TWI576717B - Dimensional biometric identification system and method - Google Patents
Dimensional biometric identification system and method Download PDFInfo
- Publication number
- TWI576717B TWI576717B TW105123638A TW105123638A TWI576717B TW I576717 B TWI576717 B TW I576717B TW 105123638 A TW105123638 A TW 105123638A TW 105123638 A TW105123638 A TW 105123638A TW I576717 B TWI576717 B TW I576717B
- Authority
- TW
- Taiwan
- Prior art keywords
- data
- reference data
- person
- microprocessor unit
- unit
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 32
- 238000004364 calculation method Methods 0.000 claims description 49
- 238000004458 analytical method Methods 0.000 claims description 24
- 210000003811 finger Anatomy 0.000 description 35
- 230000000694 effects Effects 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 238000005070 sampling Methods 0.000 description 7
- 241000282414 Homo sapiens Species 0.000 description 4
- 238000012795 verification Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 2
- 230000005021 gait Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 210000003813 thumb Anatomy 0.000 description 2
- 238000005242 forging Methods 0.000 description 1
- 210000004936 left thumb Anatomy 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Landscapes
- Collating Specific Patterns (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Description
本發明係有關於生物特徵辨識的技術,特別是指一種具有三維生物特徵辨識功能的系統及方法。 The present invention relates to techniques for biometric identification, and more particularly to a system and method having a three-dimensional biometric identification function.
近年來,由於在各種環境及場合中的人員生命安全防護與相關的門禁安全管制等日益趨增之素,使得生物特徵辨識的技術亦漸漸地受到重視。而若以人類作為生物特徵辨識的技術中,大致上可區分為靜態生物特徵辨識技術以及動態生物特徵辨識技術;其中,該靜態生物特徵辨識技術即如熟知的指紋辨識(fingerprint)、人臉辨識或虹膜辨識(irises)、掌紋辨識(palm print)、耳朵辨識或靜脈紋路辨識(vein pattern)等等;其中,該動態生物特徵辨識技術即如個人步態辨識(gait)、個人姿態辨識(gesture)、個人聲音辨識或個人簽名辨識等等;以上皆是生物特徵辨識技術中數據資料的取樣來源及進行其分析運算。 In recent years, biometrics technology has gradually gained attention due to the increasing importance of human life safety protection and related access control security in various environments and occasions. However, if human beings are used as biometrics, they can be roughly classified into static biometrics and dynamic biometrics. Among them, static biometrics are known as fingerprints and face recognition. Or iris recognition, palm print, ear recognition or vein pattern, etc., wherein the dynamic biometric identification technique is such as personal gait recognition (gait), personal gesture recognition (gesture) ), personal voice recognition or personal signature identification, etc.; all of the above are the sampling sources of data in biometric identification technology and carry out its analysis and calculation.
而基於前述所提之生物特徵辨識的既有技術,本發明係將揭露如何藉由分析運算人類手掌的各項特徵數據後,用以作為生物特徵辨識的依據,以期提升生物辨識的安全性。 Based on the prior art of the biometric identification mentioned above, the present invention will disclose how to use the feature data of the human palm to analyze and calculate the biometric identification basis, so as to improve the safety of the biometric identification.
有鑒於前,本發明之目的乃在於提供一種具有三維生物特 徵辨識功能的系統,係藉由分析運算人類手掌之各指節與基準點的相對位置、各手指與基準點的相對厚度、各指節的寬度與各手指間併攏的間距位置等數據後,係用以作為三維生物特徵辨識的依據,進而增加偽造生物辨識特徵的困難度,提升生物辨識的安全性,藉以達成本發明所欲預期的功效及其目的。 In view of the foregoing, the object of the present invention is to provide a three-dimensional bio-specific The system for identifying the function is to analyze and calculate the relative position of each phalanx of the human palm and the reference point, the relative thickness of each finger and the reference point, the width of each knuckle, and the position of the distance between the fingers. It is used as a basis for three-dimensional biometric identification, thereby increasing the difficulty of forging biometric features and improving the security of biometrics, thereby achieving the desired effect and purpose of the present invention.
為達到上述目的,本發明提供一種三維生物特徵辨識系統,其包含有:一影像感測裝置、一微處理器單元以及一顯示單元,該微處理器單元係各別電性連接於該影像感測裝置與該顯示單元;而該影像感測裝置係用以感測擷取一欲辨識人員之手掌的影像數據,進而傳輸至該微處理器單元;該微處理器單元具有一第一演算邏輯以及一第二演算邏輯,該第一演算邏輯與該第二演算邏輯係可供該微處理器執行。 In order to achieve the above object, the present invention provides a three-dimensional biometric identification system, comprising: an image sensing device, a microprocessor unit, and a display unit, wherein the microprocessor unit is electrically connected to the image sense Measuring device and the display unit; and the image sensing device is configured to sense image data of a palm of an intended person to be transmitted to the microprocessor unit; the microprocessor unit has a first calculation logic And a second calculation logic, the first calculation logic and the second calculation logic are available to the microprocessor.
其中,該微處理器單元之第一演算邏輯係用以分析運算所擷取之辨識人員手掌的影像數據中的各指節與基準點的相對位置後,進而產生一第一基準數據。 The first calculation logic of the microprocessor unit is configured to analyze the relative position of each knuckle and the reference point in the image data of the identification person's palm captured by the operation, and then generate a first reference data.
其中,該微處理器單元之第二演算邏輯係用以分析運算所擷取之辨識人員手掌的影像數據中的各手指與基準點的相對厚度後,進而產生一第二基準數據。 The second calculation logic of the microprocessor unit is configured to analyze the relative thickness of each finger and the reference point in the image data of the identification person's palm captured by the operation, and then generate a second reference data.
其中,該微處理器單元係依據該第一基準數據與該第二基準數據來進行分析比對,進而產生一辨識數據並傳輸至該顯示單元中予以顯示,用以辨識人員之特徵及身分的依據。 The microprocessor unit performs an analysis comparison according to the first reference data and the second reference data, thereby generating an identification data and transmitting it to the display unit for display, for identifying characteristics and identity of the person. in accordance with.
本發明更提供一種三維生物特徵辨識方法,其步驟包含有: The invention further provides a three-dimensional biometric identification method, the steps of which include:
S1、提供一影像感測裝置、一微處理器單元以及一顯示單元,該微處理器單元係各別電性連接於該影像感測裝置與該顯示單元;該 微處理器單元係具有一第一演算邏輯以及一第二演算邏輯,而該第一演算邏輯與該第二演算邏輯係可供該微處理器執行。 S1, providing an image sensing device, a microprocessor unit, and a display unit, the microprocessor unit being electrically connected to the image sensing device and the display unit; The microprocessor unit has a first arithmetic logic and a second arithmetic logic, and the first arithmetic logic and the second arithmetic logic are executable by the microprocessor.
S2、將一欲辨識人員之手掌靠近該影像感測裝置一預定距離,該影像感測裝置係用以感測擷取該辨識人員之手掌的影像數據,進而傳輸至該微處理器單元。 S2: A palm of an intended person is placed close to the image sensing device for a predetermined distance, and the image sensing device is configured to sense image data of the palm of the identification person and transmit the image data to the microprocessor unit.
S3、該微處理器單元之第一演算邏輯係用以分析運算所擷取之辨識人員手掌的影像數據中的各指節與基準點的相對位置後,進而產生一第一基準數據。 S3. The first calculation logic of the microprocessor unit is configured to analyze the relative position of each knuckle and the reference point in the image data of the identification person's palm captured by the operation, and then generate a first reference data.
S4、該微處理器單元之第二演算邏輯係用以分析運算所擷取之辨識人員手掌的影像數據中的各手指與基準點的相對厚度後,進而產生一第二基準數據。 S4. The second calculation logic of the microprocessor unit is configured to analyze the relative thickness of each finger and the reference point in the image data of the identification person's palm, and then generate a second reference data.
S5、該微處理器單元係依據該第一基準數據與該第二基準數據來進行分析比對,進而產生一辨識數據並傳輸至該顯示單元中予以顯示,用以辨識人員之特徵及身分的依據。 S5. The microprocessor unit performs an analysis comparison according to the first reference data and the second reference data, and then generates an identification data and transmits the same to the display unit for display to identify the characteristics and identity of the person. in accordance with.
10、10A、10B‧‧‧三維生物特徵辨識系統 10, 10A, 10B‧‧‧3D biometric identification system
100、100A、100B‧‧‧手掌 100, 100A, 100B‧‧‧ palm
20‧‧‧影像感測裝置 20‧‧‧Image sensing device
200‧‧‧待測平台 200‧‧‧ Platform to be tested
30、30A、30B‧‧‧微處理器單元 30, 30A, 30B‧‧‧Microprocessor unit
31‧‧‧第一演算邏輯 31‧‧‧First calculus logic
33‧‧‧第二演算邏輯 33‧‧‧Second calculation logic
35A‧‧‧第三演算邏輯 35A‧‧‧ Third calculus logic
37B‧‧‧第四演算邏輯 37B‧‧‧ fourth calculus logic
40、40A、40B‧‧‧顯示單元 40, 40A, 40B‧‧‧ display unit
50、50A、50B‧‧‧資料庫單元 50, 50A, 50B‧‧‧ database unit
B1‧‧‧基準點 B1‧‧‧ benchmark
B2‧‧‧基準點 B2‧‧‧ benchmark
D1‧‧‧第一基準數據 D1‧‧‧ first benchmark data
D2‧‧‧第二基準數據 D2‧‧‧ second benchmark data
D3‧‧‧第三基準數據 D3‧‧‧ third benchmark data
D4‧‧‧第四基準數據 D4‧‧‧ fourth benchmark data
I1、I2、I3‧‧‧辨識數據 I1, I2, I3‧‧‧ identification data
S1、S2、S3、S4、S5‧‧‧步驟 S1, S2, S3, S4, S5‧‧ steps
X‧‧‧步驟 X‧‧‧ steps
Y‧‧‧步驟 Y‧‧‧ steps
SN1‧‧‧身分認證正確訊號 SN1‧‧‧ identity authentication correct signal
SN2‧‧‧身分認證錯誤訊號 SN2‧‧‧ identity authentication error signal
SN3‧‧‧終止訊號 SN3‧‧‧End signal
a1、a2、a3、a4、a5‧‧‧假想線 A1, a2, a3, a4, a5‧‧‧ imaginary line
d1、d2、d3‧‧‧厚度差 D1, d2, d3‧‧ ‧ thickness difference
w1、w2‧‧‧寬度 W1, w2‧‧‧ width
第1圖係為本發明第一較佳實施例之系統架構示意圖。 1 is a schematic diagram of a system architecture of a first preferred embodiment of the present invention.
第2圖係為本發明第一較佳實施例之應用示意圖。 Figure 2 is a schematic view showing the application of the first preferred embodiment of the present invention.
第3圖係為本發明第一較佳實施例之取樣示意圖。 Figure 3 is a schematic view of sampling of the first preferred embodiment of the present invention.
第4圖係為本發明第一較佳實施例之取樣第一分析示意圖。 Figure 4 is a schematic view showing the first analysis of the sampling according to the first preferred embodiment of the present invention.
第5圖係為本發明第一較佳實施例之取樣第二分析示意圖。 Figure 5 is a schematic view showing the second analysis of the sampling according to the first preferred embodiment of the present invention.
第6圖係為本發明之第一流程步驟示意圖。 Figure 6 is a schematic diagram showing the first process steps of the present invention.
第7圖係為本發明第二較佳實施例之系統架構示意圖。 Figure 7 is a schematic diagram of the system architecture of the second preferred embodiment of the present invention.
第8圖係為本發明第二較佳實施例之取樣分析示意圖。 Figure 8 is a schematic diagram of sampling analysis of a second preferred embodiment of the present invention.
第9圖係為本發明之第二流程步驟示意圖。 Figure 9 is a schematic diagram showing the second process steps of the present invention.
第10圖係為本發明第三較佳實施例之系統架構示意圖。 Figure 10 is a schematic diagram of the system architecture of the third preferred embodiment of the present invention.
第11圖係為本發明第三較佳實施例之取樣第一分析示意圖。 Figure 11 is a schematic view showing the first analysis of the sampling according to the third preferred embodiment of the present invention.
第12圖係為本發明第三較佳實施例之取樣第二分析示意圖。 Figure 12 is a schematic view showing the second analysis of sampling according to the third preferred embodiment of the present invention.
第13圖係為本發明之第三流程步驟示意圖。 Figure 13 is a schematic diagram showing the third process steps of the present invention.
以下將藉由所列舉之實施例並配合所隨附之圖式,詳述本發明之結構特性與其預期功效,首先,以下闡述之各實施例及圖式中,相同之參考號碼,係表示相同或類似之元素、元件、物件、結構、系統、架構、裝置、流程、方法或步驟,合先敘明。 In the following, the structural characteristics of the present invention and their intended effects will be described in detail by way of the examples and the accompanying drawings. First, in the embodiments and drawings, the same reference numerals are used to indicate the same. Or elements, components, objects, structures, systems, structures, devices, processes, methods, or steps that are similar.
請先參閱第1至5圖,本發明係提供一種三維生物特徵辨識系統10,其包含有:一影像感測裝置20、一微處理器單元30、一顯示單元40以及一資料庫單元50;而該微處理器單元30係各別電性連接於該影像感測裝置20、該顯示單元40與該資料庫單元50。 Please refer to the first to fifth figures, the present invention provides a three-dimensional biometric identification system 10, comprising: an image sensing device 20, a microprocessor unit 30, a display unit 40 and a database unit 50; The microprocessor unit 30 is electrically connected to the image sensing device 20, the display unit 40, and the database unit 50.
該影像感測裝置20係用以感測擷取一欲辨識人員之手掌100的影像數據,進而傳輸至該微處理器單元30。而於本實施例中,該影像感測裝置20係為包含但不限於RGB-D彩色-深度感測器、Kinect series、SoftKinetic DS325或PMD’s nimble UX等等,其感測生物特徵的距離已精進在幾公分至數十公分之間,而所感測擷取的影像數據係為具有彩色影像及深度的數據。 The image sensing device 20 is configured to sense image data of a palm 100 of an intended person to be transmitted to the microprocessor unit 30. In this embodiment, the image sensing device 20 includes, but is not limited to, an RGB-D color-depth sensor, a Kinect series, a Soft Kinetic DS325, or a PMD's nimble UX, etc., and the distance between the sensing biometrics has been improved. Between a few centimeters and tens of centimeters, the image data captured is sensed as data with color images and depth.
該微處理器單元30係具有一第一演算邏輯31以及一第二演 算邏輯33,該第一演算邏輯31與該第二演算邏輯33係可供該微處理器30執行。 The microprocessor unit 30 has a first calculation logic 31 and a second performance The logic 33, the first calculation logic 31 and the second calculation logic 33 are available to the microprocessor 30 for execution.
其中,該第一演算邏輯31係用以分析運算所擷取之辨識人員手掌100的影像數據中的各指節與基準點B1的相對位置後(而於本實施例中,如第3及4圖所示,該基準點B1係設定於中指的頂端位置,但非以此為限,亦可設定於任一指節的位置。),進而產生一第一基準數據D1,意即分析運算每根手指的水平指節紋路與該基準點B1的相對位置(包含距離、角度、光澤或膚色差等)。 The first calculation logic 31 is used to analyze the relative positions of the knuckles and the reference point B1 in the image data of the identification person's palm 100 captured by the calculation (in the present embodiment, as in the third and fourth embodiments) As shown in the figure, the reference point B1 is set at the top position of the middle finger, but not limited thereto, and may be set at the position of any knuckle.), thereby generating a first reference data D1, which means that the analysis operation is performed. The relative position of the horizontal finger knuckle of the root finger to the reference point B1 (including distance, angle, gloss or skin color difference, etc.).
其中,該第二演算邏輯33係用以分析運算所擷取之辨識人員手掌100的影像數據中的各手指與基準點B2的相對厚度後(而於本實施例中,如第2及5圖所示,當該欲辨識人員之手掌100放置於一待測平台200上時,係以該待測平台200中的一點設定為該基準點B2,但非以此為限。),進而產生一第二基準數據D2,意即分析運算各手指之各個指節與該基準點B2的相對厚度差(例如:定義左手大拇指第一節指腹與該基準點B2的相對厚度差為d1,又定義左手食指第一節指腹與該基準點B2的相對厚度差為d2,再定義左手中指第一節指腹與該基準點B2的相對厚度差為d3等)。而該第二演算邏輯33係先將該欲辨識人員之手掌100的彩色影像數據轉換為灰階影像數據,並透過一加速穩健特徵演算邏輯(speeded-up robust features,SURF,用以提供一個穩健的三維圖像識別和描述的演算邏輯)來產生可代表厚度或深度的影像特徵數據。 The second calculus logic 33 is configured to analyze the relative thickness of each finger in the image data of the identifiable person's palm 100 and the reference point B2 (in the present embodiment, as shown in FIGS. 2 and 5). As shown in the figure, when the palm 100 of the person to be identified is placed on a platform to be tested 200, a point in the platform to be tested 200 is set as the reference point B2, but not limited thereto. The second reference data D2, that is, the relative thickness difference between each knuckle of each finger and the reference point B2 is calculated and analyzed (for example, the relative thickness difference between the first node finger and the reference point B2 of the left thumb is defined as d1, and Defining the relative thickness difference between the first index finger and the reference point B2 of the left index finger is d2, and then defining the relative thickness difference between the first finger finger and the reference point B2 of the left middle finger is d3, etc.). The second calculus logic 33 first converts the color image data of the palm of the person to be identified into grayscale image data, and transmits the sounded-up robust features (SURF) to provide a robust image. The three-dimensional image recognition and description logic is used to generate image feature data representative of thickness or depth.
該微處理器單元30係依據該第一基準數據D1與該第二基準數據D2來進行分析比對,進而產生一辨識數據I1並傳輸至該顯示單元40中予以顯示,用以辨識人員之特徵及身分的依據。 The microprocessor unit 30 performs an analysis comparison according to the first reference data D1 and the second reference data D2, and then generates an identification data I1 and transmits it to the display unit 40 for display to identify the characteristics of the person. And the basis of identity.
該資料庫單元50係用以存取該欲辨識人員之手掌100的彩 色影像數據以及該辨識數據I1。而於本實施例中,該資料庫單元50係為包含但不限於記憶體、硬碟、固態硬碟、記憶卡、隨身碟或隨身硬碟等裝置。 The database unit 50 is used to access the color of the palm 100 of the person to be identified. Color image data and the identification data I1. In this embodiment, the database unit 50 is a device including, but not limited to, a memory, a hard disk, a solid state hard disk, a memory card, a flash drive, or a portable hard disk.
而當該欲辨識人員為複數時,係可透過本發明所提供之三維生物特徵辨識系統10來各別判斷各該欲辨識人員之手掌100中各個特徵辨識,並且將各該辨識數據I1儲存至該資料庫單元50中各別對應的儲存空間中,以便於日後進行校驗、分析、辨識等程序的比對數據。 When the person to be identified is plural, the three-dimensional biometric system 10 provided by the present invention can separately determine each feature identification in the palm 100 of the person to be identified, and store each identification data I1 to The respective storage spaces in the database unit 50 are arranged to facilitate comparison data of programs such as verification, analysis, and identification in the future.
而於本實施例中,其相較於習知技術的技術特徵與其顯著功效乃在於:首先,透過該三維生物特徵辨識系統10之影像感測裝置20來感測擷取欲辨識人員之手掌100的影像數據,並傳輸至該微處理器單元30中;接著,藉由執行該第一演算邏輯31來分析運算所擷取之辨識人員手掌100的影像數據中的各指節與該基準點B1的相對位置後,進而產生該第一基準數據D1;接著,藉由執行該第二演算邏輯33來分析運算所擷取之辨識人員手掌100的影像數據中的各手指與該基準點B2的相對厚度後,進而產生該第二基準數據D2;接著,該微處理器單元30將依據該第一基準數據D1與該第二基準數據D2來進行分析比對,進而產生該辨識數據I1並傳輸至該顯示單元40中予以顯示,用以作為判斷該欲辨識人員之手掌100中各個特徵辨識的依據。較佳地,該微處理器單元30係該欲辨識人員之手掌100的彩色影像數據以及該辨識數據I1儲存至該資料庫單元50中,進而完成初始化建置歸檔程序。 In the present embodiment, the technical features of the prior art are compared with the significant features of the prior art. First, the image sensing device 20 of the three-dimensional biometric identification system 10 is used to sense the palm of the person to be identified. The image data is transmitted to the microprocessor unit 30. Then, by performing the first calculation logic 31, the knuckles in the image data of the identification person's palm 100 captured by the operation are analyzed and the reference point B1 is calculated. After the relative position, the first reference data D1 is generated; then, by performing the second calculation logic 33, the relative value of each finger in the image data of the identification person's palm 100 captured by the calculation is compared with the reference point B2. After the thickness, the second reference data D2 is further generated; then, the microprocessor unit 30 performs an analysis comparison according to the first reference data D1 and the second reference data D2, thereby generating the identification data I1 and transmitting to the identification data I1. The display unit 40 is displayed for use as a basis for determining the identification of each feature in the palm 100 of the person to be identified. Preferably, the microprocessor unit 30 stores the color image data of the palm 100 of the person to be identified and the identification data I1 in the database unit 50, thereby completing the initialization of the archive program.
而當欲藉由該三維生物特徵辨識系統10來進行該欲辨識人員的身份認證時,首先,透過該影像感測裝置20來進行感測擷取該欲辨識人員之手掌100的彩色影像數據,進而傳輸至該微處理器單元30;接著,該微處理器單元30將依據該欲辨識人員之手掌100的彩色影像數據,來與原先已完成初始化建置歸檔程序且儲存於該資料庫單元50中的該辨識數據I1進 行校驗、分析與辨識的比對程序;接著,倘若當該微處理器單元30經分析比對該欲辨識人員之手掌100的彩色影像數據與該資料庫單元50之辨識數據I1二者數據相符時,則將傳輸一身分認證正確訊號SN1至該顯示單元40中予以顯示;倘若當該微處理器單元30經分析比對該欲辨識人員之手掌100的彩色影像數據與該資料庫單元50之辨識數據I1二者數據不相符時,則將傳輸一身分認證錯誤訊號SN2至該顯示單元40中予以顯示。 When the identity of the person to be identified is to be authenticated by the three-dimensional biometric system 10, firstly, the image sensing device 20 is used to sense the color image data of the palm 100 of the person to be identified. Further, the microprocessor unit 30 transmits the color image data of the palm 100 of the person to be identified to the original archive program and is stored in the database unit 50. The identification data I1 in Alignment procedure for line check, analysis and identification; then, if the microprocessor unit 30 analyzes data of both the color image data of the palm 100 of the person to be identified and the identification data I1 of the database unit 50 In the case of coincidence, an identity authentication correct signal SN1 is transmitted to the display unit 40 for display; if the microprocessor unit 30 is analyzed to compare the color image data of the palm 100 of the person to be identified with the database unit 50 When the identification data I1 does not match the data, an identity authentication error signal SN2 is transmitted to the display unit 40 for display.
較佳地,而當該三維生物特徵辨識系統10之微處理器單元30產生該身分認證錯誤訊號SN2達到一預定臨界次數(例如:3次以上)時,此時,該三維生物特徵辨識系統10之微處理器單元30將產生一終止訊號SN3,係用以終止該三維生物特徵辨識系統10任一構件的作動;藉以提升生物特徵辨識的安全性,進而達成本發明所預期之功效及其目的。 Preferably, when the microprocessor unit 30 of the three-dimensional biometric system 10 generates the identity authentication error signal SN2 to reach a predetermined critical number (for example, three times or more), the three-dimensional biometric system 10 is at this time. The microprocessor unit 30 will generate a termination signal SN3 for terminating the operation of any component of the three-dimensional biometric system 10, thereby improving the security of the biometric identification, thereby achieving the intended function and purpose of the present invention. .
以上為詮釋本發明之第一較佳實施例的技術特徵及其功效。其後,將繼續闡述可應用於本發明之第一較佳實施例的一種三維生物特徵辨識方法。 The above is a description of the technical features and effects of the first preferred embodiment of the present invention. Thereafter, a three-dimensional biometric identification method applicable to the first preferred embodiment of the present invention will be further explained.
請再參閱第6圖,係本發明所提供之一種三維生物特徵辨識方法,其步驟包含有: Please refer to FIG. 6 again, which is a three-dimensional biometric identification method provided by the present invention, and the steps thereof include:
S1步驟、提供一影像感測裝置20、一微處理器單元30以及一顯示單元40,該微處理器單元30係各別電性連接於該影像感測裝置20與該顯示單元40;該微處理器單元30係具有一第一演算邏輯31以及一第二演算邏輯33,而該第一演算邏輯31與該第二演算邏輯33係可供該微處理器30執行。 In the step S1, an image sensing device 20, a microprocessor unit 30, and a display unit 40 are provided. The microprocessor unit 30 is electrically connected to the image sensing device 20 and the display unit 40; The processor unit 30 has a first calculation logic 31 and a second calculation logic 33, and the first calculation logic 31 and the second calculation logic 33 are available to the microprocessor 30 for execution.
S2步驟、將一欲辨識人員之手掌靠近該影像感測裝置20一預定距離,該影像感測裝置20係用以感測擷取該辨識人員之手掌的影像數據,進而傳輸至該微處理器單元30。 In step S2, a palm of an intended person is placed close to the image sensing device 20 by a predetermined distance, and the image sensing device 20 is configured to sense image data of the palm of the identification person and transmit the image data to the microprocessor. Unit 30.
S3步驟、該微處理器單元30之第一演算邏輯31係用以分析運算所擷取之辨識人員手掌的影像數據中的各指節與基準點的相對位置後,進而產生一第一基準數據D1。 In step S3, the first calculation logic 31 of the microprocessor unit 30 is configured to analyze the relative position of each knuckle and the reference point in the image data of the identification person's palm captured by the operation, and then generate a first reference data. D1.
S4步驟、該微處理器單元30之第二演算邏輯33係用以分析運算所擷取之辨識人員手掌的影像數據中的各手指與基準點的相對厚度後,進而產生一第二基準數據D2。 In step S4, the second calculation logic 33 of the microprocessor unit 30 is configured to analyze the relative thickness of each finger and the reference point in the image data of the identification person's palm captured by the operation, and then generate a second reference data D2. .
S5步驟、而該微處理器單元30係依據該第一基準數據D1與該第二基準數據D2來進行分析比對,進而產生一辨識數據I1並傳輸至該顯示單元40中予以顯示,用以辨識人員之特徵及身分的依據。 In step S5, the microprocessor unit 30 performs an analysis comparison according to the first reference data D1 and the second reference data D2, thereby generating an identification data I1 and transmitting it to the display unit 40 for display. Identify the characteristics of the person and the basis of their identity.
而於該S5步驟中,係更包含有一資料庫單元50且電性連接於該微處理器單元30,而該資料庫單元50係用以存取該辨識人員之手掌100的彩色影像數據以及該辨識數據I1。 In the step S5, the database unit 50 is further connected to the microprocessor unit 30, and the database unit 50 is configured to access the color image data of the palm 100 of the identifier and the Identify the data I1.
緣此,藉以達到應用於本發明之第一較佳實施例的三維生物特徵辨識方法及其功效。其後,將繼續闡述本發明之第二較佳實施例的技術特徵及其功效。 Accordingly, the three-dimensional biometric identification method and its effects applied to the first preferred embodiment of the present invention are achieved. Hereinafter, the technical features and effects of the second preferred embodiment of the present invention will be further explained.
請再參閱第7及8圖,係本發明所提供之一種三維生物特徵辨識系統10A,主要係概同於前揭第一實施例,而其不同之處乃在於:該微處理器單元30A具有一第三演算邏輯35A並可供該微處理器30A執行;而第三演算邏輯35A係用以分析運算所擷取之辨識人員手掌100A的影像數據中的各指節的寬度後(例如:係分析運算出食指第一節寬度為w1,接著再分析運算出食指第二節寬度為w2等,以此類推直至分析運算出各個手指之各指節的寬度),進而產生一第三基準數據D3並傳輸至該微處理器單元30A;而該微處理器單元30A係依據該第一基準數據D1、該第二基準數據D2與該第三基準數據D3來進行分析比對,進而產生一辨識數據 I2並傳輸至該顯示單元40A中予以顯示,用以辨識人員特徵及身分的依據。 Please refer to FIGS. 7 and 8 , which are a three-dimensional biometric system 10A provided by the present invention, which is mainly related to the first embodiment, and the difference is that the microprocessor unit 30A has A third calculus logic 35A is available for execution by the microprocessor 30A; and a third calculus logic 35A is used to analyze the width of each knuckle in the image data of the identifiable person's palm 100A captured by the operation (eg, Analyze and calculate the width of the first section of the index finger is w1, and then analyze and calculate the width of the second section of the index finger to be w2, etc., and so on until the width of each knuckle of each finger is calculated and calculated, thereby generating a third reference data D3. And transmitting to the microprocessor unit 30A; and the microprocessor unit 30A performs analysis and comparison according to the first reference data D1, the second reference data D2, and the third reference data D3, thereby generating an identification data. I2 is transmitted to the display unit 40A for display to identify the characteristics of the person and the identity.
同樣地,倘若當該微處理器單元30A經分析比對該欲辨識人員之手掌100A的彩色影像數據與該資料庫單元50A之辨識數據I2二者數據相符時,則將傳輸一身分認證正確訊號SN1至該顯示單元40A中予以顯示;倘若當該微處理器單元30A經分析比對該欲辨識人員之手掌100A的彩色影像數據與該資料庫單元50A之辨識數據I2二者數據不相符時,則將傳輸一身分認證錯誤訊號SN2至該顯示單元40A中予以顯示。 Similarly, if the microprocessor unit 30A analyzes and matches the data of the color image data of the palm 100A of the person to be identified with the identification data I2 of the database unit 50A, an identity authentication correct signal will be transmitted. SN1 is displayed in the display unit 40A; if the microprocessor unit 30A is analyzed and does not match the data of the color image data of the palm 100A of the person to be identified and the identification data I2 of the database unit 50A, Then, an identity authentication error signal SN2 is transmitted to the display unit 40A for display.
同樣地,當該欲辨識人員為複數時,係可透過本發明所提供之三維生物特徵辨識系統10A來各別判斷各該欲辨識人員之手掌100A中各個特徵辨識,並且將各該辨識數據I2儲存至該資料庫單元50A中各別對應的儲存空間中,以便於日後進行校驗、分析、辨識等程序的比對數據。 Similarly, when the person to be identified is plural, each feature identification in the palm 100A of each of the persons to be identified can be individually determined by the three-dimensional biometric system 10A provided by the present invention, and each identification data I2 is determined. The storage is stored in the corresponding storage space in the database unit 50A, so that the comparison data of the program such as verification, analysis, and identification can be performed in the future.
以上為詮釋本發明之第二較佳實施例的技術特徵及其功效。其後,將繼續闡述可應用於本發明之第二較佳實施例的一種三維生物特徵辨識方法。 The above is a description of the technical features and effects of the second preferred embodiment of the present invention. Thereafter, a three-dimensional biometric identification method applicable to the second preferred embodiment of the present invention will be further explained.
請再參閱第9圖,係本發明所提供之一種三維生物特徵辨識方法,其主要步驟係概同於前揭第一實施例方法中的該S1步驟至該S5步驟,而其不同之處乃在於:其更包含有至少一步驟X,即該微處理器單元30A具有一第三演算邏輯35A並可供該微處理器30A執行;而該第三演算邏輯35A係用以分析運算所擷取之辨識人員手掌100A的影像數據中的各指節的寬度後,進而產生一第三基準數據D3並傳輸至該微處理器單元30A;而該微處理器單元30A係依據該第一基準數據D1、該第二基準數據D2與該第三基準數據D3來進行分析比對,進而產生一辨識數據I2並傳輸至該顯示單元40A中予以顯示,用以辨識人員之特徵及身分的依據。 Please refer to FIG. 9 again, which is a three-dimensional biometric identification method provided by the present invention. The main steps are the same as the S1 step to the S5 step in the method of the first embodiment, and the difference is The method further includes at least one step X, that is, the microprocessor unit 30A has a third calculation logic 35A and is executable by the microprocessor 30A; and the third calculation logic 35A is used for analyzing the operation. After identifying the width of each knuckle in the image data of the person's palm 100A, a third reference data D3 is generated and transmitted to the microprocessor unit 30A; and the microprocessor unit 30A is based on the first reference data D1. The second reference data D2 is compared with the third reference data D3 to generate an identification data I2 and transmitted to the display unit 40A for display to identify the characteristics of the person and the basis of the identity.
較佳地,該步驟X係可於該S2至該S4任一步驟之後執行;而當該步驟X為複數時,該步驟X係可介於該S2與該S3二步驟之間、該S3與該S4二步驟之間或該S4與該S5二步驟之間各別執行。而於本實施例中,係先執行該S4步驟,接著再執行該步驟X,最後再執行該S5步驟。 Preferably, the step X can be performed after any step S2 to S4; and when the step X is plural, the step X can be between the S2 and the S3 two steps, the S3 and The S4 two steps or between the S4 and the S5 two steps are performed separately. In the embodiment, the step S4 is performed first, then the step X is performed, and finally the step S5 is performed.
以上為詮釋本發明之第二較佳實施例系統及其方法的技術特徵及其功效。其後,將繼續闡述本發明之第三較佳實施例的技術特徵及其功效。 The above is a description of the technical features and effects of the second preferred embodiment system and method of the present invention. Hereinafter, the technical features and effects of the third preferred embodiment of the present invention will be further explained.
請再參閱第10至12圖,係本發明所提供之一種三維生物特徵辨識系統10B,主要概同於前揭第一、第二實施例,而其不同之處乃在於:該微處理器單元30B具有一第四演算邏輯37B並可供該微處理器30B執行;而該第四演算邏輯37B係用以分析運算所擷取之辨識人員手掌100B的影像數據中各手指間併攏的間距位置後(例如:首先,分別定義出各手指之間併攏後所劃分的假想線,係定義拇指與食指併攏後二者之間的假想線為a1,接著,分析運算出拇指與食指併攏後二者的間距值;係又定義食指與中指併攏後二者之間的假想線為a2,接著,分析運算出食指與中指併攏後二者的間距值;係又定義中指與無名指併攏後二者之間的假想線為a3,接著,分析運算出中指與無名指併攏後二者的間距值;係又定義無名指與尾指併攏後二者之間的假想線為a4,接著,分析運算出無名指與尾指併攏後二者的間距值;最後定義切齊尾指邊緣的假想線為a5。),進而產生一第四基準數據D4並傳輸至該微處理器單元30B;而該微處理器單元30B係依據該第一基準數據D1、該第二基準數據D2、該第三基準數據D3與該第四基準數據D4來進行分析比對,進而產生一辨識數據I3並傳輸至該顯示單元40B中予以顯示,用以辨識人員之特徵及身分的依據。 Please refer to FIG. 10 to FIG. 12 again, which is a three-dimensional biometric system 10B provided by the present invention, which is mainly similar to the first and second embodiments, and the difference is that the microprocessor unit 30B has a fourth arithmetic logic 37B and can be executed by the microprocessor 30B; and the fourth arithmetic logic 37B is used to analyze the pitch position of the fingers in the image data of the identification person palm 100B captured by the operation. (For example: firstly, define the imaginary line divided after the fingers are closed together, define the imaginary line between the thumb and the index finger and then succumb to a1, and then analyze and calculate the thumb and the index finger together. The spacing value; the imaginary line between the index finger and the middle finger is defined as a2, and then the distance between the index finger and the middle finger is calculated, and the distance between the middle finger and the ring finger is defined. The imaginary line is a3. Then, the distance between the middle finger and the ring finger is calculated and calculated. The imaginary line between the two is defined as a4, and then the ring finger is analyzed and calculated. The spacing value of the tail fingers after the closing of the tail; the imaginary line defining the edge of the trailing tail finger is a5.), thereby generating a fourth reference data D4 and transmitting to the microprocessor unit 30B; and the microprocessor unit 30B Performing an analysis comparison based on the first reference data D1, the second reference data D2, the third reference data D3, and the fourth reference data D4, thereby generating an identification data I3 and transmitting it to the display unit 40B. Display, the basis for identifying the characteristics and identity of the person.
同樣地,倘若當該微處理器單元30B經分析比對該欲辨識人 員之手掌100B的彩色影像數據與該資料庫單元50B之辨識數據I3二者數據相符時,則將傳輸一身分認證正確訊號SN1至該顯示單元40B中予以顯示;倘若當該微處理器單元30B經分析比對該欲辨識人員之手掌100B的彩色影像數據與該資料庫單元50B之辨識數據I3二者數據不相符時,則將傳輸一身分認證錯誤訊號SN2至該顯示單元40B中予以顯示。 Similarly, if the microprocessor unit 30B is analyzed and compared to the person to be identified When the color image data of the palm 100B of the player matches the data of the identification data I3 of the database unit 50B, an identity authentication correct signal SN1 is transmitted to the display unit 40B for display; if the microprocessor unit 30B When the analysis does not match the data of the color image data of the palm 100B of the person to be identified and the identification data I3 of the database unit 50B, an identity authentication error signal SN2 is transmitted to the display unit 40B for display.
同樣地,當該欲辨識人員為複數時,係可透過本發明所提供之三維生物特徵辨識系統10B來各別判斷各該欲辨識人員之手掌100B中各個特徵辨識,並且將各該辨識數據I3儲存至該資料庫單元50B中各別對應的儲存空間中,以便於日後進行校驗、分析、辨識等程序的比對數據。 Similarly, when the person to be identified is plural, each feature identification in the palm 100B of each of the persons to be identified can be individually determined through the three-dimensional biometric system 10B provided by the present invention, and each identification data I3 is determined. The storage is stored in the corresponding storage space in the database unit 50B, so that the comparison data of the program such as verification, analysis, and identification can be performed in the future.
以上為詮釋本發明之第三較佳實施例的技術特徵及其功效。其後,將繼續闡述可應用於本發明之第三較佳實施例的一種三維生物特徵辨識方法。 The above is a description of the technical features and effects of the third preferred embodiment of the present invention. Thereafter, a three-dimensional biometric identification method applicable to the third preferred embodiment of the present invention will be further explained.
請再參閱第13圖,係本發明所提供之一種三維生物特徵辨識方法,其主要步驟係概同於前揭第一、第二實施例方法中的該S1步驟至該S5步驟,而其不同之處乃在於:其更包含有至少一步驟Y,即該微處理器單元30B具有一第四演算邏輯37B並可供該微處理器30B執行;而該第四演算邏輯37B係用以分析運算所擷取之辨識人員手掌100B的影像數據中各手指間併攏的間距位置後,進而產生一第四基準數據D4並傳輸至該微處理器單元30B;而該微處理器單元30B係依據該第一基準數據D1、該第二基準數據D2、該第三基準數據D3與該第四基準數據D4來進行分析比對,進而產生一辨識數據I3並傳輸至該顯示單元40B中予以顯示,用以辨識人員之特徵及身分的依據。 Please refer to FIG. 13 again, which is a three-dimensional biometric identification method provided by the present invention, and the main steps are the same as the steps S1 to S5 in the methods of the first and second embodiments. The reason is that it further includes at least one step Y, that is, the microprocessor unit 30B has a fourth calculation logic 37B and is executable by the microprocessor 30B; and the fourth calculation logic 37B is used for analysis operations. After capturing the position of the gap between the fingers in the image data of the identification person's palm 100B, a fourth reference data D4 is generated and transmitted to the microprocessor unit 30B; and the microprocessor unit 30B is based on the A reference data D1, the second reference data D2, the third reference data D3 and the fourth reference data D4 are compared and analyzed, and then an identification data I3 is generated and transmitted to the display unit 40B for display. Identify the characteristics of the person and the basis of their identity.
較佳地,該步驟Y係可於該S2至該S4任一步驟之後執行,而當該步驟Y為複數時,該步驟Y係可介於該S2與該S3二步驟之間、該S3與該 S4二步驟之間或該S4與該S5二步驟之間各別執行。而於本實施例中,係先執行該S4步驟,接著再執行該步驟X,接著再執行該步驟Y,最後再執行該S5步驟。 Preferably, the step Y can be performed after any step S2 to S4, and when the step Y is plural, the step Y can be between the two steps S2 and S3, and the S3 is The S4 is performed between two steps or between S4 and S5. In the embodiment, the step S4 is performed first, then the step X is performed, then the step Y is performed, and the step S5 is performed again.
最後,必須再次說明,凡於本發明所屬技術領域中具有通常知識者應能明確知悉,該等詳細說明以及本發明所列舉之實施例,僅適於說明本發明之結構、方法、流程等及其欲達成之功效,而非用以限制本發明之申請專利範圍的範疇,其他等效元素、元件、物件、結構、裝置、方法或流程之替代或變化,亦應為本案之申請專利範圍所涵蓋。 In the following, it should be noted that those skilled in the art to which the present invention pertains will be able to clearly understand that the detailed description and the embodiments of the present invention are only intended to illustrate the structure, method, process, etc. of the present invention. The singularity of the invention, and the substitution or variation of other equivalent elements, components, articles, structures, devices, methods or processes, are also intended to be within the scope of the patent application of the present invention. Covered.
10‧‧‧三維生物特徵辨識系統 10‧‧‧3D Biometric System
100‧‧‧手掌 100‧‧‧ palm
20‧‧‧影像感測裝置 20‧‧‧Image sensing device
30‧‧‧微處理器單元 30‧‧‧Microprocessor unit
31‧‧‧第一演算邏輯 31‧‧‧First calculus logic
33‧‧‧第二演算邏輯 33‧‧‧Second calculation logic
40‧‧‧顯示單元 40‧‧‧Display unit
50‧‧‧資料庫單元 50‧‧‧Database unit
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123638A TWI576717B (en) | 2016-07-26 | 2016-07-26 | Dimensional biometric identification system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105123638A TWI576717B (en) | 2016-07-26 | 2016-07-26 | Dimensional biometric identification system and method |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI576717B true TWI576717B (en) | 2017-04-01 |
TW201804351A TW201804351A (en) | 2018-02-01 |
Family
ID=59240984
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW105123638A TWI576717B (en) | 2016-07-26 | 2016-07-26 | Dimensional biometric identification system and method |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI576717B (en) |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200517948A (en) * | 2003-09-29 | 2005-06-01 | Macronix Int Co Ltd | Microprocessor apparatus and method for employing configurable block cipher cryptographic algorithms |
US20070189586A1 (en) * | 2004-03-04 | 2007-08-16 | Nec Corporation | Finger/palm print image processing system and finger/palm print image processing method |
-
2016
- 2016-07-26 TW TW105123638A patent/TWI576717B/en not_active IP Right Cessation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW200517948A (en) * | 2003-09-29 | 2005-06-01 | Macronix Int Co Ltd | Microprocessor apparatus and method for employing configurable block cipher cryptographic algorithms |
US20070189586A1 (en) * | 2004-03-04 | 2007-08-16 | Nec Corporation | Finger/palm print image processing system and finger/palm print image processing method |
Also Published As
Publication number | Publication date |
---|---|
TW201804351A (en) | 2018-02-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20230245500A1 (en) | Biometric aware object detection and tracking | |
Tian et al. | KinWrite: Handwriting-Based Authentication Using Kinect. | |
CN106897592B (en) | User authentication method, user authentication device, and writing instrument | |
JP6650946B2 (en) | System and method for performing fingerprint-based user authentication using images captured with a mobile device | |
KR102434562B1 (en) | Method and apparatus for detecting fake fingerprint, method and apparatus for recognizing fingerprint | |
EP3100152B1 (en) | User-authentication gestures | |
JP5531963B2 (en) | Authentication system, apparatus, authentication method and program | |
KR102501838B1 (en) | Authentication apparatus and method based on electrocardiographic signals | |
US10878071B2 (en) | Biometric authentication anomaly detection | |
US10552596B2 (en) | Biometric authentication | |
KR102558741B1 (en) | Device and method to register user | |
US20220382839A1 (en) | Systems and methods for biometric authentication via face covering | |
KR20210069404A (en) | Liveness test method and liveness test apparatus | |
JP5480532B2 (en) | Image processing apparatus, image processing method, and program for causing computer to execute the method | |
JP2013137590A (en) | Authentication device, authentication program and authentication method | |
Xiao et al. | Secure behavioral biometric authentication with leap motion | |
Huang et al. | A new dataset for smartphone gesture-based authentication | |
Burgbacher et al. | A behavioral biometric challenge and response approach to user authentication on smartphones | |
Chaitanya et al. | Verification of pattern unlock and gait behavioural authentication through a machine learning approach | |
KR102094488B1 (en) | Apparatus and method for user authentication using facial emg by measuring changes of facial expression of hmd user | |
Samatha et al. | Securesense: Enhancing person verification through multimodal biometrics for robust authentication | |
TWI576717B (en) | Dimensional biometric identification system and method | |
CN105024817B (en) | A kind of identity identifying method and device | |
Kumar | Hand image biometric based personal authentication system | |
Ducray et al. | Authentication based on a changeable biometric using gesture recognition with the kinect™ |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
MM4A | Annulment or lapse of patent due to non-payment of fees |