting diodes includes an AC rectifying element 102, a controller element 104, and a current output element 106. Specifically, when one or more LEDs are connected between the two terminals of the AC rectifying element 102: the AC rectifying element 102 receives the AC input voltage V AC and converts the AC input voltage V AC into a DC voltage V BULK to Current is supplied to one or more LEDs. The controller component 104 outputs a control signal to the system power switch 1062 in the current output component 106 through the GATE terminal to control the turn-on and turn-off of the system power switch 1062 to regulate the current flowing through one or more LEDs (or output current) ). When system power switch 1062 is turned on, the current flowing through inductor 1064 in current output element 106 is sensed by sense resistor 1066 in current output element 106, causing the current sense signal to pass CS through controller element 104. The terminal is received. In response, controller component 104 generates a control signal based on the current sense signal to control the turn-on and turn-off of system power switch 1062. When the system power switch 1062 is turned off, a current loop is formed between the inductor 1064, the diode 1068, and one or more LEDs connected between the two output terminals of the current output element 106 in the current output element 106. .
在第1圖所示的系統中,當LED從電流輸出元件106的兩個輸出端之間斷開時(即,兩個輸出端開路時)或者LED發生故障不能工作時,電流輸出元件106的兩個輸出端之間的輸出電壓VOUT會過高(例如,等於或者大於連接在電流輸出元件106的兩個輸出端之間的輸出電容COUT的額定電壓),從而導致電流輸出元件106中的輸出電容COUT容易被損壞。 In the system shown in Fig. 1, when the LED is disconnected from between the two output terminals of the current output element 106 (i.e., when the two outputs are open) or the LED fails to operate, two of the current output elements 106 The output voltage V OUT between the outputs is too high (eg, equal to or greater than the nominal voltage of the output capacitor C OUT connected between the two outputs of the current output element 106), resulting in the current output element 106 The output capacitor C OUT is easily damaged.
所以,需要在第1圖所示的系統中提供用於電流輸出元件106的兩個輸出端開路時的過壓保護(即,保護電流輸出元件106中的輸出電容COUT不會由於LED從電流輸出元件106的兩個輸出端之間斷開時電流輸出元件106的兩個輸出端之間的輸出電壓VOUT等於或者大於其額定電壓而被損壞)。但是,在第1圖所示的系統中,控制器元件104無法直接測量到電流輸出元件106的兩個輸出端之間的輸出電壓VOUT,因而無法準確地控制電流輸出元件106的兩個輸出端開路時的輸出電壓。 Therefore, it is necessary to provide overvoltage protection for the open circuit of the two output terminals of the current output element 106 in the system shown in Fig. 1 (i.e., the output capacitor C OUT in the protection current output element 106 is not affected by the LED current. The output voltage V OUT between the two outputs of the current output element 106 when the two outputs of the output element 106 are disconnected is equal to or greater than its rated voltage and is damaged). However, in the system shown in FIG. 1, the controller component 104 cannot directly measure the output voltage V OUT between the two output terminals of the current output component 106, and thus cannot accurately control the two outputs of the current output component 106. The output voltage when the terminal is open.
為了解決第1圖所示的系統中存在的一個或多個問題,提出了下面參考第2-4圖詳細描述的根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統。 In order to solve one or more problems present in the system shown in FIG. 1, an output current for supplying one or more light emitting diodes according to an embodiment of the present invention, which is described in detail below with reference to FIGS. 2-4, is proposed. system.
第2圖是根據本發明實施例的用於向一個或多個發光二極體提供輸出電流的系統的電路圖。如第2圖所示,用於向一個或多個發光二極體提供輸出電流的系統200包括交流整流元件202、電阻分壓元件204、開關控制元件206、以及電流輸出元件208。交流整流元件202包括第一、第二、第三、以及第四整流元件端子202-1、202-2、202-3、202-4。電阻分壓元件204包括第一、第二、以及第三分壓元件端子204-1、204-2、204-3。開關控制元件206包括第一、第二、第三、第四、以及第五控制元件端子VIN、GATE、CS、GND、VDD。電流輸出元件208包括第一、第二、第三、第四、以及第五輸出元件端子208-1、208-2、208-3、208-4、208-5。 2 is a circuit diagram of a system for providing an output current to one or more light emitting diodes in accordance with an embodiment of the present invention. As shown in FIG. 2, system 200 for providing an output current to one or more light emitting diodes includes an AC rectifying element 202, a resistive dividing element 204, a switching control element 206, and a current output element 208. The AC rectifying element 202 includes first, second, third, and fourth rectifying element terminals 202-1, 202-2, 202-3, and 202-4. The resistor divider element 204 includes first, second, and third voltage divider component terminals 204-1, 204-2, 204-3. The switch control element 206 includes first, second, third, fourth, and fifth control element terminals VIN, GATE, CS, GND, VDD. Current output component 208 includes first, second, third, fourth, and fifth output component terminals 208-1, 208-2, 208-3, 208-4, 208-5.
如第2圖所示,交流整流元件202的第一和第二整流元件端子202-1、202-2分別與交流電源的兩端連接,第三和第四整流元件端子202-3、202-4分別與電阻分壓元件204的第一和第二分壓元件端子204-1、204-2連接。電阻分壓元件204的第三分壓元件端子204-3與開關控制元件206的第一控制元件端子VIN連接。開關控制元件206的第二控制元件端子GATE與電流輸出元件208的第二輸出元件端子208-2連接,第三控制元件端子CS與電流輸出元件208的第三輸出元件端子208-3連接,第四控制元件端子GND接地,第五控制元件端子VDD經由電阻器R3與電阻分壓元件204的第一分壓元件端子204-1連接並且經由電容器C1接地。電流輸出元件208的第一輸出元件端子208-1與電阻分壓元件204的第一分壓元件端子204-1連接,第四輸出元件端子208-4接地。電流輸出元件208中的輸出電容COUT與一個或多個LED並聯連接在電流輸出元件208的第一輸出元件端子208-1和第五輸出元件端子208-5之間(第一輸出元件端子208-1和第五輸出元件端子208-5是電流輸出元件208的兩個輸出端)。 As shown in Fig. 2, the first and second rectifying element terminals 202-1, 202-2 of the AC rectifying element 202 are respectively connected to both ends of an alternating current power source, and the third and fourth rectifying element terminals 202-3, 202- 4 is connected to the first and second voltage dividing element terminals 204-1, 204-2 of the resistor dividing element 204, respectively. The third voltage dividing element terminal 204-3 of the resistance dividing element 204 is connected to the first control element terminal VIN of the switching control element 206. The second control element terminal GATE of the switch control element 206 is connected to the second output element terminal 208-2 of the current output element 208, and the third control element terminal CS is connected to the third output element terminal 208-3 of the current output element 208, The fourth control element terminal GND is grounded, and the fifth control element terminal VDD is connected to the first voltage dividing element terminal 204-1 of the resistance dividing element 204 via the resistor R3 and is grounded via the capacitor C1. The first output element terminal 208-1 of the current output element 208 is connected to the first voltage dividing element terminal 204-1 of the resistance dividing element 204, and the fourth output element terminal 208-4 is grounded. An output capacitor C OUT in current output component 208 is coupled in parallel with one or more LEDs between first output component terminal 208-1 and fifth output component terminal 208-5 of current output component 208 (first output component terminal 208) The -1 and fifth output element terminals 208-5 are the two outputs of the current output element 208).
在第2圖所示的系統中,交流整流元件202接收交流輸入電壓VAC,並將交流輸入電壓VAC整流為直流電壓VBULK,以向一個或多個LED提供電流。電阻分壓元件204通過電阻器R1和R2對直流電壓VBULK進行分壓,以生成進入開關控制元件206的電壓信號VVIN。由電阻分壓元件204對直流電壓VBULK進行分壓得到的電壓信號VVIN經由電阻分壓元件204的第三分壓元件端子204-3和開關控制元件206的第一控制元件端子VIN進入電壓控制元件206。電壓控制元件206通過第二控制元件端子GATE向電流輸出元件208中的系統功率開關1062MOSFET(金屬氧化物半導體場效應晶體,Metal-Oxide-Semiconductor Field-Effect Transistor,MOSFET)輸出控制信號,以控制系統功率開關1062MOSFET的導通與截止。當系統功率開關1062MOSFET導通時,流過電流輸出元件208中的電感器L1的電流被電流輸出元件208中的感測電阻器RS感測到,從而使得電流感測信號被開關控制元件206通過第三控制元件端子CS接收到。作為回應,開關控制元件206 將電流感測信號作為多個基礎信號中的一個來生成控制信號,以控制系統功率開關1062MOSFET的導通與截止。當系統功率開關1062MOSFET截止時,在電流輸出元件208中的電感器L1、二極體D1、以及連接在電流輸出元件208的兩個輸出端之間的一個或多個LED之間形成了電流回路。 In the system shown in FIG. 2, the AC rectifying element 202 receives the AC input voltage V AC and rectifies the AC input voltage V AC to a DC voltage V BULK to provide current to one or more LEDs. The resistor divider element 204 divides the DC voltage V BULK through resistors R1 and R2 to generate a voltage signal V VIN that enters the switch control element 206. The voltage signal V VIN obtained by dividing the DC voltage V BULK by the resistor dividing element 204 enters the voltage via the third voltage dividing element terminal 204-3 of the resistor dividing element 204 and the first control element terminal VIN of the switching control element 206. Control element 206. The voltage control component 206 outputs a control signal to the system power switch 1062 MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET) in the current output component 208 through the second control component terminal GATE to control the system. Power switch 1062 MOSFET turn-on and turn-off. When the system power switch 1062 MOSFET is turned on, the current flowing through the inductor L1 in the current output element 208 is sensed by the sense resistor RS in the current output element 208, such that the current sense signal is passed by the switch control element 206. The three control element terminals CS are received. In response, switch control component 206 generates a control signal as one of a plurality of base signals to control the turn-on and turn-off of system power switch 1062 MOSFET. When the system power switch 1062 MOSFET is turned off, a current loop is formed between the inductor L1, the diode D1 in the current output element 208, and one or more LEDs connected between the two outputs of the current output element 208. .
具體地,如第2圖所示,系統功率開關1062MOSFET的閘極作為電流輸出元件208的第二輸出元件端子208-2;系統功率開關1062MOSFET的漏極與二極體D1的第一二極體端子和電感器L1的第一電感器端子連接;二極體D1的第二二極體端子作為電流輸出元件208的第一輸出元件端子208-1;系統功率開關1062MOSFET的集電極作為電流輸出元件208的第三輸出元件端子208-3,並且經由感測電阻器RS接地;電感器L1的第二電感器端子作為電流輸出元件208的第五輸出元件端子208-5;一個或多個LED與輸出電容COUT並聯連接在電流輸出元件208的第一輸出元件端子208-1和第五輸出元件端子208-5之間。 Specifically, as shown in FIG. 2, the gate of the system power switch 1062 MOSFET serves as the second output element terminal 208-2 of the current output element 208; the drain of the system power switch 1062 MOSFET and the first diode of the diode D1 The terminal is connected to the first inductor terminal of the inductor L1; the second diode terminal of the diode D1 serves as the first output element terminal 208-1 of the current output element 208; and the collector of the system power switch 1062 MOSFET serves as the current output element a third output element terminal 208-3 of 208 and grounded via a sense resistor RS; a second inductor terminal of inductor L1 as a fifth output element terminal 208-5 of current output element 208; one or more LEDs The output capacitor C OUT is connected in parallel between the first output element terminal 208-1 and the fifth output element terminal 208-5 of the current output element 208.
如第2圖所示,開關控制元件206包括過壓保護模組、脈寬調變(Pulse Width Modulation,PWM)信號生成模組、閘極驅動模組、退磁檢測模組、電流感測模組、以及參考信號生成模組。其中,過壓保護模組基於來自電阻分壓元件204的電壓信號VVIN、來自退磁檢測模組的退磁信號、來自脈寬調變(PWM)信號生成模組的調變信號、以及來自參考信號生成模組的參考信號生成過壓保護信號,退磁檢測模組基於與電流輸出元件208中的電感器L1的退磁情況相關的電流或電壓信號生成退磁信號,電流感測模組基於通過電流輸出元件208中的感測電阻器RS得到的電流感測信號生成感測電流相關信號,脈寬調變(PWM)信號生成模組基於過壓保護信號、退磁信號、以及感測電流相關信號生成調變信號,閘極驅動模組基於調製信號生成驅動信號用以驅動電流輸出元件208中的系統功率開關1062MOSFET的導通與截止。 As shown in FIG. 2, the switch control component 206 includes an overvoltage protection module, a Pulse Width Modulation (PWM) signal generation module, a gate drive module, a demagnetization detection module, and a current sensing module. And a reference signal generation module. The overvoltage protection module is based on a voltage signal V VIN from the resistor divider component 204, a demagnetization signal from the demagnetization detection module, a modulation signal from a pulse width modulation (PWM) signal generation module, and a reference signal. The reference signal of the generating module generates an overvoltage protection signal, and the demagnetization detecting module generates a demagnetization signal based on a current or voltage signal related to the demagnetization condition of the inductor L1 in the current output component 208, and the current sensing module is based on the current output component. The current sensing signal obtained by the sensing resistor RS in 208 generates a sensing current related signal, and the pulse width modulation (PWM) signal generating module generates a modulation based on the overvoltage protection signal, the demagnetization signal, and the sensing current related signal. The signal, the gate drive module generates a drive signal based on the modulation signal for driving the turn-on and turn-off of the system power switch 1062 MOSFET in the current output component 208.
具體地,在本實施例中,脈寬調變(PWM)信號生成模組生成調變信號的基本原理如下:當一個或多個LED連接在電流輸出元件 106的兩個輸出端之間並且正常工作時,脈寬調變(PWM)信號生成模組基於退磁信號、和感測電流相關信號生成調變信號,用以控制電流輸出元件208中的系統功率開關1062MOSFET的截止與導通,從而調節流過一個或多個LED的電流(例如,當退磁信號指示退磁結束時,脈寬調變(PWM)信號生成模組將調製信號由低電平變為高電平;當感測電流相關信號指示感測電流達到設定值時,脈寬調變(PWM)信號生成模組將調變信號由高電平變為低電平;退磁信號和感測電流相關信號交替控制脈寬調變(PWM)信號生成模組生成調製信號);當LED從電流輸出元件106的兩個輸出端之間斷開時或者LED發生故障時,脈寬調變(PWM)信號生成模組基於過壓保護模組生成的過壓保護信號生成調變信號,用以控制電流輸出元件208中的系統功率開關1062MOSFET處於截止狀態,使得電流輸出元件208的兩個輸出端之間的輸出電壓VOUT不會高於輸出電容Cout的額定電壓(即,保護輸出電容Cout不被損壞)。在本實施例中,脈寬調變(PWM)信號生成模組生成的調製信號實際上是用於系統功率開關1062MOSFET的控制信號。 Specifically, in the present embodiment, the basic principle of the pulse width modulation (PWM) signal generating module to generate the modulated signal is as follows: when one or more LEDs are connected between the two outputs of the current output element 106 and are normal In operation, the pulse width modulation (PWM) signal generation module generates a modulation signal based on the demagnetization signal and the sense current related signal for controlling the cutoff and conduction of the system power switch 1062 MOSFET in the current output component 208, thereby regulating the flow. Current through one or more LEDs (eg, when the demagnetization signal indicates the end of demagnetization, the pulse width modulation (PWM) signal generation module changes the modulation signal from low to high; when the sense current related signal indicates When the sense current reaches the set value, the pulse width modulation (PWM) signal generation module changes the modulation signal from a high level to a low level; the demagnetization signal and the sense current related signal alternately control the pulse width modulation (PWM) The signal generation module generates a modulation signal); when the LED is disconnected from the two output terminals of the current output element 106 or the LED fails, the pulse width modulation (PWM) signal generation module is generated based on the overvoltage protection module Overvoltage protection Signal generating modulated signal, system power switch for controlling the current output of 1062MOSFET element 208 in an off state, so that the current output element is the output voltage V OUT between the two output terminals 208 is not higher than the rated voltage of the output capacitor Cout (ie, the protection output capacitor Cout is not damaged). In this embodiment, the modulated signal generated by the pulse width modulation (PWM) signal generation module is actually a control signal for the system power switch 1062 MOSFET.
第3圖是第2圖所示的系統電路中的工作波形圖。在第3圖中,脈寬調變(PWM)波形為脈寬調變(PWM)信號生成模組的輸出波形(即,調製信號的波形),GATE波形為閘極驅動模組的輸出波形(即,驅動信號的波形),IL波形為流過電感器L1的電流波形,Demag波形為退磁檢測模組的輸出波形(即,退磁信號的波形)。TON為系統功率開關1062MOSFET處於導通狀態的持續時間(即,系統功率開關1062MOSFET的導通時間),TOFF為系統功率開關1062MOSFET處於截止狀態的持續時間(即,系統功率開關1062MOSFET的截止時間),TDemag為電感器L1的退磁時間,且TDemag小於TOFF。 Fig. 3 is a diagram showing the operation waveforms in the system circuit shown in Fig. 2. In Fig. 3, the pulse width modulation (PWM) waveform is the output waveform of the pulse width modulation (PWM) signal generation module (ie, the waveform of the modulation signal), and the GATE waveform is the output waveform of the gate drive module ( That is, the waveform of the drive signal), the I L waveform is the current waveform flowing through the inductor L1, and the Demag waveform is the output waveform of the demagnetization detection module (that is, the waveform of the demagnetization signal). T ON is the duration in which the system power switch 1062 MOSFET is in an on state (ie, the on time of the system power switch 1062 MOSFET), and T OFF is the duration in which the system power switch 1062 is in an off state (ie, the off time of the system power switch 1062 MOSFET), T Demag is the demagnetization time of inductor L1, and T Demag is less than T OFF .
在第2圖所示的系統中,當開關控制元件206的第二控制元件端子GATE的輸出電壓為高電平(即,第3圖中的GATE波形為邏輯高)時,電流輸出元件208中的系統功率開關1062MOSFET導通,流過電流輸出元件208中的電感器L1的電流線性上升(流過電感器L1的電流值可 根據公式(1)得出,其中t是電流流過電感器L1的時間)。在電流輸出元件208中,流過電感器L1的電流通過系統功率開關1062MOSFET流經感測電阻器RS到地,在感測電阻器RS上產生的電壓值(即,在開關控制元件206的第三控制元件端子CS處感測到的電壓值VCS)可根據公式(2)得出。當VCS達到設定值或t達到設定值TON時,開關控制元件206的第二控制元件端子GATE的輸出電壓變為低電平(即,第3圖中的GATE波形變為邏輯低),電流輸出元件208中的系統功率開關1062MOSFET)截止。此時,電流輸出元件208中的電感器L1通過二極體D1和一個或多個LED進行退磁,經過TDemag時間後退磁結束,流過電感器L1的電流變為零。開關控制元件206可以通過檢測流過電流輸出元件208中的電感器L1的電流來確定電感器L1的退磁起始點與結束點,從而得到退磁時間Tdemag(可以根據公式(3)得出退磁時間,其中IPK是流過電感器L1的電流IL的最大值,VOUT_PK是電流輸出元件208的兩個輸出端之間的輸出電壓VOUT的最大值)。另外,由於第2圖所示的電路系統本質上是對BUCK電路的改進,所以電流輸出元件208的兩個輸出端之間的輸出電壓VOUT與由交流整流元件202輸出的直流電壓VBULK之間的關係如公式(4)所示。 In the system shown in FIG. 2, when the output voltage of the second control element terminal GATE of the switch control element 206 is at a high level (ie, the GATE waveform in FIG. 3 is logic high), the current output element 208 is The system power switch 1062 MOSFET is turned on, and the current flowing through the inductor L1 in the current output element 208 rises linearly (the current value flowing through the inductor L1 can be obtained according to the formula (1), where t is the current flowing through the inductor L1. time). In the current output element 208, the current flowing through the inductor L1 flows through the sense resistor RS to ground through the system power switch 1062 MOSFET, and the voltage value generated on the sense resistor RS (ie, at the switch control element 206) The voltage value V CS ) sensed at the three control element terminals CS can be derived from equation (2). When V CS reaches the set value or t reaches the set value T ON , the output voltage of the second control element terminal GATE of the switch control element 206 becomes a low level (ie, the GATE waveform in FIG. 3 becomes a logic low), System power switch 1062 MOSFET) in current output element 208 is turned off. At this time, the inductor L1 in the current output element 208 is demagnetized by the diode D1 and one or more LEDs, and after the T Demag time, the demagnetization ends, and the current flowing through the inductor L1 becomes zero. The switch control element 206 can determine the demagnetization start and end points of the inductor L1 by detecting the current flowing through the inductor L1 in the current output element 208, thereby obtaining a demagnetization time T demag (demagnetization can be obtained according to formula (3) Time, where I PK is the maximum value of the current I L flowing through the inductor L1, and V OUT_PK is the maximum value of the output voltage V OUT between the two outputs of the current output element 208). In addition, since the circuit system shown in FIG. 2 is essentially an improvement to the BUCK circuit, the output voltage V OUT between the two output terminals of the current output element 208 and the DC voltage V BULK output by the AC rectifying element 202 are The relationship between the two is shown in equation (4).
也就是說,基於由交流整流元件202輸出的直流電壓VBULK、系統功率開關1062MOSFET的導通時間TON、和電感器L1的退磁時間TDenag,可以利用公式(4)計算出輸出電壓VOUT。 That is, based on the DC voltage V BULK output from the AC rectifying element 202, the on-time T ON of the system power switch 1062 MOSFET, and the demagnetization time T Denag of the inductor L1, the output voltage V OUT can be calculated using Equation (4).
第4圖是第2圖所示的系統電路中的過壓保護(OVP) 模組的電路圖。如第4圖所示,過壓保護模組包括第一跨導放大器GM1、第二跨導放大器GM2、開關K1、重置單元、電容器C、以及比較器COMP1。其中,第一跨導放大器GM1連接在開關控制元件206的第一控制元件端子VIN與開關K1的第一開關端子之間,第二跨導放大器GM2連接在開關K1的第二開關端子與過壓保護模組外部的參考信號生成模組之間,重置單元連接在開關K1的第二開關端子與過壓保護模組外部的退磁檢測模組之間,電容器C連接在開關K1的第二開關端子與地之間,比較器COMP1連接在開關K1的第二開關端子與過壓保護模組外部的脈寬調變(PWM)信號生成模組之間。 Figure 4 is the overvoltage protection (OVP) in the system circuit shown in Figure 2. The circuit diagram of the module. As shown in FIG. 4, the overvoltage protection module includes a first transconductance amplifier GM1, a second transconductance amplifier GM2, a switch K1, a reset unit, a capacitor C, and a comparator COMP1. Wherein, the first transconductance amplifier GM1 is connected between the first control element terminal VIN of the switch control element 206 and the first switch terminal of the switch K1, and the second transconductance amplifier GM2 is connected to the second switch terminal of the switch K1 and the overvoltage Between the reference signal generating modules outside the protection module, the reset unit is connected between the second switch terminal of the switch K1 and the demagnetization detecting module outside the overvoltage protection module, and the capacitor C is connected to the second switch of the switch K1. Between the terminal and the ground, the comparator COMP1 is connected between the second switch terminal of the switch K1 and a pulse width modulation (PWM) signal generating module external to the overvoltage protection module.
如第4圖所示,交流整流元件202對交流輸入電壓VAC進行整流得到的直流電壓VBULK被電阻分壓元件204中的電阻器R1和R2分壓,從而生成了開關控制元件206的第一控制元件端子VIN處的電壓信號;在脈寬調變(PWM)生成模組輸出的調製信號(即,第3圖中的脈寬調變(PWM波形)為高電平(即,系統功率開關1062MOSFET導通))時開關K1導通,開關控制元件206的第一控制元件端子VIN處的電壓信號通過第一跨導放大器GM1生成I_source電流給電容器C充電,同時來自參考信號生成模組的OVP閾值電壓Vth_ovp通過第二跨導放大器GM2生成I_sink電流給電容器C放電;如果I_source>I_sink,則電容器C上的電壓Vramp上升;在脈寬調變(PWM)生成模組輸出的控制信號(即,第3圖中的脈寬調變(PWM)波形)為低電平(即,系統功率開關1062MOSFET截止且電感器L1退磁)時開關K1截止,此時只有來自參考信號生成模組的參考信號Vth_ovp通過第二跨導放大器GM2生成I_sink電流給電容器C放電,電容器C上的電壓Vramp下降。 As shown in FIG. 4, the DC voltage V BULK obtained by rectifying the AC input voltage V AC by the AC rectifying element 202 is divided by the resistors R1 and R2 in the resistor divider element 204, thereby generating the switch control element 206. a voltage signal at the control element terminal VIN; a modulation signal output by the pulse width modulation (PWM) generation module (ie, the pulse width modulation (PWM waveform) in FIG. 3 is high level (ie, system power) When the switch 1062 is turned on, the switch K1 is turned on, and the voltage signal at the first control element terminal VIN of the switch control element 206 generates an I_source current to charge the capacitor C through the first transconductance amplifier GM1, and the OVP threshold from the reference signal generation module. The voltage Vth_ovp generates an I_sink current to discharge the capacitor C through the second transconductance amplifier GM2; if I_source>I_sink, the voltage Vramp on the capacitor C rises; in the pulse width modulation (PWM) generation module outputs a control signal (ie, 3) The pulse width modulation (PWM) waveform is low (ie, the system power switch 1062 MOSFET is turned off and the inductor L1 is demagnetized). The switch K1 is turned off. At this time, only the reference signal from the reference signal generation module is used. Vth_ovp generates an I_sink current through the second transconductance amplifier GM2 to discharge the capacitor C, and the voltage Vramp on the capacitor C drops.
在電感器L1每次退磁結束後,通過比較器COMP1比較Vramp電壓和OVP閾值電壓Vth_ovp來判斷是否需要觸發過壓保護(OVP)(例如,如果Vramp高於Vth_ovp,則觸發OVP)。每次比較結束後,通過重置單元將電容器C上的電壓Vramp強行重定到Vth_ovp。 After each demagnetization of the inductor L1 is completed, the comparator COMP1 compares the Vramp voltage with the OVP threshold voltage Vth_ovp to determine whether overvoltage protection (OVP) needs to be triggered (eg, if Vramp is higher than Vth_ovp, OVP is triggered). After each comparison, the voltage Vramp on the capacitor C is forcibly reset to Vth_ovp by the reset unit.
這裡,開關控制元件206的第一控制元件端子VIN處的 電壓信號可以根據公式(5)得出。 Here, at the first control element terminal VIN of the switch control element 206 The voltage signal can be derived from equation (5).
當電流輸出元件208的兩個輸出端之間的輸出電壓VOUT處於臨界OVP電壓(VOUT_OVP)時,在對電感器L1進行充電和放電的每個週期中TON時間內對電容器C的充電電壓和在退磁時間內對電容器C的放電電壓相等(如公式(6)所示):
從以上所述可知,通過在對電感器L1進行充電和放電的每個週期中電感器L1退磁結束時比較Vramp和Vth_ovp,並且在Vramp高於Vth_ovp時觸發OVP(即,立即關閉開關控制元件206的第二控制元件端子GATE的輸出),可以實現高精度的過壓保護。這裡,臨界OVP電壓VOUT_OVP可以是電流輸出元件206中的輸出電容Cout的額定電壓,可以根據臨界OVP電壓VOUT_OVP和出OVP閾值電壓Vth_ovp預先計算出所需要的R1和R2比例。 As can be seen from the above, Vramp and Vth_ovp are compared by the end of the demagnetization of the inductor L1 in each cycle of charging and discharging the inductor L1, and the OVP is triggered when Vramp is higher than Vth_ovp (ie, the switch control element 206 is immediately turned off). The output of the second control element terminal GATE can realize high-precision overvoltage protection. Here, the critical OVP voltage V OUT — OVP may be the rated voltage of the output capacitor Cout in the current output element 206, and the required R1 and R2 ratios may be pre-calculated according to the critical OVP voltage V OUT — OVP and the OVP threshold voltage V th — ovp .
可以看出,這裡公開了這樣一種輸出電壓控制方法包括:利用表徵一個或多個LED是否處於工作狀態的控制信號生成輸出電壓檢測信號(即,Vramp);將輸出電壓檢測信號指示的電壓與參考信號指示的電壓(即,Vth_ovp)進行比較,並根據比較結果判斷輸出電壓是否高於預定電壓值;在輸出電壓高於預定電壓值的情況下,利用控制信號(即,上述調製信號)關閉系統功率開關1062(即,上述MOSFET)。 It can be seen that there is disclosed an output voltage control method comprising: generating an output voltage detection signal (ie, Vramp) using a control signal characterizing whether one or more LEDs are in an active state; and outputting a voltage and reference indicated by the output voltage detection signal The voltage indicated by the signal (ie, Vth_ovp) is compared, and it is judged according to the comparison result whether the output voltage is higher than a predetermined voltage value; and when the output voltage is higher than the predetermined voltage value, the system is turned off by using the control signal (ie, the above-mentioned modulation signal) Power switch 1062 (ie, the MOSFET described above).
本領域技術人員將理解,還存在可用于實現本發明實施例的更多可選實施方式和改進方式,並且上述實施方式和示例僅是一個或多個實施例的說明。因此,本發明的範圍僅由所附權利要求書限制。 Those skilled in the art will appreciate that there are many more alternative embodiments and improvements that can be used to implement the embodiments of the present invention, and that the above-described embodiments and examples are merely illustrative of one or more embodiments. Therefore, the scope of the invention is limited only by the appended claims.
200‧‧‧系統 200‧‧‧ system
D1‧‧‧二極體 D1‧‧‧ diode
202‧‧‧交流整流元件 202‧‧‧AC rectifier components
COUT‧‧‧輸出電容 COUT‧‧‧ output capacitor
208‧‧‧電流輸出元件 208‧‧‧current output components
204‧‧‧電阻分壓元件 204‧‧‧Resistor voltage dividing element
VAC‧‧‧交流輸入電壓 VAC‧‧‧AC input voltage
206‧‧‧開關控制元件 206‧‧‧Switch control components
VBULK‧‧‧直流電壓 VBULK‧‧‧ DC voltage
204-1‧‧‧第一分壓元件端子 204-1‧‧‧First voltage divider terminal
202-1‧‧‧第一整流元件端子 202-1‧‧‧First rectifying element terminal
204-2‧‧‧第二分壓元件端子 204-2‧‧‧Second voltage divider terminal
202-2‧‧‧第二整流元件端子 202-2‧‧‧Second rectifier component terminal
204-3‧‧‧第三分壓元件端子 204-3‧‧‧ Third voltage divider terminal
202-3‧‧‧第三整流元件端子 202-3‧‧‧3rd rectifying element terminal
208-1‧‧‧第一輸出元件端子 208-1‧‧‧First output component terminal
202-4‧‧‧第四整流元件端子 202-4‧‧‧4th rectifying element terminal
208-2‧‧‧第二輸出元件端子 208-2‧‧‧second output component terminal
VIN‧‧‧第一控制元件端子 VIN‧‧‧First control element terminal
208-3‧‧‧第三輸出元件端子 208-3‧‧‧third output component terminal
GATE‧‧‧(第二控制元件)端子 GATE‧‧ (second control element) terminal
208-4‧‧‧第四輸出元件端子 208-4‧‧‧fourth output component terminal
CS‧‧‧(第三控制元件)端子 CS‧‧‧ (third control element) terminal
208-5‧‧‧第五輸出元件端子 208-5‧‧‧5th output component terminal
GND‧‧‧第四控制元件端子 GND‧‧‧4th control element terminal
RS‧‧‧感測電阻器 RS‧‧‧Sense Resistors
VDD‧‧‧第五控制元件端子 VDD‧‧‧ fifth control element terminal
R1、R2、R3‧‧‧電阻器 R1, R2, R3‧‧‧ resistors
VVIN‧‧‧電壓信號 VVIN‧‧‧ voltage signal
L1‧‧‧電感器 L1‧‧‧Inductors
C1‧‧‧電容器 C1‧‧‧ capacitor
1062‧‧‧系統功率開關 1062‧‧‧System Power Switch
VOUT_PK‧‧‧電流輸出元件208的兩個輸出端之間的輸出電壓VOUT的最大值 The maximum value of the output voltage VOUT between the two outputs of the VOUT_PK‧‧ current output element 208
TON‧‧‧系統功率開關1062金屬氧化物半導體場效應晶體(MOSFET)處於導通狀態的持續時間 TON‧‧‧System Power Switch 1062 Metal Oxide Semiconductor Field Effect Crystal (MOSFET) is in the on state for the duration
TOFF‧‧‧為系統功率開關1062金屬氧化物半導體場效應晶體(MOSFET)處於截止狀態的持續時間 TOFF‧‧‧ is the duration of the system power switch 1062 metal oxide semiconductor field effect transistor (MOSFET) in the off state
Claims (9)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201510705470.2A CN105357794B (en) | 2015-10-27 | 2015-10-27 | System for providing from output current to one or more light emitting diodes |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI578847B true TWI578847B (en) | 2017-04-11 |
TW201715916A TW201715916A (en) | 2017-05-01 |
Family
ID=55333614
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105100307A TWI578847B (en) | 2015-10-27 | 2016-01-06 | A system for providing an output current to one or more light emitting diodes |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN105357794B (en) |
TW (1) | TWI578847B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105392231B (en) * | 2015-12-03 | 2017-10-31 | 昂宝电子(上海)有限公司 | System for providing from output current to one or more light emitting diodes |
CN107529242B (en) * | 2016-06-22 | 2019-06-21 | 华润矽威科技(上海)有限公司 | A kind of LED drive circuit and method of equalization efficiency and power factor |
CN107529241B (en) * | 2016-06-22 | 2019-06-21 | 华润矽威科技(上海)有限公司 | A kind of linear Constant-power LED drive circuit of single hop and method |
CN106686831B (en) * | 2017-02-24 | 2019-03-05 | 上海晶丰明源半导体股份有限公司 | Output open circuit protects circuit, controllable silicon light modulation LED drive system and method |
CN110446293A (en) * | 2018-05-04 | 2019-11-12 | 台达电子工业股份有限公司 | Light-emitting component drive apparatus and its driving method |
CN115190682B (en) * | 2022-09-07 | 2022-12-20 | 深圳利普芯微电子有限公司 | Overvoltage protection circuit and LED drive power supply |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201320814A (en) * | 2011-11-15 | 2013-05-16 | 昂寶電子(上海)有限公司 | Led lighting systems and methods for constant current control in various operation modes |
CN103155703A (en) * | 2010-09-29 | 2013-06-12 | 欧司朗股份有限公司 | Circuit arrangement for operating at least two semiconductor light sources |
TW201515514A (en) * | 2012-11-12 | 2015-04-16 | 昂寶電子(上海)有限公司 | Systems and methods for dimming control using triac dimmers |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8493139B2 (en) * | 2011-11-17 | 2013-07-23 | Analog Devices, Inc. | Low noise auto-zero circuits for amplifiers |
CN104918392B (en) * | 2015-07-10 | 2018-03-16 | 昂宝电子(上海)有限公司 | System for providing from output current to one or more light emitting diodes |
-
2015
- 2015-10-27 CN CN201510705470.2A patent/CN105357794B/en active Active
-
2016
- 2016-01-06 TW TW105100307A patent/TWI578847B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103155703A (en) * | 2010-09-29 | 2013-06-12 | 欧司朗股份有限公司 | Circuit arrangement for operating at least two semiconductor light sources |
TW201320814A (en) * | 2011-11-15 | 2013-05-16 | 昂寶電子(上海)有限公司 | Led lighting systems and methods for constant current control in various operation modes |
CN103781256A (en) * | 2011-11-15 | 2014-05-07 | 昂宝电子(上海)有限公司 | LED illuminating system and LED illuminating method for controlling constant currents in various operation modes |
TW201515514A (en) * | 2012-11-12 | 2015-04-16 | 昂寶電子(上海)有限公司 | Systems and methods for dimming control using triac dimmers |
Also Published As
Publication number | Publication date |
---|---|
CN105357794A (en) | 2016-02-24 |
CN105357794B (en) | 2017-10-31 |
TW201715916A (en) | 2017-05-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI578847B (en) | A system for providing an output current to one or more light emitting diodes | |
TWI583120B (en) | A system and method for providing an output current to one or more light emitting diodes | |
TWI596874B (en) | System controller and method for a power converter | |
US8890440B2 (en) | Circuits and methods for driving light sources | |
TWI616115B (en) | Linear light emitting diode driver and control method thereof | |
TWI578852B (en) | A system for providing an output current to one or more light emitting diodes | |
TWI468068B (en) | Light source driving circuit, controller and method for controlling brightness of light source | |
WO2020001262A1 (en) | Led drive controller, led drive circuit, and led light-emitting device | |
US20120262087A1 (en) | Lighting device for solid-state light source and illumination apparatus including same | |
US9136767B2 (en) | Switching power-supply device | |
JP6256839B2 (en) | Light emitting diode drive device and semiconductor device | |
US9661711B2 (en) | Multi-function pin for light emitting diode (LED) driver | |
JP2007059635A (en) | Light emitting diode driving device and semiconductor device for driving light emitting diode | |
TWI509963B (en) | Constant current controller without current sense and method for controlling the current of a power supply | |
JP2012023277A (en) | Light emitting diode drive device and semiconductor device for light emitting diode drive | |
TWI584099B (en) | Current control circuits | |
US9370069B2 (en) | Multi-function pin for light emitting diode (LED) driver | |
US9763294B2 (en) | Lighting device and lighting fixture using same | |
US9306383B2 (en) | Low current protection circuit | |
TW201320813A (en) | Light source apparatus and driving apparatus thereof | |
KR20170099843A (en) | Non-isolated power supply device | |
JP6365162B2 (en) | Power supply device and lighting device | |
US9320106B2 (en) | Lighting device and luminaire using the same | |
TWI418125B (en) | Switched-mode power supplies and control methods thereof | |
TWM485511U (en) | LED driver circuit |