TWI578094B - Optical image stabilization mechanism - Google Patents

Optical image stabilization mechanism Download PDF

Info

Publication number
TWI578094B
TWI578094B TW105113394A TW105113394A TWI578094B TW I578094 B TWI578094 B TW I578094B TW 105113394 A TW105113394 A TW 105113394A TW 105113394 A TW105113394 A TW 105113394A TW I578094 B TWI578094 B TW I578094B
Authority
TW
Taiwan
Prior art keywords
coil
optical image
magnetic
frame
magnetic element
Prior art date
Application number
TW105113394A
Other languages
Chinese (zh)
Other versions
TW201809848A (en
Inventor
詹益良
徐尚榆
Original Assignee
台灣東電化股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 台灣東電化股份有限公司 filed Critical 台灣東電化股份有限公司
Priority to CN201610334792.5A priority Critical patent/CN106856553B/en
Priority to US15/361,742 priority patent/US10126564B2/en
Priority to JP2016238759A priority patent/JP6346933B6/en
Application granted granted Critical
Publication of TWI578094B publication Critical patent/TWI578094B/en
Publication of TW201809848A publication Critical patent/TW201809848A/en
Priority to US16/157,612 priority patent/US11067823B2/en

Links

Description

光學影像防震機構 Optical image anti-shock mechanism

本發明係關於一種防震機構,特別係關於一種用以承載一鏡頭之光學影像防震機構。 The invention relates to an anti-vibration mechanism, in particular to an optical image anti-vibration mechanism for carrying a lens.

一般相機、攝影機或行動電話常會受到外力撞擊而導致其內部光學系統晃動,此時將容易造成光路徑偏移而使得拍攝之影像模糊不清。習知專利文獻TW I457693揭露了一種光學影像防震裝置,當自動對焦時,其內部線圈通電後會與對應的磁鐵產生作用,使得與線圈固定之鏡頭承載部可沿鏡頭之光軸方向移動以達到自動對焦的效果,其中在該光學影像防震裝置內更設有X軸及Y軸位移感測器,藉此可感測光軸於X軸與Y軸方向之位置,進而可分別透過對應於X軸和Y軸之線圈和磁鐵產生電磁感應,以調整鏡頭到正確的位置,如此一來便能修正光軸於X軸和Y軸方向的水平偏移,以達到防震效果並可獲取較佳之影像品質。然而,受到線圈以及與其對應之磁鐵的尺寸限制,傳統的防震裝置往往難以更進一步地縮小其體積。 In general, a camera, a camera, or a mobile phone is often subjected to an external force, causing the internal optical system to sway, which may easily cause the light path to shift and the captured image may be blurred. The optical image anti-shock device is disclosed in the patent document TW I457693. When the auto-focusing is performed, the internal coil is energized to interact with the corresponding magnet, so that the lens-carrying portion fixed to the coil can be moved along the optical axis of the lens to achieve The effect of autofocus, wherein an X-axis and a Y-axis displacement sensor are further disposed in the optical image anti-vibration device, thereby sensing the position of the optical axis in the X-axis and the Y-axis direction, and then respectively transmitting corresponding to the X-axis And the Y-axis coil and magnet generate electromagnetic induction to adjust the lens to the correct position, so that the horizontal offset of the optical axis in the X-axis and Y-axis directions can be corrected to achieve shockproof effect and obtain better image quality. . However, due to the size limitations of the coil and the corresponding magnet, it is often difficult to reduce the volume of the conventional anti-vibration device.

為了克服前述習知問題點,本發明提供一種光學影像防震機構,包括可用以承載一鏡頭之一承載座、一框架、一基板、一第一線圈、一第二線圈、一位移感測元件、一第一磁性元件、 一第二磁性元件以及一第三磁性元件。前述框架活動地連接前述承載座與前述基板。前述第一線圈設置於承載座之一側,前述第二線圈設置於基板上,前述第一、第二磁性元件設置在框架上並對應前述第一線圈,且兩者的磁極方向相反。前述第三磁性元件設置在框架上並對應於第二線圈,且前述位移感測元件設置在基板上,用以感測鏡頭與基板之間的相對位移。 In order to overcome the above problems, the present invention provides an optical image anti-shock mechanism, which can be used to carry a lens carrier, a frame, a substrate, a first coil, a second coil, a displacement sensing component, a first magnetic element, a second magnetic element and a third magnetic element. The frame is movably coupled to the carrier and the substrate. The first coil is disposed on one side of the carrier, the second coil is disposed on the substrate, and the first and second magnetic elements are disposed on the frame and correspond to the first coil, and the magnetic poles of the two are opposite in direction. The third magnetic element is disposed on the frame and corresponds to the second coil, and the displacement sensing element is disposed on the substrate for sensing a relative displacement between the lens and the substrate.

於一實施例中,前述第一磁性元件與第二磁性元件構成一體成形之一多極性永久磁鐵。 In one embodiment, the first magnetic element and the second magnetic element form a multi-polar permanent magnet integrally formed.

於一實施例中,第三磁性元件具有一永久磁鐵。 In one embodiment, the third magnetic element has a permanent magnet.

於一實施例中,前述第三磁性元件的體積小於或等於前述多極性永久磁鐵。 In one embodiment, the volume of the third magnetic element is less than or equal to the multi-polar permanent magnet.

於一實施例中,前述承載座具有一凸出部,形成於承載座之一側,且前述第一線圈圍繞前述凸出部。 In an embodiment, the carrier has a protrusion formed on one side of the carrier, and the first coil surrounds the protrusion.

於一實施例中,前述第一線圈包含一上半部以及一下半部,其中上半部對應於前述第一磁性元件,並且下半部對應於前述第二磁性元件。 In one embodiment, the first coil includes an upper half and a lower half, wherein the upper half corresponds to the first magnetic element and the lower half corresponds to the second magnetic element.

於一實施例中,當一電流通入前述第一線圈時,第一線圈與第一、第二磁性元件之間產生電磁感應,使承載座相對於基板沿鏡頭之光軸方向移動。 In one embodiment, when a current flows into the first coil, electromagnetic induction is generated between the first coil and the first and second magnetic elements to move the carrier relative to the substrate in the optical axis direction of the lens.

於一實施例中,前述第一線圈具有橢圓形結構。 In an embodiment, the first coil has an elliptical structure.

於一實施例中,前述基板大致垂直於鏡頭之光軸。 In one embodiment, the substrate is substantially perpendicular to the optical axis of the lens.

於一實施例中,前述框架具有矩形、六邊形或八邊形結構。 In an embodiment, the aforementioned frame has a rectangular, hexagonal or octagonal structure.

10‧‧‧承載座 10‧‧‧Hosting

11‧‧‧凸出部 11‧‧‧Protruding

20‧‧‧框架 20‧‧‧Frame

30‧‧‧基板 30‧‧‧Substrate

40‧‧‧上簧片 40‧‧‧Upper reed

50‧‧‧下簧片 50‧‧‧Reed

60‧‧‧吊環線 60‧‧‧ring loop

70‧‧‧光軸 70‧‧‧ optical axis

C1‧‧‧第一線圈 C1‧‧‧first coil

C11‧‧‧上半部 Upper part of C11‧‧‧

C12‧‧‧下半部 C12‧‧‧ lower half

C21、C22‧‧‧第二線圈 C21, C22‧‧‧ second coil

M1‧‧‧第一磁性元件 M1‧‧‧First magnetic component

M2‧‧‧第二磁性元件 M2‧‧‧Second magnetic component

M3‧‧‧第三磁性元件 M3‧‧‧ third magnetic component

M4‧‧‧多極磁鐵 M4‧‧‧ multipole magnet

N、S‧‧‧磁極 N, S‧‧‧ magnetic pole

R‧‧‧空間 R‧‧‧ Space

第1圖表示本發明一實施例之光學影像防震機構爆炸圖。 Fig. 1 is a view showing an exploded view of an optical image vibration-proof mechanism according to an embodiment of the present invention.

第2圖表示第1圖之光學影像防震機構組合後之示意圖。 Fig. 2 is a schematic view showing the combination of the optical image anti-vibration mechanism of Fig. 1.

第3圖表示沿第2圖中A-A線段之剖視圖。 Fig. 3 is a cross-sectional view taken along line A-A of Fig. 2.

第4圖表示第一、第二、第三磁性元件M1、M2、M3和第一線圈C1之間的位置關係示意圖。 Fig. 4 is a view showing the positional relationship between the first, second, and third magnetic members M1, M2, M3 and the first coil C1.

第5圖表示以一體成形之方式製作單一個多極性永久磁鐵M4以取代前述第一、第二磁性元件M1、M2之示意圖。 Fig. 5 is a view showing a single one-pole multi-pole permanent magnet M4 formed in an integral manner to replace the first and second magnetic elements M1 and M2.

第6圖表示第5圖中之多極性永久磁鐵M4的示意圖。 Fig. 6 is a view showing the multipolar permanent magnet M4 in Fig. 5.

第7圖表示沿第2圖中B-B線段之剖視圖。 Fig. 7 is a cross-sectional view taken along line B-B of Fig. 2.

茲配合圖式說明本發明之較佳實施例。 The preferred embodiment of the invention is described in conjunction with the drawings.

有關本發明之前述及其他技術內容、特點與功效,在以下配合參考圖式之一較佳實施例的詳細說明中,將可清楚的呈現。以下實施例中所提到的方向用語,例如:上、下、左、右、前或後等,僅是參考附加圖式的方向。因此,使用的方向用語是用來說明並非用來限制本發明。 The above and other technical contents, features and advantages of the present invention will be apparent from the following detailed description of the preferred embodiments. The directional terms mentioned in the following embodiments, such as up, down, left, right, front or back, etc., are only directions referring to the additional drawings. Therefore, the directional terminology used is for the purpose of illustration and not limitation.

首先請一併參閱第1~3圖,本發明一實施例之光學影像防震機構例如可設置於一相機(或具有照相功能之電子裝置)內,其可用以防止或抑制因相機震動而導致拍攝之影像模糊不清的問題。由第1~3圖中可以看出,前述光學影像防震機構主要包含有一承載座10、一矩形之框架20、一基板30、一上簧片40、一下簧片50、複數個吊環線60、複數個第一線圈C1、複數個第二線圈C21、C22、複數個第一磁性元件M1、複數個第二磁性元件M2以 及複數個第三磁性元件M3,其中前述第一、第二線圈C1、C21、C22可具有橢圓形結構。應了解的是,在基板30下方另設有一與其相互固定之影像感測器(例如CCD,未圖示),此外在承載座10內部則設有對應於前述影像感測器之一光學鏡頭(未圖示),其中基板30係大致垂直於鏡頭之一光軸70,藉由前述光學鏡頭和影像感測器,可用以執行拍照或攝影功能,且透過在光學鏡頭和影像感測器之間設置前述光學影像防震機構,更能即時修正鏡頭及其光軸70於X軸與Y軸方向的水平偏移,以達到防震效果並獲取較佳之影像品質。 First, please refer to FIG. 1 to FIG. 3 together. The optical image anti-vibration mechanism according to an embodiment of the present invention can be disposed, for example, in a camera (or an electronic device having a camera function), which can be used to prevent or suppress shooting caused by camera shake. The problem of blurred images. As can be seen from the first to third figures, the optical image anti-vibration mechanism mainly includes a carrier 10, a rectangular frame 20, a substrate 30, an upper reed 40, a lower reed 50, and a plurality of rings 50. a plurality of first coils C1, a plurality of second coils C21, C22, a plurality of first magnetic elements M1, and a plurality of second magnetic elements M2 And a plurality of third magnetic elements M3, wherein the first and second coils C1, C21, and C22 may have an elliptical structure. It should be understood that an image sensor (such as a CCD, not shown) fixed to the substrate 30 is disposed under the substrate 30, and an optical lens corresponding to one of the image sensors is disposed inside the carrier 10 ( Not shown), wherein the substrate 30 is substantially perpendicular to the optical axis 70 of the lens, and the optical lens and the image sensor can be used to perform a photographing or photographing function, and between the optical lens and the image sensor. By setting the optical image anti-vibration mechanism, the horizontal offset of the lens and its optical axis 70 in the X-axis and Y-axis directions can be corrected in time to achieve the anti-vibration effect and obtain better image quality.

如第1圖所示,前述承載座10具有可容納一光學鏡頭之空間R,一對第一磁性元件M1具有長條型結構,設置於框架20上,且該對第一磁性元件M1係位於前述光軸70之相反側,其中第一磁性元件M1之磁極方向(N-S)與X軸方向平行,此外一對第二磁性元件M2同樣具有長條型結構,並設置於框架20上,其分別位在前述第一磁性元件M1下方,且第二磁性元件M2之縱軸方向(平行於Y軸)與第一磁性元件M1之縱軸方向(平行於Y軸)平行,其中第二磁性元件M2之磁極方向(N-S)與X軸方向平行,但與第一磁性元件M1的磁極方向相反。由第1圖可以看出,一對第三磁性元件M3具有長條型結構,其係設置於框架20上,其中第三磁性元件M3位於前述光軸70之相反側,且第三磁性元件M3之縱軸方向(平行於X軸)、前述第一磁性元件M1之縱軸方向(平行於Y軸)以及光軸70之方向(平行於Z軸)相互垂直,其中第三磁性元件M3之磁極方向(N-S)與Y軸方向平行,且第三磁性元件M3和前述第一、第二磁性元件M1、M2係分別設置於矩形框架20上的不同側邊。應了解的是,本 實施例中之框架20係具有矩形或正方形結構,然而其亦可具有六邊形或八邊形等多邊形結構,兩個第三磁性元件M3僅需設置在前述框架20的相反側即可。 As shown in FIG. 1, the carrier 10 has a space R for accommodating an optical lens. The pair of first magnetic elements M1 have an elongated structure and are disposed on the frame 20, and the pair of first magnetic elements M1 are located. The opposite side of the optical axis 70, wherein the magnetic pole direction (NS) of the first magnetic element M1 is parallel to the X-axis direction, and the pair of second magnetic elements M2 also have an elongated structure and are disposed on the frame 20, respectively Positioned below the first magnetic element M1, and the longitudinal axis direction (parallel to the Y axis) of the second magnetic element M2 is parallel to the longitudinal axis direction (parallel to the Y axis) of the first magnetic element M1, wherein the second magnetic element M2 The magnetic pole direction (NS) is parallel to the X-axis direction, but opposite to the magnetic pole direction of the first magnetic element M1. As can be seen from Fig. 1, a pair of third magnetic elements M3 have an elongated structure which is disposed on the frame 20, wherein the third magnetic element M3 is located on the opposite side of the optical axis 70, and the third magnetic element M3 The longitudinal axis direction (parallel to the X axis), the longitudinal axis direction of the first magnetic element M1 (parallel to the Y axis), and the direction of the optical axis 70 (parallel to the Z axis) are perpendicular to each other, wherein the magnetic pole of the third magnetic element M3 The direction (NS) is parallel to the Y-axis direction, and the third magnetic element M3 and the aforementioned first and second magnetic elements M1, M2 are respectively disposed on different sides of the rectangular frame 20. It should be understood that this The frame 20 in the embodiment has a rectangular or square structure, however, it may have a polygonal structure such as a hexagon or an octagon, and the two third magnetic elements M3 need only be disposed on the opposite side of the frame 20.

請繼續參閱第1~3圖,前述承載座10之相反側分別形成有一凸出部11,其中第一線圈C1圍繞凸出部11並固定於承載座10上。如第1、3圖所示,前述第一線圈C1係包含一上半部C11以及一下半部C12,其中上半部C11對應於第一磁性元件M1,下半部C12則對應於第二磁性元件M2。此外,兩組分別沿Y軸以及X軸方向延伸且成對之第二線圈C21、C22係設置於基板30上,並分別對應於前述第二、第三磁性元件M2、M3,其中一位移感測元件(未圖示)係嵌設於基板30上,用以感測承載座10與基板30之間的相對運動。 Continuing to refer to FIGS. 1 to 3 , the opposite sides of the carrier 10 are respectively formed with a protrusion 11 , wherein the first coil C1 surrounds the protrusion 11 and is fixed to the carrier 10 . As shown in the first and third figures, the first coil C1 includes an upper half C11 and a lower half C12, wherein the upper half C11 corresponds to the first magnetic element M1 and the lower half C12 corresponds to the second magnetic Element M2. In addition, the two groups respectively extend along the Y-axis and the X-axis direction, and the pair of second coils C21 and C22 are disposed on the substrate 30, and respectively correspond to the second and third magnetic elements M2 and M3, wherein a sense of displacement A measuring component (not shown) is embedded on the substrate 30 for sensing relative motion between the carrier 10 and the substrate 30.

需特別說明的是,前述承載座10與上簧片40連接,且上簧片40與框架20連接,此外承載座10與下簧片50連接,且下簧片50與框架20連接。如此一來,當框架20受到外力撞擊時,承載座10可透過上、下簧片40、50而相對框架20沿Z軸方向位移,進而可於垂直方向(Z軸方向)上產生一緩衝之效果,以避免承載座10及容置於其中之鏡頭損壞。另外,於本實施例中,吊環線60之一端例如可以透過焊錫連接框架20,另一端則例如可以透過焊錫連接基板30,如此一來當框架20受到外力撞擊時,可使框架20相對基板30於XY平面上位移,進而可於水平方向上產生一緩衝之效果。 It should be particularly noted that the carrier 10 is connected to the upper reed 40, and the upper reed 40 is coupled to the frame 20. Further, the carrier 10 is coupled to the lower reed 50, and the lower reed 50 is coupled to the frame 20. In this way, when the frame 20 is impacted by an external force, the carrier 10 can be displaced in the Z-axis direction relative to the frame 20 through the upper and lower reeds 40, 50, thereby generating a buffer in the vertical direction (Z-axis direction). The effect is to avoid damage to the carrier 10 and the lens housed therein. In addition, in this embodiment, one end of the loop wire 60 can be connected to the frame 20 through solder, for example, and the other end can be connected to the substrate 30 through solder, for example, so that when the frame 20 is impacted by an external force, the frame 20 can be opposite to the substrate 30. Displacement in the XY plane, which in turn produces a buffering effect in the horizontal direction.

具體而言,由於前述承載座10係透過上簧片40以及下簧片50連接框架20,且上簧片40與下簧片50係以彈性材料製成(例如金屬彈片),故可限制承載座10之移動方向與鏡頭之光軸70方向平行。此外,由於基板30係以吊環線60連接框架20,且吊環線60 係以彈性材質製成(例如具彈性之金屬桿件),故可透過吊環線60支撐框架20、承載座10以及設置於框架20上第一、第二、第三磁性元件M1、M2、M3,並藉此形成一懸吊機構,故當框架20受外力撞擊時,框架20可相對基板30於XY平面上位移,以達到緩衝之效果。 Specifically, since the carrier 10 is connected to the frame 20 through the upper reed 40 and the lower reed 50, and the upper reed 40 and the lower reed 50 are made of an elastic material (for example, a metal dome), the load can be restricted. The direction of movement of the seat 10 is parallel to the direction of the optical axis 70 of the lens. In addition, since the substrate 30 is connected to the frame 20 by a loop wire 60, and the loop wire 60 Made of elastic material (for example, elastic metal rod), the frame 20, the carrier 10 and the first, second and third magnetic elements M1, M2, M3 disposed on the frame 20 can be supported by the eyelet 60. And thereby forming a suspension mechanism, so that when the frame 20 is struck by an external force, the frame 20 can be displaced relative to the substrate 30 in the XY plane to achieve the buffering effect.

需特別說明的是,當光學影像防震機構處於一對焦狀態時,可自一電源通入電流至第一線圈C1,使第一磁性元件M1以及第二磁性元件M2對第一線圈C1產生電磁感應,此時與第一線圈C1固定之承載座10便可沿光軸70方向移動,以快速地使鏡頭達到對焦效果。 It should be particularly noted that when the optical image anti-vibration mechanism is in a focus state, current can be input from a power source to the first coil C1, so that the first magnetic element M1 and the second magnetic element M2 generate electromagnetic induction to the first coil C1. At this time, the carrier 10 fixed to the first coil C1 can be moved in the direction of the optical axis 70 to quickly bring the lens into focus.

另一方面,當使用者震動相機而造成光軸70相對於基板30的偏移時,可經由基板30上之位移感測元件感測框架20與基板30間的水平位移(平行於XY平面),以得知當下光軸70的位置與正確位置間的偏移量;更進一步地,當欲將鏡頭和其光軸70修正至正確位置時,可通入電流至第二線圈C21中,使第二線圈21和與其位置對應之第二磁性元件M2間產生電磁感應,以驅使第二磁性元件M2及框架20相對基板30沿X軸方向位移。同理,當通入電流至另一組第二線圈C22時,第二線圈C22會和與其位置相對應之第三磁性元件M3產生電磁感應,並使第三磁性元件M3及框架20相對基板30沿Y軸方向移動,藉此可控制鏡頭和其光軸70於XY平面上位移,以達到偏移補償以及防震之效果。 On the other hand, when the user vibrates the camera to cause the optical axis 70 to be offset relative to the substrate 30, the horizontal displacement (parallel to the XY plane) between the frame 20 and the substrate 30 can be sensed via the displacement sensing element on the substrate 30. In order to know the offset between the position of the optical axis 70 and the correct position; further, when the lens and its optical axis 70 are to be corrected to the correct position, current can be applied to the second coil C21, so that Electromagnetic induction is generated between the second coil 21 and the second magnetic element M2 corresponding thereto to drive the second magnetic element M2 and the frame 20 to be displaced in the X-axis direction with respect to the substrate 30. Similarly, when a current is applied to the other set of second coils C22, the second coil C22 generates electromagnetic induction with the third magnetic element M3 corresponding to the position thereof, and the third magnetic element M3 and the frame 20 are opposed to the substrate 30. Moving in the Y-axis direction, thereby controlling the displacement of the lens and its optical axis 70 in the XY plane to achieve offset compensation and shock-proof effects.

接著請參閱第4圖,前述第一磁性元件M1以及第二磁性元件M2可採用兩個永久磁鐵,並將其磁極以相反方向設置;或者,如第5、6圖所示,也可以將前述第一、第二磁性元件M1、M2 透過一體成形之方式製作而成為單一個多極性永久磁鐵M4,其中由第6圖中可以清楚看見多極性永久磁鐵M4的上、下兩部分在平行於X軸的方向上係形成有方向相反的兩組磁極(N-S、S-N),藉此可以單一磁鐵取代兩個獨立之磁鐵,以減少材料成本與組裝程序,進而可大幅降低製作成本。接著請參閱第7圖,前述第三磁性元件M3可採用永久磁鐵,由於其位置只需對應於基板30上的第二線圈C22,且在承載座10上不必額外設置與第三磁性元件M3相對應之其他線圈,故可有效地縮減光學影像防震機構於Y軸方向上的尺寸,以使光學影像防震機構的整體體積下降,進而使其可達到小型化、輕量化以及更加節能省電之目的。 Next, referring to FIG. 4, the first magnetic element M1 and the second magnetic element M2 may adopt two permanent magnets and have their magnetic poles disposed in opposite directions; or, as shown in FIGS. 5 and 6, the foregoing may also be used. First and second magnetic elements M1, M2 It is produced by integral molding to form a single multi-polar permanent magnet M4, wherein it can be clearly seen from FIG. 6 that the upper and lower portions of the multi-polar permanent magnet M4 are formed in opposite directions in a direction parallel to the X-axis. Two sets of magnetic poles (NS, SN), which can replace two independent magnets with a single magnet to reduce material cost and assembly procedure, which can greatly reduce production costs. Referring to FIG. 7 , the third magnetic element M3 can adopt a permanent magnet. Since its position only needs to correspond to the second coil C22 on the substrate 30, it is not necessary to additionally provide a third magnetic element M3 on the carrier 10. Corresponding to other coils, the size of the optical image anti-vibration mechanism in the Y-axis direction can be effectively reduced, so that the overall volume of the optical image anti-vibration mechanism is reduced, thereby making it possible to achieve miniaturization, weight reduction, and more energy saving. .

雖然本發明以前述之較佳實施例揭露如上,然其並非限定本發明,本發明所屬技術領域中具有通常知識者,於不脫離本發明之精神和範圍內,當可做些許更動與潤飾,因此本發明保護範圍當視後附之申請專利範圍所界定者為準。 While the present invention has been described above in terms of the preferred embodiments thereof, it is not intended to limit the invention, and the invention may be practiced without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

10‧‧‧承載座 10‧‧‧Hosting

11‧‧‧凸出部 11‧‧‧Protruding

20‧‧‧框架 20‧‧‧Frame

30‧‧‧基板 30‧‧‧Substrate

40‧‧‧上簧片 40‧‧‧Upper reed

50‧‧‧下簧片 50‧‧‧Reed

60‧‧‧吊環線 60‧‧‧ring loop

70‧‧‧光軸 70‧‧‧ optical axis

C1‧‧‧第一線圈 C1‧‧‧first coil

C11‧‧‧上半部 Upper part of C11‧‧‧

C12‧‧‧下半部 C12‧‧‧ lower half

C21、C22‧‧‧第二線圈 C21, C22‧‧‧ second coil

M1‧‧‧第一磁性元件 M1‧‧‧First magnetic component

M2‧‧‧第二磁性元件 M2‧‧‧Second magnetic component

M3‧‧‧第三磁性元件 M3‧‧‧ third magnetic component

R‧‧‧空間 R‧‧‧ Space

Claims (10)

一種光學影像防震機構,用以承載一鏡頭,包括:一承載座,其中該鏡頭設置於該承載座內;一框架,活動地連接該承載座並具有一多邊形結構;一基板,活動地連接該框架;一位移感測元件,設置於該基板上,用以感測該鏡頭與該基板之間的相對移動;一第一線圈,設置於該承載座上;一第二線圈,設置於該基板上;一第一磁性元件,設置於該框架上並對應該第一線圈;一第二磁性元件,設置於該框架上並對應該第一、第二線圈,其中該第二磁性元件的磁極方向與該第一磁性元件的磁極方向相反,當一電流通入該第一線圈時,該第一線圈與該第一、第二磁性元件之間產生電磁感應,使該承載座相對於該基板沿該鏡頭之一光軸方向移動;以及一第三磁性元件,設置於該框架上並對應該第二線圈,當一電流通入該第二線圈時,該第二線圈與該第二、第三磁性元件之間產生電磁感應,使該框架相對於該基板沿大致垂直於該光軸之方向移動。 An optical image anti-vibration mechanism for carrying a lens, comprising: a carrier, wherein the lens is disposed in the carrier; a frame movably connecting the carrier and having a polygonal structure; a substrate movably connecting the lens a displacement sensing component disposed on the substrate for sensing relative movement between the lens and the substrate; a first coil disposed on the carrier; a second coil disposed on the substrate a first magnetic element disposed on the frame and corresponding to the first coil; a second magnetic element disposed on the frame and corresponding to the first and second coils, wherein the magnetic direction of the second magnetic element In opposite to the magnetic pole direction of the first magnetic element, when a current flows into the first coil, electromagnetic induction is generated between the first coil and the first and second magnetic elements, so that the carrier is opposite to the substrate One of the lenses moves in the direction of the optical axis; and a third magnetic element is disposed on the frame and corresponds to the second coil. When a current flows into the second coil, the second coil and the second coil Electromagnetic induction between the three magnetic elements, so that the substrate is moved relative to the frame in a direction substantially perpendicular to the direction of the optical axis. 如申請專利範圍第1項所述之光學影像防震機構,其中該第一磁性元件與該第二磁性元件構成一體成形之一多極性永久磁鐵。 The optical image anti-vibration mechanism according to claim 1, wherein the first magnetic element and the second magnetic element form a multi-polar permanent magnet integrally formed. 如申請專利範圍第2項所述之光學影像防震機構,其中該第三磁性元件具有一永久磁鐵。 The optical image anti-vibration mechanism of claim 2, wherein the third magnetic element has a permanent magnet. 如申請專利範圍第3項所述之光學影像防震機構,其中該第三磁性元件的體積小於或等於該多極性永久磁鐵。 The optical image anti-vibration mechanism of claim 3, wherein the third magnetic element has a volume less than or equal to the multi-polar permanent magnet. 如申請專利範圍第1項所述之光學影像防震機構,其中該承載座具有一凸出部,形成於該承載座之一側,且該第一線圈圍繞該凸出部。 The optical image anti-vibration mechanism of claim 1, wherein the carrier has a protrusion formed on one side of the carrier, and the first coil surrounds the protrusion. 如申請專利範圍第1或2項所述之光學影像防震機構,其中該第一線圈包含一上半部以及一下半部,其中該上半部對應於該第一磁性元件,並且該下半部對應於該第二磁性元件。 The optical image anti-vibration mechanism of claim 1 or 2, wherein the first coil comprises an upper half and a lower half, wherein the upper half corresponds to the first magnetic element, and the lower half Corresponding to the second magnetic element. 如申請專利範圍第1項所述之光學影像防震機構,其中該光學影像防震機構更包括:一對長條形之第一磁性元件,設置於該框架上,且位於該光軸之相反側;一對長條型之第二磁性元件,設置於該框架上,並分別位在該些第一磁性元件下方,其中該些第二磁性元件之縱軸方向平行於該些第一磁性元件之縱軸方向。 The optical image anti-vibration mechanism of claim 1, wherein the optical image anti-vibration mechanism further comprises: a pair of elongated first magnetic elements disposed on the frame and located on opposite sides of the optical axis; a pair of strip-shaped second magnetic elements are disposed on the frame and are respectively located under the first magnetic elements, wherein longitudinal axes of the second magnetic elements are parallel to the longitudinal of the first magnetic elements Axis direction. 如申請專利範圍第7項所述之光學影像防震機構,其中該光學影像防震機構更包括:一對長條型之第三磁性元件,設置於該框架上,並位於該光軸之相反側,其中該些第三磁性元件之縱軸方向、該些第一磁性元件之縱軸方向以及該光軸之方向相互垂直。 The optical image anti-vibration mechanism of claim 7, wherein the optical image anti-vibration mechanism further comprises: a pair of elongated third magnetic elements disposed on the frame and located on opposite sides of the optical axis, The longitudinal axis direction of the third magnetic elements, the longitudinal axis direction of the first magnetic elements, and the direction of the optical axis are perpendicular to each other. 如申請專利範圍第1項所述之光學影像防震機構,其中該第一線圈具有橢圓形結構。 The optical image anti-vibration mechanism of claim 1, wherein the first coil has an elliptical structure. 如申請專利範圍第1項所述之光學影像防震機構,其中該框架具有矩形、六邊形或八邊形結構。 The optical image anti-vibration mechanism of claim 1, wherein the frame has a rectangular, hexagonal or octagonal structure.
TW105113394A 2015-12-09 2016-04-29 Optical image stabilization mechanism TWI578094B (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201610334792.5A CN106856553B (en) 2015-12-09 2016-05-19 Optical image shockproof mechanism
US15/361,742 US10126564B2 (en) 2015-12-09 2016-11-28 Optical image stabilization mechanism
JP2016238759A JP6346933B6 (en) 2015-12-09 2016-12-08 Optical image stabilization mechanism
US16/157,612 US11067823B2 (en) 2015-12-09 2018-10-11 Optical image stabilization mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201562265106P 2015-12-09 2015-12-09
US62/265,106 2015-12-09

Publications (2)

Publication Number Publication Date
TWI578094B true TWI578094B (en) 2017-04-11
TW201809848A TW201809848A (en) 2018-03-16

Family

ID=59241030

Family Applications (1)

Application Number Title Priority Date Filing Date
TW105113394A TWI578094B (en) 2015-12-09 2016-04-29 Optical image stabilization mechanism

Country Status (1)

Country Link
TW (1) TWI578094B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10386595B2 (en) 2017-01-25 2019-08-20 Tdk Taiwan Corp. Support mechanism
US10412285B2 (en) 2017-01-09 2019-09-10 Tdk Taiwan Corp. Lens driving mechanism
US11256059B2 (en) 2017-01-25 2022-02-22 Tdk Taiwan Corp. Driving module

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114114589B (en) * 2020-08-28 2022-11-22 宁波舜宇光电信息有限公司 Camera module with focusing, anti-shake and optical axis correcting functions

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140009631A1 (en) * 2012-07-06 2014-01-09 Apple Inc. Vcm ois actuator module
TW201443546A (en) * 2013-05-10 2014-11-16 Tdk Taiwan Corp Optical image stabilizer
US20150015729A1 (en) * 2012-06-07 2015-01-15 Asahi Kasei Microdevices Corporation Position detection apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150015729A1 (en) * 2012-06-07 2015-01-15 Asahi Kasei Microdevices Corporation Position detection apparatus
US20140009631A1 (en) * 2012-07-06 2014-01-09 Apple Inc. Vcm ois actuator module
TW201443546A (en) * 2013-05-10 2014-11-16 Tdk Taiwan Corp Optical image stabilizer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10412285B2 (en) 2017-01-09 2019-09-10 Tdk Taiwan Corp. Lens driving mechanism
US10386595B2 (en) 2017-01-25 2019-08-20 Tdk Taiwan Corp. Support mechanism
US11256059B2 (en) 2017-01-25 2022-02-22 Tdk Taiwan Corp. Driving module
US11774700B2 (en) 2017-01-25 2023-10-03 Tdk Taiwan Corp. Driving module

Also Published As

Publication number Publication date
TW201809848A (en) 2018-03-16

Similar Documents

Publication Publication Date Title
CN106856553B (en) Optical image shockproof mechanism
JP6046680B2 (en) The camera module
US10527818B2 (en) Lens driving device, camera module, and camera mounting device
KR102643946B1 (en) Lens driving device, camera module, and camera-mounted device
JP6166417B2 (en) Image stabilizer
TWI693463B (en) Lens driving device with shaking correction function
KR102588578B1 (en) Camera module
TWI457693B (en) Optical image stabilizer
US20140368914A1 (en) Lens driving device with 3d elastic support structure
US20150201128A1 (en) Lens Array Device
TWI578094B (en) Optical image stabilization mechanism
TWI435109B (en) Elastic supporting structure and optical image stabilizer having the elastic supporting structure
KR20160041919A (en) Lens holder drive device, camera module, and portable terminal provided with camera
KR20160040571A (en) Lens holder drive device, camera module, and portable terminal provided with camera
JP2013127492A (en) Lens actuator
KR20120099945A (en) Suspension wire for compensation hand vibration and image photographing device having the same
JP6461071B2 (en) Twin lens module
KR20170141523A (en) Actuator for ois with integral yoke
CN107783352B (en) Optical system
TWI615650B (en) Twin-lens module
US9915828B2 (en) Lens driving device
KR101668605B1 (en) Camera actuator for portable device
KR101609351B1 (en) Actuator for ois
KR101499841B1 (en) Camera actuator with auto focusing and optical image stabilizer for portable device
KR101813393B1 (en) Camera module