TWI574258B - Memory devices, systems and methods employing command/address calibration - Google Patents
Memory devices, systems and methods employing command/address calibration Download PDFInfo
- Publication number
- TWI574258B TWI574258B TW101110887A TW101110887A TWI574258B TW I574258 B TWI574258 B TW I574258B TW 101110887 A TW101110887 A TW 101110887A TW 101110887 A TW101110887 A TW 101110887A TW I574258 B TWI574258 B TW I574258B
- Authority
- TW
- Taiwan
- Prior art keywords
- command
- address
- signal
- calibration
- clock
- Prior art date
Links
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C8/00—Arrangements for selecting an address in a digital store
- G11C8/06—Address interface arrangements, e.g. address buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C11/00—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
- G11C11/21—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
- G11C11/34—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
- G11C11/40—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
- G11C11/401—Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
- G11C11/4063—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
- G11C11/407—Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
- G11C11/409—Read-write [R-W] circuits
- G11C11/4093—Input/output [I/O] data interface arrangements, e.g. data buffers
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/022—Detection or location of defective auxiliary circuits, e.g. defective refresh counters in I/O circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/023—Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/02—Detection or location of defective auxiliary circuits, e.g. defective refresh counters
- G11C29/028—Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/04—Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
- G11C29/08—Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
- G11C29/12—Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
- G11C29/18—Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C29/00—Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
- G11C29/52—Protection of memory contents; Detection of errors in memory contents
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1051—Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
- G11C7/1066—Output synchronization
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C7/00—Arrangements for writing information into, or reading information out from, a digital store
- G11C7/10—Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
- G11C7/1078—Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
- G11C7/1093—Input synchronization
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C2207/00—Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
- G11C2207/22—Control and timing of internal memory operations
- G11C2207/2254—Calibration
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Computer Hardware Design (AREA)
- Dram (AREA)
- Memory System (AREA)
Description
本發明性概念係關於一種記憶體裝置、系統及方法,且更特定而言,係關於命令/位址校準。 The inventive concept relates to a memory device, system and method, and more particularly to command/address calibration.
本申請案主張對2011年3月28日在美國專利及商標局提出申請之第61/468,204號美國臨時申請案及2011年6月23日在韓國知識產權局提出申請之第10-2011-0061319號韓國專利申請案之優先權之權益,該兩個申請案之全部揭示內容以引用方式併入本文中。 This application claims the US Provisional Application No. 61/468,204 filed on March 28, 2011 in the U.S. Patent and Trademark Office and the application of the Korean Intellectual Property Office on June 23, 2011. The priority of the Korean Patent Application, the entire disclosure of which is hereby incorporated by reference.
在一記憶體系統(舉例而言,一動態隨機存取記憶體(DRAM)系統)中,在一記憶體控制器與一DRAM之間經由一匯流排傳輸及接收之一信號經歷傳播延遲。傳播延遲可受各種因素影響,例如匯流排、一基板或例如此類上之互連電容器或寄生電容。隨著DRAM之一資料速率增加,一傳播延遲及/或傳播延遲之變化形式使信號完整性降格。期望尋找一最佳信號窗或補償信號之間的信號偏斜,例如資料信號與一時脈信號之間,一命令信號與一時脈信號之間及/或位址信號與一時脈信號之間。 In a memory system (for example, a dynamic random access memory (DRAM) system), a signal is transmitted and received via a bus between a memory controller and a DRAM to experience propagation delay. Propagation delay can be affected by various factors, such as bus bars, a substrate, or such interconnect capacitors or parasitic capacitances. As one of the DRAM data rates increases, a variation in propagation delay and/or propagation delay degrades signal integrity. It is desirable to find an optimum signal window or signal skew between the compensation signals, such as between a data signal and a clock signal, between a command signal and a clock signal, and/or between an address signal and a clock signal.
本發明揭示命令/位址校準方法,及採用命令/位址校準之記憶體裝置及記憶體系統。根據本發明性概念之一態樣,提供一種與一記憶體裝置通信之方法,該方法包括經由一命令/位置匯流排發送一校準命令;經由該命令/位址 匯流排發送一序列之n個第一測試信號,其中n係等於2或更大之一整數;與該n個第一測試信號中之每一者一起經由一第一時脈線發送一時脈信號,該n個第一測試信號中之每一者係以相對於該時脈信號之一各別第一至第n個相位發送的,該第一至第n個相位中之每一者彼此不同;經由一資料匯流排接收分別自經由該命令/位址匯流排發送之該序列之n個第一測試信號導出之一序列之n個第二測試信號;比較該n個第一測試信號與該n個第二測試信號;及回應於該比較該n個第一測試信號與該所接收之n個第二測試信號而判定欲經由該命令/位址匯流排發送之信號相對於該時脈信號之一較佳相位。 The invention discloses a command/address calibration method and a memory device and a memory system using command/address calibration. According to one aspect of the inventive concept, a method of communicating with a memory device is provided, the method comprising transmitting a calibration command via a command/position bus; via the command/address The bus bar transmits a sequence of n first test signals, wherein n is equal to one integer greater than 2 or greater; and a clock signal is transmitted via a first clock line together with each of the n first test signals Each of the n first test signals is transmitted with respect to each of the first to nth phases of the one of the clock signals, each of the first to nth phases being different from each other Receiving, via a data bus, n second test signals from a sequence of n first test signals respectively transmitted through the sequence of the command/address bus; comparing the n first test signals with the n second test signals; and in response to the comparing the n first test signals and the received n second test signals, determining a signal to be transmitted via the command/address bus relative to the clock signal One of the preferred phases.
該n個第一測試信號中之每一者包括經由該命令/位址匯流排並列發送之第一複數個位元,該第一複數個位元可跟隨有經由該命令/位址匯流排並列發送之第二複數個位元。 Each of the n first test signals includes a first plurality of bits transmitted in parallel via the command/address bus, the first plurality of bits may be followed by a parallel arrangement via the command/address bus The second plurality of bits sent.
該第一複數個位元及該第二複數個位元中之每一者可包括一封包。 Each of the first plurality of bits and the second plurality of bits may include a packet.
對於該n個第一測試信號中之每一者,可在該時脈信號之一上升沿及該時脈信號之一下降沿中之一者處發送該第一複數個位元,且可在該時脈信號之該上升沿及該時脈信號之該下降沿之另一者處發送該第二複數個位元。 For each of the n first test signals, the first plurality of bits may be transmitted at one of a rising edge of the clock signal and one of the falling edges of the clock signal, and may be The second plurality of bits are transmitted by the rising edge of the clock signal and the falling edge of the clock signal.
該序列之n個第二測試信號之至少一部分可係經由一資料選通線接收,或經由至少在一校準模式期間專用於校準之線接收。 At least a portion of the n second test signals of the sequence may be received via a data strobe line or via a line dedicated to calibration during at least one calibration mode.
該方法可進一步包括該等第二測試信號中之每一者是否與一對應第一測試信號相同。 The method can further include whether each of the second test signals is identical to a corresponding first test signal.
該較佳相位可經判定以對應於該第一至第n個相位中之一者。 The preferred phase may be determined to correspond to one of the first through nth phases.
判定該較佳相位可係自判定該第一至第n個相位之一相位序列導出,該相位序列中之每一相位對應於判定為有效之一第二測試信號。 Determining the preferred phase may be derived from determining a phase sequence of one of the first to nth phases, each phase of the phase sequence corresponding to a second test signal determined to be valid.
根據另一態樣,一種介面訓練方法可包括:經由一命令/位址匯流排將一第一校準信號發送至一半導體裝置;與該第一校準信號之該發送一起將一時脈信號發送至該半導體裝置,該時脈信號提供一時序至該半導體裝置以鎖存該第一校準信號之邏輯位準;經由一資料匯流排自該半導體裝置接收一第二校準信號,該第二校準信號係自該第一校準信號之經鎖存邏輯位準導出;與該時脈信號之該發送一起經由該命令/位址匯流排將命令及位址信號發送至該第一半導體裝置,該等命令及位址信號與該時脈信號之間的一相位係回應於該第二校準信號。 According to another aspect, an interface training method can include: transmitting a first calibration signal to a semiconductor device via a command/address bus; transmitting a clock signal to the first calibration signal together with the transmission a semiconductor device, the clock signal providing a timing to the semiconductor device to latch a logic level of the first calibration signal; receiving a second calibration signal from the semiconductor device via a data bus, the second calibration signal being Deriving a latched logic level of the first calibration signal; transmitting the command and address signals to the first semiconductor device via the command/address bus with the transmission of the clock signal, the commands and bits A phase between the address signal and the clock signal is responsive to the second calibration signal.
該方法可進一步包括在發送該第一校準信號之同時經由與該命令/位址匯流排分離之一第一線將一讀取請求信號發送至該半導體裝置。 The method can further include transmitting a read request signal to the semiconductor device via one of the first lines separated from the command/address bus while transmitting the first calibration signal.
該第一線可係一時脈啟用線。 The first line can be a clock enable line.
該第一校準信號可包括以至少為該時脈信號之週期之速率兩倍之一速率傳輸之一序列之資料封包。 The first calibration signal can include a data packet of a sequence transmitted at a rate that is at least twice the rate of the period of the clock signal.
一第一校準信號至該半導體裝置之發送可包含經由該命 令/位址匯流排之多個線中之每一者發送一訓練型樣。 Transmitting a first calibration signal to the semiconductor device may include A training pattern is sent for each of a plurality of lines of the order/address bus.
對於該命令/位址匯流排之該多個線中之每一者,該訓練型樣可係相同的。 The training pattern may be the same for each of the plurality of lines of the command/address bus.
可針對該命令/位址匯流排之該多個線中之每一者個別地調整該等命令及位址信號與該時脈信號之間的該相位。 The phase between the command and the address signal and the clock signal can be individually adjusted for each of the plurality of lines of the command/address bus.
可經由該命令/位址匯流排之一第一線以相對於該時脈信號之一第一相位發送一第一信號,且可經由該命令/位址匯流排之一第二線以相對於該時脈信號之一第二相位發送一第二信號。 A first signal may be transmitted via the first line of the command/address bus to transmit a first signal with respect to one of the clock signals, and may be via the command/address address of the second line of the bus bar relative to One of the clock signals transmits a second signal in a second phase.
當該半導體裝置係一第一半導體裝置時,該方法可包含經由該命令/位址匯流排將一第三校準信號發送至一第二半導體裝置;與該第三校準信號之該發送一起將該時脈信號發送至該第二半導體裝置,該時脈信號提供一時序至該第二半導體裝置以鎖存該第三校準信號之邏輯位準;經由該資料匯流排自該第二半導體裝置接收一第四校準信號,該第四校準信號係自該第三校準信號之經鎖存邏輯位準導出;與該時脈信號之該發送一起經由該命令/位址匯流排將命令及位址信號發送至該第二半導體裝置,該等命令及位址信號與該時脈信號之間的一相位係回應於該第四校準信號。 When the semiconductor device is a first semiconductor device, the method can include transmitting a third calibration signal to a second semiconductor device via the command/address bus; along with the transmitting of the third calibration signal Transmitting a clock signal to the second semiconductor device, the clock signal providing a timing to the second semiconductor device to latch a logic level of the third calibration signal; receiving, via the data bus, a second semiconductor device a fourth calibration signal derived from the latched logic level of the third calibration signal; the command and the address signal are transmitted via the command/address bus with the transmission of the clock signal To the second semiconductor device, a phase between the command and the address signal and the clock signal is responsive to the fourth calibration signal.
根據另一態樣,一種校準經由一記憶體裝置之一命令/位址匯流排之通信之方法可包括:經由一時脈信號線接收一時脈信號;經由該命令/位址匯流排接收一校準命令;在該時脈信號之一上升沿及該時脈信號之一下降沿中之一 者處經由該命令/位址匯流排接收一第一測試資料封包以產生第一資訊;在該時脈信號之該上升沿及該時脈信號之該下降沿中之另一者處經由該命令/位址匯流排接收一第二測試資料封包以產生第二資訊;及經由一資料匯流排傳輸該第一資訊及該第二資訊。 According to another aspect, a method of calibrating communication via a command/address bus of a memory device can include receiving a clock signal via a clock signal line; receiving a calibration command via the command/address bus One of the rising edge of one of the clock signals and one of the falling edges of the clock signal Receiving, by the command/address bus, a first test data packet to generate first information; and transmitting the command at the other of the rising edge of the clock signal and the falling edge of the clock signal And the address bus receives a second test data packet to generate the second information; and transmits the first information and the second information via a data bus.
該方法可包含在該時脈信號之上升沿及下降沿處經由該命令/位址匯流排接收命令及位址。 The method can include receiving a command and an address via the command/address bus at the rising and falling edges of the clock signal.
本發明亦涵蓋系統及裝置。舉例而言,一種半導體裝置可包括:一時脈產生器,其經組態以產生一時脈信號;一時脈輸出端子,其連接至該時脈產生器且經組態以輸出該時脈信號;一命令產生器電路,其經組態以產生命令;一位址產生器電路,其經組態以產生位址;複數個命令/位址端子;一命令/位址緩衝器,其具有連接至該等命令/位址端子之一輸出,該命令/位址緩衝器連接至該命令產生器電路及該位址產生器電路以經由該等命令/位址端子自該半導體裝置外部傳輸命令及位址信號;一相位控制器,其經組態以控制該命令/位址緩衝器以經由該命令/位址匯流排傳輸一序列之n個訓練型樣,n係大於2之一整數,該相位控制器經組態以調整該n個訓練型樣中之至少某些訓練型樣相對於該時脈信號之一相位;資料端子;及一資料緩衝器,其連接至該等資料端子,其中該相位控制器經組態以回應於由該資料緩衝器經由該等資料端子接收之第一資訊而調整命令及位址信號相對於該時脈信號之一相位。系統可包含此等裝置及/或實施此等方法。本發明並不限 於此摘要中所闡述之特徵,且藉由參考以下詳細說明將明瞭其範疇及適用性。 The invention also encompasses systems and devices. For example, a semiconductor device can include: a clock generator configured to generate a clock signal; a clock output terminal coupled to the clock generator and configured to output the clock signal; a command generator circuit configured to generate a command; an address generator circuit configured to generate an address; a plurality of command/address terminals; a command/address buffer having a connection to the And outputting one of the command/address terminals, the command/address buffer being coupled to the command generator circuit and the address generator circuit for transmitting commands and addresses from outside the semiconductor device via the command/address terminals a signal; a phase controller configured to control the command/address buffer to transmit a sequence of n training patterns via the command/address bus, n being greater than one of two integers, the phase control The device is configured to adjust a phase of at least some of the n training patterns relative to one of the clock signals; a data terminal; and a data buffer coupled to the data terminals, wherein the phase Controller group In response to the adjustment command and address signal received via the first information of such information by the terminal in the data buffer with respect to the phase of one of the clock signal. The system can include such devices and/or implement such methods. The invention is not limited The features set forth in this summary, and the scope and applicability thereof will be apparent by reference to the following detailed description.
根據結合附圖進行之以下詳細說明將更清楚地瞭解本發明性概念之實例性實施例。 Exemplary embodiments of the inventive concept will be more clearly understood from the following detailed description of the invention.
在後文中,將參考其中展示本發明之較佳實施例之隨附圖式詳細地闡述本發明性概念之實例性實施例。本發明性概念之實例性實施例經提供以向熟習此項技術者更全面地闡述本發明性概念。然而,本發明可以不同形式體現且不應將其解釋為受限於本文中所闡述之實例性實施例。亦即,該等實例性實施例僅係彼等實例:存在不需要本文中所揭示之各種細節之眾多實施方案及變化形式。可對本發明性概念作出各種改變,且本發明性概念可具有各種形式。然而,此等實施例並非意欲將本發明性概念限於所揭示之特定實施例,且應瞭解該等實施例包含在本發明性概念之精神及範疇內之所有改變、等效物及替換。在所有圖式中,相同元件符號指代相同組件。在隨附圖式中,為清晰起見可能已將結構誇大。 Exemplary embodiments of the inventive concept will be described in detail below with reference to the accompanying drawings in which: FIG. The exemplary embodiments of the present invention are provided to more fully explain the inventive concepts to those skilled in the art. However, the invention may be embodied in different forms and should not be construed as being limited to the example embodiments set forth herein. That is, the exemplary embodiments are merely examples of their existence: numerous embodiments and variations that do not require the various details disclosed herein. Various changes can be made to the inventive concept, and the inventive concept can have various forms. However, the embodiments are not intended to limit the invention to the specific embodiments disclosed, and all such changes, equivalents and substitutions are included in the spirit and scope of the present invention. In all the figures, the same component symbols refer to the same components. In the accompanying drawings, the structure may have been exaggerated for clarity.
本文中所使用之術語僅係出於闡述實施例之目的而並非意欲係實例性實施例限制。如本文中所使用,單數形式意欲亦包含複數形式,除非上下文明確指明。將進一步瞭解,措詞「包括」、包含及/或「具有」(及相關措詞)規定所陳述特徵、數目、步驟、操作、組件、元件或其一組合之存在,但不排除一或多個其他特徵、數目、步驟、操 作、組件、元件或其組合之存在或添加,除非另外說明。 The terminology used herein is for the purpose of describing the embodiments, As used herein, the singular forms " It will be further understood that the phrase "comprising", "including" and / or "having" (and <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; Other features, numbers, steps, exercises The presence or addition of a component, component, component or combination thereof unless otherwise stated.
將瞭解,當稱一元件「連接」或「耦合」至另一元件時,其可直接連接或耦合至另一元件,或者可存在介入元件。相比而言,當稱一元件「直接連接」或「直接耦合」至另一元件時,則不存在介入元件。如本文中所使用,措詞「及/或」包含所列舉相關聯物項中之一或多者之任一及所有組合且可縮寫為「/」。 It will be understood that when an element is "connected" or "coupled" to another element, it can be directly connected or coupled to the other element or the intervening element can be present. In contrast, when an element is referred to as being "directly connected" or "directly coupled" to another element, the intervening element is not present. As used herein, the phrase "and/or" includes any and all combinations of one or more of the associated listed items and can be abbreviated as "/".
將瞭解,儘管本文中可使用第一、第二等措詞來闡述各種元件,但此等元件不應受限於此等措詞。此等措詞僅用於將一個元件與另一元件區分開。舉例而言,可將一第一信號稱作一第二信號,且類似地,可將一第二信號稱作一第一信號,此並不背離本揭示內容之教示。 It will be understood that, although the first, second, etc. may be used herein to describe various elements, such elements are not limited to such terms. These terms are only used to distinguish one element from another. For example, a first signal may be referred to as a second signal, and similarly, a second signal may be referred to as a first signal without departing from the teachings of the present disclosure.
除非另有規定,否則本文中所使用之所有術語(包含技術術語及科學術語)具有與熟習實例性實施例所屬之技術者通常所理解之含義相同之含義。將進一步瞭解,應將措詞(例如常用字典中所定義之術語)解釋為具有與其在相關技術背景中之含義相一致之一含義,而不將以一理想化或過分形式化之意義來解釋,除非本文中明確如此規定。 All terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the <RTIgt; It will be further understood that the wording (such as the term defined in a common dictionary) should be interpreted as having one meaning consistent with its meaning in the relevant technical context, and will not be interpreted in the sense of an idealized or overly formalized form. Unless explicitly stated otherwise in this document.
自一半導體記憶體裝置期望一高速操作以及低功率消耗。舉例而言,可期望滿足低功率雙倍資料速率(LPDDR)規範之一動態隨機存取記憶體(DRAM)。一LPDDR DRAM系統在一時脈信號之上升沿及下降沿兩者處在一DRAM與一外部裝置(例如,一記憶體控制器)之間雙向地傳輸及接收資料。 A high speed operation and low power consumption are desired from a semiconductor memory device. For example, one of the low power double data rate (LPDDR) specifications can be expected to satisfy dynamic random access memory (DRAM). An LPDDR DRAM system transmits and receives data bidirectionally between a DRAM and an external device (e.g., a memory controller) at both the rising and falling edges of a clock signal.
作為加速記憶體操作之一方式,可在一時脈信號之上升沿及下降沿兩者處將命令及位址傳輸至一記憶體裝置(例如,一記憶體晶片,例如,一DRAM非NAND快閃記憶體晶片)。記憶體裝置經組態以在時脈信號之上升沿及下降沿兩者處鎖存命令及/或位址資訊。用於傳輸一命令信號及一位址信號兩者之一共同信號稱為一命令/位址信號CMD/ADDR或CA。接針、端子、匯流排線、內部導體或傳輸命令/位址信號之其他信號路徑亦可在本文中使用首字母縮寫CA來指代。 As one of the methods of accelerating memory operation, the command and address can be transmitted to a memory device (for example, a memory chip, for example, a DRAM non-NAND flash) at both the rising and falling edges of a clock signal. Memory chip). The memory device is configured to latch command and/or address information at both the rising and falling edges of the clock signal. A common signal for transmitting a command signal and an address signal is referred to as a command/address signal CMD/ADDR or CA. Pins, terminals, bus bars, internal conductors, or other signal paths for transmitting command/address signals may also be referred to herein using the acronym CA.
圖1及圖2係用於闡述命令/位址校準之一實例之時序圖。 Figures 1 and 2 are timing diagrams illustrating one example of command/address calibration.
參考圖1,可透過校準調整(一起或個別地)一對時脈信號(時脈信號對CK及CKB)與多個命令/位址信號CMD/ADDR之相對時序以使得每一命令/位址CMD/ADDR窗之中間經定位以最佳地計時記憶體裝置之一輸入操作(例如,一鎖存操作)。圖1表示已經調整以使得每一命令/位址CMD/ADDR窗之中心部分處在當時脈信號CK之一上升沿與時脈信號CKB之下降沿相交時(或反之亦然,即當時脈信號CKB之一上升沿與時脈信號CK之下降沿相交時)之一時序的命令/位址信號CMD/ADDR。交點可對應於時脈信號CK及CKB彼此相等(例如,具有相同電壓位凖)之一時間。儘管圖1僅展示一個命令/位址CMD/ADDR信號(例如,在複數個導體CMD/ADDR匯流排之導線上之一信號)之命令/位址CMD/ADDR窗,但多個命令/位址CMD/ADDR 信號(例如,在各別不同命令/位址CMD/ADDR信號路徑上接收之多個命令/位址CMD/ADDR信號)可各自如圖1中所展示對準,且以下論述與每一此類命令/位址CMD/ADDR信號相關。將命令/位址信號時序調整或匹配至時脈信號CK及CKB之上升沿/下降沿。由於命令/位址CMD/ADDR窗之中間在對應於時脈信號CK及CKB之上升沿與下降沿之間的一交點之一位置處,可最大化或以其他方式相對改良命令/位址CMD/ADDR之一時序裕量。圖1可表示時脈信號CK及CKB以及命令/位址信號CMD/ADDR之一相對時序,如接收此等信號之一記憶體裝置所見。時脈信號CK及CKB以及命令/位址信號CMD/ADDR可由一外部源(例如,一記憶體控制器、一CPU、一主機電腦等)產生,且由該外部源產生之時脈信號CK及CKB與命令/位址信號CMD/ADDR之間的相對時序可在傳輸期間更改,且因此,所產生之相對時序可不同於記憶體裝置所經歷之相對時序(例如,由外部源產生之相對時序可不同於圖1中所展示之相對時序)。 Referring to FIG. 1, the relative timing of a pair of clock signals (clock signal pair CK and CKB) and a plurality of command/address signals CMD/ADDR can be adjusted (together or individually) such that each command/address is made. The middle of the CMD/ADDR window is positioned to optimally clock an input operation of the memory device (eg, a latch operation). Figure 1 shows that the center portion of each command/address CMD/ADDR window has been adjusted to intersect the falling edge of the clock signal CK with the falling edge of the clock signal CK (or vice versa, ie, the pulse signal) The command/address signal CMD/ADDR of one of the timings when one of the rising edges of the CKB intersects the falling edge of the clock signal CK. The intersection may correspond to one of the time when the clock signals CK and CKB are equal to each other (eg, having the same voltage level 凖). Although Figure 1 shows only the command/address CMD/ADDR window for a command/address CMD/ADDR signal (eg, one of the conductors on a plurality of conductor CMD/ADDR bus bars), multiple commands/addresses CMD/ADDR Signals (eg, multiple command/address CMD/ADDR signals received on separate different command/address CMD/ADDR signal paths) may each be aligned as shown in FIG. 1, and are discussed below with each such Command/address CMD/ADDR signal correlation. The command/address signal timing is adjusted or matched to the rising/falling edges of the clock signals CK and CKB. Since the middle of the command/address CMD/ADDR window is at one of the intersections between the rising and falling edges of the clock signals CK and CKB, the command/address CMD can be maximized or otherwise improved. One of the /ADDR timing margins. Figure 1 illustrates the relative timing of one of the clock signals CK and CKB and the command/address signal CMD/ADDR as seen by the memory device receiving one of these signals. The clock signals CK and CKB and the command/address signals CMD/ADDR can be generated by an external source (for example, a memory controller, a CPU, a host computer, etc.), and the clock signal CK generated by the external source and The relative timing between the CKB and the command/address signal CMD/ADDR can be changed during transmission, and thus, the relative timing produced can be different from the relative timing experienced by the memory device (eg, relative timing generated by an external source) It can be different from the relative timing shown in Figure 1.
由於信號路徑之間的變化(例如佈局、信號驅動能力等之變化),在時脈信號CK及CKB以及命令/位址信號CMD/ADDR自一外部源至一記憶體裝置之傳輸期間,可在時脈信號CK及CKB與命令/位址信號CMD/ADDR之間產生一傳播時間差。如圖2中所展示,命令/位址CMD/ADDR窗之中間可在時脈信號CK及CKB之上升沿及下降沿之前或之後,藉此減小命令/位址CMD/ADDR之時序裕量。 Due to changes between signal paths (eg, changes in layout, signal drive capability, etc.), during transmission of clock signals CK and CKB and command/address signals CMD/ADDR from an external source to a memory device, A propagation time difference is generated between the clock signals CK and CKB and the command/address signal CMD/ADDR. As shown in FIG. 2, the middle of the command/address CMD/ADDR window can be before or after the rising and falling edges of the clock signals CK and CKB, thereby reducing the timing margin of the command/address CMD/ADDR. .
在圖2中所展示之四個命令/位址信號CMD/ADDR(CA1、CA2、CA3及CA4)中,對於第一命令/位址信號CMD/ADDR CA1及第二命令/位址信號CMD/ADDR CA2,時脈信號CK及CKB之時序可滯後於CA1及CA2信號之窗之中間。若透過校準推遲第一命令/位址信號CMD/ADDR CA1及第二命令/位址信號CMD/ADDR CA2之時序,則CA1及CA2之每一命令/位址CMD/ADDR窗之中間部分可經定位以對應於時脈信號CK及CKB之上升沿與下降沿之間的一交點。當在此推遲之後由記憶體裝置接收時,CA1及CA2之每一命令/位址CMD/ADDR窗之中間部分可發生在CK及CKB之上升沿/下降沿上。對於第四個命令/位址信號CMD/ADDR CA4,可透過校準推遲時脈信號CK及CKB之時序或可提前第四個命令/位址信號CMD/ADDR CA4之時序,以使得每一命令/位址CMD/ADDR窗之中間在對應於時脈信號CK及CKB之上升沿與下降沿之間的一交點之一位置處。 In the four command/address signals CMD/ADDR (CA1, CA2, CA3, and CA4) shown in FIG. 2, for the first command/address signal CMD/ADDR CA1 and the second command/address signal CMD/ ADDR CA2, the timing of the clock signals CK and CKB can lag behind the window of the CA1 and CA2 signals. If the timing of the first command/address signal CMD/ADDR CA1 and the second command/address signal CMD/ADDR CA2 is postponed by calibration, the middle portion of each command/address CMD/ADDR window of CA1 and CA2 can be Positioned to correspond to an intersection between the rising and falling edges of the clock signals CK and CKB. When received by the memory device after this delay, the middle portion of each command/address CMD/ADDR window of CA1 and CA2 can occur on the rising/falling edges of CK and CKB. For the fourth command/address signal CMD/ADDR CA4, the timing of the delayed clock signals CK and CKB can be delayed by calibration or the timing of the fourth command/address signal CMD/ADDR CA4 can be advanced to make each command/ The middle of the address CMD/ADDR window is at a position corresponding to an intersection between the rising edge and the falling edge of the clock signals CK and CKB.
圖3係執行命令/位址校準之一實例性記憶體系統10之一方塊圖。 3 is a block diagram of one exemplary memory system 10 that performs command/address calibration.
參考圖3,記憶體系統10包含一記憶體控制器20及一記憶體裝置30,一時脈信號線11、一命令/位址匯流排12及一DQ匯流排13連接於其之間。透過時脈信號線11將由記憶體控制器20產生之一時脈信號CK提供至記憶體裝置30。可與一反相時脈信號CKB一起將時脈信號CK提供為一連續交替反相信號。反相時脈信號CKB可係與時脈信號 CK一起提供,亦即,由記憶體控制器20產生且提供至記憶體裝置30(圖3中未展示)。可基於一對時脈信號CK與CKB之間的交點來偵測時脈信號CK及CKB之上升沿及下降沿,藉此改良時序準確性。 Referring to FIG. 3, the memory system 10 includes a memory controller 20 and a memory device 30 with a clock signal line 11, a command/address bus 12 and a DQ bus 13 connected thereto. A clock signal CK generated by the memory controller 20 is supplied to the memory device 30 through the clock signal line 11. The clock signal CK can be provided as a continuous alternating inverted signal together with an inverted clock signal CKB. Inverted clock signal CKB can be connected to the clock signal The CK is provided together, that is, generated by the memory controller 20 and provided to the memory device 30 (not shown in Figure 3). The rising and falling edges of the clock signals CK and CKB can be detected based on the intersection between a pair of clock signals CK and CKB, thereby improving timing accuracy.
亦可將單個時脈信號CK(不傳輸時脈信號CKB)作為一連續交替反相信號提供至時脈信號線11。此實施方案減少記憶體裝置30與記憶體控制器20之間的信號線(及端子)。在此情況下,為識別時脈信號CK之上升沿及下降沿,可彼此比較時脈信號CK與一參考電壓Vref。若在參考電壓Vref中發生雜訊波動,則在時脈信號CK之偵測中發生一移位,藉此與使用時脈信號對CK及CKB相比降級時序準確性。因此,可期望藉由使用時脈信號對CK及CKB來傳輸彼此互補之連續交替反相信號。在此情況下,時脈信號線11可包含傳輸時脈信號CK及時脈信號CKB之兩個信號線。可將本發明性概念之實施例中所闡述之時脈信號CK闡述為時脈信號對CK及CKB。出於簡便起見,將時脈信號對CK及CKB闡述為時脈信號CK。 A single clock signal CK (non-transmission clock signal CKB) may also be supplied to the clock signal line 11 as a continuous alternating inverted signal. This embodiment reduces the signal lines (and terminals) between the memory device 30 and the memory controller 20. In this case, to identify the rising edge and the falling edge of the clock signal CK, the clock signal CK and a reference voltage Vref can be compared with each other. If noise fluctuation occurs in the reference voltage Vref, a shift occurs in the detection of the clock signal CK, thereby degrading the timing accuracy compared to using the clock signal pair CK and CKB. Therefore, it may be desirable to transmit complementary alternating inverted signals that are complementary to one another by using the clock signals pair CK and CKB. In this case, the clock signal line 11 may include two signal lines that transmit the clock signal CK and the pulse signal CKB. The clock signal CK set forth in the embodiment of the inventive concept can be described as a clock signal pair CK and CKB. For the sake of simplicity, the clock signals CK and CKB are described as the clock signal CK.
透過命令/位址匯流排12將由記憶體控制器20產生之命令/位址信號CA提供至記憶體裝置30。命令/位址匯流排12可將一命令信號或一位址信號載送至記憶體裝置30(在任何時間係排他地)及/或命令/位址匯流排12可同時將一命令信號及一位址信號載送至記憶體裝置30。記憶體控制器20可透過命令/位址匯流排12傳輸指示一命令/位址校準模式之一模式暫存器設定(MRS)命令。該MRS命令可包含一校 準模式進入命令及一校準模式退出命令。可透過命令/位址匯流排12傳輸指示校準模式進入命令之一校準開始信號或指示校準模式退出命令之一校準結束信號。 The command/address signal CA generated by the memory controller 20 is supplied to the memory device 30 through the command/address bus. The command/address bus 12 can carry a command signal or an address signal to the memory device 30 (exclusively at any time) and/or the command/address bus 12 can simultaneously transmit a command signal and a The address signal is carried to the memory device 30. The memory controller 20 can transmit a mode register register (MRS) command indicating a command/address calibration mode via the command/address bus. The MRS command can include a school The quasi-mode entry command and a calibration mode exit command. A calibration start signal may be transmitted through the command/address bus 12 indicating one of the calibration mode entry commands or one of the calibration mode exit commands.
當命令/位址匯流排12係由n個信號線(例如,導體)之命令/位址信號CA組成(其中n為一自然數),且在時脈信號CK之上升沿及下降沿處輸入命令/位址信號CA(例如,以一雙倍資料速率(DDR)傳輸命令/位址信號CA)時,每個時脈循環可透過命令/位址匯流排12將2n個位元之命令/位址CA資訊自記憶體控制器20提供至記憶體裝置30。在時脈信號CK之上升沿處輸入之一命令/位址信號CA及在時脈信號CK之下降沿處輸入之一命令/位址信號CA可各自構成含n個位元之命令/位址CA資訊之不同組。 When the command/address bus 12 is composed of command/address signals CA of n signal lines (for example, conductors) (where n is a natural number), and is input at the rising and falling edges of the clock signal CK. When the command/address signal CA (for example, the command/address signal CA is transmitted at a double data rate (DDR)), each clock cycle can be commanded by the command/address bus 12 by 2n bits/ The address CA information is supplied from the memory controller 20 to the memory device 30. Inputting one of the command/address signals CA at the rising edge of the clock signal CK and inputting one of the command/address signals CA at the falling edge of the clock signal CK may each constitute a command/address having n bits. Different groups of CA information.
在正常操作中,DQ匯流排13在記憶體控制器20與記憶體裝置30之間傳輸資料信號DQ(例如,在一寫入操作中,將資料信號DQ自控制器傳輸至記憶體裝置30,且在一讀取操作中,將資料信號DQ自記憶體裝置30傳輸至記憶體控制器20)。關於命令/位址校準之資訊(下文進一步詳細地闡述)可在DQ匯流排13上輸出以提供至記憶體控制器20。DQ匯流排13連接至記憶體控制器20及記憶體裝置30兩者之DQ墊(及/或其他裝置端子,例如焊料凸塊)上。可以各種方式設定校準命令/位址資訊信號及DQ墊之映射。 In normal operation, the DQ bus 13 transmits a data signal DQ between the memory controller 20 and the memory device 30 (eg, in a write operation, the data signal DQ is transmitted from the controller to the memory device 30, And in a read operation, the data signal DQ is transmitted from the memory device 30 to the memory controller 20). Information regarding command/address calibration (described in further detail below) may be output on the DQ bus 13 for supply to the memory controller 20. The DQ bus 13 is connected to the DQ pads (and/or other device terminals, such as solder bumps) of both the memory controller 20 and the memory device 30. The mapping of the calibration command/address information signal and the DQ pad can be set in various ways.
舉例而言,當記憶體裝置30之資料信號DQ之位元組織係x32(DQ[31:0])時,DQ匯流排線之數目為32個。當命令/位址匯流排由10個導體組成且命令/位址信號CA在時脈信 號CK之上升沿及下降沿兩者處傳輸10個位元時,時脈CK之每時脈循環,記憶體裝置30可接收20個位元之命令/位址信號CA。由於DQ匯流排線之數目32大於命令/位址信號之數目20,因此每一DQ匯流排線可對應於命令/位址信號位元CA中之一單個位元,從而提供彼對應單個命令/位址信號位元之資訊(例如,兩個DQ匯流排線可傳輸關於命令/位址匯流排12中之一單個線之命令/位址校準之命令/位址資訊)。因此,可執行映射,以使得針對時脈信號CK之每一循環,將在時脈信號CK之上升沿處輸入之命令/位址信號之一值輸出至10個DQ墊[9:0]且將在時脈信號CK之下降沿處輸入之10位元命令/位址信號之一值輸出至另外10個DQ墊[19:10]。因此,儘管可以一雙倍資料速率(DDR)(針對時脈CK之每一循環兩組位元)將命令/位址CA信號傳輸至記憶體裝置30,但可以一單倍資料速率(SDR)(針對時脈CK之每一循環一組位元)將關於命令/位址校準之資訊自記憶體裝置30傳輸回至記憶體控制器20。注意,DQ匯流排可相對於不同於時脈CK之一時脈傳輸資料。下文進一步論述之圖5展示其中相對於一資料選通時脈DQS傳輸資料之一實施例。 For example, when the bit structure of the data signal DQ of the memory device 30 is x32 (DQ[31:0]), the number of DQ bus bars is 32. When the command/address bus is composed of 10 conductors and the command/address signal CA is in the clock When 10 bits are transmitted at both the rising edge and the falling edge of the number CK, the memory device 30 can receive the 20-bit command/address signal CA every clock cycle of the clock CK. Since the number 32 of DQ bus bars is greater than the number 20 of command/address signals, each DQ bus bar can correspond to a single bit in the command/address signal bit CA, thereby providing a single command/ Information of the address signal bits (eg, two DQ bus lines can transmit command/address information for command/address calibration of a single line in the command/address bus 12). Therefore, the mapping can be performed such that for each cycle of the clock signal CK, one of the command/address signals input at the rising edge of the clock signal CK is output to 10 DQ pads [9:0] and One value of the 10-bit command/address signal input at the falling edge of the clock signal CK is output to the other 10 DQ pads [19:10]. Therefore, although the command/address CA signal can be transmitted to the memory device 30 at a double data rate (DDR) (two sets of bits for each cycle of the clock CK), a single data rate (SDR) can be used. Information about command/address calibration is transmitted back to the memory controller 20 from the memory device 30 (for a set of bits for each cycle of the clock CK). Note that the DQ bus can transmit data relative to a clock different from the clock CK. Figure 5, discussed further below, shows one embodiment in which data is transmitted relative to a data strobe clock DQS.
當記憶體裝置30之資料信號DQ之位元組織係x16(DQ[15:0])時,DQ匯流排線之數目為16。由於DQ匯流排線之數目16小於命令/位址信號位元(根據時脈循環CK所接收)之數目20,因此,DQ匯流排線可不夠在時脈CK之一個循環期間將關於命令/位址校準之資訊作為一組位元來傳 輸。因此,DQ匯流排13可按序傳輸關於命令/位址校準之資訊。舉例而言,DQ匯流排可一次傳輸關於在時脈信號CK之上升沿處輸入至記憶體裝置30中之10位元命令/位址信號之命令/位址校準資訊(例如,在DQ匯流排線DQ[0:9]上),且稍後,傳輸關於在時脈信號CK之下降沿處輸入之10位元命令/位址信號之命令/位址校準資訊(例如,又在DQ匯流排線DQ[0:9]上)。 When the bit signal organization of the data signal DQ of the memory device 30 is x16 (DQ[15:0]), the number of DQ bus bars is 16. Since the number 16 of DQ bus bars is less than the number 20 of command/address signal bits (received according to clock cycle CK), the DQ bus bar may not be sufficient for a command/bit during one cycle of clock CK. Address calibration information is transmitted as a set of bits lose. Therefore, the DQ bus 13 can transmit information about command/address calibration in sequence. For example, the DQ bus can transmit command/address calibration information about a 10-bit command/address signal input to the memory device 30 at the rising edge of the clock signal CK at a time (eg, in a DQ bus) Line DQ[0:9]), and later, transmit command/address calibration information about the 10-bit command/address signal input at the falling edge of the clock signal CK (eg, in the DQ bus Line DQ[0:9]).
圖4A及圖4B係用於闡述可由圖3中所展示之記憶體系統10執行之命令/位址校準之圖式。 4A and 4B are diagrams for illustrating command/address calibration that may be performed by the memory system 10 shown in FIG.
結合圖3參考圖4A及圖4B,記憶體控制器20偵測由記憶體裝置30接收之命令/位址信號CA窗與時脈信號CK之沿(自記憶體控制器20提供)之一相對位置(或時序)是否是如此以使得記憶體裝置30成功地解譯命令/位址信號。圖4A及圖4B將命令/位置信號之數個成功解譯展示為一通過(或P)且將命令/位址信號之不成功解譯展示為一失敗(F)。圖4A表示一命令/位址信號沿著命令/位址匯流排12之一單個命令/位址線之傳輸之多個循環。傳輸一校準測試型樣之每一循環係由控制器調整以相比於前一傳輸循環改變時脈CK與命令/位址信號之相對相位。圖4A及圖4B之實例展示針對每一後續傳輸循環,此相對相位改變一時脈CK循環之1/20(例如,18度)。取決於所期望準確性,可更多或更少地改變每一傳輸循環之相對相位。注意,記憶體裝置30針對一特定傳輸循環接收之時脈CK與命令/位址信號之相對相位可與由控制器傳輸之時脈CK與命令/位址信號之相 對相位不同。由於時脈信號CK之傳輸及命令位址匯流排12之信號線之不同特性,自傳輸(自控制器20)至接收(由記憶體裝置30)之時間可不同。此等不同特性可包含信號路徑長度之一不同,信號路徑之導電率(例如,由於導體大小所致)、信號路徑之寄生電容(例如,來自相鄰線)、溫度等之不同。記憶體控制器20透過時脈信號線11將時脈信號CK傳輸至記憶體裝置30且透過命令/位址匯流排12之一信號線將命令/位址信號CA傳輸至記憶體裝置30。在接收經相位調整之命令/位址信號CA之後,記憶體裝置30透過DQ匯流排13將如記憶體裝置30解譯之命令/位置信號CA傳輸至記憶體控制器20。記憶體控制器20偵測命令/位址信號中之哪些傳輸循環已將其資訊成功地傳輸至記憶體裝置30(通過或P)及哪些傳輸循環未成功(失敗或F)。 Referring to FIG. 4A and FIG. 4B, the memory controller 20 detects that the command/address signal CA window received by the memory device 30 is opposite to the edge of the clock signal CK (provided from the memory controller 20). Whether the location (or timing) is so such that the memory device 30 successfully interprets the command/address signal. 4A and 4B show several successful interpretations of the command/position signal as a pass (or P) and an unsuccessful interpretation of the command/address signal as a failure (F). 4A shows a plurality of cycles of transmission of a command/address signal along a single command/address line of a command/address bus. Each cycle of transmitting a calibration test pattern is adjusted by the controller to change the relative phase of the clock CK and the command/address signal compared to the previous transmission cycle. The examples of Figures 4A and 4B show that for each subsequent transmission cycle, this relative phase changes by 1/20 (e.g., 18 degrees) of a clock CK cycle. The relative phase of each transmission cycle can be changed more or less depending on the desired accuracy. Note that the relative phase of the clock CK and the command/address signal received by the memory device 30 for a particular transmission cycle can be correlated with the clock CK and the command/address signal transmitted by the controller. Different phases. Due to the different characteristics of the transmission of the clock signal CK and the signal line of the command address bus 12, the time from the transmission (from the controller 20) to the reception (by the memory device 30) may be different. These different characteristics may include differences in signal path length, conductivity of the signal path (eg, due to conductor size), parasitic capacitance of the signal path (eg, from adjacent lines), temperature, and the like. The memory controller 20 transmits the clock signal CK to the memory device 30 through the clock signal line 11 and transmits the command/address signal CA to the memory device 30 through one of the signal lines of the command/address bus. After receiving the phase adjusted command/address signal CA, the memory device 30 transmits the command/position signal CA interpreted by the memory device 30 to the memory controller 20 through the DQ bus 13 . The memory controller 20 detects which of the command/address signals have successfully transmitted their information to the memory device 30 (via or P) and which transmission cycles were unsuccessful (failed or F).
圖4A展示一時脈信號(CK@記憶體)及由記憶體裝置30經由命令/位址匯流排中之一線接收(經由數個傳輸循環接收)之多個命令/位址信號。為使闡述簡易且更佳地強調命令/位址信號與時脈CK之相對相位之移位,在圖4A中將命令/位址信號展示為垂直堆疊,而非呈一連續時序圖形式,然而,應注意,在此實例中,圖4A中所展示之CA@記憶體信號中之每一者係按時間順序接收(例如,經由命令/位址匯流排CA之同一信號線)。在圖4B中,當時脈信號CK之沿存在於命令/位址信號CA之一位置S1或S2處時,記憶體裝置30可無法成功地解譯命令/位址信號CA(例如,無法在窗處鎖存命令/位址信號CA之適當邏輯高態或邏輯低態),且 記憶體控制器20可決定與S1及S2相關聯之傳輸循環為失敗F。當時脈信號CK之沿存在於一位置S3、S4、S5、S6、S7、S8、S9、S10或S11處時,記憶體裝置可成功地解譯命令/位址信號CA(例如,成功地鎖存命令/位址信號CA之適當邏輯高態或邏輯低態),且記憶體控制器20可決定與S3、S4、S5、S6、S7、S8、S9、S10或S11相關聯之傳輸循環為通過P。當時脈信號CK之沿存在於命令/位址信號CA之一位置S12或S13處時,記憶體控制器20可決定與S12或S13相關聯之傳輸循環為失敗F。 4A shows a clock signal (CK@Memory) and a plurality of command/address signals received by the memory device 30 via one of the command/address busses (received via several transmission cycles). In order to simplify and better emphasize the shifting of the relative phase of the command/address signal and the clock CK, the command/address signals are shown as vertical stacking in Figure 4A instead of in a continuous timing diagram. It should be noted that in this example, each of the CA@Memory signals shown in Figure 4A is received in chronological order (e.g., via the same signal line of the command/address bus bar CA). In FIG. 4B, when the edge of the clock signal CK is present at one of the positions S1 or S2 of the command/address signal CA, the memory device 30 may not be able to successfully interpret the command/address signal CA (eg, cannot be in the window) At the appropriate logic high or logic low of the latch command/address signal CA), and The memory controller 20 may determine that the transmission cycle associated with S1 and S2 is a failure F. When the edge of the pulse signal CK exists at a position S3, S4, S5, S6, S7, S8, S9, S10 or S11, the memory device can successfully interpret the command/address signal CA (for example, successfully locked) The appropriate logic high or logic low state of the command/address signal CA is stored, and the memory controller 20 may determine that the transmission cycle associated with S3, S4, S5, S6, S7, S8, S9, S10 or S11 is Pass P. When the edge of the clock signal CK is present at one of the positions S12 or S13 of the command/address signal CA, the memory controller 20 may determine that the transmission cycle associated with S12 or S13 is a failure F.
圖4A及圖4B之闡述表示由記憶體裝置30接收之時脈CK(CK@記憶體)之一時序應具有一時序以使得時脈信號CK之一沿必須與欲鎖存之命令/位址信號CA之邏輯同時發生(例如,發生在命令/位址信號CA之正確邏輯窗處)。然而,此表示係為使闡述簡易且並非必須的。時脈信號CK之沿之時序可不需要與欲鎖存之邏輯在同一時間,而(舉例而言)可在時間上移位。舉例而言,除CK之外之一時脈可負責觸發記憶體裝置30對命令/位址信號CA之鎖存。舉例而言,一內部時脈ICK可由記憶體裝置30回應於時脈信號CK產生,且此內部時脈ICK可由記憶體裝置30之一緩衝器(例如,圖5中之CA接收器304)用來在ICK之一上升沿或一下降沿之一時間鎖存CA匯流排12上之命令/位址信號CA之邏輯。即使外部接收之時脈CK及內部產生之時脈ICK具有相同頻率及負載循環(可不係此情況),CK及ICK亦可在時間上移位。因此,外部時脈CK之沿可不與欲鎖存之命令/位 址信號CA之邏輯同時發生(例如,沿可在記憶體裝置30鎖存之命令/位址信號CA之邏輯高態1之窗之外側(之前或之後))。作為另一實例,甚至當將時脈CK之沿直接輸入至記憶體裝置30之一緩衝器以觸發輸入至記憶體裝置之信號之鎖存時,在鎖存動作足夠鎖存輸入信號之邏輯之前,可存在某一延遲。 4A and 4B show that one of the timings of the clock CK (CK@Memory) received by the memory device 30 should have a timing such that one of the clock signals CK must be associated with the command/address to be latched. The logic of signal CA occurs simultaneously (eg, at the correct logic window of command/address signal CA). However, this representation is intended to be simple and not necessary. The timing of the edge of the clock signal CK may not need to be at the same time as the logic to be latched, but may, for example, be shifted in time. For example, one of the clocks other than CK may be responsible for triggering latching of the command/address signal CA by the memory device 30. For example, an internal clock ICK can be generated by the memory device 30 in response to the clock signal CK, and the internal clock ICK can be used by a buffer of the memory device 30 (eg, the CA receiver 304 in FIG. 5). The logic of the command/address signal CA on the CA bus 12 is latched at one of the rising edges or one falling edge of the ICK. Even if the externally received clock CK and the internally generated clock ICK have the same frequency and duty cycle (which may not be the case), CK and ICK may also shift in time. Therefore, the edge of the external clock CK may not be the command/bit to be latched. The logic of the address signal CA occurs simultaneously (e.g., alongside the window (before or after) of the logic high state 1 of the command/address signal CA that can be latched at the memory device 30. As another example, even when the edge of the clock CK is directly input to a buffer of the memory device 30 to trigger the latching of the signal input to the memory device, before the latching action is sufficient to latch the logic of the input signal There can be some delay.
記憶體裝置30可在如上文所述之資料匯流排DQ上將關於命令/位址校準之資訊傳輸至控制器20。舉例而言,記憶體裝置30可在CA命令/位址匯流排12之命令/位址信號線上傳輸由記憶體裝置30解譯(例如,鎖存)之信號。因此,在一校準傳輸循環期間,若記憶體控制器在命令/位址匯流排12之一信號線上傳輸一1(例如,邏輯高態)至記憶體裝置,但時脈CK與此傳輸之相對相位使得記憶體裝置30經觸發以在適宜信號窗外側鎖存此信號線上之信號,則記憶體裝置可不準確地將所傳輸信號解譯為一0。然而,該記憶體裝置可經由DQ資料匯流排13之一信號線傳輸值0。記憶體控制器20可判定與該傳輸循環相關聯之傳輸係不成功的且決定該傳輸係一失敗F。在命令/位址校準期間之一後續傳輸循環中,可移位時脈CK與命令/位址校準信號(例如,1)之傳輸之相對相位以使得記憶體裝置30經觸發以在表示1之信號窗中鎖存該信號線,且可將此值1傳輸至記憶體控制器20(作為命令/位址校準資訊)。記憶體控制器20可因此比較傳輸至記憶體裝置30之命令/位址校準信號與自記憶體裝置30接收之命令/位址校準資訊(值1)係相同且判 定後續傳輸循環係成功(通過P)。 The memory device 30 can transmit information about the command/address calibration to the controller 20 on the data bus DQ as described above. For example, the memory device 30 can transmit a signal interpreted (eg, latched) by the memory device 30 on the command/address signal line of the CA command/address bus. Therefore, during a calibration transmission cycle, if the memory controller transmits a 1 (eg, a logic high state) to the memory device on one of the signal lines of the command/address bus 12, the clock CK is opposite to the transmission. The phase causes the memory device 30 to trigger to latch the signal on the signal line outside of the appropriate signal window, and the memory device can inaccurately interpret the transmitted signal as a zero. However, the memory device can transmit a value of 0 via one of the signal lines of the DQ data bus. The memory controller 20 can determine that the transmission associated with the transmission cycle is unsuccessful and determines that the transmission is a failure F. In one subsequent transmission cycle during command/address calibration, the relative phase of the transmission of the clock CK and the command/address calibration signal (eg, 1) may be shifted such that the memory device 30 is triggered to indicate The signal line is latched in the signal window and this value 1 can be transferred to the memory controller 20 (as command/address calibration information). The memory controller 20 can therefore compare the command/address calibration signal transmitted to the memory device 30 with the command/address calibration information (value 1) received from the memory device 30 and determine The subsequent transmission cycle is successful (through P).
記憶體控制器20可分析命令/位址校準之傳輸循環群組以判定時脈CK與在記憶體系統10之正常操作期間在命令/位址CA信號之命令/位址信號線上發送之命令/位址信號之間的一相對相位。此最佳相對相位可係由記憶體控制器20在正常操作期間將命令及位址資訊傳輸至記憶體裝置30中實施。舉例而言,可藉由聚集判定為一通過P之所有傳輸循環且選擇此群組之中心處之傳輸循環之一相對相位來判定最佳相對相位。舉例而言,由於在圖4A及圖4B中與S3、S4、S5、S6、S7、S8、S9、S10及S11相關聯之傳輸循環係成功的(通過P),因此記憶體控制器20可選擇與S7相關聯之傳輸循環之相對相位(時脈CK與命令/位址校準信號之間)作為最佳相位。另一選擇為,記憶體控制器20可選擇最佳相位為與第一及最後一個成功傳輸循環相關聯之相對相位之一平均值(當每一傳輸循環之相對相位係有次序時(例如,0度、15度、30度等))-在圖4A及圖4B之實例中,此將係與S3及S11相關聯之傳輸循環之相對相位之平均值。另一選擇為,記憶體控制器20可選擇最佳相位為與將成功傳輸循環夾在中間的最後一個及第一個未成功傳輸循環相關聯之相對相位之一平均值(當每一傳輸循環之相對相位係有次序時)-在圖4A及圖4B之實例中,此將係與S2及S12相關聯之傳輸循環之相對相位之平均值。以此方式,可執行命令/位址校準。 The memory controller 20 can analyze the transmission cycle group of command/address calibration to determine the clock CK and the command sent on the command/address signal line of the command/address CA signal during normal operation of the memory system 10 / A relative phase between the address signals. This optimal relative phase can be implemented by the memory controller 20 transmitting command and address information to the memory device 30 during normal operation. For example, the optimal relative phase can be determined by aggregating a determination of one of the transmission cycles through P and selecting one of the relative phases of the transmission cycle at the center of the group. For example, since the transmission cycles associated with S3, S4, S5, S6, S7, S8, S9, S10, and S11 are successful (via P) in FIGS. 4A and 4B, the memory controller 20 can The relative phase of the transmission cycle associated with S7 (between clock CK and command/address calibration signal) is selected as the optimum phase. Alternatively, memory controller 20 may select the optimum phase as one of the relative phases associated with the first and last successful transmission cycles (when the relative phase of each transmission cycle is ordered) (eg, 0 degrees, 15 degrees, 30 degrees, etc.)) - In the example of Figures 4A and 4B, this will be the average of the relative phases of the transmission cycles associated with S3 and S11. Alternatively, the memory controller 20 may select the optimum phase as one of the relative phases associated with the last and first unsuccessful transmission cycles sandwiching the successful transmission cycle (when each transmission cycle) When the relative phases are in order) - in the example of Figures 4A and 4B, this will be the average of the relative phases of the transmission cycles associated with S2 and S12. In this way, command/address calibration can be performed.
儘管已在當前實施例中闡述對一單個命令/位址信號CA (在命令/位址CA匯流排12之一單個線上)之校準,但可針對透過命令/位址匯流排12傳輸之多個命令/位址信號CA執行此命令/位址校準。可同時針對命令/位址匯流排12之所有信號線進行此校準。記憶體控制器20可判定命令/位址匯流排20之信號線中之每一者之一最佳相對相位(例如,如上文所闡述)且個別地調整命令/位址匯流排20之信號線中之每一者之相對相位。 Although a single command/address signal CA has been set forth in the current embodiment Calibration of (on a single line of command/address CA bus 12), but this command/address calibration can be performed for multiple command/address signals CA transmitted over command/address bus 12. This calibration can be performed for all signal lines of the command/address bus 12 at the same time. The memory controller 20 can determine the best relative phase of each of the signal lines of the command/address bus 20 (eg, as explained above) and individually adjust the signal lines of the command/address bus 20 The relative phase of each of them.
另一選擇為,記憶體控制器20可判定整個信號線群組之一最佳相對相位,且選擇相同最佳相位用於命令/位址匯流排12之所有信號線群組。在選擇相同最佳相對相位用於整個信號線群組中,記憶體控制器20可將一成功傳輸循環(通過P)判定為其中命令/位址校準信號之所有位元皆由記憶體裝置30成功地解譯之一個循環且將一未成功傳輸循環(失敗F)判定為其中命令/位址校準信號之位元中之至少一者未由記憶體裝置30成功地解譯之一個循環。可以類似於上文關於命令/位址匯流排12之一單個信號線所闡述之一方式藉由分析傳輸循環之通過P及失敗F標識來判定整個信號線群組之最佳相對相位。 Alternatively, the memory controller 20 can determine the best relative phase of one of the entire set of signal lines and select the same best phase for all of the signal line groups of the command/address bus. In selecting the same best relative phase for the entire signal line group, the memory controller 20 can determine a successful transmission cycle (via P) as all of the bits of the command/address calibration signal are from the memory device 30. One cycle of successful interpretation is performed and an unsuccessful transmission cycle (failure F) is determined as one of the cycles in which at least one of the bits of the command/address calibration signal is not successfully interpreted by the memory device 30. The optimal relative phase of the entire set of signal lines can be determined by analyzing the pass P of the transmission cycle and the F-Fail flag in a manner similar to that described above with respect to a single signal line of the command/address bus 12 .
在另一替代方案中,記憶體控制器20可判定構成命令/位址匯流排12之多個信號線群組之一最佳相對相位。可如本文中針對判定構成命令/位址匯流排12之整個信號線群組之一最佳相對相位所闡述判定多個信號線群組中之每一者之最佳相對相位。命令/位址匯流排12之信號線群組可包括一相鄰信號線群組(例如,其中不間置有命令/位址匯 流排12之其他信號線)。 In another alternative, the memory controller 20 can determine the best relative phase of one of the plurality of signal line groups that make up the command/address bus. The optimal relative phase of each of the plurality of signal line groups can be determined as set forth herein for determining the best relative phase of one of the entire set of signal lines constituting the command/address bus. The signal line group of the command/address bus 12 may include a group of adjacent signal lines (eg, where no command/address is placed) Other signal lines of the flow row 12).
在另一替代方案中,可如上文所闡述僅針對命令/位址匯流排12之信號線之一子組判定最佳相對相位。亦即,命令/位址校準信號可由控制器僅在命令/位址匯流排12之信號線之一子組上傳輸且/或記憶體裝置30可傳輸僅關於命令/位址匯流排之信號線之一子組之命令/位址校準資訊。可針對命令/位址匯流排12之信號線之此子組判定最佳相對相位。命令/位址匯流排12之信號線之其餘線可具有基於針對信號線子組判定之最佳相對相位而判定之一最佳相位。此可(例如)藉由內插(及/或外推)緊鄰信號線(信號線子組的)之最佳相對相位作為一最佳相對相位來進行。舉例而言,若命令/位址匯流排包括10個信號線(能夠一次發送10個並列資訊位元),則奇數線(其中信號線係以1至10之次序定位)可具有如關於圖4A及圖4B所闡述所判定之一最佳相對相位(藉由控制器20之至記憶體裝置30之命令/位址校準信號之多個傳輸循環及將命令/位址校準資訊自記憶體裝置30發送至記憶體控制器20)。命令/位址匯流排12之偶數線可具有其藉由內插命令/位址匯流排12之相鄰奇數線之先前所判定最佳相對相位來判定之最佳相對相位。因此,命令/位址匯流排12之信號線2可具有其判定為信號線1及3之最佳相對相位之平均值之最佳相對相位。除對緊接著相鄰者求平均之外,可執行其他內插(例如,若信號線1、2及3不均勻地間隔開或具有某一已知長度差及/或該內插可包含兩個以上奇數信號線之最佳相對相位判定)。類 似地,信號線4可具有其藉由對針對信號線3及5判定之最佳相對相位求平均或內插針對信號線3及5判定之最佳相對相位所判定之最佳相對相位。由於在此實例中信號線10將不具有兩個相鄰信號線,因此可將其最佳相對相位選擇為與信號線9之最佳相對相位相同,或可自多個奇數信號線外推(例如,自信號線7及9外推)。 In another alternative, the optimal relative phase can be determined only for a subset of the signal lines of the command/address bus 12 as explained above. That is, the command/address calibration signal may be transmitted by the controller only on a subset of the signal lines of the command/address bus 12 and/or the memory device 30 may transmit signal lines only for the command/address bus Command/address calibration information for one of the subgroups. The best relative phase can be determined for this subgroup of signal lines of the command/address bus. The remaining lines of the signal line of the command/address bus 12 may have one of the best phases determined based on the optimal relative phase for the signal line sub-group decision. This can be done, for example, by interpolating (and/or extrapolating) the optimal relative phase of the immediately adjacent signal lines (of the subset of signal lines) as an optimal relative phase. For example, if the command/address bus includes 10 signal lines (capable of transmitting 10 parallel information bits at a time), the odd lines (where the signal lines are positioned in the order of 1 to 10) may have as described with respect to FIG. 4A And one of the determined optimal relative phases as illustrated in FIG. 4B (a plurality of transmission cycles of the command/address calibration signal from the controller 20 to the memory device 30 and the command/address calibration information from the memory device 30 Send to memory controller 20). The even lines of the command/address bus 12 may have their best relative phase determined by the previously determined optimum relative phase of the adjacent odd lines of the interpolated command/address bus. Therefore, the signal line 2 of the command/address bus 12 can have an optimum relative phase which is determined as the average of the optimum relative phases of the signal lines 1 and 3. In addition to averaging the neighbors, other interpolations may be performed (eg, if signal lines 1, 2, and 3 are unevenly spaced or have some known length difference and/or the interpolation may include two Optimal relative phase determination of more than one odd signal line). class Similarly, signal line 4 may have its optimum relative phase as determined by averaging the optimum relative phase determined for signal lines 3 and 5 or interpolating the optimum relative phase for signal lines 3 and 5. Since the signal line 10 will not have two adjacent signal lines in this example, its optimum relative phase may be selected to be the same as the optimal relative phase of the signal line 9, or may be extrapolated from multiple odd signal lines ( For example, extrapolation from signal lines 7 and 9).
圖5係可用於執行所闡述之任一命令/位址校準實施例之記憶體系統10之一實例之一方塊圖。 5 is a block diagram of one example of a memory system 10 that can be used to perform any of the command/address calibration embodiments set forth.
參考圖5,記憶體系統10包含記憶體控制器20及記憶體裝置30。記憶體控制器20可包含一時脈產生器201、一命令/位址產生器202、一命令/位址傳輸器203(其在後文中可稱為一CA傳輸器)、一暫存器204、一比較器206、一相位/時序控制器208及一輸入/輸出單元210。 Referring to FIG. 5, the memory system 10 includes a memory controller 20 and a memory device 30. The memory controller 20 can include a clock generator 201, a command/address generator 202, a command/address transmitter 203 (which may be referred to as a CA transmitter hereinafter), a register 204, A comparator 206, a phase/timing controller 208 and an input/output unit 210.
記憶體控制器20透過時脈信號線11將自時脈產生器201產生之時脈信號CK提供至記憶體裝置30。命令/位址產生器202產生一初始命令/位址信號CA0且將其提供至CA傳輸器203。 The memory controller 20 supplies the clock signal CK generated from the clock generator 201 to the memory device 30 through the clock signal line 11. The command/address generator 202 generates an initial command/address signal CA0 and provides it to the CA transmitter 203.
CA傳輸器203接收具有一第一相位p1之一初始命令/位址信號CAsp1,且回應於相位/時序控制器208之一控制信號CTRL而調整初始命令/位址信號CAsp1之一相位或時序以產生具有一第二相位p2之一經相位調整之命令/位址信號CAsp2。CA傳輸器203亦可受控制信號CTRL控制以實質上維持初始命令/位址信號CA之相位,以使得第一相位p1實質上與第二相位p2相同(為使解釋簡易,即使在某些情形 下,初始命令/位址CAsp1信號可不具有一相位調整,亦將信號CAsp2稱為一經相位調整之命令/位址信號CA)。將經相位調整之命令/位址信號CAsp2發送至暫存器204,且將由經相位調整之命令/位址信號CAsp2表示之資訊儲存在暫存器204中作為CAs。透過命令/位址匯流排12將經相位調整之命令/位址信號CAsp2提供至記憶體裝置30。該經相位調整之命令/位址信號CAsp2係與時脈信號CK一起提供至記憶體裝置30。 CA 203 receives a transmission having a first phase p1 one initial command / address signal CA sp1, and in response to a control signal CTRL 208 one phase / timing controller to adjust the initial command / address signal CA or one phase sp1 The timing is to generate a command/address signal CA sp2 having a phase adjustment of one of the second phases p2. The CA transmitter 203 can also be controlled by the control signal CTRL to substantially maintain the phase of the initial command/address signal CA such that the first phase p1 is substantially the same as the second phase p2 (for ease of interpretation, even in certain situations) Next, the initial command/address CA sp1 signal may not have a phase adjustment, and the signal CA sp2 is also referred to as a phase-adjusted command/address signal CA). The phase adjusted command/address signal CA sp2 is sent to the register 204, and the information represented by the phase adjusted command/address signal CA sp2 is stored in the register 204 as CA s . The phase adjusted command/address signal CA sp2 is provided to the memory device 30 via the command/address bus. The phase adjusted command/address signal CA sp2 is provided to the memory device 30 along with the clock signal CK.
暫存器204儲存經相位調整之命令/位址信號CAsp2之資訊作為經發送命令/位址資訊CAs。比較器206比較儲存在暫存器204中之經發送命令/位址資訊CAs與自輸入/輸出單元210輸出之所接收之命令/位址校準資訊CAr(如本文中所闡述,由記憶體裝置30接收且發送回至記憶體控制器20)。比較器204比較資訊CAs與資訊CAr以產生一通過或失敗信號P或F。 The register 204 stores the information of the phase adjusted command/address signal CA sp2 as the transmitted command/address information CA s . Comparing comparator 206 is stored in the register 204 by sending a command / address information CA s command from the output of the input / output unit 210 of the received / calibrated address information CA r (as set forth herein, by a memory The body device 30 receives and sends back to the memory controller 20). Comparator 204 compares information CA s with information CA r to generate a pass or fail signal P or F.
相位/時序控制器208根據由比較器206產生之通過或失敗資訊P或F產生指示初始命令/位址信號CAsp1之一相移之控制信號CTRL。將控制信號CTRL提供至CA傳輸器203,且調整初始命令/位址信號CAsp1之相位或時序以產生經相位調整之命令/位址信號CAsp2。 The phase/timing controller 208 generates a control signal CTRL indicating a phase shift of one of the initial command/address signals CA sp1 based on the pass or fail information P or F generated by the comparator 206. The control signal CTRL is provided to the CA transmitter 203 and the phase or timing of the initial command/address signal CA sp1 is adjusted to produce a phase adjusted command/address signal CA sp2 .
在一正常操作模式中,資料輸入/輸出單元210透過DQ匯流排13接收自記憶體裝置30傳輸之讀取資料R_Data1或透過DQ匯流排13傳輸待寫入至記憶體裝置30之寫入資料W_Data1。另外,在命令/位址(CA)校準模式中,資料輸入/ 輸出單元210可透過DQ匯流排13接收對應於由記憶體裝置30自記憶體控制器20接收之經相位調整之命令/位址信號CAsp2之命令/位址校準資訊CAr。命令/位址校準資訊CAr可係由記憶體裝置30在經相位調整之命令/位址信號CAsp2正被發送至記憶體裝置30時回應於時脈CK(例如,在時脈信號CK之上升沿及/或下降沿之情形下)而鎖存之資訊。當CK之時序係如此以適當地解譯(或鎖存)經相位調整之命令/位址信號CAsp2時,CAr可係與CAs相同之資訊,或當記憶體裝置30不正確地解譯經相位調整之命令/位址信號CAsp2時CAr可不同於CAs。資料輸入/輸出單元210輸出命令/位址信號資訊CAr至比較器206。 In a normal operation mode, the data input/output unit 210 receives the read data R_Data1 transmitted from the memory device 30 through the DQ bus 13 or transmits the write data W_Data1 to be written to the memory device 30 through the DQ bus 13. . In addition, in the command/address (CA) calibration mode, the data input/output unit 210 can receive the phase-adjusted command/address corresponding to the phase received by the memory device 30 from the memory controller 20 via the DQ bus 13 Command/address calibration information CA r of signal CA sp2 . Command / address CA r calibration information may be based upon a clock in the memory device 30 via the phase adjustment of the command / address signal CA sp2 being transmitted to the memory device 30 in response to CK (e.g., when the clock signal CK Information that is latched in the case of rising edges and/or falling edges. When the timing of CK is such that the phase-adjusted command/address signal CA sp2 is properly interpreted (or latched), CA r may be the same information as CA s or when memory device 30 incorrectly resolves The CA r may be different from CA s when translating the phase-adjusted command/address signal CA sp2 . Data input / output unit 210 outputs the command / address signal CA r information to the comparator 206.
輸入/輸出單元210可包含一輸入緩衝器212、一選擇單元214及一輸出緩衝器216。輸入緩衝器212及輸出緩衝器216可包括鎖存器及/或放大器以分別鎖存及/或放大所接收信號。輸入緩衝器212經連接以接收透過DQ匯流排13自記憶體裝置30傳輸之資料及命令/位址校準資訊CAr。選擇單元214在正常操作模式中回應於一第一選擇信號SEL1而將由輸入緩衝器212接收之資料作為讀取資料R_Data1傳輸至記憶體控制器20之一內部電路區塊(未展示),且在CA校準模式中回應於該第一選擇信號SEL1而將由輸入緩衝器212接收之命令/位址校準資訊CAr傳輸至比較器206。選擇單元214可係多工器。輸入緩衝器212可正確地解譯命令/位址校準資訊CAr,DQ匯流排13在CA校準模式之前已在一DQ校準模式中得到校準及/或命令/位址校準資訊CAr在DQ 匯流排13上傳輸至輸入緩衝器212係以一較慢速率以確保在正確窗處鎖存DQ匯流排13上之資訊(例如,當命令/位址校準係以一雙倍資料速率(DDR)時,較慢傳輸速率係以一單倍資料速率(SDR))。在此例項中,在DQ匯流排13上接收之命令/位址校準資訊CAr與由資料輸入/輸出單元210傳輸至CA比較器206之命令/位址校準資訊CAr相同。輸出緩衝器216透過DQ匯流排13傳輸待寫入至記憶體裝置30之寫入資料W_Data1。 The input/output unit 210 can include an input buffer 212, a selection unit 214, and an output buffer 216. Input buffer 212 and output buffer 216 may include latches and/or amplifiers to respectively latch and/or amplify the received signals. Input buffer 212 is connected to receive via DQ bus 13 from the data memory device 30 and transmit the command / address information calibrating CA r. The selecting unit 214 transmits the data received by the input buffer 212 as the read data R_Data1 to the internal circuit block (not shown) of the memory controller 20 in response to a first selection signal SEL1 in the normal operation mode, and CA calibration mode in response to the first selection signal SEL1 and from the input buffer 212 receives the command / address CA R & lt calibration information transmitted to the comparator 206. The selection unit 214 can be a multiplexer. Input buffer 212 can properly interpret the command / address information calibrating CA r, DQ bus DQ 13 has been in a calibration mode before CA calibration calibration mode and / or the command / address information CA R & lt calibration on the DQ bus The row 13 is transferred to the input buffer 212 at a slower rate to ensure that the information on the DQ bus 13 is latched at the correct window (eg, when the command/address calibration is at a double data rate (DDR) The slower transmission rate is at a single data rate (SDR). In this instances, the reception of the 13 DQ bus command / address CA R & lt calibration information by the transmission data input / output unit 210 to the command comparator CA 206 / R & lt same address CA calibration information. The output buffer 216 transmits the write data W_Data1 to be written to the memory device 30 through the DQ bus 13 .
記憶體裝置30包含一時脈緩衝器302、一命令/位址接收器304(在後文中其將係稱為一CA接收器304)及一資料輸入/輸出單元310。時脈緩衝器302接收透過時脈信號線11傳輸之時脈信號CK以產生一內部時脈信號ICK。透過命令/位址匯流排12將經相位調整之命令/位址信號CAsp2傳輸至記憶體裝置30。CA接收器304回應於內部時脈信號ICK產生命令/位址校準資訊CAr,此可發生在藉由一晶片選擇信號/CS及一時脈啟用信號CKE予以啟用時。晶片選擇信號/CS及時脈啟用信號CKE可係與命令/位址信號線12分開提供,如圖5中,或可係在命令/位址信號線12上載送以傳輸至記憶體30,不同於圖5中所展示。 The memory device 30 includes a clock buffer 302, a command/address receiver 304 (which will hereinafter be referred to as a CA receiver 304), and a data input/output unit 310. The clock buffer 302 receives the clock signal CK transmitted through the clock signal line 11 to generate an internal clock signal ICK. The phase adjusted command/address signal CA sp2 is transmitted to the memory device 30 via the command/address bus. CA receiver 304 generates response command / address CA R & lt calibration information in the internal clock signal ICK, which may occur when the signal CKE to be enabled by a chip select signal / CS and a clock enable. The wafer select signal /CS time pulse enable signal CKE may be provided separately from the command/address signal line 12, as in FIG. 5, or may be carried on the command/address signal line 12 for transmission to the memory 30, unlike Shown in Figure 5.
時脈啟用信號CKE可用作一偽命令,該偽命令在CA校準模式中充當透過命令/位址匯流排12傳輸之經相位調整之命令/位址信號CAsp2之一讀取命令。CA接收器304根據基於當時脈啟用信號CKE處於一作用狀態中且當記憶體裝置30藉由晶片選擇信號/CS啟用時接收之ICK之一時序(例 如,一上升沿及/或下降沿)所鎖存之經相位調整之命令/位址信號CAsp2來產生命令/位址校準資訊CAr。將命令/位址校準資訊CAr提供至資料輸入/輸出單元310。 The clock enable signal CKE can be used as a pseudo command that acts as a read command for one of the phase adjusted commands/address signals CA sp2 transmitted through the command/address bus 12 in the CA calibration mode. The CA receiver 304 is in accordance with a timing (e.g., a rising edge and/or a falling edge) of the ICK received based on the clock enable signal CKE in an active state and when the memory device 30 is enabled by the chip select signal /CS. The phase-tuned command/address signal CA sp2 is latched to generate command/address calibration information CA r . The command/address calibration information CA r is supplied to the data input/output unit 310.
資料輸入/輸出單元310經連接以接收命令/位址校準資訊CAr及自記憶體裝置30之一內部電路區塊(例如,連接至儲存讀取資料R_Data2之一記憶體陣列之資料讀取路徑電路)(未展示)傳輸之讀取資料R_Data2,且在一正常讀取操作模式中回應於一第二選擇信號SEL2將所接收讀取資料R_Data2傳輸至DQ匯流排13,或在一校準模式中回應於第二選擇信號SEL2而將第二命令/位址信號CA2傳輸至DQ匯流排13。在一正常寫入模式中,資料輸入/輸出單元310透過DQ匯流排13接收待寫入至記憶體裝置30之寫入資料W_Data1,且將所接收寫入資料W_Data1傳輸至記憶體裝置30之內部電路區塊。資料輸入/輸出單元310包含一選擇單元312、一輸出緩衝器314及一輸入緩衝器316。根據正常操作模式或校準模式,選擇單元312回應於第二選擇信號SEL2選擇自命令/位址接收器304輸出之第二命令/位址信號CA2及自記憶體裝置30之內部電路區塊提供之讀取資料R_Data2中之一者,且將選定信號或資料傳輸至輸出緩衝器314。選擇單元312可係一多工器。 Data input / output unit 310 is connected to receive the command / address information CA r and the internal calibration circuit block 30 from one of the memory device (e.g., coupled to read the data stored R_Data2 one data read path of memory array Circuitry (not shown) transmitting the read data R_Data2 and transmitting the received read data R_Data2 to the DQ bus 13 in response to a second select signal SEL2 in a normal read mode of operation, or in a calibration mode The second command/address signal CA2 is transmitted to the DQ bus 13 in response to the second selection signal SEL2. In a normal write mode, the data input/output unit 310 receives the write data W_Data1 to be written to the memory device 30 through the DQ bus 13 and transmits the received write data W_Data1 to the internal memory device 30. Circuit block. The data input/output unit 310 includes a selection unit 312, an output buffer 314, and an input buffer 316. According to the normal operation mode or the calibration mode, the selection unit 312 selects the second command/address signal CA2 output from the command/address receiver 304 and the internal circuit block provided from the memory device 30 in response to the second selection signal SEL2. One of the data R_Data2 is read and the selected signal or data is transmitted to the output buffer 314. The selection unit 312 can be a multiplexer.
輸出緩衝器314將自選擇單元312輸出之命令/位址校準資訊CAr或讀取資料R_Data2傳輸至DQ匯流排13。輸入緩衝器316接收透過DQ匯流排13傳輸之資料且將接收資料作為寫入資料W_Data2傳輸至記憶體裝置30之內部電路區 塊。舉例而言,寫入資料W_Data2可經由資料寫入路徑電路傳輸至一記憶體陣列以寫入至該記憶體陣列中。資料寫入路徑電路及資料讀取路徑電路可共用電路。 Output from the buffer 314 to the selection unit 312 outputs the command / address CA r calibration information transmitted to or read data DQ bus 13 R_Data2. The input buffer 316 receives the data transmitted through the DQ bus 13 and transmits the received data as the write data W_Data2 to the internal circuit block of the memory device 30. For example, the write data W_Data2 can be transferred to a memory array via the data write path circuit for writing into the memory array. The data write path circuit and the data read path circuit can share the circuit.
在當前實施例中,透過DQ匯流排13將自記憶體裝置30之輸出緩衝器314輸出之命令/位址校準資訊CAr提供至記憶體控制器20。此外,可透過一資料選通(DQS)線及DQ匯流排13將自記憶體裝置30之輸出緩衝器314輸出之命令/位址校準資訊CAr提供至記憶體控制器20。記憶體控制器20之資料輸入/輸出單元210及記憶體裝置30之資料輸入/輸出單元310可透過DQS線及DQ匯流排13連接至彼此。 In the current embodiment, the command/address calibration information CA r output from the output buffer 314 of the memory device 30 is supplied to the memory controller 20 through the DQ bus 13 . In addition, the command/address calibration information CA r output from the output buffer 314 of the memory device 30 can be supplied to the memory controller 20 through a data strobe (DQS) line and a DQ bus 13 . The data input/output unit 210 of the memory controller 20 and the data input/output unit 310 of the memory device 30 can be connected to each other through the DQS line and the DQ bus bar 13.
可如下執行記憶體系統10中之CA校準。記憶體控制器20之CA傳輸器203藉由回應於相位/時序控制器208之控制信號CTRL而調整初始命令/位址信號CAsp1之相位或時序來產生命令/位址信號CAsp2。控制信號CTRL亦可具有維持命令/位址信號之相位之一值,如先前所述。記憶體裝置30之CA接收器304以根據內部時脈信號ICK之一時序且在藉由時脈啟用信號CKE啟用時接收經相位調整之命令/位址信號CAsp2以產生命令/位址校準資訊CAr。回應於第二選擇信號SEL2將記憶體裝置30之命令/位址校準資訊CAr傳輸至DQ匯流排13。在校準命令/位址信號之前,自記憶體控制器20傳輸之經相位調整之命令/位址信號CAsp2之一值及由記憶體裝置30解譯(例如,鎖存)之命令/位址校準資訊CAr之一值可(例如)由於在信號傳輸期間產生之雜訊及/或時脈CK與由CA匯流排12傳輸之信號之間的信號傳輸時序變化 可係彼此不同。校準命令/位址信號解決此問題。 The CA calibration in the memory system 10 can be performed as follows. The CA transmitter 203 of the memory controller 20 generates a command/address signal CA sp2 by adjusting the phase or timing of the initial command/address signal CA sp1 in response to the control signal CTRL of the phase/timing controller 208. The control signal CTRL can also have a value that maintains the phase of the command/address signal as previously described. The CA receiver 304 of the memory device 30 receives the phase adjusted command/address signal CA sp2 to generate command/address calibration information according to one of the internal clock signals ICK and when enabled by the clock enable signal CKE. CA r . The command/address calibration information CA r of the memory device 30 is transmitted to the DQ bus 13 in response to the second selection signal SEL2. Prior to calibrating the command/address signal, one of the phase adjusted command/address signal CA sp2 transmitted from the memory controller 20 and the command/address interpreted (eg, latched) by the memory device 30 One of the values of the calibration information CA r may be different from each other, for example, due to noise generated during signal transmission and/or signal transmission timing changes between the clock CK and the signal transmitted by the CA bus 12 . The calibration command/address signal solves this problem.
在命令/位址校準模式中,記憶體控制器20回應於第一選擇信號SEL1將經由DQ匯流排13接收之命令/位址校準資訊CAr傳輸至比較器206。若DQ匯流排13在CA校準模式之前在一DQ校準模式中得到校準,則記憶體控制器20不正確地解譯命令/位址校準資訊CAr(例如,由輸入緩衝器212所解譯)之機會減小。比較器206比較由記憶體控制器20傳輸至記憶體裝置30且儲存在暫存器204中之命令/位址信號CAsp2之一值與由記憶體控制器接收之命令/位址校準資訊CAr之一值,且在該兩個值係彼此相同時產生一通過信號P且在該兩個值係不同時產生一失敗信號F。相位/時序控制器208產生指示初始命令/位址信號CAsp1之一新相移(以獲得具有與時脈CK之一新相對相位差之一新經相位調整之命令/位址信號CAsp2)之控制信號CTRL,且針對相對於時脈CK具有一不同相對相位之新初始命令/位址信號CAsp1重複該過程。在此過程之多個循環(每一循環具有由CA傳輸器203造成之初始命令/位址信號CAsp1之一不同相移)之後,控制器分析通過P及失敗F信號之群組以判定正常操作之CA信號線(或若干線或匯流排)之最佳相對相位。儘管圖5中未展示,但可將控制信號CTRL傳輸至時脈產生器201以調整時脈信號CK之時序或相位從而調整命令/位址信號與時脈信號CK之相對相位。 In the command / address calibration mode, the memory controller 20 in response to the first selection signal SEL1 206 via the DQ bus 13 receives the command / address CA r calibration information transmitted to the comparator. When the DQ bus DQ 13 calibrated in a calibration mode before CA calibration mode, the memory controller 20 incorrectly interpret the command / address CA R & lt calibration information (e.g., interpreted by the input buffer 212) The chance is reduced. The comparator 206 compares one of the command/address signals CA sp2 transmitted by the memory controller 20 to the memory device 30 and stored in the register 204 with the command/address calibration information CA received by the memory controller. A value of r , and a pass signal P is generated when the two values are identical to each other and a failure signal F is generated when the two values are different. The phase/timing controller 208 generates a new phase shift indicating one of the initial command/address signals CA sp1 (to obtain a command/address signal CA sp2 having a new phase adjustment of one of the new relative phase differences from the clock CK) The control signal CTRL is repeated and the process is repeated for a new initial command/address signal CA sp1 having a different relative phase with respect to the clock CK. After multiple cycles of this process (each cycle having a different phase shift of one of the initial command/address signals CA sp1 caused by the CA transmitter 203), the controller analyzes the group of P and failed F signals to determine normal The optimal relative phase of the operational CA signal line (or several lines or bus bars). Although not shown in FIG. 5, the control signal CTRL may be transmitted to the clock generator 201 to adjust the timing or phase of the clock signal CK to adjust the relative phase of the command/address signal and the clock signal CK.
藉由重複先前CA校準,記憶體控制器20之相位/時序控制器208判定用以將命令/位址信號之輸入(例如,鎖存)計 時至命令/位址信號CA窗之中間部分之最佳時序(例如,通過P位置之中間),且產生一命令/位址信號CA,以使得命令/位址信號CA窗之中間對應於記憶體裝置30之此輸入(其可對應於時脈信號CK之一沿),且以命令/位址信號CA與時脈CK之間的最佳相對相位將所產生命令/位址信號CA及時脈CK提供至記憶體裝置30。因此,當命令/位址信號之輸入(例如,鎖存)之時序對應於由記憶體裝置30接收之時脈信號CK之沿時,記憶體裝置30接收針對其一有效窗之中間對應於時脈信號CK之上升沿及下降沿(嚴格地說)時脈信號CK及CKB之上升沿及下降沿之命令/位址信號CA。 By repeating the previous CA calibration, the phase/timing controller 208 of the memory controller 20 determines the input (eg, latch) for the command/address signal. The optimal timing of the middle portion of the command/address signal CA window (eg, through the middle of the P position) and a command/address signal CA is generated such that the middle of the command/address signal CA window corresponds to the memory The input of the body device 30 (which may correspond to one edge of the clock signal CK), and the generated command/address signal CA is pulsed with the optimal relative phase between the command/address signal CA and the clock CK. CK is supplied to the memory device 30. Therefore, when the timing of the input (e.g., latch) of the command/address signal corresponds to the edge of the clock signal CK received by the memory device 30, the memory device 30 receives the middle of the corresponding one for the effective window. The rising and falling edges of the pulse signal CK (strictly speaking) the command/address signal CA of the rising and falling edges of the clock signals CK and CKB.
儘管已闡述對命令/位址匯流排12之一單個線上之單個命令/位址信號之校準,但可如先前所述針對複數個或所有命令/位址匯流排線執行此校準。 Although calibration of a single command/address signal on a single line of command/address bus 12 has been illustrated, this calibration can be performed for a plurality or all of the command/address bus bars as previously described.
圖6係用於闡述一實例性命令/位址校準方法之一圖式。圖6係用於闡述可在記憶體系統10中實施之一命令/位址校準方法之一時序圖,其中記憶體裝置30之資料DQ之位元組織係x32(DQ匯流排係由連接至記憶體裝置30之32個DQ端子(例如,墊、凸塊等)及記憶體控制器20之32個DQ端子之32個DQ信號線組成)。 Figure 6 is a diagram for illustrating one example of an exemplary command/address calibration method. 6 is a timing diagram for explaining one of the command/address calibration methods that can be implemented in the memory system 10, wherein the bit structure of the data device DQ of the memory device 30 is x32 (the DQ bus is connected to the memory by the DQ bus system) 32 DQ terminals (eg, pads, bumps, etc.) of the body device 30 and 32 DQ signal lines of 32 DQ terminals of the memory controller 20 are included).
結合圖5參考圖6,記憶體控制器20產生用於記憶體裝置30之時脈信號CK。記憶體控制器20將一進入命令/位址校準模式指令發送至記憶體裝置30。記憶體控制器20透過命令/位址匯流排12傳輸進入命令/位址校準模式指令。進入命令/位址校準模式指令可係使用一模式暫存器設定(MRS) 命令格式程式化記憶體裝置之一模式暫存器以指示一命令/位址校準模式來輸入。記憶體裝置30可回應於模式暫存器設定資訊以對命令/位址校準模式指示作出回應從而進入命令/位址校準模式。記憶體控制器20可透過命令/位址匯流排12傳輸命令/位址結束信號。命令/位址結束信號可係使用指示自校準模式退出之一MRS命令來輸入。 Referring to FIG. 6 in conjunction with FIG. 5, the memory controller 20 generates a clock signal CK for the memory device 30. The memory controller 20 sends an incoming command/address calibration mode command to the memory device 30. The memory controller 20 transmits an incoming command/address calibration mode command via the command/address bus. Entering the Command/Address Calibration Mode command can use a Mode Register Setting (MRS) The command format stylized memory device, one of the mode registers, is input to indicate a command/address calibration mode. The memory device 30 can enter the command/address calibration mode in response to the mode register setting information in response to the command/address calibration mode indication. The memory controller 20 can transmit a command/address end signal via the command/address bus. The command/address end signal can be entered using one of the MRS commands indicating that the self-calibration mode exits.
在時間t0處,在記憶體裝置處透過命令/位址匯流排12與晶片選擇信號/CS之一邏輯低態位準之啟動一起接收命令/位址校準開始信號。由記憶體裝置20接收之時脈信號CK之一上升沿觸發鎖存進入命令/位址校準模式指令。舉例而言,傳輸一第一模式暫存器命令(MRW#41)作為進入命令/位址校準模式指令。當在命令/位址匯流排12上載送10個位元之命令/位址信號CA[9:0]時,MRW#41命令可包括用以指示該命令係一模式暫存器設定命令之命令/位址信號CA[3:0]及用以指示模式暫存器設定命令係進入命令/位址校準模式之一命令之命令/位址信號CA[9:4]。 At time t 0 , a command/address alignment start signal is received at the memory device via the command/address bus 12 together with the activation of one of the wafer low signal levels of the wafer select signal /CS. A rising edge of one of the clock signals CK received by the memory device 20 triggers a latch into the command/address calibration mode command. For example, a first mode register command (MRW#41) is transmitted as an incoming command/address calibration mode command. When a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#41 command may include a command to indicate that the command is a mode register setting command. The address signal CA[3:0] and the command/address signal CA[9:4] for instructing the mode register setting command to enter one of the command/address calibration modes.
在此實例中,在時脈信號CK之上升沿及下降沿兩者處輸入MRW#41命令;在圖6中,MRW#41命令首先在時間t0處回應於時脈CK之上升沿而被記憶體裝置鎖存,且回應於時脈CK之緊接著後續下降沿被記憶體裝置30第二次鎖存。亦即,在時脈信號CK之時間t0處對應開始之時脈信號CK之上升沿及下降沿處輸入同一MRW#41命令。亦即,由於當透過一命令/位址信號線以一雙倍資料速率(DDR)輸入一MRS命令時,可產生一錯誤,以使得具有一高操作頻率 之一記憶體裝置錯過該MRS命令。此外,亦可將一不同命令錯誤地解譯為進入命令/位址校準模式命令。為減小錯誤可能性,在對應於時脈信號CK之時間t0之時脈信號CK之上升沿及下降沿處輸入同一MRW#41命令。亦即,由於在時脈信號CK之上升沿及下降沿處輸入同一命令/位址信號,因此可獲得與以一單倍資料速率(SDR)傳輸類似之一結果,且可減小尤其在尚未校準命令/位址信號線時所導致的進入校準模式之一失敗(或,至校準模式之一非有意進入)。 In this example, the MRW #41 command is input at both the rising and falling edges of the clock signal CK; in Figure 6, the MRW #41 command is first remembered at time t0 in response to the rising edge of the clock CK. The body device latches and is latched a second time by the memory device 30 in response to the subsequent clock CK followed by the subsequent falling edge. That is, the same MRW #41 command is input at the rising edge and the falling edge of the clock signal CK corresponding to the start of the clock signal CK at time t 0 . That is, since an MRS command is input at a double data rate (DDR) through a command/address signal line, an error can be generated such that one of the memory devices having a high operating frequency misses the MRS command. In addition, a different command can be erroneously interpreted as an incoming command/address calibration mode command. In order to reduce the possibility of error, the same MRW #41 command is input at the rising edge and the falling edge of the clock signal CK corresponding to the time t 0 of the clock signal CK. That is, since the same command/address signal is input at the rising edge and the falling edge of the clock signal CK, a result similar to that transmitted at a single data rate (SDR) can be obtained, and can be reduced, especially yet. One of the entry calibration modes caused by the calibration command/address signal line failed (or, one of the calibration modes was not intentionally entered).
在自首先輸入MRW#41命令時之時間t0延遲一預定時間之後,與晶片選擇信號/CS之邏輯低態位準之啟動一起啟動時脈啟用信號CKE(在圖6中在位址/命令校準期間在一邏輯低態位準下係有效)。在時間t1處,命令/位址信號CAxR係由記憶體控制器20發送且由記憶體裝置30接收,隨後跟隨在下半個時脈週期(此處時脈CK之緊接著隨後沿)傳輸及接收CAxF。命令/位址信號CAxR及CAxF係透過命令/位址匯流排12自記憶體控制器20傳輸至記憶體裝置30。時間tMRW可係一模式暫存器設定寫入循環時間以提供充分時間使記憶體裝置30將指示資料寫入至記憶體裝置30之模式暫存器設定。 After a predetermined time elapses from time t 0 when the MRW #41 command is first input, the clock enable signal CKE is started together with the start of the logic low state of the wafer select signal /CS (in Figure 6 at address/command) The calibration period is valid at a logic low level). At time t 1 , the command/address address CAxR is transmitted by the memory controller 20 and received by the memory device 30, followed by transmission in the second half of the clock cycle (here the clock CK is followed by the subsequent edge) and Receive CAxF. The command/address signals CAxR and CAxF are transmitted from the memory controller 20 to the memory device 30 via the command/address bus. The time tMRW may be a mode register setting write cycle time to provide sufficient time for the memory device 30 to write the indication data to the mode register settings of the memory device 30.
在此實例中,命令/位址信號CAxR構成在時脈信號CK之上升沿處輸入之在命令/位址匯流排12之所有線上傳輸之複數個信號,且命令/位址信號CAxF構成在時脈信號CK之下降沿處輸入之在命令/位址匯流排12之所有線上傳輸之 複數個信號。該對CAxR及CAxF可構成一命令/位址測試型樣信號,該命令/位址測試型樣信號在命令/位址校準期間傳輸至記憶體裝置以判定該記憶體裝置是否適當地解譯由該測試型樣信號表示之資訊。在圖6之實例中,測試型樣(針對每一相對相位序列發送)包括命令/位址匯流排12之每一命令/位址信號線之含兩個位元之一序列(命令/位址校準信號之兩個邏輯窗)。然而,測試型樣可包括含兩個以上位元之一序列,或可包括一個位元(關於圖4A及圖4B之闡述可暗指經相位調整之命令/位址信號CAsp2之傳輸中之一一個位元測試型樣,然而,經相位調整之命令/位址信號CAsp2可係經由命令/位址匯流排12之線中之每一者(或某些者)發送的一含一個位元、兩個位元或兩個以上位元之序列)。透過命令/位址匯流排12輸入至記憶體裝置30之命令/位址信號CAxR及命令/位址信號CAxF可係表示不同位元組之不同信號。舉例而言,當命令/位址匯流排12係由10個位元之命令/位址信號CA[9:0]組成時,可將10個位元之命令/位址信號CAxR及10個位元之命令/位址信號CAxF區分為不同信號。因此,可透過與10個位元之命令/位址匯流排12連接之記憶體裝置30之命令/位址端子(接針、墊、焊料凸塊等)(未展示)將20個位元之命令/位址校準信號CA[9:0]輸入至記憶體裝置30。記憶體裝置30可以由時脈CK之沿判定之一時序(例如,同時或在時脈CK之適宜觸發沿之前或之後之一預定或固定時間處)輸入(例如,鎖存)命令/位址校準信號。記憶體裝置30可將所輸入命令校準信 號(如由記憶體裝置所解譯-其可被正確地解釋或不正確地解釋)傳輸至記憶體控制器30,如上文(舉例而言)關於圖4A、圖4B及/或圖5所述。 In this example, the command/address signal CAxR constitutes a plurality of signals transmitted on all lines of the command/address bus 12 input at the rising edge of the clock signal CK, and the command/address signal CAxF is formed at the time. A plurality of signals transmitted on all lines of the command/address bus 12 input at the falling edge of the pulse signal CK. The pair of CAxR and CAxF may constitute a command/address test pattern signal that is transmitted to the memory device during command/address calibration to determine whether the memory device is properly interpreted by The information of the test pattern signal. In the example of FIG. 6, the test pattern (transmitted for each relative phase sequence) includes a sequence of two bits of each command/address signal line of the command/address bus 12 (command/address) Two logic windows for the calibration signal). However, the test pattern may include a sequence of one or more bits, or may include one bit (the description of FIGS. 4A and 4B may imply the transmission of the phase-adjusted command/address signal CA sp2 ) One bit test pattern, however, the phase adjusted command/address signal CA sp2 may be sent via one of each of the lines of the command/address bus 12 (or some) A bit, two bits, or a sequence of more than two bits). The command/address signal CAxR and the command/address signal CAxF input to the memory device 30 through the command/address bus 12 can represent different signals of different byte groups. For example, when the command/address bus 12 is composed of a 10-bit command/address signal CA[9:0], a 10-bit command/address signal CAxR and 10 bits can be used. The meta command/address signal CAxF is divided into different signals. Therefore, the command/address terminal (pin, pad, solder bump, etc.) (not shown) of the memory device 30 connected to the 10-bit command/address bus 12 can be 20 bits. The command/address calibration signal CA[9:0] is input to the memory device 30. The memory device 30 can input (eg, latch) a command/address from one of the timings of the edge of the clock CK (eg, simultaneously or at a predetermined or fixed time before or after the appropriate trigger edge of the clock CK). Calibration signal. The memory device 30 can transmit the input command calibration signal (as interpreted by the memory device - which can be interpreted correctly or incorrectly) to the memory controller 30, as described above (for example) 4A, FIG. 4B and/or FIG. 5.
由於要求記憶體裝置30具有大容量,因此整合程度及記憶體胞之數目增加。隨著記憶體胞之數目增加,用於尋址記憶體胞之位址位元之數目亦增加。位址接針之數目之增加導致晶片大小之增加。因此,需要一種用於抑制大多數在一記憶體晶片中所需之位址接針之數目之增加的方法。由於在此實例中,在一時脈信號之上升沿及下降沿兩者處輸入命令/位址信號,因此可減小記憶體裝置30之命令/位址接針之數目。 Since the memory device 30 is required to have a large capacity, the degree of integration and the number of memory cells are increased. As the number of memory cells increases, the number of address bits used to address the memory cells also increases. An increase in the number of address pins results in an increase in the size of the wafer. Therefore, a need exists for a method for suppressing an increase in the number of address pins required in most memory chips. Since the command/address signal is input at both the rising and falling edges of a clock signal in this example, the number of command/address pins of the memory device 30 can be reduced.
在此實例中,在命令/位址匯流排之校準模式期間,不能透過命令/位址信號線自記憶體控制器20傳輸一讀取命令。因此,在命令/位址信號匯流排之校準模式中,時脈啟用信號CKE充當命令/位址信號CAxR及CAxF之一讀取命令。當在一邏輯低態位準下啟動時脈啟用信號CKE時,以由時脈CK之沿判定之一時序輸入命令/位址信號CAxR及CAxF,且透過資料匯流排DQ13將其結果輸出至記憶體控制器20。因此,時脈啟用信號CKE用作一偽命令且使得記憶體裝置能夠輸入命令/位址校準測試型樣(例如,信號CAxR及CAxF)。在關於圖5所闡述之實施例中自記憶體控制器20傳輸之經相位調整之命令/位址信號CAsp2對應於圖6中之命令/位址信號CAxR或CAxF...CAyR及CAyF(在後文中,總稱為CAnR及CAnF)之值。每一CAnR及CAnF對對 應於一經相位調整之命令/位址信號CAsp2之一傳輸之一循環,每一循環傳輸與先前CAnR及CAnF信號相比相對於時脈CK具有一新相對相位差之命令/位址信號CAnR及CAnF信號對。為使解釋簡易,在圖6中未展示每一CAnR及CAnF信號對之經調整相位差(參見圖4A及圖4B以及相關闡述)。因此,可經由命令/位址匯流排與一時脈信號一起發送n(n為等於2或更大之一整數)個測試命令/位址測試型樣信號(例如,n個CAnR及CAnF信號對),其中n個測試型樣信號中之每一者係以相對於時脈信號之一各別不同第1至第n個相位發送。 In this example, during the calibration mode of the command/address bus, a read command cannot be transmitted from the memory controller 20 via the command/address signal line. Therefore, in the calibration mode of the command/address signal bus, the clock enable signal CKE serves as one of the command/address signals CAxR and CAxF read commands. When the clock enable signal CKE is activated at a logic low state, the command/address signals CAxR and CAxF are input at a timing determined by the edge of the clock CK, and the result is output to the memory through the data bus DQ13. Body controller 20. Thus, the clock enable signal CKE acts as a dummy command and enables the memory device to input command/address calibration test patterns (eg, signals CAxR and CAxF). The phase adjusted command/address signal CA sp2 transmitted from the memory controller 20 in the embodiment illustrated in relation to FIG. 5 corresponds to the command/address signal CAxR or CAxF in FIG. . . The values of CAyR and CAyF (hereinafter, collectively referred to as CAnR and CAnF). Each of the CANR and CAFF cycles is transmitted in response to one of the phase-adjusted command/address signals CA sp2 , and each of the cyclic transmissions has a new relative phase difference with respect to the clock CK compared to the previous CAnR and CAnF signals. Command/address signals CAnR and CAnF signal pairs. For ease of explanation, the adjusted phase difference for each of the CannR and CAnF signal pairs is not shown in Figure 6 (see Figures 4A and 4B and related descriptions). Therefore, n (n is an integer equal to 2 or greater) test command/address test pattern signals (eg, n CARR and CANF signal pairs) can be transmitted along with a clock signal via a command/address bus. , wherein each of the n test pattern signals is transmitted in a 1st to nth phase that is different from one of the clock signals.
在自於彼時啟動時脈啟用信號CKE之時脈信號CK之時間t1延遲時間tADR之時間t3處,透過DQ匯流排13在命令/位址信號CAxR或CAxF中將在由記憶體裝置30解譯(例如,鎖存)時由記憶體裝置30輸入之命令/位址校準測試型樣CAxR及CAxF之值(對應於命令/位址校準資訊CAr)自記憶體裝置30輸出至記憶體控制器20。時間tADR可係預定的,且基於記憶體裝置之操作之一已知時序。(注意在圖6中,圖解說明與表示時間t3之虛線垂直對準之CK、CA、CS及CKE之時序之時序圖之部分在比此等時序中由截斷符號表示之時間t3晚之一時間處。)如圖6中所展示,在期間發生時脈CK之複數個時脈沿之一時間段內在DQ匯流排13之偶數DQ線(DQ0、DQ2等)上輸出由時脈CK之上升沿觸發之由記憶體裝置30輸入之命令/位址信號CAxR之值(例如,與CAxR相關聯之命令/位址校準資訊)。在此例項中,輸出至記憶 體控制器20之命令/位址校準資訊之時間可發生在時脈CK之複數個週期內。如圖6所展示,在與由記憶體裝置30輸入之命令/位址信號CAxR之值相同之時間且以與其相同之方式在DQ匯流排13上輸出由記憶體裝置輸入之命令/位址信號CAxF之值(例如,與CAxF相關聯之命令/位址校準資訊),除了命令/位址信號CAxF之值係在DQ匯流排13之奇數DQ線上輸出外。當自一自上至下視角觀看時,DQ匯流排線可(但不需要)實質上沿相同方向伸展於記憶體裝置30與控制器20之間,且自0至m編號,其中m+1係DQ匯流排之匯流排線之數目。 At time t 3 of the delay time tADR from the time t 1 of the clock signal CK at which the clock enable signal CKE is started, the DQ bus bar 13 will be in the command/address signal CAxR or CAxF by the memory device. 30 interpreted (e.g., a latch) input 30 of a memory device command / address of the calibration test pattern and CAxF of CAxR (corresponding to the command / address information calibrating CA r) output from the memory device 30 to memory Body controller 20. The time tADR can be predetermined and the timing is known based on one of the operations of the memory device. (Note that in Figure 6, and illustrates the time t 3 represented by the dashed vertical alignment of the CK, the portion of the timing sequence of FIG. CA, CS, and CKE at the time t 3 nights of truncation symbols represented by a ratio of these time series At a time.) As shown in FIG. 6, during a period of a plurality of clock edges of the clock CK, the even-numbered DQ lines (DQ0, DQ2, etc.) of the DQ bus 13 are outputted by the clock CK. The rising edge triggers the value of the command/address signal CAxR input by the memory device 30 (eg, command/address calibration information associated with CAxR). In this example, the time of command/address calibration information output to the memory controller 20 may occur during a plurality of cycles of the clock CK. As shown in FIG. 6, the command/address signal input by the memory device is output on the DQ bus 13 at the same time as the value of the command/address signal CAxR input by the memory device 30 and in the same manner as it is. The value of CAxF (e.g., command/address calibration information associated with CAxF), except that the value of the command/address signal CAxF is output on the odd DQ line of the DQ bus 13 . The DQ bus bar may (but need not) extend substantially in the same direction between the memory device 30 and the controller 20 when viewed from a top-down perspective, and numbered from 0 to m, where m+1 The number of bus lines that are DQ bus bars.
若時脈CK與位址/命令校準測試型樣信號CAxR及CAxF之相對相位觸發在正確邏輯窗處輸入(例如,鎖存)位址/命令校準測試型樣信號CAxR及CAxF,則記憶體裝置應正確地解譯該校準測試型樣信號。在此例項中,記憶體控制器20將判定一通過P(針對時脈CK與位置/命令校準測試型樣信號CAxR及CAxF測試型樣信號之相對相位)。若CK與CAxR及CAxF信號之相對相位導致對由位址/命令校準測試型樣信號CAxR及CAxF所表示之資訊之不正確解譯,則記憶體控制器20將判定一失敗F。 If the relative phase of the clock CK and the address/command calibration test pattern signals CAxR and CAxF trigger input (eg, latch) address/command calibration test pattern signals CAxR and CAxF at the correct logic window, then the memory device The calibration test pattern signal should be interpreted correctly. In this example, memory controller 20 will determine a pass P (the relative phase of the test pattern signals CAxR and CAxF test pattern signals for clock CK and position/command calibration). If the relative phase of the CK and CAxR and CAxF signals results in an incorrect interpretation of the information represented by the address/command calibration test pattern signals CAxR and CAxF, the memory controller 20 will determine a failure F.
可以多種方式設定DQ墊與用於透過DQ線將由記憶體裝置30接收之第二命令/位址信號CA2之值傳輸至記憶體控制器20之經校準命令/位址信號CAxR及CAxF之間的映射。映射之一實例展示於圖8中,其中可將由記憶體裝置30在時脈信號CK之上升沿處輸入之命令/位置信號CAxR(位元 CA0至CA9)之值輸出至記憶體裝置30 DQ墊DQ[9:0],且可將由記憶體裝置30在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至記憶體裝置DQ墊DQ[19:10]。映射之另一實例展示於圖9中,其中可將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之一命令/位址信號CA9之一值輸出至記憶體裝置30之一DQS墊DQS0,且可將命令/位址信號CA[8:0]之值輸出至記憶體裝置30 DQ墊DQ[8:0]。可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA9之一值輸出至記憶體裝置之一DQS墊DQS1且可將命令/位址信號CA[8:0]之值輸出至記憶體裝置DQ墊DQ[17:9]。 The DQ pad can be set in a variety of ways to transfer the value of the second command/address signal CA2 received by the memory device 30 through the DQ line to the calibrated command/address signals CAxR and CAxF of the memory controller 20. Mapping. An example of a map is shown in Figure 8, where the command/position signal CAxR (bits) input by the memory device 30 at the rising edge of the clock signal CK can be used. The values of CA0 to CA9) are output to the memory device 30 DQ pad DQ[9:0], and the value of the command/address signal CAxF input by the memory device 30 at the falling edge of the clock signal CK can be output to the memory. Body device DQ pad DQ [19:10]. Another example of mapping is shown in FIG. 9, in which one of the command/address signals CA9 of the command/address signal CAxR input at the rising edge of the clock signal CK can be output to the memory device 30. A DQS pad DQS0, and the value of the command/address signal CA[8:0] can be output to the memory device 30 DQ pad DQ[8:0]. One value of the command/address signal CA9 among the command/address signals CAxF input at the falling edge of the clock signal CK can be output to one of the DQS pads DQS1 of the memory device and the command/address signal CA can be used. The value of 8:0] is output to the memory device DQ pad DQ[17:9].
在記憶體控制器20處,更改時脈CK與發送至記憶體裝置30之經相位調整之命令/位址信號(例如,CAyR及CAyF)之間的相對相位,且實施命令/位址校準之一新循環。如圖6中所展示,其係在命令/位址匯流排12上將命令/位置校準信號CAyR(在時間t4處)及CAyF(在CK之緊接著後續時脈沿處)傳輸至記憶體裝置30,且由記憶體裝置30以類似於上文關於CAxR及CAxF所闡述之一方式將由該記憶體裝置解譯之值發送至記憶體控制器20之一中間循環之一實例,且因此此處一重複闡述係不必要的。 At the memory controller 20, the relative phase between the clock CK and the phase adjusted command/address signals (e.g., CAyR and CAyF) sent to the memory device 30 is changed, and command/address calibration is performed. A new cycle. Shown in Figure 6, which is based on the command / address bus 12 on command / position calibration signal CAyR (at time t 4) and CAyF (at the immediately subsequent clock edge of CK) to the memory Apparatus 30, and the memory device 30 transmits a value interpreted by the memory device to one of an intermediate loop of the memory controller 20 in a manner similar to that described above with respect to CAxR and CAxF, and thus It is not necessary to repeat the explanation.
剛好在時間t5之前,與晶片選擇信號/CS之邏輯低態位準之啟動一起,去啟動時脈啟用信號CKE。此可發生在當命令/位址校準信號CAnR及CAnF(在命令/位址校準工作階段內自記憶體裝置30傳輸至控制器20之n個命令/位址校準資 訊組中之最後一個組)透過命令/位址匯流排12自記憶體控制器20傳輸至記憶體裝置30之時。命令/位址校準資訊CAnR及CAnF可以與命令/位址校準資訊CAxR及CAxF之傳輸相同之方式傳輸。 Just prior to time t 5, the wafer selection enable signal / CS of a logic level of the low state together, when the clock enable signal CKE to start. This can occur when the command/address calibration signals CAnR and CAnF (the last of the n command/address calibration information sets transmitted from the memory device 30 to the controller 20 during the command/address calibration session) When the command/address bus 12 is transmitted from the memory controller 20 to the memory device 30. The command/address calibration information CAnR and CAnF can be transmitted in the same manner as the transmission of the command/address calibration information CAxR and CAxF.
在一時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟動一起,透過命令/位址匯流排12傳輸結束命令/位址校準模式命令。(注意,圖6中針對偶數DQ及奇數DQ圖解說明之與時間t5垂直對準之時序發生在時間t5之前-參見偶數DQ及奇數DQ時序中之截斷記號。)舉例而言,傳輸一第二模式暫存器(MRW#42)命令作為結束命令/位址校準模式命令。若在命令/位址匯流排12上載送10個位元之命令/位址信號CA[9:0],則MRW#42命令可包括用以將該命令識別為一模式暫存器設定命令之命令/位址信號CA[3:0]及用以將該模式暫存器設定命令識別為一結束命令/位址校準模式命令之命令/位址信號CA[9:4]。 At a time t 5, the wafer selection signal / CS of a logic low state level of activated together, the bus bars 12 via the command transmission / end address command / address calibration mode command. (Note that the timing of the vertical alignment with time t 5 for the even DQ and odd DQ diagrams in Figure 6 occurs before time t 5 - see the truncation marks in the even DQ and odd DQ timings.) For example, transmit one The second mode register (MRW#42) command is used as the end command/address calibration mode command. If a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#42 command may include a command to identify the command as a mode register setting command. The command/address signal CA[3:0] and the command/address signal CA[9:4] for identifying the mode register setting command as an end command/address calibration mode command.
在對應於時間t5之時脈信號CK之上升沿及下降沿兩者處輸入MRW#42命令。亦即,在時間t5處之時脈信號CK之上升沿及時脈信號CK之緊接著後續下降沿兩者處輸入相同MRW#42命令兩次。當使用在一DDR下之命令信號輸入一MRS命令時,可產生一錯誤以使得具有一高操作頻率之一記憶體裝置錯過該MRS命令。為減小此錯誤之機會,在時脈信號CK之上升沿及下降沿處輸入相同MRW#42命令兩次。 The MRW #42 command is input at both the rising edge and the falling edge of the clock signal CK corresponding to time t 5 . That is, the rising edge of the clock signal CK at time t 5 is followed by the same MRW #42 command twice at the subsequent pulse edge CK followed by the subsequent falling edge. When an MRS command is input using a command signal under a DDR, an error can be generated such that one of the memory devices having a high operating frequency misses the MRS command. To reduce the chance of this error, enter the same MRW#42 command twice at the rising and falling edges of the clock signal CK.
存在使記憶體裝置判定何時鎖存退出命令/位址校準模 式命令(此處,為MRW#42)之眾多方式。在一項實施方案中,記憶體裝置可經組態以在關於時脈啟用信號CKE自低態有效至高態之轉變具有一預定關係(例如,時序)之時脈信號CK之沿處鎖存在CA匯流排12上提供之資訊。舉例而言,如圖6中所展示,記憶體裝置可經組態以在緊接著時脈啟用信號CKE自低態有效至高態之轉變之時脈CK之兩個沿處鎖存在CA匯流排12上提供之資訊。當CKE係高時,記憶體裝置30將命令位址匯流排CA 12上之資訊視為一命令(欲(例如)由記憶體裝置30之一命令解碼器處理)而非一校準測試型樣。亦應注意,可僅在某些操作期間將時脈啟用信號CKE認為係低態有效,例如僅在CA校準模式期間,且在其他時間,將其解譯為一高態有效信號。 Existence causes the memory device to determine when to latch the exit command/address calibration mode Many ways of the command (here, MRW#42). In one embodiment, the memory device can be configured to latch at the edge of the clock signal CK with a predetermined relationship (eg, timing) with respect to the transition from the low state active to the high state of the clock enable signal CKE. Information provided on bus bar 12. For example, as shown in FIG. 6, the memory device can be configured to latch at the CA busbar 12 at both edges of the clock CK following the transition from the low state active to the high state of the clock enable signal CKE. Information provided on. When the CKE is high, the memory device 30 treats the information on the command address bus 12 as a command (to be processed, for example, by one of the memory devices 30) rather than a calibration test pattern. It should also be noted that the clock enable signal CKE may be considered to be active low only during certain operations, such as during the CA calibration mode, and at other times, to interpret it as a high active signal.
在自在彼時輸入MRW#42命令之時間t5延遲一預定時間tMRZ之後,終止命令/位址信號CAnR及CAnF至記憶體裝置DQ墊之輸出。自在彼時輸入MRW#41命令(其係命令/位址校準開始信號)之時脈信號CK之時間t0至在彼時輸入MRW#42命令之時脈信號CK之時間t5之一段時期加上時間tMRZ可係CA校準週期。 After the predetermined time tMRZ is delayed from the time t 5 at which the MRW #42 command is input, the command/address signals CAnR and CAnF are terminated to the output of the memory device DQ pad. The time t 0 of the clock signal CK from the MRW #41 command (which is the command/address calibration start signal) is input to the time t 5 of the clock signal CK at which the MRW #42 command is input at that time. The upper time tMRZ can be a CA calibration cycle.
圖7係用於闡述一實例性模式暫存器命令設定方法之一真值圖。 Figure 7 is a diagram showing a true value of an exemplary mode register command setting method.
參考圖7,可藉由時脈啟用信號CKE、晶片選擇信號/CS以及命令/位址信號CA[9:0]設定MRW#41命令及MRW#42命令。當時脈啟用信號CKE在一邏輯高態(H)位準下,晶片選擇信號/CS在一邏輯低態(L)位準下,命令/位址信號 CA[3:0]在一邏輯低態(L)位準下且命令/位址信號CA[9:4]在邏輯位準H-L-H-L-L-H下時,MRW#41命令可用以設定記憶體裝置30之MRS暫存器(例如,寫入至MRS暫存器)。亦即,MRW#41命令可包括命令/位址信號CA[9:0]29H。可在時脈信號CK之上升沿及下降沿兩者處在命令/位址匯流排12上將相同MRW#41命令發送至記憶體裝置。記憶體裝置30可經組態以在當由記憶體裝置30輸入時適當地解譯發送至記憶體裝置30之兩個MRW#41命令中之至少一者時將模式暫存器設定成指示記憶體裝置30在一命令/位址校準命令中。(注意,將兩個MRW#41命令發送至記憶體裝置30可包括維持在命令/位址匯流排上發送之命令而不對命令/位址信號之兩個邏輯窗進行更改-該兩個邏輯窗可包括時脈CK之一完整時脈週期。) Referring to FIG. 7, the MRW #41 command and the MRW #42 command can be set by the clock enable signal CKE, the wafer select signal /CS, and the command/address signal CA[9:0]. When the pulse enable signal CKE is at a logic high state (H) level, the chip select signal /CS is at a logic low state (L) level, and the command/address signal is When CA[3:0] is at a logic low (L) level and the command/address signal CA[9:4] is at the logic level HLHLLH, the MRW#41 command can be used to set the MRS of the memory device 30. A scratchpad (for example, written to the MRS register). That is, the MRW #41 command may include the command/address signal CA[9:0] 29H. The same MRW #41 command can be sent to the memory device on the command/address bus 12 at both the rising and falling edges of the clock signal CK. The memory device 30 can be configured to set the mode register to indicate memory when properly interpreting at least one of the two MRW #41 commands sent to the memory device 30 when input by the memory device 30 The body device 30 is in a command/address calibration command. (Note that sending two MRW #41 commands to the memory device 30 may include maintaining the command sent on the command/address bus without changing the two logical windows of the command/address signal - the two logic windows It can include one complete clock cycle of the clock CK.)
當時脈啟用信號CKE在一邏輯高態位準下、晶片選擇信號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在一邏輯低態位準下,且命令/位址信號CA[9:4]在邏輯位準H-L-H-L-H-L下時,MRW#42命令可用以設定記憶體裝置30之MRS暫存器。亦即,MRW#42命令可包括命令/位址信號CA[9:0]2AH。可在時脈信號CK之上升沿及下降沿兩者處在命令/位址匯流排12上將相同MRW#42命令發送至記憶體裝置兩次。本文中,可將命令/位址信號CA[9:4]用作模式暫存器設定位址MA[5:0]。 When the pulse enable signal CKE is at a logic high state level, the chip select signal /CS is at a logic low state level, the command/address signal CA[3:0] is at a logic low state level, and the command When the address signal CA[9:4] is under the logic level HLHLHL, the MRW#42 command can be used to set the MRS register of the memory device 30. That is, the MRW #42 command may include the command/address signal CA[9:0] 2AH. The same MRW #42 command can be sent to the memory device twice on the command/address bus 12 at both the rising and falling edges of the clock signal CK. In this paper, the command/address signal CA[9:4] can be used as the mode register setting address MA[5:0].
圖8係根據一實施例展示用於闡述命令/位址信號與DQ墊之間的映射之一實例之一圖式。由於在當前實施例中,在 時脈信號CK之上升沿及下降沿兩者處輸入命令/位址信號CA[9:0],因此命令/位址信號CA[9:0]可由20個位元組成。就此而言,記憶體裝置30之資料DQ之位元組織係x32且因此,DQ墊之數目係32。DQ墊之數目大於命令/位址信號之數目,以使得DQ墊可一對一地對應於命令/位址信號。 8 is a diagram showing one example of a mapping between a command/address signal and a DQ pad, in accordance with an embodiment. Since in the current embodiment, The command/address signal CA[9:0] is input to both the rising and falling edges of the clock signal CK, so the command/address signal CA[9:0] can be composed of 20 bits. In this regard, the bit structure of the data DQ of the memory device 30 is x32 and, therefore, the number of DQ pads is 32. The number of DQ pads is greater than the number of command/address signals such that the DQ pads can correspond one-to-one to the command/address signals.
參考圖8,在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0]之值可經映射以輸出至DQ墊DQ[9:0]。在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之值可經映射以輸出至DQ墊DQ[19:10]。舉例而言,在圖6中,將在對應於時間t1之時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至DQ墊DQ[9:0],且將在對應於時間t1之時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至DQ墊DQ[19:10]。將在對應於時間t4之時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至DQ墊DQ[9:0],且將在對應於時間t4之時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至DQ墊DQ[19:10]。 Referring to Figure 8, the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be mapped to be output to the DQ pad DQ[9:0]. The value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK can be mapped to be output to the DQ pad DQ[19:10]. For example, in FIG. 6, the output value corresponding to the time of the command input at the rising edge of the clock signal CK of 1 / t to the address signal CAxR DQ pads DQ [9: 0], and the corresponding The value of the command/address signal CAxF input at the falling edge of the clock signal CK at time t 1 is output to the DQ pad DQ[19:10]. The value of the command/address signal CAxR input at the rising edge of the clock signal CK corresponding to the time t 4 is output to the DQ pad DQ[9:0], and the clock signal CK corresponding to the time t 4 will be The value of the command/address signal CAxF input at the falling edge is output to the DQ pad DQ[19:10].
圖9係根據另一實施例展示用於闡述命令/位址信號與DQ及DQS墊之間的映射之另一實例之一圖式。 9 is a diagram showing one example of another example for illustrating a mapping between a command/address signal and a DQ and DQS pad, in accordance with another embodiment.
參考圖9,在時脈信號CK之上升沿處輸入至記憶體裝置30之命令/位址信號CA[9:0](例如,CAxR)之值可經映射以輸出至DQS墊DQS0及DQS1以及偶數DQ墊DQ[0、2、4、6、8、10、12及14]。亦即,將命令/位址信號CA9之輸入值輸出至DQS墊DQS1,將命令/位址信號CA4之輸入值輸出至DQS0,將命令/位址信號CA[3:0]之輸入值分別輸出至 DQ墊DQ[6、4、2、0]且將命令/位址信號CA[8:5]之輸入值分別輸出至DQ墊DQ[14、12、10、8]。 Referring to FIG. 9, the value of the command/address signal CA[9:0] (eg, CAxR) input to the memory device 30 at the rising edge of the clock signal CK can be mapped to be output to the DQS pads DQS0 and DQS1, and Even DQ pads DQ [0, 2, 4, 6, 8, 10, 12 and 14]. That is, the input value of the command/address signal CA9 is output to the DQS pad DQS1, the input value of the command/address signal CA4 is output to DQS0, and the input values of the command/address signal CA[3:0] are respectively output. to The DQ pads DQ[6, 4, 2, 0] and the input values of the command/address signals CA[8:5] are output to the DQ pads DQ[14, 12, 10, 8], respectively.
在時脈信號CK之下降沿處輸入至記憶體裝置30之命令/位址信號CA[9:0](例如,CAxF)之值可經映射以輸出至DQS墊/DQS0及/DQS1以及DQ墊DQ[17:9]。亦即,可將命令/位址信號CA9之輸入值輸出至DQS墊/DQS1,可將CA4之輸入值輸出至DQS墊/DQS0,可將命令/位址信號CA[3:0]之輸入值分別輸出至DQ墊DQ[7、5、3、1]且將命令/位址信號CA[8:5]之輸入值分別輸出至DQ墊DQ[15、13、11及9]。 The value of the command/address signal CA[9:0] (eg, CAxF) input to the memory device 30 at the falling edge of the clock signal CK can be mapped to output to the DQS pad/DQS0 and /DQS1 and the DQ pad. DQ [17:9]. That is, the input value of the command/address signal CA9 can be output to the DQS pad/DQS1, and the input value of CA4 can be output to the DQS pad/DQS0, and the input value of the command/address signal CA[3:0] can be input. They are respectively output to the DQ pad DQ[7, 5, 3, 1] and the input values of the command/address signals CA[8:5] are output to the DQ pads DQ[15, 13, 11 and 9], respectively.
圖10係用於闡述根據另一實施例之一命令/位址校準方法之一圖式。 Figure 10 is a diagram for illustrating one of the command/address alignment methods in accordance with another embodiment.
圖10係用於闡述記憶體裝置30中之一命令/位址校準方法之一時序圖,其中記憶體裝置30之資料DQ之位元組織係x32。 FIG. 10 is a timing diagram for explaining one of the command/address calibration methods in the memory device 30, wherein the bit structure of the data DQ of the memory device 30 is x32.
結合圖5參考圖10,記憶體控制器20產生用於記憶體裝置30之時脈信號CK。記憶體控制器20透過命令/位址匯流排12發出一進入命令/位址校準模式命令(或指令)至記憶體裝置30。進入命令/位址校準模式命令可係使用本文中關於其他實施例所闡述之MRS命令之特例來輸入。記憶體控制器20透過命令/位址匯流排12傳輸退出命令/位址校準模式命令(或指令)。退出命令/位址校準模式命令可係使用本文中關於其他實施例所闡述之MRS命令之特例來輸入。 Referring to FIG. 10 in conjunction with FIG. 5, the memory controller 20 generates a clock signal CK for the memory device 30. The memory controller 20 issues an incoming command/address calibration mode command (or command) to the memory device 30 via the command/address bus. The entry command/address calibration mode command can be entered using a special case of the MRS commands set forth herein with respect to other embodiments. The memory controller 20 transmits an exit command/address calibration mode command (or command) through the command/address bus. The exit command/address calibration mode command may be entered using a special case of the MRS commands set forth herein with respect to other embodiments.
在時脈信號CK之時間t0處,與晶片選擇信號/CS之一邏 輯低態位準之啟動一起,透過命令/位址匯流排12傳輸係進入命令/位址校準命令之MRW#41命令。舉例而言,在於時間t0處開始之時脈信號CK之上升沿及下降沿兩者處輸入MRW#41命令。亦即,可在於時間t0處開始之時脈信號CK之上升沿及下降沿處輸入相同MRW#41命令。 At time t 0 of the clock signal CK, together with the activation of one of the logic low level of the wafer select signal /CS, the MRW#41 command is transmitted through the command/address bus 12 to enter the command/address calibration command. . For example, the MRW #41 command is input at both the rising edge and the falling edge of the clock signal CK starting at time t 0 . That is, the same MRW #41 command can be input at the rising edge and the falling edge of the clock signal CK starting at time t 0 .
在自於彼時輸入MRW#41命令之時脈信號CK之t0延遲時間tMRW之後之時間t1處,與晶片選擇信號/CS之邏輯低態位準之啟動一起,針對時脈信號CK之一個循環以一預定脈寬啟動時脈啟用信號CKE,且透過命令/位址匯流排12按序傳輸命令/位址信號CAxR及CAxF。 At time t 1 after the delay time tMRW of the t 0 of the clock signal CK inputting the MRW #41 command at that time, together with the activation of the logic low state of the wafer selection signal /CS, for the clock signal CK One cycle starts the clock enable signal CKE with a predetermined pulse width, and sequentially transmits the command/address signals CAxR and CAxF through the command/address bus.
在於時間t1處之時脈信號CK之上升沿處輸入命令/位址信號CAxR,且在時脈信號CK之下降沿處(在時間t1之後之時脈CK之緊接著後續下降沿處)輸入命令/位址信號CAxF。透過命令/位址匯流排12輸入之命令/位址信號CAxR及命令/位址信號CAxF可係表示不同資訊(例如,不同測試型樣資訊)之不同信號。 At the rising edge of the clock signal CK at time t 1 , the command/address signal CAxR is input, and at the falling edge of the clock signal CK (before the time t 1 , the clock CK is followed by the subsequent falling edge) Enter the command/address signal CAxF. The command/address signal CAxR and the command/address signal CAxF input through the command/address bus 12 can represent different signals of different information (for example, different test pattern information).
在校準模式中,時脈啟用信號CKE充當對應於圖5中由記憶體裝置30接收之第二命令/位址信號CA2之值之命令/位址信號CAxR及CAxF之一讀取命令。在命令/位址校準模式期間(且當晶片選擇/CS係有效(邏輯低態)時),記憶體裝置將在一邏輯低態位準下之時脈啟用信號CKE之一啟動解譯為在時脈信號CK之後續沿處輸入命令/位址信號匯流排上之信號之一指令,且因此,例如,如圖10中所展示,輸入由記憶體裝置30接收之命令/位址信號CAxR或CAxF之 值。 In the calibration mode, the clock enable signal CKE acts as one of the command/address signals CAxR and CAxF corresponding to the value of the second command/address signal CA2 received by the memory device 30 in FIG. During the command/address calibration mode (and when the wafer select/CS is active (logic low)), the memory device initiates the interpretation of one of the clock enable signals CKE at a logic low level to An instruction of one of the signals on the command/address signal bus is input to the subsequent edge of the clock signal CK, and thus, for example, as shown in FIG. 10, the command/address signal CAxR received by the memory device 30 is input or CAxF value.
在自時間t1延遲時間tADR之時間t3處開始,將命令/位址信號CAxR及CAxF之值(由記憶體裝置所解譯/輸入)輸出至DQ墊。在時間t3處,將輸入命令/位址信號CAxR輸出至偶數DQ墊,且在時脈CK之緊接著後續時脈沿期間,將輸入命令/位址信號CAxF輸出至奇數DQ墊。 T 3 since the beginning of the delay times t 1 tADR time, the command / address signal and the value CAxF of CAxR (interpreted by the memory device / input) to the DQ pads. At time t 3, the command / address signal is outputted to the even-numbered DQ CAxR pad, and the clock CK during the immediately subsequent clock edge, the command / address signal is output to the odd-numbered DQ pad CAxF.
可以各種方式設定命令/位址信號CAxR及CAxF與DQ墊之間的映射。於圖11中圖解說明一映射實例,其中可將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出之偶數DQ墊DQ[2n],其中n係0至9,且可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至奇數DQ墊DQ[2n+1],其中n係0至9。 The mapping between the command/address signals CAxR and CAxF and the DQ pad can be set in various ways. An example of mapping is illustrated in FIG. 11 in which the value of the command/address signal CAxR input at the rising edge of the clock signal CK can be output as an even DQ pad DQ[2n], where n is 0 to 9, and The value of the command/address signal CAxF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where n is 0 to 9.
作為另一映射實例,可將對在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之命令/位址信號CA[3:0]之校準之結果輸出至偶數DQ墊DQ[2n],其中n係0至3,可將一命令/位址信號CA4之一值輸出至DQS墊DQS0,可將命令/位址信號CA[8:5]之值輸出至偶數DQ墊DQ[2n],其中n係4至7,且可將命令/位址信號CA9之一值輸出至DQS墊DQS1。可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA[3:0]之值輸出至奇數DQ墊DQ[2n+1],其中n係0至3,可將命令/位址信號CA4之一值輸出至DQS墊/DQS0,可將命令/位址信號CA[8:5]之值輸出至奇數DQ墊DQ[2n+1],其中n係4至7,且可將命令/位址信號CA9之一值輸出至DQS墊/DQS1。 As another mapping example, the result of the calibration of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK can be output to the even DQ pad DQ [ 2n], where n is 0 to 3, a value of a command/address signal CA4 can be output to the DQS pad DQS0, and the value of the command/address signal CA[8:5] can be output to the even DQ pad DQ [ 2n], where n is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad DQS1. The value of the command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where n is 0. Up to 3, a value of the command/address signal CA4 can be output to the DQS pad/DQS0, and the value of the command/address signal CA[8:5] can be output to the odd DQ pad DQ[2n+1], where n The system is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad/DQS1.
在時間t4處,與晶月選擇信號/CS之邏輯低態位準之啟動一起,針對時脈信號CK之一個循環以預定脈寬啟動時脈啟用信號CKE,且由記憶體裝置30輸入透過命令/位址匯流排12傳輸之命令/位址信號CAyR及CAyF。 At time t 4 , together with the activation of the logic low state of the crystal moon selection signal /CS, the clock enable signal CKE is activated for a cycle of the clock signal CK with a predetermined pulse width, and is input by the memory device 30. Command/address bus 12 transmits command/address signals CAyR and CAyF.
在於時間t4處之時脈信號CK之上升沿處輸入命令/位址信號CAyR,且在時脈信號CK之下降沿處(在時間t4之後之時脈CK之緊接著後續時脈沿處)輸入命令/位址信號CAyF。透過命令/位址匯流排12輸入之命令/位址信號CAyR及命令/位址信號CAyF可係不同信號(例如,測試型樣之不同位元組)。 In that the time t 4 at the rising edge of the clock signal CK of the command / address signal CAyR, and at a falling edge of the clock signal CK (time t after the clock CK. 4 of the immediately subsequent clock edge ) Enter the command/address signal CAyF. The command/address signal CAyR and the command/address signal CAyF input through the command/address bus 12 can be different signals (eg, different bytes of the test pattern).
在校準模式中,時脈啟用信號CKE充當命令/位址信號CAyR及CAyF之一讀取命令,且因此,當時脈啟用信號CKE在一邏輯低態位準下啟動時,將由記憶體裝置30接收之命令/位址信號CAyR及CAyF之值輸出至偶數DQ墊且以回應於時脈CK之一時序由記憶體裝置30輸入奇數DQ墊。 In the calibration mode, the clock enable signal CKE acts as one of the command/address signals CAyR and CAyF read commands, and therefore, when the pulse enable signal CKE is enabled at a logic low level, it will be received by the memory device 30. The values of the command/address signals CAyR and CAyF are output to the even DQ pads and the odd DQ pads are input by the memory device 30 in response to a timing of the clock CK.
在自時脈信號CK之時間t4延遲預定時間tADR之後,將命令/位址信號CAyR及CAyF(如在時間t4處開始由記憶體裝置作為輸入)之值輸出至DQ墊。亦即,將由記憶體裝置30作為輸入之命令/位址信號CAyR輸出至偶數DQ墊且將由記憶體裝置30作為輸入之命令/位址信號CAyF輸出至奇數DQ墊。 After the self-clock signal CK of a predetermined delay time t 4 time tADR, the command / address signal and CAyR CAyF (such as at time t 4 at the beginning of the memory means as input) the value output to DQ pads. That is, the command/address signal CAyR input by the memory device 30 is output to the even DQ pad and the command/address signal CAyF input by the memory device 30 is output to the odd DQ pad.
當記憶體裝置30將命令/位址信號CAyR及CAyF傳輸至記憶體控制器20時,可以各種方式設定與DQ墊之映射。作為一映射實例,可將在時脈信號CK之上升沿處輸入之命 令/位址信號CAyR之值輸出至偶數DQ墊DQ[2n],其中n係0至9,且可將在時脈信號CK之下降沿處輸入之命令/位址信號CAyF之值輸出至奇數DQ墊DQ[2n+1],其中n係0至9。 When the memory device 30 transmits the command/address signals CAyR and CAyF to the memory controller 20, the mapping to the DQ pad can be set in various ways. As an example of mapping, the input can be entered at the rising edge of the clock signal CK. The value of the address/address signal CAyR is output to the even DQ pad DQ[2n], where n is 0 to 9, and the value of the command/address signal CAyF input at the falling edge of the clock signal CK can be output to an odd number. DQ pad DQ[2n+1], where n is 0 to 9.
作為另一映射實例,可將在時脈信號CK之上升沿處輸入之命令/位址信號CAyR當中之命令/位址信號CA[3:0]之值輸出至偶數DQ墊DQ[2n],其中n係0至3,可將一命令/位址信號CA4之一值輸出至DQS墊DQS0,可將命令/位址信號CA[8:5]之值輸出至偶數DQ墊DQ[2n],其中n係4至7,且可將命令/位址信號CA9之一值輸出至DQS墊DQS1。可將在時脈信號CK之下降沿處輸入之命令/位址信號CAyF當中之命令/位址信號CA[3:0]之值輸出至奇數DQ墊DQ[2n+1],其中n係0至3,可將命令/位址信號CA4之一值輸出至DQS墊/DQS0,可將命令/位址信號CA[8:5]之值輸出至奇數DQ墊DQ[2n+1],其中n係4至7,且可將命令/位址信號CA9之一值輸出至DQS墊/DQS1。 As another mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAyR input at the rising edge of the clock signal CK can be output to the even DQ pad DQ[2n], Where n is 0 to 3, a value of a command/address signal CA4 can be output to the DQS pad DQS0, and the value of the command/address signal CA[8:5] can be output to the even DQ pad DQ[2n], Where n is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad DQS1. The value of the command/address signal CA[3:0] among the command/address signals CAyF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where n is 0. Up to 3, a value of the command/address signal CA4 can be output to the DQS pad/DQS0, and the value of the command/address signal CA[8:5] can be output to the odd DQ pad DQ[2n+1], where n The system is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad/DQS1.
在時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟動一起,透過命令/位址匯流排12傳輸係一退出命令/位址校準模式命令之MRW#42命令。在此實例中,在對應於時間t5之時脈信號CK之上升沿及下降沿兩者處輸入MRW#42命令。亦即,在對應於時間t5之時脈信號CK之上升沿及下降沿處輸入相同MRW#42命令。 At time t 5, the wafer selection signal / CS of low logic level state to start with, the transmission line bus 12 via the command / address a command to quit / calibration mode command address of MRW # 42 command. In this example, corresponding to the time t at both rising and falling edges of the clock signal CK 5 MRW # 42 of the input command. That is, the same MRW #42 command is input at the rising edge and the falling edge of the clock signal CK corresponding to the time t 5 .
存在眾多方法使記憶體裝置30將命令/位址匯流排12上之信號辨識為一命令(而非針對一新循環之另一組測試型樣校準資訊)。舉例而言,可存在於其後記憶體裝置30預 期接收一命令的發送至該記憶體裝置之測試型樣資訊之預定數目個循環;記憶體裝置30可計數測試型樣資訊之循環之數目且當該計數達到預定數目(或例如,前一個計數或後一個計數)時,預期接收一命令。另一選擇為,記憶體裝置30可監視經由命令/位址匯流排12輸入之所有資訊(例如,監視命令/位址校準資訊CAr)以偵測一預定程式碼(例如,一命令碼),且當偵測到預定程式碼時(及/或將預定程式碼辨識為退出命令/位址校準命令碼)退出該校準模式,或否則將輸入資訊視為由校準模式之一循環期間之測試型樣傳輸產生之校準資訊。 There are numerous ways for the memory device 30 to recognize the signal on the command/address bus 12 as a command (rather than another set of test pattern calibration information for a new cycle). For example, there may be a predetermined number of cycles in which the memory device 30 is expected to receive a command sent to the memory device for a predetermined number of cycles; the memory device 30 may count the number of cycles of the test pattern information and When the count reaches a predetermined number (or, for example, the previous count or the next count), it is expected to receive a command. Alternatively, the memory device 30 can monitor all information (eg, monitoring command/address calibration information CA r ) input via the command/address bus 12 to detect a predetermined code (eg, a command code). And exit the calibration mode when a predetermined code is detected (and/or the predetermined code is recognized as an exit command/address calibration command code), or otherwise the input information is considered to be tested during one of the calibration modes. Calibration information generated by the pattern transmission.
在自於彼時輸入MRW#42命令之時間t5延遲預定時間tMRZ之後,終止經校準命令/位址信號CAyR至DQ墊之輸出。自時間t0(在彼時輸入係進入命令/位址校準模式命令之MRW#41命令)至時間t5(在彼時輸入係退出命令/位址校準模式命令之MRW#42命令)之一段時期加上時間tMRZ可對應於一CA校準模式週期。 After the predetermined time tMRZ is delayed from the time t 5 at which the MRW #42 command is input, the output of the calibrated command/address signal CAyR to the DQ pad is terminated. From the time t 0 (in the case of the input system enters the command / address calibration mode command MRW #41 command) to the time t 5 (in the case of the input system exit command / address calibration mode command MRW #42 command) The period plus time tMRZ may correspond to a CA calibration mode period.
儘管圖10僅展示在校準模式週期期間發送之兩組測試型樣(對CAxR及CAxF以及對CAyR及CAyF),但在一校準週期期間可發送兩組以上測試型樣。另外,圖10圖解說明經定位以使其邏輯窗中心對應於時脈CK之對應時脈沿之命令/位址校準信號之邏輯窗。然而,此僅係用於闡述之目的;預期控制器20將更改命令/位址校準信號(表示校準測試型樣)中之每一者之相對相位,以使得時脈沿CK針對命令/位址校準信號中之眾多命令/位址校準信號之時序將在時間 上移位(且可係相對於命令/位址校準信號邏輯窗之中心移位(例如,在其外側)以使得記憶體裝置30不正確地解譯命令/位址校準信號邏輯之一時序)。 Although FIG. 10 only shows two sets of test patterns (for CAxR and CAxF and for CAyR and CAyF) transmitted during the calibration mode period, more than two test patterns can be transmitted during one calibration period. In addition, FIG. 10 illustrates a logic window that is positioned such that its logic window center corresponds to a command/address calibration signal for a corresponding clock edge of clock CK. However, this is for illustrative purposes only; it is expected that the controller 20 will change the relative phase of each of the command/address calibration signals (representing the calibration test pattern) such that the clock edge CK is for the command/address The timing of many command/address calibration signals in the calibration signal will be in time Up shifting (and may be center shifted (eg, on the outside) relative to the command/address alignment signal logic window such that the memory device 30 incorrectly interprets one of the command/address calibration signal logic timings) .
圖11係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之一實例之一表。 11 is a table showing one example of a mapping between a command/address signal and a DQ pad in accordance with another embodiment.
參考圖11,在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0]之值可經映射以輸出至偶數DQ墊DQ[2n],其中n係0至9。在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之值可經映射以輸出至奇數DQ墊DQ[2n+1],其中n係0至9。舉例而言,在圖10中,可將在對應於時間t1之時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至偶數DQ墊DQ[2n],其中n係0至9,且可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至奇數DQ墊DQ[2n+1],其中n係0至9。可將在於時間t4處之時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至偶數DQ墊DQ[2n],其中n係0至9,且可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至奇數DQ墊DQ[2n+1],其中n係0至9。 Referring to Figure 11, the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be mapped to output to the even DQ pad DQ[2n], where n is 0 to 9. The value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK can be mapped to output to the odd DQ pad DQ[2n+1], where n is 0 to 9. For example, in FIG. 10, the value of the command/address address CAxR input at the rising edge of the clock signal CK corresponding to the time t 1 can be output to the even DQ pad DQ[2n], where n is 0. Up to 9, and the value of the command/address signal CAxF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where n is 0 to 9. The value of the command/address signal CAxR input at the rising edge of the clock signal CK at time t 4 can be output to the even DQ pad DQ[2n], where n is 0 to 9, and the clock signal can be The value of the command/address signal CAxF input at the falling edge of CK is output to the odd DQ pad DQ[2n+1], where n is 0 to 9.
圖12係展示用於闡述根據另一實施例之命令/位址信號與記憶體裝置30之DQ墊之間的映射之另一實例之一表。參考圖12,在時脈信號CK之上升沿處輸入至記憶體裝置30之命令/位址信號CA[9:0](例如,CAxR)之值可經映射以輸出至DQS墊DQS0及DQ墊DQ[8:0]。亦即,可將命令/位址信號CA9之值輸出至DQS墊DQS0,且可將命令/位址信 號CA[8:0]之值輸出至DQ墊DQ[8:0]。 12 is a table showing another example of a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment. Referring to Figure 12, the value of the command/address signal CA[9:0] (e.g., CAxR) input to the memory device 30 at the rising edge of the clock signal CK can be mapped for output to the DQS pad DQS0 and DQ pads. DQ[8:0]. That is, the value of the command/address signal CA9 can be output to the DQS pad DQS0, and the command/address address can be The value of the number CA[8:0] is output to the DQ pad DQ[8:0].
在時脈信號CK之下降沿處輸入至記憶體裝置30之命令/位址信號CA[9:0](例如,CAxF)之值可經映射以輸出至DQS墊DQS1及DQ墊DQ[17:9]。亦即,可將命令/位址信號CA9之值輸出至DQS墊DQS1,且可將命令/位址信號CA[8:0]之值輸出至DQ墊DQ[17:9]。 The value of the command/address signal CA[9:0] (eg, CAxF) input to the memory device 30 at the falling edge of the clock signal CK can be mapped to output to the DQS pad DQS1 and the DQ pad DQ [17: 9]. That is, the value of the command/address signal CA9 can be output to the DQS pad DQS1, and the value of the command/address signal CA[8:0] can be output to the DQ pad DQ[17:9].
圖13係闡述根據另一實施例之記憶體裝置30中之一命令/位址校準方法之一時序圖。記憶體裝置30之資料DQ之位元組織係16X。在當前實施例中,在時脈信號CK之上升沿及下降沿兩者處輸入命令/位址信號CA[9:0],且因此,每一命令/位址測試型樣CA[9:0]可由20個位元組成。就此而言,由於記憶體裝置30之資料DQ之位元組織係x16,因此DQ墊之數目係16。關於由記憶體控制器20產生之一特定相對相位發送之命令/位址測試型樣位元之數目大於DQ墊之數目,以使得DQ墊不能唯一地對應於命令/位址信號。因此,可以預定時間間隔將DQ墊分配至在命令/位址匯流排12之不同信號線上接收之命令/位址信號。 FIG. 13 is a timing diagram illustrating one of the command/address alignment methods in the memory device 30 in accordance with another embodiment. The bit structure of the data DQ of the memory device 30 is 16X. In the current embodiment, the command/address signal CA[9:0] is input at both the rising and falling edges of the clock signal CK, and therefore, each command/address test pattern CA[9:0 ] can be composed of 20 bits. In this regard, since the bit structure of the data DQ of the memory device 30 is x16, the number of DQ pads is 16. The number of command/address test pattern bits for a particular relative phase transmission generated by memory controller 20 is greater than the number of DQ pads such that the DQ pad does not uniquely correspond to the command/address signal. Thus, the DQ pads can be assigned to command/address signals received on different signal lines of the command/address bus 12 at predetermined time intervals.
結合圖5參考圖13,記憶體控制器20產生用於記憶體裝置30之時脈信號CK。記憶體控制器20透過命令/位址匯流排12發送一進入命令/位址校準模式命令(或指令)至記憶體裝置30。進入命令/位址校準模式命令可使用本文中其他地方所闡述之特定MRS命令格式。記憶體控制器20透過命令/位址匯流排12傳輸退出命令/位址校準模式命令。退出命令/位址校準模式命令可使用本文中其他地方所闡述之 特定MRS命令格式。 Referring to FIG. 13 in conjunction with FIG. 5, the memory controller 20 generates a clock signal CK for the memory device 30. The memory controller 20 sends an incoming command/address calibration mode command (or command) to the memory device 30 via the command/address bus. The Enter Command/Address Calibration Mode command can use the specific MRS command format described elsewhere in this document. The memory controller 20 transmits an exit command/address calibration mode command via the command/address bus. The Exit Command/Address Calibration Mode command can be used elsewhere in this article. Specific MRS command format.
在時間t0處,與晶片選擇信號/CS之一邏輯低態位準之啟動一起,透過命令/位址匯流排12傳輸進入命令/位址校準模式命令。舉例而言,傳輸一第三模式暫存器(MRW#43)命令作為命令/位址校準開始信號。當在命令/位址匯流排12上載送10個位元之命令/位址信號CA[9:0]時,MRW#43命令可係包括指示該命令係一模式暫存器設定命令之命令/位址信號CA[3:0]及指示該模式暫存器設定命令係一進入校準模式命令之命令/位址信號CA[9:4]之一模式暫存器設定命令。 At time t 0 , the command/address alignment mode command is transmitted through the command/address bus 12 along with the activation of one of the logic select states of the wafer select signal /CS. For example, a third mode register (MRW#43) command is transmitted as a command/address calibration start signal. When a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#43 command may include a command indicating that the command is a mode register setting command/ The address signal CA[3:0] and the mode register setting command indicating that the mode register setting command is one of the command/address signals CA[9:4] entering the calibration mode command.
在於時間t0處開始之時脈信號CK之上升沿及下降沿兩者處輸入MRW#43命令。亦即,在於時間t0處之時脈信號CK之上升沿處且再次在時脈信號CK之緊接著後續下降沿處輸入相同MRW#43命令。此係由於可能產生一錯誤以使得具有一高操作頻率(例如,在一DDR操作期間)之一記憶體裝置錯過或錯誤解譯MRS命令。為減小此錯誤之機會,在對應於時間t0之時脈信號CK之上升沿及下降沿處輸入相同MRW#43命令。 The MRW #43 command is input at both the rising and falling edges of the clock signal CK starting at time t 0 . That is, the same MRW #43 command is input at the rising edge of the clock signal CK at time t 0 and again at the subsequent falling edge of the clock signal CK. This is due to the possibility of generating an error such that one of the memory devices with a high operating frequency (eg, during a DDR operation) misses or misinterprets the MRS command. To reduce the chance of this error, the same MRW #43 command is entered at the rising and falling edges of the clock signal CK corresponding to time t 0 .
在自於彼時輸入MRW#43命令之時脈信號CK之時間t0延遲預定時間tMRW之時間t1處,與晶片選擇信號/CS之邏輯低態位準之啟動一起,針對時脈信號CK之一個循環以一預定脈寬啟動時脈啟用信號CKE,且透過命令/位準匯流排12傳輸命令/位址信號CAxR及CAxF。時間tMRW可係一模式暫存器設定寫入循環時間。 Since that time the clock signal 43 to the command input MRW # CK of a predetermined delay time t 0 of time tMRW at t 1, starting with the wafer select signal / CS of a logic level of the low state, CK clock signal for One of the cycles starts the clock enable signal CKE with a predetermined pulse width, and the command/address signals CAxR and CAxF are transmitted through the command/level bus 12. The time tMRW can be set by a mode register to set the write cycle time.
在於時間t1處之時脈信號CK之上升沿處輸入命令/位址信號CAxR,且在時脈信號CK之下降沿處(在t1之後之時脈信號CK之緊接著後續下降沿處)輸入命令/位址信號CAxF。透過命令/位址匯流排12輸入之命令/位址信號CAxR及命令/位址信號CAxF可係不同信號。舉例而言,當命令/位址匯流排12係由10個位元之命令/位址信號CA[9:0]組成時,可將10個位元之命令/位址信號CAxR及10個位元之命令/位址信號CAxF區分為不同信號。因此,可透過與10個位元之命令/位址匯流排12連接之記憶體裝置30之命令/位址端子(例如,墊、接針或凸塊-未展示)將20個位元之命令/位址信號CA[9:0]輸入至記憶體裝置30。 The command/address signal CAxR is input at the rising edge of the clock signal CK at time t 1 and at the falling edge of the clock signal CK (below the subsequent falling edge of the clock signal CK after t 1 ) Enter the command/address signal CAxF. The command/address signal CAxR and the command/address signal CAxF input through the command/address bus 12 can be different signals. For example, when the command/address bus 12 is composed of a 10-bit command/address signal CA[9:0], a 10-bit command/address signal CAxR and 10 bits can be used. The meta command/address signal CAxF is divided into different signals. Thus, the command/address terminal (eg, pad, pin or bump - not shown) of the memory device 30 connected to the 10-bit command/address bus 12 can be commanded by 20 bits. The address signal CA[9:0] is input to the memory device 30.
由於要求記憶體裝置30具有一大容量,因此整合程度及記憶體胞之數目增加。隨著記憶體胞之數目增加,用於尋址記憶體胞之位址位元之數目亦增加。位址接針之數目之增加導致晶片大小之增加。因此,期望一種用於抑制大多數在記憶體晶片中所需之位址接針之數目之增加的方法。由於在當前實施例中在一時脈信號之上升沿及下降沿兩者處輸入命令/位址信號,因此可減小記憶體裝置30之命令/位址接針之數目。 Since the memory device 30 is required to have a large capacity, the degree of integration and the number of memory cells are increased. As the number of memory cells increases, the number of address bits used to address the memory cells also increases. An increase in the number of address pins results in an increase in the size of the wafer. Accordingly, a method for suppressing an increase in the number of address pins required in most memory chips is desired. Since the command/address signals are input at both the rising and falling edges of a clock signal in the current embodiment, the number of command/address pins of the memory device 30 can be reduced.
在命令/位址校準模式期間,時脈啟用信號CKE充當命令/位址信號CAxR及CAxF之一讀取命令。當在一邏輯低態位準下啟動時脈啟用信號CKE時,以回應於時脈CK之一時序輸入命令/位址信號CAxR及CAxF,且輸出其結果作為一資料信號DQ。因此,時脈啟用信號CKE用作一偽命令。 During the command/address calibration mode, the clock enable signal CKE acts as one of the command/address signals CAxR and CAxF read commands. When the clock enable signal CKE is activated at a logic low state, the command/address signals CAxR and CAxF are input in response to a timing of the clock CK, and the result is output as a data signal DQ. Therefore, the clock enable signal CKE is used as a pseudo command.
在自時間t1延遲預定時間tADR之後,輸出由記憶體裝置30作為輸入之命令/位址信號CAxR及CAxF作為一資料信號DQ。時間tADR可係自時脈啟用信號CKE之啟動至資料輸出至DQ墊之一設定延遲時間。 Since the times t 1 after a predetermined delay time tADR, output from the memory device 30 as an input of the command / address signal and CAxF CAxR as a data signal DQ. The time tADR can be set from the start of the clock enable signal CKE to the data output to one of the DQ pads to set the delay time.
在時間t3處,經由記憶體裝置30之DQ墊輸出由記憶體裝置30作為輸入之經校準命令/位址信號CAxR。在經校準命令/位址信號CAxR輸出至DQ墊達一預定時間tADD之後之時間t4處,經由記憶體裝置30之DQ墊輸出由記憶體裝置30作為輸入之經校準命令/位址信號CAxF。 At time t 3, the output device 30 via the DQ pad memory of the memory device 30 as an input the calibrated command / address signal CAxR. For a predetermined time in a calibrated command / address signal is output to the DQ pad CAxR time after the tADD t 4, the output device 30 via the DQ pad memory 30 by the memory device calibrated as a command / address signal input of CAxF .
可以各種方式設定經校準命令/位址信號CAxR及CAxF與DQ墊之間的映射。作為一映射實例,可將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至DQ墊DQ[9:0],且然後可將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值輸出至DQ墊DQ[9:0]。 The mapping between the calibrated command/address signals CAxR and CAxF and the DQ pad can be set in various ways. As a mapping example, the value of the command/address signal CAxR input at the rising edge of the clock signal CK can be output to the DQ pad DQ[9:0], and then can be at the falling edge of the clock signal CK. The value of the input command/address signal CAxF is output to the DQ pad DQ[9:0].
作為另一映射實例,將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之命令/位址信號CA[4:0]之值輸出至DQ墊DQ[4:0],且然後亦將對命令/位址信號CA[9:5]之校準之結果輸出至DQ墊DQ[4:0]。將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA[4:0]之值輸出至DQ墊DQ[9:5],且然後,亦將對命令/位址信號CA[9:5]之校準之結果輸出至DQ墊DQ[9:5]。 As another mapping example, the value of the command/address signal CA[4:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[4:0], The result of the calibration of the command/address signal CA[9:5] is then also output to the DQ pad DQ[4:0]. The value of the command/address signal CA[4:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[9:5], and then, will also be The result of the calibration of the command/address signal CA[9:5] is output to the DQ pad DQ[9:5].
作為又一映射實例,將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之命令/位址信號CA[3:0]之值輸出至DQ墊DQ[3:0],將一命令/位址信號CA4之一值輸出 至一DQS墊DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊DQ[4:0],且將一命令/位址信號CA9之一值輸出至一DQS墊DQS1。將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA[3:0]之值輸出至DQ墊DQ[7:4],將命令/位址信號CA4之一值輸出至一DQS墊/DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊DQ[7:4],且將命令/位址信號CA9之一值輸出至一DQS墊/DQS1。 As a further mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[3:0], Output a value of a command/address signal CA4 To a DQS pad DQS0, the value of the command/address signal CA[8:5] is output to the DQ pad DQ[4:0], and a value of a command/address signal CA9 is output to a DQS pad DQS1. The value of the command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[7:4], and the command/address signal is output. One value of CA4 is output to a DQS pad/DQS0, the value of the command/address signal CA[8:5] is output to the DQ pad DQ[7:4], and a value of the command/address signal CA9 is output to A DQS pad / DQS1.
在時間t4處開始,與晶片選擇信號/CS之邏輯低態位準之啟動一起,針對時脈信號CK之一個循環以預定脈寬啟動時脈啟用信號CKE,且透過命令/位址匯流排12將命令/位址信號CAyR及CAyF自記憶體控制器20傳輸至記憶體裝置30。 Starting at time t 4 , together with the activation of the logic low level of the wafer select signal /CS, the clock enable signal CKE is initiated with a predetermined pulse width for one cycle of the clock signal CK, and the command/address bus is transmitted through the command/address bus The command/address signals CAyR and CAyF are transmitted from the memory controller 20 to the memory device 30.
在於時間t4處之時脈信號CK之上升沿處輸入命令/位址信號CAyR,且在時脈信號CK之緊接著後續下降沿處輸入命令/位址信號CAyF。透過命令/位址匯流排12輸入之命令/位址信號CAyR及命令/位址信號CAyF可係不同信號。 The command/address signal CAyR is input at the rising edge of the clock signal CK at time t 4 , and the command/address signal CAyF is input immediately after the subsequent falling edge of the clock signal CK. The command/address signal CAyR and the command/address signal CAyF input through the command/address bus 12 can be different signals.
在自時間t4延遲預定時間tADR之後,經由DQ墊將由記憶體裝置30作為輸入之命令/位址信號CAyR及CAyF輸出至DQ匯流排13。在將經校準命令/位址信號CAyR(如由記憶體裝置30作為輸入)輸出至DQ墊之後,輸出經校準命令/位址信號CAyF(如由記憶體裝置30作為輸入)。 After a predetermined delay time since the time t 4 tADR, via DQ pads by the memory device 30 as an input of the command / address signal and CAyF CAyR DQ bus 13 to the output. After outputting the calibrated command/address signal CAyR (as input from the memory device 30) to the DQ pad, the calibrated command/address signal CAyF (as input by the memory device 30) is output.
可以各種方式設定經校準命令/位址信號CAyR及CAyF與DQ墊之間的映射。作為一映射實例,可將在時脈信號CK 之上升沿處輸入之命令/位址信號CAyR之值輸出至DQ墊DQ[9:0],且然後可將在時脈信號CK之下降沿處輸入之命令/位址信號CAyF之值輸出至DQ墊DQ[9:0]。 The mapping between the calibrated command/address signals CAyR and CAyF and the DQ pad can be set in various ways. As a mapping example, the clock signal CK can be The value of the command/address signal CAyR input at the rising edge is output to the DQ pad DQ[9:0], and then the value of the command/address signal CAyF input at the falling edge of the clock signal CK can be output to DQ pad DQ[9:0].
作為另一映射實例,可將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之命令/位址信號CA[4:0]之值輸出至DQ墊DQ[4:0],且然後,亦將對命令/位址信號CA[9:5]之校準之結果輸出至DQ墊DQ[4:0]。將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA[4:0]之值輸出至DQ墊DQ[9:5],且然後,亦將對命令/位址信號CA[9:5]之校準之結果輸出至DQ墊DQ[9:5]。 As another mapping example, the value of the command/address signal CA[4:0] among the command/address signals CAxR input at the rising edge of the clock signal CK can be output to the DQ pad DQ[4:0]. And then, the result of the calibration of the command/address signal CA[9:5] is also output to the DQ pad DQ[4:0]. The value of the command/address signal CA[4:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[9:5], and then, will also be The result of the calibration of the command/address signal CA[9:5] is output to the DQ pad DQ[9:5].
作為又一映射實例,將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR當中之命令/位址信號CA[3:0]之值輸出至DQ墊DQ[3:0],將命令/位址信號CA4之一值輸出至DQS墊DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊DQ[4:0],且將命令/位址信號CA9之一值輸出至DQS墊DQS1。將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信號CA[3:0]之值輸出至DQ墊DQ[7:4],將命令/位址信號CA4之一值輸出至DQS墊/DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊DQ[7:4],且將命令/位址信號CA9之一值輸出至DQS墊/DQS1。 As a further mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[3:0], Output a value of the command/address signal CA4 to the DQS pad DQS0, output the value of the command/address signal CA[8:5] to the DQ pad DQ[4:0], and place the command/address signal CA9 One value is output to the DQS pad DQS1. The value of the command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[7:4], and the command/address signal is output. One value of CA4 is output to DQS pad/DQS0, the value of command/address signal CA[8:5] is output to DQ pad DQ[7:4], and one value of command/address signal CA9 is output to DQS Pad / DQS1.
在時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟動一起,透過命令/位址匯流排12傳輸退出校準/位址校準模 式命令。舉例而言,傳輸一第四模式暫存器(MRW#44)命令作為命令/位址校準結束信號。當在命令/位址匯流排12上載送10個位元之命令/位址信號CA[9:0]時,可藉由一模式暫存器設定命令來設定MRW#44命令,該模式暫存器設定命令可包括用以指示該命令係一模式暫存器設定命令之CA[3:0]及用以指示該模式暫存器設定命令係一退出命令/位址校準模式命令之命令/位址信號CA[9:4]。 At time t 5, the wafer selection signal / CS of low logic level state to start with, from the command / address bus 12 transfer to exit the calibration / calibration mode command here. For example, a fourth mode register (MRW#44) command is transmitted as a command/address calibration end signal. When a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#44 command can be set by a mode register setting command, and the mode is temporarily stored. The device setting command may include a CA[3:0] for indicating that the command is a mode register setting command, and a command/bit for indicating the mode register setting command is an exit command/address calibration mode command. Address signal CA[9:4].
可在對應於時間t5之時脈信號CK之上升沿及下降沿兩者處輸入MRW#44命令。亦即,在於時間t5處開始之時脈信號CK之上升沿及下降沿兩者處輸入相同MRW#44命令。在自於彼時輸入MRW#44命令之時脈信號CK之時間t5延遲預定時間tMRZ之後,終止經校準命令/位址信號CAyR經由DQ墊之輸出。自在彼時輸入MRW#41命令之時間t0至在彼時輸入MRW#44命令之時間t5 CK之一段時期加上tMRZ可係一CA校準週期。 The MRW #44 command can be input at both the rising and falling edges of the clock signal CK corresponding to time t 5 . That is, the same MRW #44 command is input at both the rising edge and the falling edge of the clock signal CK starting at time t 5 . After the predetermined time tMRZ is delayed from the time t 5 at which the clock signal CK of the MRW #44 command is input, the output of the calibrated command/address signal CAyR via the DQ pad is terminated. The period from the time t 0 of inputting the MR W #41 command to the time t 5 CK at which the MRW #44 command is input at that time plus tMRZ may be a CA calibration period.
儘管圖13僅展示在校準模式週期期間發送之兩組測試型樣(對CAxR及CAxF以及對CAyR及CAyF),但在一校準週期期間可發送兩組以上測試型樣。另外,圖13圖解說明經定位以使其邏輯窗中心對應於時脈CK之對應時脈沿之命令/位址校準信號之邏輯窗。然而,此僅係用於闡述之目的;預期控制器20將更改命令/位址校準信號(表示校準測試型樣)中之每一者之相對相位,以使得時脈沿CK針對命令/位址校準信號中之眾多命令/位址校準信號之時序將在時間上移位(且可係相對於命令/位址校準信號邏輯窗之中心移 位(例如,在其外側)以使得記憶體裝置30不正確地解譯命令/位址校準信號邏輯之一時序)。 Although FIG. 13 only shows two sets of test patterns (for CAxR and CAxF and for CAyR and CAyF) transmitted during the calibration mode period, more than two test patterns can be transmitted during one calibration period. In addition, FIG. 13 illustrates a logic window that is positioned such that its logic window center corresponds to a command/address calibration signal for a corresponding clock edge of clock CK. However, this is for illustrative purposes only; it is expected that the controller 20 will change the relative phase of each of the command/address calibration signals (representing the calibration test pattern) such that the clock edge CK is for the command/address The timing of the numerous command/address calibration signals in the calibration signal will be shifted in time (and may be center shifted relative to the command/address calibration signal logic window) The bit is (eg, on its outside) such that the memory device 30 incorrectly interprets one of the command/address alignment signal logic timings).
圖14係用於闡述根據另一實施例之一模式暫存器命令設定方法之一表。 Figure 14 is a table for explaining one of the mode register command setting methods according to another embodiment.
參考圖14,可藉由時脈啟用信號CKE、晶片選擇信號/CS及命令/位址信號CA[9:0]設定MRW#43命令及MRW#44命令。當時脈啟用信號CKE在一邏輯高態位準下,晶片選擇信號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在一邏輯低態位準下,且命令/位址信號CA[9:4]分別在一邏輯位準H-L-H-L-H-H下時,可設定MRW#43命令。亦即,MRW#43命令可由一命令/位址信號CA[9:0]值2BH表示。如上文所述,MRW#43命令在時脈信號CK之上升沿及下降沿兩者處可係相同的,然而,可替代地將一不同值(例如,2BH之逆值)發送至記憶體裝置30。 Referring to FIG. 14, the MRW #43 command and the MRW #44 command can be set by the clock enable signal CKE, the wafer select signal /CS, and the command/address signal CA[9:0]. When the pulse enable signal CKE is in a logic high state, the chip select signal /CS is in a logic low state, the command/address signal CA[3:0] is in a logic low state, and the command When the address signals CA[9:4] are respectively under a logic level HLHLHH, the MRW#43 command can be set. That is, the MRW #43 command can be represented by a command/address signal CA[9:0] value of 2BH. As described above, the MRW #43 command may be the same at both the rising and falling edges of the clock signal CK, however, a different value (eg, the inverse of 2BH) may alternatively be sent to the memory device. 30.
當時脈啟用信號CKE在一邏輯高態位準下,晶片選擇信號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在一邏輯低態位準下,且命令/位址信號CA[9:4]分別在邏輯位準H-L-H-H-L-L下時可設定MRW#44命令。亦即,可在時脈信號CK之上升沿及下降沿兩者處相同地設定MRW#44命令。本文中,命令/位址信號CA[9:4]可用作模式暫存器設定位址MA[5:0]。 When the clock enable signal CKE is in a logic high state, the chip select signal /CS is in a logic low state, the command/address signal CA[3:0] is in a logic low state, and the command The MRW#44 command can be set when the address signals CA[9:4] are respectively under the logic level HLHHLL. That is, the MRW #44 command can be set identically at both the rising edge and the falling edge of the clock signal CK. In this paper, the command/address signal CA[9:4] can be used as the mode register setting address MA[5:0].
圖15係用於闡述根據另一實施例之命令/位址信號與記憶體裝置30之DQ墊之間的映射之一實例之一圖式。 15 is a diagram for illustrating one example of a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment.
參考圖15,在時脈信號CK之上升沿處輸入之命令/位址 信號CA[9:0]之值可經映射以輸出至記憶體裝置30之DQ墊DQ[9:0]。此後,對在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之校準之結果可經映射以輸出至DQ墊DQ[9:0]。舉例而言,在圖13中,在對應於時間t1之時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值可經映射以輸出至DQ墊DQ[9:0],且然後在對應於時間t1之時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值可經映射以輸出至DQ墊DQ[9:0]。在對應於時間t4之時脈信號CK之上升沿處輸入之命令/位址信號CAyR之值可經映射以輸出至DQ墊DQ[9:0],且然後,在對應於時間t4之時脈信號CK之下降沿處輸入之命令/位址信號CAyF之值可經映射以輸出至DQ墊DQ[9:0]。 Referring to Figure 15, the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be mapped for output to the DQ pad DQ[9:0] of the memory device 30. Thereafter, the result of the calibration of the command/address signal CA[9:0] input at the falling edge of the clock signal CK can be mapped to be output to the DQ pad DQ[9:0]. For example, in FIG. 13, the value of the command/address signal CAxR input at the rising edge of the clock signal CK corresponding to time t 1 can be mapped to be output to the DQ pad DQ[9:0], and The value of the command/address signal CAxF input at the falling edge of the clock signal CK corresponding to time t 1 can then be mapped for output to the DQ pad DQ[9:0]. Corresponding to time t 4 of a rising edge of the clock signal at the input CK of the command / address signal value of CAyR may be mapped to output to the DQ pad DQ [9: 0], and then, at time t 4 corresponds to the The value of the command/address signal CAyF input at the falling edge of the clock signal CK can be mapped to be output to the DQ pad DQ[9:0].
圖16係展示用於闡述根據另一實施例之命令/位址信號與記憶體裝置30之DQ墊之間的映射之另一實例之一圖式。 16 is a diagram showing one example of another example for illustrating a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment.
參考圖16,在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0]之值之部分可經順序映射而以預定時間間隔輸出至DQ墊DQ[4:0]。在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之值之部分可經順序映射而以預定時間間隔輸出至DQ墊DQ[5:9]。 Referring to Fig. 16, a portion of the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK may be sequentially mapped to the DQ pad DQ[4:0] at predetermined time intervals. A portion of the value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK may be sequentially mapped to the DQ pad DQ[5:9] at predetermined time intervals.
舉例而言,在圖13中,在於時間t1處之時脈信號CK之上升沿及下降沿處分別輸入命令/位址信號CAxR及CAxF之命令/位址信號CA[9:0]之值之後,可經由DQ墊DQ[4:0]分別輸出CAxR之值CA[4:0](作為輸入),在一隨後時間跟隨經 由DQ墊DQ[4:0]分別輸出CAxR之值CA[9:5](作為輸入)之一輸出。然而,經由DQ墊DQ[9:5]輸出CAxF之命令/位址信號CA[4:0]之值(作為輸入),跟隨經由DQ墊DQ[9:5]輸出CAxF之命令/位址信號CA[9:5]之值(作為輸入)。 For example, in FIG. 13, in that the rising and falling edges at t time clock signal at each of 1 CK of the command / address signal and CAxF CAxR the command / address signal CA [9: 0] value of Thereafter, the value CAxR of CA[4:0] (as an input) can be respectively output via the DQ pad DQ[4:0], and the value CAxR of the CAxR is output via the DQ pad DQ[4:0] at a subsequent time. :5] (as input) one of the outputs. However, the value of the command/address signal CA[4:0] of CAxF is output via DQ pad DQ[9:5] (as an input), followed by the command/address signal outputting CAxF via DQ pad DQ[9:5] The value of CA[9:5] (as input).
圖17係展示根據另一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式。 17 is a diagram showing one example of another example of mapping between a command/address signal and a DQ pad in accordance with another embodiment.
參考圖17,可將在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0]之輸入值之部分順序輸出至DQS墊DQS0及DQS1以及DQ墊DQ[3:0]。舉例而言,經由DQ墊DQ[3:0]輸出CAxR之命令/位址信號CA[3:0]之值,其中CAxR之命令/位址信號CA4之值係經由DQS墊DQS0輸出。然後,經由DQ墊DQ[3:0]輸出CAxR之命令/位址信號CA[8:5]之值,其中命令/位址信號CA9之值係經由DQS墊DQS1輸出。 Referring to FIG. 17, a portion of the input value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be sequentially output to the DQS pads DQS0 and DQS1 and the DQ pad DQ[3:0]. . For example, the value of the command/address signal CA[3:0] of CAxR is output via the DQ pad DQ[3:0], wherein the value of the command/address signal CA4 of CAxR is output via the DQS pad DQS0. Then, the value of the command/address signal CA[8:5] of CAxR is output via the DQ pad DQ[3:0], wherein the value of the command/address signal CA9 is output via the DQS pad DQS1.
可將在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之輸入值之部分順序輸出至DQS墊/DQS0及/DQS1以及DQ墊DQ[7:4]。舉例而言,在如上文所述輸出CAxR之部分之後,經由DQ墊DQ[7:4]輸出CAxF之命令/位址信號CA[3:0]之值,經由DQS墊/DQS0輸出CAxF之命令/位址信號CA4之值,經由DQ墊DQ[7:4]輸出CAxF之命令/位址信號CA[8:5]之值,且經由DQS墊/DQS1輸出CAxF之命令/位址信號CA9之值。 The portion of the input value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK may be sequentially output to the DQS pad/DQS0 and /DQS1 and the DQ pad DQ[7:4]. For example, after outputting the portion of CAxR as described above, the value of the command/address signal CA[3:0] of CAxF is output via the DQ pad DQ[7:4], and the command of CAxF is output via the DQS pad/DQS0. / The value of the address signal CA4, the value of the command/address signal CA[8:5] of the CAxF is output via the DQ pad DQ[7:4], and the command/address signal CA9 of the CAxF is output via the DQS pad/DQS1. value.
圖18係根據另一實施例之一實例性命令/位址校準方法之一圖式。圖18係闡述圖5中所展示之記憶體裝置30中之一命令/位址校準方法之一時序圖,其中記憶體裝置30之 資料DQ之位元組織係16X。由圖18所表示之方法可係與上文關於圖10所闡述之方法或其替代方案相同,除了由圖18所表示之方法可在命令/位址校準資訊自記憶體裝置30至記憶體控制器20之輸出方面不同。另外,圖18圖解說明使用MRW#43之特定實例作為一進入命令/位址校準模式命令且使用MRW#44之特定實例作為一退出命令/位址校準模式命令之一選項。由於上文已闡述圖10之實施例及其替代方案之記憶體系統10之時序及操作,因此此處不需要重複圖10及圖18之實施例之共用特徵之一重複性闡述。可以各種方式設定輸入命令/位址信號CAxR及CAxF與DQ墊之間的映射。作為一映射實例,可以預定時間間隔將在時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值之部分順序輸出至偶數DQ墊DQ[2n],且可以預定時間間隔將在時脈信號CK之下降沿處輸入之命令/位址信號CAxF之值之部分順序輸出至奇數DQ墊DQ[2n+1],其中n係0至4。進一步關於圖19闡述此之一實例。 Figure 18 is a diagram of one example of an exemplary command/address calibration method in accordance with another embodiment. 18 is a timing diagram illustrating one of the command/address calibration methods in the memory device 30 shown in FIG. 5, wherein the memory device 30 The data DQ is organized in 16X. The method represented by FIG. 18 can be the same as the method set forth above with respect to FIG. 10 or an alternative thereto, except that the method shown in FIG. 18 can be used to control the command/address calibration information from the memory device 30 to the memory control. The output of the device 20 is different. In addition, FIG. 18 illustrates the use of a specific instance of MRW #43 as an incoming command/address calibration mode command and using a particular instance of MRW #44 as one of the exit command/address calibration mode commands. Since the timing and operation of the memory system 10 of the embodiment of FIG. 10 and its alternatives have been described above, it is not necessary to repeat one of the common features of the embodiments of FIGS. 10 and 18 herein. The mapping between the input command/address signals CAxR and CAxF and the DQ pad can be set in various ways. As a mapping example, a portion of the value of the command/address signal CAxR input at the rising edge of the clock signal CK may be sequentially output to the even DQ pad DQ[2n] at predetermined time intervals, and may be at a predetermined time interval. The portion of the value of the command/address signal CAxF input at the falling edge of the pulse signal CK is sequentially output to the odd DQ pad DQ[2n+1], where n is 0 to 4. An example of this is explained further with respect to FIG.
作為另一映射實例,將在時脈信號CK之上升沿處輸入之CAxR之命令/位址信號CA[3:0]之值分別輸出至偶數DQ墊DQ[2n],其中n係3至0,同時將CAxR之命令/位址信號CA4之值輸出至DQS墊DQS0,同時將CAxR之命令/位址信號CA[8:5]之值分別輸出至偶數DQ墊DQ[2n],其中n係8至5,且同時將CAxR之命令/位址信號CA9之值輸出至DQS墊DQS1。與此同時,將CAxF之命令/位址信號CA[3:0]之值分別輸出至奇數DQ墊DQ[2n+1],其中n係3至0,同時將 CAxF之命令/位址信號CA4之值輸出至DQS墊/DQS0,同時將CAxF之命令/位址信號CA[8:5]之值分別輸出至奇數DQ墊DQ[2n+1],其中n係8至5,且同時將命令/位址信號CA9之值輸出至DQS墊/DQS1。在此實施例及本文中所闡述之所有其他實施例中,可以如上文關於CAxR及CAxF所闡述之一方式進行對應於稍後校準循環之命令/位址信號(例如,其他CAnR及CAnF,例如CAyR及CAyF)之其他值至記憶體裝置之輸出之映射及輸出,但此並非必須的。另外,儘管已關於記憶體裝置30之端子(例如,墊、接針、凸塊等)闡述該映射及輸出,但對於本文中所闡述之所有實施例,此等闡述同樣適用於在記憶體裝置30與記憶體控制器20之間提供通信之相關聯匯流排及信號線以及記憶體控制器之端子(墊、接針、凸塊等)。舉例而言,在某一實施例中對某些命令位址資訊(或值)至記憶體裝置30之偶數DQ墊之一輸出之一闡述涵蓋彼命令位址資訊(或值)經由DQ匯流排13之偶數DQ線之傳輸及由記憶體控制器20透過對應偶數DQ端子之接收。 As another mapping example, the values of the command/address signals CA[3:0] of the CAxR input at the rising edge of the clock signal CK are respectively output to the even DQ pad DQ[2n], where n is 3 to 0. At the same time, the value of CAxR command/address signal CA4 is output to DQS pad DQS0, and the value of CAxR command/address signal CA[8:5] is output to even DQ pad DQ[2n], where n is 8 to 5, and simultaneously output the value of the CAxR command/address signal CA9 to the DQS pad DQS1. At the same time, the value of the CAxF command/address signal CA[3:0] is output to the odd DQ pad DQ[2n+1], where n is 3 to 0, and The value of CAxF command/address signal CA4 is output to DQS pad/DQS0, and the value of CAxF command/address signal CA[8:5] is output to odd DQ pad DQ[2n+1], where n is 8 to 5, and simultaneously output the value of the command/address signal CA9 to the DQS pad/DQS1. In this embodiment and all other embodiments set forth herein, the command/address signals corresponding to later calibration cycles may be performed in one of the manners set forth above with respect to CAxR and CAxF (eg, other CARR and CANF, eg, The mapping of other values of CAyR and CAyF) to the output of the memory device, but this is not required. Additionally, although the mapping and output have been described with respect to terminals (eg, pads, pins, bumps, etc.) of the memory device 30, for all of the embodiments set forth herein, such statements are equally applicable to memory devices. 30 provides an associated bus and signal line for communication with the memory controller 20 and terminals (pads, pins, bumps, etc.) of the memory controller. For example, in one embodiment, one of the command address information (or values) to one of the even DQ pads of the memory device 30 is output to cover the command address information (or value) via the DQ bus. The transmission of the even DQ line of 13 is received by the memory controller 20 through the corresponding even DQ terminal.
圖19係展示根據一實施例之命令/位址信號與DQ墊之間的映射之一實例之一圖式。 19 is a diagram showing one example of a mapping between a command/address signal and a DQ pad, in accordance with an embodiment.
參考圖19,可將在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0]之值之部分順序輸出至偶數DQ墊DQ[2n],其中n係0至4。可將在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0]之值之部分順序輸出至奇數DQ墊DQ[2n+1],其中n係0至4。舉例而言,在圖10中,可將在 對應於時間t1之時脈信號CK之上升沿處輸入之CAxR之命令/位址信號CA[0:4]之值輸出至偶數DQ墊DQ[2n],同時將在時脈信號CK之下降沿處輸入之CAxF之命令/位址信號CA[0:4]之值輸出至奇數DQ墊DQ[2n+1],其中n係0至4。在一後續時間(其可緊接在此輸出之後)處,可將CAxR之命令/位址信號CA[5:9]之值輸出至偶數DQ墊DQ[2n],且可將CAxF之命令/位址信號CA[5:9]之值輸出至奇數DQ墊DQ[2n+1],其中n係0至4。在一稍後時間處,可以一類似方式輸出與其他校準循環相關聯之校準資訊,例如,關於圖10所闡述之CAyF及CAyR。 Referring to FIG. 19, a portion of the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK may be sequentially output to the even DQ pad DQ[2n], where n is 0 to 4. The portion of the value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK may be sequentially output to the odd DQ pad DQ[2n+1], where n is 0 to 4. For example, in FIG. 10 may be corresponding to the time t CAxR input of a rising edge of the clock signal CK of the command / address signal CA [0: 4] is outputted to the even values of DQ pads DQ [ 2n], at the same time, the value of the command/address signal CA[0:4] of the CAxF input at the falling edge of the clock signal CK is output to the odd DQ pad DQ[2n+1], where n is 0 to 4. At a subsequent time (which can be immediately after this output), the value of the CAxR command/address signal CA[5:9] can be output to the even DQ pad DQ[2n], and the CAxF command can be/ The value of the address signal CA[5:9] is output to the odd DQ pad DQ[2n+1], where n is 0 to 4. At a later time, calibration information associated with other calibration cycles may be output in a similar manner, such as CAyF and CAyR as illustrated with respect to FIG.
圖20係展示用於闡述根據一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式。 20 is a diagram showing one example of another example for illustrating a mapping between a command/address signal and a DQ pad in accordance with an embodiment.
參考圖20,在時脈信號CK之上升沿處輸入之命令/位址信號CA[9:0](例如,CAxR)之值可經映射以輸出至DQS墊DQS0及DQS1以及偶數DQ墊DQ[2n],其中n係0至3。舉例而言,將CAxR之命令/位址信號CA[0:3]之值輸出至偶數DQ墊DQ[2n],同時將CAxR之命令/位址信號CA4之值輸出至DQS墊DQS0(其中n係0至3)。然後,將CAxR之命令/位址信號CA[5:8]之值輸出至偶數DQ墊DQ[2n],同時將CAxR之命令/位址信號CA9之值輸出至DQS墊DQS1(其中n係0至3)。 Referring to FIG. 20, the value of the command/address signal CA[9:0] (eg, CAxR) input at the rising edge of the clock signal CK can be mapped to be output to the DQS pads DQS0 and DQS1 and the even DQ pad DQ [ 2n], where n is 0 to 3. For example, the value of the CAxR command/address signal CA[0:3] is output to the even DQ pad DQ[2n], and the value of the CAxR command/address signal CA4 is output to the DQS pad DQS0 (where n Lines 0 to 3). Then, the value of the CAxR command/address signal CA[5:8] is output to the even DQ pad DQ[2n], and the value of the CAxR command/address signal CA9 is output to the DQS pad DQS1 (where n is 0) To 3).
在時脈信號CK之下降沿處輸入之命令/位址信號CA[9:0](例如,CAxF)之值可經映射以輸出至DQS墊/DQS0及/DQS1以及奇數DQ墊DQ[2n+1],其中n係0至3。舉例而 言,將CAxF之命令/位址信號CA[0:3]之值輸出至奇數DQ墊DQ[2n+1],同時將CAxF之命令/位址信號CA4之值輸出至DQS墊/DQS0。然後,將CAxF之命令/位址信號CA[5:8]之值輸出至奇數DQ墊DQ[2n+1],同時將CAxF之命令/位址信號CA9之值輸出至DQS墊/DQS1。CAxR之CA[4:0]及CAxF之CA[4:0]之輸出可同時發生。CAxR之CA[5:9]及CAxF之CA[5:9]之輸出可同時發生。在一稍後時間處,可以一類似方式輸出與其他校準循環相關聯之校準資訊,例如關於圖10所闡述之CAyF及CAyR。 The value of the command/address signal CA[9:0] (eg, CAxF) input at the falling edge of the clock signal CK can be mapped to output to the DQS pad/DQS0 and /DQS1 and the odd DQ pad DQ[2n+ 1], where n is 0 to 3. For example That is, the value of the command/address signal CA[0:3] of the CAxF is output to the odd DQ pad DQ[2n+1], and the value of the command/address signal CA4 of the CAxF is output to the DQS pad/DQS0. Then, the value of the CAxF command/address signal CA[5:8] is output to the odd DQ pad DQ[2n+1], and the value of the CAxF command/address signal CA9 is output to the DQS pad/DQS1. The output of CA[4:0] of CAxR and CA[4:0] of CAxF can occur simultaneously. The output of CA[5:9] of CAxR and CA[5:9] of CAxF can occur simultaneously. At a later time, calibration information associated with other calibration cycles may be output in a similar manner, such as CAyF and CAyR as illustrated with respect to FIG.
圖21係展示可用於實施本文中所闡述之一或多個CA校準實施例之一記憶體系統之另一實例之一方塊圖。 21 is a block diagram showing another example of a memory system that can be used to implement one of the one or more CA calibration embodiments set forth herein.
參考圖21,記憶體系統40不同於圖5中所展示之記憶體系統10,此乃因命令/位址校準資訊CAr(如由記憶體裝置60所解譯之來自控制器50之經相位調整之校準信號CAsp2)係透過一單獨校準匯流排CA_Cal 15而非DQ匯流排13提供至記憶體控制器50。校準匯流排CA_Cal 15可專用於在校準模式期間傳輸所接收之命令/位址資訊CAr。當不在校準模式中(在正常操作期間),校準匯流排CA_Cal 15可用於另一功能,或可不使用。舉例而言,校準匯流排CA_Cal 15可用於在一DQ匯流排校準模式期間自記憶體裝置60至記憶體控制器50傳輸DQ校準資訊。DQ校準可係與本文中關於CA校準實施例中之任一者所闡述之CA校準相同,且DQ校準資訊可係與CA校準資訊相同,除了DQ校準係在校準信號係在經由DQ匯流排傳輸之情形下執行的,且因 此,此處不需要進行一重複性闡述。因此,在命令/位址信號之校準期間,可透過係額外信號線之一DQ信號線及一DQS信號線傳輸其他信號,藉此改良效率。為避免一重複性闡述,將不提供對與圖5中相同之組件之一詳細闡述。 Referring to Figure 21, memory system 40 differs from the memory system shown in FIG. 5 of 10, which was due to the command / address information calibrating CA r (as interpreted by the memory device 60 from the controller 50 of the phase The adjusted calibration signal CA sp2 ) is provided to the memory controller 50 via a separate calibration bus CA_Cal 15 instead of the DQ bus 13 . The calibration bus CA_Cal 15 can be dedicated to transmitting the received command/address information CA r during the calibration mode. When not in the calibration mode (during normal operation), the calibration bus CA_Cal 15 may be used for another function or may not be used. For example, the calibration bus bar CA_Cal 15 can be used to transmit DQ calibration information from the memory device 60 to the memory controller 50 during a DQ bus calibration mode. The DQ calibration may be the same as the CA calibration described herein with respect to any of the CA calibration embodiments, and the DQ calibration information may be the same as the CA calibration information, except that the DQ calibration is transmitted over the DQ bus via the calibration signal. In the case of the implementation, and therefore, a repetitive statement is not required here. Therefore, during the calibration of the command/address signal, other signals can be transmitted through one of the additional signal lines DQ signal lines and one DQS signal line, thereby improving efficiency. To avoid a repetitive statement, one of the same components as in Figure 5 will not be provided in detail.
在記憶體控制器50中,時脈產生器201產生一時脈信號CK以透過時脈信號線11將時脈信號CK提供至記憶體裝置60。CA傳輸器203回應於相位/時序控制器208之控制信號CTRL而調整初始命令/位址信號CAsp1之相位或時序以產生經相位調整之命令/位址信號CSsp2。 In the memory controller 50, the clock generator 201 generates a clock signal CK to supply the clock signal CK to the memory device 60 through the clock signal line 11. The CA transmitter 203 adjusts the phase or timing of the initial command/address signal CA sp1 in response to the control signal CTRL of the phase/timing controller 208 to produce a phase adjusted command/address signal CS sp2 .
在記憶體裝置60中,CA接收器304以回應於內部時脈信號ICK之一時序且在藉由時脈啟用信號CKE及晶片選擇信號/CS啟用時接收經相位調整之命令/位址信號CAsp2,以產生命令/位址校準資訊CAr。命令/位址校準資訊CAr係透過校準匯流排CA_Cal 15由記憶體裝置60提供至記憶體控制器50。透過校準匯流排CA_Cal 15,將命令/位址校準資訊CAr提供至記憶體控制器50之比較器206。 In the memory device 60, the CA receiver 304 receives the phase-adjusted command/address signal CA in response to a timing of the internal clock signal ICK and when enabled by the clock enable signal CKE and the wafer select signal /CS. Sp2 to generate command/address calibration information CA r . Command / address information CA r calibration system bus through calibration CA_Cal 15 provided to the memory device 60 by the memory controller 50. The command/address calibration information CA r is supplied to the comparator 206 of the memory controller 50 through the calibration bus CA_Cal 15.
記憶體控制器50之比較器206比較經發送命令/位址資訊CAs(其可係經相位調整之命令/位址信號CAsp2之資訊之資料-其可係與初始命令/位址信號CAsp1之資訊相同)與所接收之命令/位址校準資訊CAr以產生通過信號P或失敗信號F。相位/時序控制器208根據由比較器206產生之通過信號P或失敗信號F產生指示經相位調整之命令/位址信號CAsp2之一相移之控制信號CTRL。CA傳輸器203根據控制信號 CTRL產生經相位調整之命令/位址信號CAsp2。在記憶體裝置60與記憶體控制器50之間的命令/位址通信之一校準期間,可執行發送經相位調整之命令/位址信號CAsp2之多個循環(每一循環具有相對於時脈CK之一不同經調整相對相位),且可基於多個通過P及失敗F判定來選擇時脈CK與自記憶體控制器50發送至記憶體裝置60之命令/位址信號之間的最佳相對相位,如本文中關於其他實施例所闡述(例如,闡述圖5之記憶體控制器20及記憶體裝置30之實施例)。舉例而言,藉由重複CA校準循環,記憶體控制器50之相位/時序控制器208判定用以觸發記憶體裝置60在命令/位址信號CA窗之中間處對其輸入(例如,鎖存)的時脈CK與一個、複數個或所有命令/位址信號之一最佳相對相位。因此,記憶體裝置60接收針對其一有效窗之中間對應於時脈信號CK之上升沿及下降沿(其可係時脈信號CK及CKB兩者之上升沿及下降沿)之命令/位址信號CA。 The comparator 206 of the memory controller 50 compares the transmitted command/address information CA s (which may be the information of the phase-adjusted command/address signal CA sp2 - which may be associated with the initial command/address signal CA The information of sp1 is the same) and the received command/address calibration information CA r is used to generate the pass signal P or the fail signal F. The phase/timing controller 208 generates a control signal CTRL indicative of a phase shift of one of the phase adjusted commands/address signals CA sp2 based on the pass signal P or the fail signal F generated by the comparator 206. The CA transmitter 203 generates a phase adjusted command/address signal CA sp2 based on the control signal CTRL. During the calibration of one of the command/address communications between the memory device 60 and the memory controller 50, multiple cycles of transmitting the phase adjusted command/address signal CAsp2 may be performed (each cycle having a relative time) One of the pulses CK is differently adjusted relative phase), and the most between the clock CK and the command/address signal transmitted from the memory controller 50 to the memory device 60 can be selected based on a plurality of P and F failure F decisions. The preferred phase is as described herein with respect to other embodiments (e.g., the embodiment of memory controller 20 and memory device 30 of FIG. 5 is illustrated). For example, by repeating the CA calibration loop, the phase/timing controller 208 of the memory controller 50 determines to trigger the memory device 60 to input it (eg, latch) in the middle of the command/address signal CA window. The clock CK is optimally phased with one of a plurality of or all of the command/address signals. Therefore, the memory device 60 receives a command/address corresponding to the rising edge and the falling edge of the clock signal CK (which can be the rising and falling edges of the clock signals CK and CKB) in the middle of a valid window thereof. Signal CA.
如同本文中所闡述之其他實施例,可針對一單個命令/位址信號線CA(該校準可用於判定一命令/位址匯流排12之所有信號線之一單個最佳相對相位)、針對命令/位址匯流排12之某些但非所有命令/位址信號線或針對命令/位址匯流排12之所有命令/位址信號線(個別地或者作為一群組)執行校準。該等結果可用於判定並控制時脈CK與命令/位址匯流排12之信號線之間的相對相位,命令/位址匯流排12之信號線或者作為一單個群組(例如,命令位址匯流排之所有信號線發送具有與時脈CK之相同最佳相對相位之信 號)、複數個群組(亦即,命令/位址匯流排12之信號線群組中之每一者具有由記憶體控制器50判定之一對應最佳相對相位且在正常操作期間可共用電路以達成此經判定最佳相對相位-例如CA相位/時序控制器208)或個別地(例如,命令/位址匯流排12之信號線中之每一者具有由記憶體控制器50判定之一對應最佳相對相位且在正常操作期間可具有專用(非共用)電路以達成此經判定最佳相對相位,例如一專用CA相位/時序控制器208)。 As with the other embodiments set forth herein, a single command/address signal line CA (which can be used to determine a single optimal relative phase of all of the signal lines of a command/address bus 12), for commands Some but not all command/address signal lines of the address bus 12 or all command/address signal lines of the command/address bus 12 (individually or as a group) perform calibration. The results can be used to determine and control the relative phase between the clock CK and the signal line of the command/address bus 12, the signal line of the command/address bus 12 or as a single group (eg, command address) All signal lines of the bus are sent with the same optimal phase relative to the clock CK Number), that is, each of the signal line groups of the command/address bus 12 has one of the best relative phases determined by the memory controller 50 and can be shared during normal operation. The circuit is operative to determine the best relative phase - for example, the CA phase/timing controller 208) or individually (eg, each of the signal lines of the command/address bus 12 has a decision by the memory controller 50) A corresponding optimal phase and may have dedicated (non-shared) circuitry during normal operation to achieve this determined optimal relative phase, such as a dedicated CA phase/timing controller 208).
圖22係展示可用於實施本文中所闡述之一或多個命令/位址校準實施例之一記憶體系統之另一實例之一方塊圖。 22 is a block diagram showing another example of a memory system that can be used to implement one or more of the command/address alignment embodiments set forth herein.
參考圖22,一記憶體系統70可包含一記憶體控制器80及一記憶體裝置90。記憶體控制器80可包含一時脈產生器801、一命令/位址(CA)產生器802、一CA產生參考單元803、一暫存器單元804、一比較器806、一相位/時序控制器808及資料輸入/輸出單元810及812。記憶體控制器80透過時脈信號線11將由時脈產生器801產生之時脈信號CK提供至記憶體裝置90。 Referring to FIG. 22, a memory system 70 can include a memory controller 80 and a memory device 90. The memory controller 80 can include a clock generator 801, a command/address (CA) generator 802, a CA generation reference unit 803, a register unit 804, a comparator 806, and a phase/timing controller. 808 and data input/output units 810 and 812. The memory controller 80 supplies the clock signal CK generated by the clock generator 801 to the memory device 90 through the clock signal line 11.
記憶體系統70額外地包含一CA參考信號線CA_Ref 16。CA參考信號線CA_Ref 16在記憶體控制器80與記憶體裝置70之間的命令/位址CA通信之CA校準模式中傳輸一信號CA_Refs且接收一CA參考校準資訊CA_Refr。將CA參考校準資訊CA_Refr提供至CA_Ref比較器806以判定CA校準之一循環之一結果(例如,通過P或失敗F),該結果係提供至相位/時序控制器808以藉由提供一控制信號CTRL至CA產 生器802來調整命令/位址信號CA相對於時脈CK之相對相位或時序。由於提供一CA參考信號線CA_Ref 16,可與經由命令/位址匯流排12傳輸命令/位址信號CA同時執行命令/位址CA通信之校準。 The memory system 70 additionally includes a CA reference signal line CA_Ref 16. The CA reference signal line CA_Ref 16 transmits a signal CA_Ref s and receives a CA reference calibration information CA_Ref r in the CA calibration mode of command/address CA communication between the memory controller 80 and the memory device 70. The CA reference calibration information CA_Ref r is provided to the CA_Ref comparator 806 to determine one of the results of one of the CA calibration cycles (eg, by P or F), which is provided to the phase/timing controller 808 to provide a control Signal CTRL to CA generator 802 adjusts the relative phase or timing of command/address signal CA relative to clock CK. Since the CA reference signal line CA_Ref 16 is provided, the calibration of the command/address CA communication can be performed simultaneously with the transmission of the command/address signal CA via the command/address bus.
CA產生器802產生具有已回應於控制信號CTRL而判定(可能地,調整)之一相位或時序之一CA信號,且透過命令/位址匯流排12將其傳輸至記憶體裝置90。CA產生參考單元803可係與CA產生器802相同地組態(例如,可使用來自一記憶體胞程式庫之相同單元記憶體胞之相同電路構造),且產生經發送命令/位址參考信號CA_Refs。經發送命令/位址參考信號CA_Refs可係與由CA產生器802產生之命令/位址信號CA相同或完全獨立於命令/位址信號CA。 可以由控制信號CTRL判定之一相位產生經發送命令/位址參考信號CA_Refs,該控制信號CTRL可係由CA相位時序控制器808提供(或自由CA相位時序控制器808提供之資訊導出)。由控制信號CTRL控制之經發送命令/位址參考信號CA_Refs之相位可係與由CA產生器802輸出之CA信號之相位相同。 The CA generator 802 generates a CA signal having one of the phases or timings that have been determined (possibly adjusted) in response to the control signal CTRL, and transmitted to the memory device 90 via the command/address bus. The CA generation reference unit 803 can be configured identically to the CA generator 802 (e.g., can use the same circuit configuration from the same unit memory bank of a memory bank library) and generate a transmitted command/address reference signal CA_Ref s . By sending a command / address lines may be CA_Ref s reference signal with a command generated by the CA of the same or generator 802 is completely independent of the command / address signal / address signal CA the CA. Can be determined by one of the phase control signal CTRL generate transmission command / address reference signal CA_Ref s, the system may provide a control signal CTRL (or Freedom of Information CA phase timing controller 808 provides the derived) by the CA phase timing controller 808. The control by the control signal CTRL transmitted via the command / address signal of reference phase CA_Ref s may be generated by the CA system and the same phase of an output 802 of the CA signal.
將經發送命令/位址參考信號CA_Refs提供至暫存器單元804以儲存由經發送命令/位址參考信號CA_Refs表示之資訊。將經發送命令/位址參考信號CA_Refs提供至將經發送命令/位址參考信號CA_Refs傳輸至記憶體裝置90之CA參考信號線CA_ref 16。 The transmitted command/address reference signal CA_Ref s is provided to the scratchpad unit 804 to store the information represented by the transmitted command/address reference signal CA_Ref s . The transmitted command/address reference signal CA_Ref s is supplied to the CA reference signal line CA_ref 16 that transmits the transmitted command/address reference signal CA_Ref s to the memory device 90.
暫存器單元804儲存由經發送命令/位址參考信號 CA_Refs表示之資訊。比較器806比較儲存在暫存器單元804中之經發送命令/位址參考信號CA_Refs之資訊與經由記憶體控制器80之資料輸入單元810自記憶體裝置90接收之所接收之命令/位址參考校準資訊CA_Refr。比較器806比較儲存在CA_Ref暫存器804中之經發送命令/位址參考信號CA_Refs之資訊與所接收之命令/位址參考校準資訊CA_Refr以產生通過信號P或失敗信號F。以可係與本文中關於其他實施例所闡述之方式相同之方式,針對命令/位址通信校準之每一循環(每一循環對應於處於一特定相位之一CA_Refs之一傳輸)執行通過信號P或失敗信號F之產生,且在命令/位址通信校準模式期間產生之通過P及失敗F信號之群組可用於判定經由CA匯流排12傳輸之命令/位址信號與時脈CK之間的一最佳相對相位。 The register unit 804 stores information represented by the transmitted command/address reference signal CA_Ref s . The comparator 806 compares the information of the transmitted command/address reference signal CA_Ref s stored in the register unit 804 with the received command/bit received from the memory device 90 via the data input unit 810 of the memory controller 80. The address references the calibration information CA_Ref r . The comparator 806 compares the information of the transmitted command/address reference signal CA_Ref s stored in the CA_Ref register 804 with the received command/address reference calibration information CA_Ref r to generate a pass signal P or a fail signal F. The lines in the same manner with respect to other embodiments described herein set forth the manner, for each cycle of the command / address calibration of a communication (transmission in each cycle corresponding to a particular one of the one CA_Ref s phase) performed by the signal The generation of P or fail signal F, and the group of pass and fail F signals generated during the command/address communication calibration mode can be used to determine the command/address signal transmitted between the CA bus 12 and the clock CK. An optimal relative phase.
舉例而言,相位/時序控制器808根據由比較器808在校準模式期間產生之通過或失敗信號P或F之群組產生指示命令/位址信號CA之一相移之控制信號CTRL。控制信號CTRL用於判定(例如,調整或維持)命令/位址信號CA與時脈CK之相對相位或時序,且產生經由命令/位址匯流排12傳輸之經相位調整之命令/位址信號CA。 For example, phase/timing controller 808 generates a control signal CTRL that indicates a phase shift of one of command/address signals CA based on a set of pass or fail signals P or F generated by comparator 808 during the calibration mode. The control signal CTRL is used to determine (eg, adjust or maintain) the relative phase or timing of the command/address signal CA and the clock CK, and generate a phase adjusted command/address signal transmitted via the command/address bus 12 CA.
可係一輸入緩衝器及/或放大器之資料輸入單元810透過CA參考信號線CA_ref 16自記憶體裝置90接收所接收之命令/位址參考校準資訊CA_Refr,且將所接收之命令/位址參考校準資訊CA_Refr遞送至比較器806。可係一輸出緩衝器及/或放大器之資料輸出單元812接收由CA產生參考單元 803產生之經發送命令/位址參考信號CA_Refs,且將經發送命令/位址參考信號CA_Refs傳輸至CA參考信號線CA_ref 16。 The data input unit 810, which can be an input buffer and/or amplifier, receives the received command/address reference calibration information CA_Ref r from the memory device 90 via the CA reference signal line CA_ref 16, and receives the received command/address The reference calibration information CA_Ref r is delivered to the comparator 806. A data output unit 812, which may be an output buffer and/or amplifier, receives the transmitted command/address reference signal CA_Ref s generated by the CA generation reference unit 803 and transmits the transmitted command/address reference signal CA_Ref s to the CA. Reference signal line CA_ref 16.
記憶體裝置90包含一時脈緩衝器902、一CA接收器904、一CA參考接收器906及輸入/輸出單元908及910(其可分別係輸入及輸出緩衝器及/或放大器)。時脈緩衝器902接收透過時脈信號線11傳輸之時脈信號CK以產生內部時脈信號ICK。內部時脈信號ICK可具有與外部時脈信號CK相同之時序(例如,相位及負載循環),或其可係不同的(例如,在相位及/或負載循環方面)。CA接收器904接收晶片選擇信號/CS及時脈啟用信號CKE以及透過命令/位址匯流排12傳輸之命令/位址信號CA。時脈啟用信號CKE可用作如本文中其他地方所闡述充當透過命令/位址匯流排12傳輸之命令/位址信號CA之一讀取命令的一偽命令。當時脈啟用信號CKE在一有效狀態中時,CA接收器304可接收命令/位址信號CA。 The memory device 90 includes a clock buffer 902, a CA receiver 904, a CA reference receiver 906, and input/output units 908 and 910 (which may be input and output buffers and/or amplifiers, respectively). The clock buffer 902 receives the clock signal CK transmitted through the clock signal line 11 to generate an internal clock signal ICK. The internal clock signal ICK may have the same timing (eg, phase and duty cycle) as the external clock signal CK, or it may be different (eg, in terms of phase and/or duty cycle). The CA receiver 904 receives the wafer select signal /CS time pulse enable signal CKE and the command/address signal CA transmitted through the command/address bus 12 . The clock enable signal CKE can be used as a pseudo-command as one of the commands/address signals CA that are transmitted through the command/address bus 12 as explained elsewhere herein. When the clock enable signal CKE is in an active state, the CA receiver 304 can receive the command/address signal CA.
輸入單元908接收透過CA參考匯流排CA_ref 16自記憶體控制器80傳輸之經發送命令/位址參考信號CA_Refs,且將其傳輸至CA接收參考接收器906。CA接收參考接收器906可係與CA接收器904相同地組態。CA接收參考接收器906接收晶片選擇信號/CS、時脈啟用信號CKE及透過CA參考匯流排CA_ref 16傳輸之經發送命令/位址參考信號CA_Refs,且在時脈ICK之一上升沿及/或下降沿(其可係與外部時脈CK之沿之時間相同之時間或相依於外部時脈CK 之沿之時間)處鎖存經發送命令/位址參考信號CA_Refs。由CA_Ref接收器906鎖存之經發送命令/位址參考信號CA_Refs之資訊係所接收之命令/位址參考校準資訊CA_Refr,所接收之命令/位址參考校準資訊CA_Refr可與由經發送命令/位址參考信號CA_Refs表示之資訊相同或不同(舉例而言,基於在命令/位址校準之此循環期間由時脈CK與經發送命令/位址參考信號CA_Refs之相對相位產生之鎖存之時序)。 The input unit 908 receives the transmission via a transmission 80 with reference to the CA bus CA_ref 16 from the memory controller via the command / address reference signal CA_Ref s, and be transmitted to the CA receiver 906. The reference receiver. The CA Receive Reference Receiver 906 can be configured the same as the CA Receiver 904. The CA receive reference receiver 906 receives the wafer select signal /CS, the clock enable signal CKE, and the transmitted command/address reference signal CA_Ref s transmitted through the CA reference bus CA_ref 16, and is on a rising edge of the clock ICK and / The transmitted command/address reference signal CA_Ref s is latched at either the falling edge (which may be the same time as the edge of the external clock CK or the time dependent on the edge of the external clock CK). The information transmitted by the CA_Ref receiver 906 and transmitted by the command/address reference signal CA_Ref s is received by the command/address reference calibration information CA_Ref r , and the received command/address reference calibration information CA_Ref r can be The information represented by the transmit command/address reference signal CA_Ref s is the same or different (for example, based on the relative phase of the clock CK and the transmitted command/address reference signal CA_Ref s during this cycle of command/address calibration) The timing of the latch).
所接收之命令/位址參考校準資訊CA_Refr可係與自經由CA匯流排12接收之一信號獲得之資訊相同,將該資訊自CA接收器904輸出至記憶體裝置70內部之一源(在當CA接收器904接收晶片選擇信號/CS、時脈啟用信號CKE及透過命令/位址匯流排12傳輸之命令/位址信號CA時回應於內部時脈信號ICK將該資訊輸入至CA接收器904之後)。所接收之命令/位址參考校準資訊CA_Refr係經由CA參考信號線CA_ref 16及輸出單元910傳輸至記憶體控制器80。 The received command/address reference calibration information CA_Ref r may be the same as the information obtained from one of the signals received via the CA bus 12, and the information is output from the CA receiver 904 to a source within the memory device 70 (at When the CA receiver 904 receives the wafer selection signal /CS, the clock enable signal CKE, and the command/address signal CA transmitted through the command/address bus 12, the information is input to the CA receiver in response to the internal clock signal ICK. After 904). The received command / address reference calibration information transmission system CA_Ref r CA CA_ref 16 and the reference signal line 910 via the output unit 80 to the memory controller.
記憶體系統70可執行CA校準之複數個循環,如下闡述一實例性單個循環。記憶體控制器80之CA產生器802回應於相位/時序控制器808之控制信號CTRL而調整命令/位址信號CA之相位或時序。CA產生參考單元803產生可係與命令/位址信號CA相同之經發送命令/位址參考信號CA_Refs,且經由CA參考信號線CA_ref 16將經發送命令/位址參考信號CA_Refs傳輸至記憶體裝置90。記憶體裝置90之CA參考接收器906在根據內部時脈信號ICK且藉由時 脈啟用信號CKE啟用之一時間處輸入經發送命令/位址參考信號CA_Refs,且產生所接收之命令/位址參考校準資訊CA_Refr。經由CA參考信號線CA_ref 16將記憶體裝置90之所接收之命令/位址參考校準資訊CA_Refr傳輸至記憶體控制器80。 The memory system 70 can perform a plurality of cycles of CA calibration, an exemplary single cycle being set forth below. The CA generator 802 of the memory controller 80 adjusts the phase or timing of the command/address signal CA in response to the control signal CTRL of the phase/timing controller 808. CA generating unit 803 generates a reference can be tied to the command / address signal CA sent by the same command / address reference signal CA_Ref s, CA and the reference signal line a reference signal CA_ref 16 CA_Ref s transmitted to the memory via the transmission via command / address Body device 90. The CA reference receiver 906 of the memory device 90 inputs the transmitted command/address reference signal CA_Ref s at a time according to the internal clock signal ICK and enabled by the clock enable signal CKE, and generates the received command/bit. The address references the calibration information CA_Ref r . The command/address reference calibration information CA_Ref r received by the memory device 90 is transmitted to the memory controller 80 via the CA reference signal line CA_ref16.
將所接收之命令/位址參考校準資訊CA_Refr提供至比較器806。比較器806比較經發送命令/位址參考信號CA_Refs之資訊與所接收之命令/位址參考校準資訊CA_Refr以針對命令/位址校準之此循環產生通過信號P或失敗信號F。透過前述CA校準循環之重複,記憶體控制器80之相位/時序控制器808判定由CA產生器802經由CA匯流排12傳輸之CA信號與時脈CK之間的一最佳相對相位。此最佳相對相位可係如本文中其他地方所闡述來選擇,且可促進CA接收器904以對應於命令/位址信號CA邏輯窗之中間部分之時序輸入(例如,鎖存)在正常操作期間藉由CA匯流排12傳輸之命令/位址信號(例如,以使得命令/位址信號邏輯窗之中間對應於時脈信號CK及/或內部時脈信號ICK之一沿)。 The received command/address reference calibration information CA_Ref r is provided to comparator 806. Comparator 806 compares the transmitted command/address reference signal CA_Ref s with the received command/address reference calibration information CA_Ref r to generate a pass signal P or a fail signal F for this cycle of command/address calibration. Through the repetition of the aforementioned CA calibration cycle, the phase/timing controller 808 of the memory controller 80 determines an optimum relative phase between the CA signal transmitted by the CA generator 802 via the CA bus 12 and the clock CK. This optimal relative phase may be selected as set forth elsewhere herein and may facilitate the CA receiver 904 to input (eg, latch) the timing input corresponding to the middle portion of the command/address signal CA logic window in normal operation. The command/address signal transmitted by the CA bus 12 during the period (eg, such that the middle of the command/address signal logic window corresponds to one of the clock signal CK and/or the internal clock signal ICK).
儘管在當前實施例中已闡述對CA匯流排12之一單個命令/位址信號CA之校準,但所闡述之校準可用於調整在命令/位址匯流排12之所有信號線上傳輸之信號之相位。此可係僅使用單個CA_ref信號線16來完成(將其校準結果應用於命令/位址匯流排12之所有信號線)。另一選擇為,CA_ref信號線16可係複數個CA_ref信號線中之一者,該複數個CA_ref信號線中之每一者用於調整CA匯流排12之一 對應信號線或信號線群組。另外,複數個CA_ref信號線16中之每一者可係毗鄰於其用於校準之CA匯流排12之信號線之一信號線(例如,緊鄰2或3個信號線或在2或3個信號線內)。此可包含間置於CA匯流排12之信號線之間的複數個CA_ref信號線。此外,在替代實施例中,CA_ref線16可在CA校準之外之模式(例如,正常操作)期間用於其他目的(例如,電力或其他資訊信號之傳輸)。 Although the calibration of a single command/address signal CA for one of the CA busses 12 has been set forth in the current embodiment, the calibration illustrated can be used to adjust the phase of the signal transmitted over all of the signal lines of the command/address busbar 12. . This can be done using only a single CA_ref signal line 16 (applying its calibration results to all signal lines of the command/address bus 12). Alternatively, the CA_ref signal line 16 may be one of a plurality of CA_ref signal lines, each of the plurality of CA_ref signal lines being used to adjust one of the CA bus bars 12. Corresponding to signal lines or signal line groups. Additionally, each of the plurality of CA_ref signal lines 16 may be adjacent to one of the signal lines of the CA bus 12 for calibration thereof (eg, immediately adjacent to 2 or 3 signal lines or at 2 or 3 signals) Inline). This may include a plurality of CA_ref signal lines interposed between the signal lines of the CA bus 12. Moreover, in an alternate embodiment, the CA_ref line 16 may be used for other purposes (eg, transmission of power or other information signals) during modes other than CA calibration (eg, normal operation).
本文中所闡述之記憶體控制器及記憶體裝置可呈眾多形式。舉例而言,記憶體控制器可包括一半導體晶片或可係一封裝(例如,囊封在一保護殼(例如,樹脂)中之一或多個晶片)。記憶體裝置可包括一半導體晶片或可係一封裝(例如,囊封在一保護殼(例如,樹脂)中之一或多個半導體記憶體晶片)。該記憶體裝置可係一NAND快閃記憶體(包含3D NAND快閃記憶體)、DRAM、PRAM、RRAM及/或MRAM。記憶體控制器及記憶體裝置可係封裝在相同半導體封裝中(例如,一記憶體控制器晶片及一或多個記憶體晶片堆疊在一起且囊封在一封裝中)。控制器/裝置封裝可係一封裝疊加(POP)。 The memory controller and memory device described herein can take a wide variety of forms. For example, the memory controller can include a semiconductor wafer or can be a package (eg, one or more wafers encapsulated in a protective casing (eg, resin)). The memory device can include a semiconductor wafer or can be a package (eg, one or more semiconductor memory wafers encapsulated in a protective casing (eg, a resin)). The memory device can be a NAND flash memory (including 3D NAND flash memory), DRAM, PRAM, RRAM, and/or MRAM. The memory controller and memory device can be packaged in the same semiconductor package (eg, a memory controller chip and one or more memory chips stacked together and encapsulated in a package). The controller/device package can be a package overlay (POP).
控制器可包括充當一或多個從控記憶體晶片之一主控裝置之一主控記憶體晶片之一部分,所闡述之校準係針對主控記憶體晶片與從控記憶體晶片中之一或多者之間的命令/位址通信執行。主控記憶體晶片及一或多個從控晶片可係堆疊且經由彼此連接之每一晶片之穿基板通孔(TSV)(例如穿矽通孔)通信(其中本文中所闡述之時脈信號11、命令/位 址匯流排12、DQ匯流排13、晶片選擇信號線/CS、時脈啟用CKE及資料選通線DQS之所有或某些係由穿矽通孔中之一或多者形成)。記憶體控制器及記憶體裝置可係一記憶體卡(嵌入式或可抽換式)之元件。 The controller may include a portion of a master memory chip that acts as one of the master devices of one or more slave memory chips, the calibration being performed for one of the master memory chip and the slave memory chip or Command/address communication between multiples is performed. The master memory chip and the one or more slave wafers can be stacked and communicated through a through substrate via (TSV) (eg, via via) of each of the wafers connected to each other (where the clock signal is described herein) 11, command / bit The address bus 12, the DQ bus 13, the chip enable signal line / CS, the clock enable CKE, and the data strobe line DQS are all formed by one or more of the through holes. The memory controller and memory device can be a component of a memory card (embedded or removable).
記憶體控制器及記憶體裝置可係安裝在可包含以下各項之相同印刷電路板或在一單個計算系統內連接之複數個電路板上:包括一記憶體模組之元件之印刷電路板、一計算裝置(舉例而言,一個人電腦)之一母板或其他印刷電路板(例如,在一行動電話、個人資料助理(PDA)或平板電腦內)。 The memory controller and the memory device can be mounted on a plurality of circuit boards that can include the same printed circuit board or a single computing system: a printed circuit board including components of a memory module, A motherboard or other printed circuit board (for example, in a mobile phone, personal information assistant (PDA) or tablet) of a computing device (for example, a personal computer).
對於某些應用,控制器及記憶體裝置可藉助同一單片半導體基板(例如,相同半導體晶片之部分)整體形成。舉例而言,該記憶體可係一微處理器、一通信晶片或一數位信號處理器中之嵌入式記憶體。 For some applications, the controller and memory device can be integrally formed by the same single piece of semiconductor substrate (eg, portions of the same semiconductor wafer). For example, the memory can be a microprocessor, a communication chip, or an embedded memory in a digital signal processor.
此外,儘管已將以上實施例闡述為與一記憶體系統相關,但本發明亦可用於校準在記憶體系統外部之其他命令/位址通信(例如在伺服器、電腦等之一母板互連之節點之間)以幫助附接至母板之裝置之間的通信。 Moreover, although the above embodiments have been described as being associated with a memory system, the present invention can also be used to calibrate other command/address communications external to the memory system (eg, one of the motherboard interconnects in a server, computer, etc.) Between the nodes) to facilitate communication between devices attached to the motherboard.
此外,儘管該等實施例闡述自記憶體裝置傳輸至記憶體控制器之命令/位址校準資訊之一實例係自記憶體控制器發送至記憶體裝置之命令/位址校準信號之解譯(例如,由記憶體裝置作為輸入),然而,亦可發送其他類型之資訊。舉例而言,若測試型樣係預定的(無論係在製造時或將要進行命令/位址校準時程式化的),則該記憶體裝置本 身可判定其已輸入之資訊是否是無錯誤地輸入以回應於此提供一通過P或失敗F指示至記憶體控制器。另一選擇為,記憶體裝置可含有預期構成在一校準循環期間發送之測試型樣之一系列位元之間及/或作為測試型樣之部分並列接收之位元之位元之間的某一關係(且因此產生發送至記憶體控制器之一通過或失敗信號)之邏輯。 Moreover, while these embodiments illustrate one example of command/address calibration information transmitted from a memory device to a memory controller, the interpretation of a command/address calibration signal sent from the memory controller to the memory device ( For example, the memory device is used as an input), however, other types of information can also be sent. For example, if the test pattern is predetermined (whether programmed or at the time of command/address calibration), the memory device is The body can determine whether the information it has entered is input without error in response to providing a P or F failure indication to the memory controller. Alternatively, the memory device can contain between a plurality of bits of the test pattern that are expected to be formed during a calibration cycle and/or between the bits of the bit that are received side by side as part of the test pattern. The logic of a relationship (and thus a pass or fail signal sent to one of the memory controllers).
此外,已闡述命令/位址通信之校準以校準用於將命令/位址信號輸入至記憶體裝置中之一時序,然而,可執行命令/位址通信之其他類型之校準。舉例而言,對於命令/位址通信校準之每一循環,控制器可更改一信號功率、控制器及/或記憶體裝置之一端子阻抗(例如,一可調整晶粒上終止(上拉及/或串聯))及/或命令/位址校準信號之一負載循環。 In addition, calibration of command/address communication has been illustrated to calibrate timing for inputting command/address signals into one of the memory devices, however, other types of calibration of command/address communications may be performed. For example, for each cycle of command/address communication calibration, the controller can change a signal power, a terminal impedance of the controller and/or the memory device (eg, an adjustable die termination (pull-up and pull-up) / or series)) and / or command / address calibration signal one of the load cycle.
應注意,該說明闡述藉助經由一命令/位址匯流排發送之校準測試型樣信號對一命令/位址通信之校準。預期某些實施方案將允許一命令/位址匯流排之信號線中之某些但非所有信號線在正常操作期間為命令及位址資訊兩者共用。舉例而言,一設計可需要22個位址位元及10個命令位元,此可產生不用於傳輸一命令位元之命令/位址匯流排之信號線中之一或多者(例如,若命令/位址匯流排12係由傳輸二十二(22)個位址位元(按序含十一(11)個位元之兩個組)之十一個信號線組成,則通信可僅需要十一(11)個信號線上之一命令之十(10)個位元,留下該等信號線中之一者不用於命令通信)。作為另一實例,命令/位址匯流排之所 有信號線可用於命令通信,但該等信號線中之某些信號線可不用於位址通信(例如,一命令資訊之十一個位元及位址資訊之二十(20)個位元可留下一十一個信號線命令/位址匯流排之信號線中之一者不用於位址通信)。 It should be noted that this description illustrates the calibration of a command/address communication by means of a calibration test pattern signal transmitted via a command/address bus. It is contemplated that certain embodiments will allow some but not all of the signal lines of a command/address bus to be shared for both command and address information during normal operation. For example, a design may require 22 address bits and 10 command bits, which may result in one or more of the signal lines of the command/address bus that are not used to transmit a command bit (eg, If the command/address bus 12 is composed of eleven signal lines transmitting twenty-two (22) address bits (two groups of eleven (11) bits in sequence), the communication may be Only ten (10) bits of one of the eleven (11) signal lines are required, leaving one of the signal lines unused for command communication). As another example, the command/address bus is located There are signal lines available for command communication, but some of these signal lines may not be used for address communication (for example, eleven bits of a command message and twenty (20) bits of address information) One of the signal lines that can leave one eleven signal line commands/address bus bars is not used for address communication).
儘管已參考本發明性概念之實例性實施例特定展示及闡述本發明性概念,但其係用於說明之目的而提供,且熟習此項技術者將瞭解,可根據本發明性概念作出各種修改及等效其他實施例。因此,本發明性概念之範疇應由隨附申請專利範圍界定。 Although the present invention has been particularly shown and described with reference to the exemplary embodiments of the present inventive concepts, which are provided for illustrative purposes, and those skilled in the art will appreciate that various modifications can be made in accordance with the inventive concepts. And equivalent to other embodiments. Therefore, the scope of the inventive concept should be defined by the scope of the accompanying claims.
10‧‧‧記憶體系統 10‧‧‧ memory system
11‧‧‧時脈信號線 11‧‧‧clock signal line
12‧‧‧命令/位址匯流排 12‧‧‧Command/Address Bus
13‧‧‧資料信號匯流排 13‧‧‧Information signal bus
15‧‧‧單獨校準匯流排/校準匯流排 15‧‧‧Single calibration bus/calibration busbar
20‧‧‧記憶體控制器 20‧‧‧ memory controller
30‧‧‧記憶體裝置 30‧‧‧ memory device
40‧‧‧記憶體系統 40‧‧‧ memory system
50‧‧‧記憶體控制器 50‧‧‧ memory controller
60‧‧‧記憶體裝置 60‧‧‧ memory device
70‧‧‧記憶體系統 70‧‧‧ memory system
80‧‧‧記憶體控制器 80‧‧‧ memory controller
90‧‧‧記憶體裝置 90‧‧‧ memory device
201‧‧‧時脈產生器 201‧‧‧ clock generator
202‧‧‧命令/位址產生器 202‧‧‧Command/Address Generator
203‧‧‧命令/位址傳輸器/ 203‧‧‧Command/Address Transmitter/
204‧‧‧暫存器 204‧‧‧Storage register
206‧‧‧比較器 206‧‧‧ comparator
208‧‧‧相位/時序控制器 208‧‧‧ Phase/Timing Controller
210‧‧‧輸入/輸出單元 210‧‧‧Input/output unit
212‧‧‧輸入緩衝器 212‧‧‧Input buffer
214‧‧‧選擇單元 214‧‧‧Selection unit
216‧‧‧輸出緩衝器 216‧‧‧Output buffer
302‧‧‧時脈緩衝器 302‧‧‧clock buffer
304‧‧‧命令/位址接收器 304‧‧‧Command/Address Receiver
310‧‧‧資料輸入/輸出單元 310‧‧‧Data input/output unit
312‧‧‧選擇單元 312‧‧‧Selection unit
314‧‧‧輸出緩衝器 314‧‧‧Output buffer
316‧‧‧輸入緩衝器 316‧‧‧Input buffer
801‧‧‧時脈產生器 801‧‧‧ clock generator
802‧‧‧命令/位址(CA)產生器 802‧‧‧Command/Address (CA) Generator
803‧‧‧命令/位址產生參考單元 803‧‧‧Command/address generation reference unit
804‧‧‧暫存器單元 804‧‧‧ register unit
806‧‧‧比較器 806‧‧‧ Comparator
808‧‧‧相位/時序控制器 808‧‧‧ Phase/Timing Controller
810‧‧‧資料輸入單元 810‧‧‧Data input unit
812‧‧‧資料輸出單元 812‧‧‧ data output unit
902‧‧‧時脈緩衝器 902‧‧‧clock buffer
904‧‧‧命令/位址接收器 904‧‧‧Command/Address Receiver
906‧‧‧命令/位址參考接收器 906‧‧‧Command/Address Reference Receiver
908‧‧‧輸入單元 908‧‧‧Input unit
910‧‧‧輸出單元 910‧‧‧Output unit
CA‧‧‧命令/位址信號 CA‧‧‧Command/Address Signal
CA_Cal‧‧‧單獨校準匯流排/校準匯流排 CA_Cal‧‧‧Single calibration bus/calibration busbar
CA_Refr‧‧‧所接收之命令/位址參考校準資訊 Command/address reference calibration information received by CA_Refr‧‧‧
CA_Refs‧‧‧經發送命令/位址參考信號 CA_Refs‧‧‧ sends command/address reference signal
CA1‧‧‧第一命令/位址信號 CA1‧‧‧First Command/Address Signal
CA2‧‧‧第一命令/位址信號 CA2‧‧‧First Command/Address Signal
CA3‧‧‧命令/位址信號 CA3‧‧‧ Command/Address Signal
CA4‧‧‧命令/位址信號 CA4‧‧‧ Command/Address Signal
CAnF‧‧‧命令/位址信號 CAnF‧‧‧ Command/Address Signal
CAnR‧‧‧命令/位址信號 CAnR‧‧‧ Command/Address Signal
CAr‧‧‧所接收之命令/位址校準資訊 Command/address calibration information received by CA r ‧‧‧
CAs‧‧‧經發送命令/位址資訊 CA s ‧‧‧Send command/address information
CAsp1‧‧‧初始命令/位址信號 CA sp1 ‧‧‧ initial command/address signal
CAsp2‧‧‧經相位調整之命令/位址信號 CA sp2 ‧‧‧ phase-adjusted command/address signal
CAxF‧‧‧命令/位址信號 CAxF‧‧‧ Command/Address Signal
CAxR‧‧‧命令/位址信號 CAxR‧‧‧ Command/Address Signal
CAyF‧‧‧命令/位址信號 CAyF‧‧‧Command/Address Signal
CAyR‧‧‧命令/位址信號 CAyR‧‧‧ Command/Address Signal
CK‧‧‧時脈信號 CK‧‧‧ clock signal
CKB‧‧‧時脈信號 CKB‧‧‧ clock signal
CKE‧‧‧時脈啟用信號 CKE‧‧‧ clock enable signal
CMD/ADDR‧‧‧命令/位址信號 CMD/ADDR‧‧‧ command/address signal
/CS‧‧‧晶片選擇信號 /CS‧‧‧Wafer selection signal
CTRL‧‧‧控制信號 CTRL‧‧‧ control signal
DQ‧‧‧資料信號 DQ‧‧‧ data signal
DQS‧‧‧資料選通時脈 DQS‧‧‧ data strobe clock
ICK‧‧‧內部時脈信號 ICK‧‧‧Internal clock signal
MRW#41‧‧‧第一模式暫存器命令 MRW#41‧‧‧First Mode Register Command
MRW#42‧‧‧第二模式暫存器命令 MRW#42‧‧‧Second Mode Register Command
MRW#43‧‧‧第三模式暫存器命令 MRW#43‧‧‧ Third Mode Register Command
MRW#44‧‧‧第四模式暫存器命令 MRW#44‧‧‧4th Mode Register Command
R_DATA1‧‧‧讀取資料 R_DATA1‧‧‧Reading data
R_DATA2‧‧‧讀取資料 R_DATA2‧‧‧Reading data
SEL1‧‧‧第一選擇信號 SEL1‧‧‧first selection signal
SEL2‧‧‧第二選擇信號 SEL2‧‧‧Second selection signal
W_DATA1‧‧‧寫入資料 W_DATA1‧‧‧Write data
W_DATA2‧‧‧寫入資料 W_DATA2‧‧‧Write information
圖1及圖2係用於闡述命令/位址校準之概念之時序圖;圖3係用於闡述執行命令/位址校準之一記憶體系統之一方塊圖;圖4A及圖4B係用於闡述(例如)由圖3中所展示之記憶體系統執行之命令/位址校準之圖式;圖5係可用於實施本文中所闡述之一或多個命令/位址校準實施例之一記憶體系統之一第一實例之一方塊圖;圖6係用於闡述根據一第一實施例之一命令/位址校準方法之一表;圖7係用於闡述根據一第一實施例之一模式暫存器命令設定方法之一圖式;圖8係展示用於闡述根據一實施例之命令/位址信號與DQ墊之間的映射之一實例之一圖式;圖9係展示用於闡述根據一實施例之命令/位址信號與DQ 墊之間的映射之另一實例之一圖式;圖10係用於闡述根據另一實施例之一命令/位址校準方法之一圖式;圖11係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之一實例之一圖式;圖12係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式;圖13係用於闡述根據另一實施例之一命令/位址校準方法之一圖式;圖14係用於闡述根據另一實施例之一模式暫存器命令設定方法之一圖式;圖15係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之一實例之一圖式;圖16係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式;圖17係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式;圖18係用於根據另一實施例之命令/位址校準方法之一圖式;圖19係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之一實例之一圖式;圖20係展示用於闡述根據另一實施例之命令/位址信號與DQ墊之間的映射之另一實例之一圖式;圖21係展示可用於實施本文中所闡述之一或多個命令/ 位址校準實施例之一記憶體系統之另一實例之一方塊圖;且圖22係展示可用於實施本文中所闡述之一或多個命令/位址校準實施例之一記憶體系統之另一實例之一方塊圖。 1 and 2 are timing diagrams for explaining the concept of command/address calibration; FIG. 3 is a block diagram for explaining one of memory systems for performing command/address calibration; FIG. 4A and FIG. 4B are for A diagram illustrating, for example, command/address calibration performed by the memory system shown in FIG. 3; FIG. 5 is a memory that can be used to implement one or more of the command/address calibration embodiments set forth herein a block diagram of a first example of a body system; FIG. 6 is a table for explaining a command/address calibration method according to a first embodiment; FIG. 7 is for explaining one of the first embodiment according to a first embodiment A schematic diagram of a mode register command setting method; FIG. 8 is a diagram showing one example of a mapping between a command/address signal and a DQ pad according to an embodiment; FIG. 9 is a diagram for Declaring a command/address signal and DQ according to an embodiment FIG. 10 is a diagram for explaining one of the command/address calibration methods according to another embodiment; FIG. 11 is a diagram for explaining another embodiment according to another embodiment. FIG. One example of an example of a mapping between a command/address signal and a DQ pad; Figure 12 shows another example for illustrating a mapping between a command/address signal and a DQ pad in accordance with another embodiment FIG. 13 is a diagram for explaining one of command/address calibration methods according to another embodiment; FIG. 14 is for explaining a mode register command setting method according to another embodiment. FIG. 15 is a diagram showing one example of a mapping between a command/address signal and a DQ pad according to another embodiment; FIG. 16 is a diagram for explaining another embodiment according to another embodiment. Another example of another example of a mapping between a command/address signal and a DQ pad; FIG. 17 shows another example for illustrating a mapping between a command/address signal and a DQ pad in accordance with another embodiment One of the drawings; FIG. 18 is a diagram of a command/address calibration method for another embodiment; 19 shows a diagram for illustrating one of the examples of mapping between a command/address signal and a DQ pad in accordance with another embodiment; FIG. 20 is a diagram showing a command/address signal for illustrating another embodiment. One of the other examples of mappings with DQ pads; Figure 21 is a diagram showing one or more of the commands that may be used to implement the ones described herein / Block diagram of another example of a memory system of one of the address alignment embodiments; and FIG. 22 is a diagram showing another memory system that can be used to implement one or more of the command/address alignment embodiments set forth herein. A block diagram of an example.
CA‧‧‧命令/位址信號 CA‧‧‧Command/Address Signal
CAxF‧‧‧命令/位址信號 CAxF‧‧‧ Command/Address Signal
CAxR‧‧‧命令/位址信號 CAxR‧‧‧ Command/Address Signal
CAyF‧‧‧命令/位址信號 CAyF‧‧‧Command/Address Signal
CAyR‧‧‧命令/位址信號 CAyR‧‧‧ Command/Address Signal
CK‧‧‧時脈信號 CK‧‧‧ clock signal
CKE‧‧‧時脈啟用信號 CKE‧‧‧ clock enable signal
/CS‧‧‧晶片選擇信號 /CS‧‧‧Wafer selection signal
MRW#41‧‧‧第一模式暫存器命令 MRW#41‧‧‧First Mode Register Command
MRW#42‧‧‧第二模式暫存器命令 MRW#42‧‧‧Second Mode Register Command
Claims (48)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201161468204P | 2011-03-28 | 2011-03-28 | |
KR1020110061319A KR20120109958A (en) | 2011-03-28 | 2011-06-23 | Memory device employing command/address calibration |
US13/430,438 US8760945B2 (en) | 2011-03-28 | 2012-03-26 | Memory devices, systems and methods employing command/address calibration |
Publications (2)
Publication Number | Publication Date |
---|---|
TW201246211A TW201246211A (en) | 2012-11-16 |
TWI574258B true TWI574258B (en) | 2017-03-11 |
Family
ID=48094515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW101110887A TWI574258B (en) | 2011-03-28 | 2012-03-28 | Memory devices, systems and methods employing command/address calibration |
Country Status (2)
Country | Link |
---|---|
DE (3) | DE202012013710U1 (en) |
TW (1) | TWI574258B (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI806516B (en) * | 2022-03-24 | 2023-06-21 | 瑞昱半導體股份有限公司 | Memory controller and method for calibrating data reception window |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6275962B1 (en) * | 1998-10-23 | 2001-08-14 | Teradyne, Inc. | Remote test module for automatic test equipment |
US6442644B1 (en) * | 1997-08-11 | 2002-08-27 | Advanced Memory International, Inc. | Memory system having synchronous-link DRAM (SLDRAM) devices and controller |
US7043652B2 (en) * | 2001-08-03 | 2006-05-09 | Elpida Memory, Inc. | Calibration method and memory system |
US20090019323A1 (en) * | 2007-07-11 | 2009-01-15 | Micron Technology, Inc. | System and method for initializing a memory system, and memory device and processor-based system using same |
US20090097329A1 (en) * | 2007-10-11 | 2009-04-16 | Elpida Memory, Inc. | Semiconductor storage device and high-speed address-latching method |
US20100005281A1 (en) * | 2008-07-01 | 2010-01-07 | International Business Machines Corporation | Power-on initialization and test for a cascade interconnect memory system |
US20100097096A1 (en) * | 2007-07-04 | 2010-04-22 | Elpida Memory, Inc. | Calibration circuit, semiconductor device including the same, and data processing system |
US7755383B2 (en) * | 2008-04-30 | 2010-07-13 | Hynix Semiconductor, Inc. | Calibration circuit, semiconductor memory device including the same, and operating method of the calibration circuit |
-
2012
- 2012-03-28 DE DE202012013710.7U patent/DE202012013710U1/en not_active Expired - Lifetime
- 2012-03-28 TW TW101110887A patent/TWI574258B/en active
- 2012-03-28 DE DE202012013708.5U patent/DE202012013708U1/en not_active Expired - Lifetime
- 2012-03-28 DE DE202012013709.3U patent/DE202012013709U1/en not_active Expired - Lifetime
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6442644B1 (en) * | 1997-08-11 | 2002-08-27 | Advanced Memory International, Inc. | Memory system having synchronous-link DRAM (SLDRAM) devices and controller |
US6275962B1 (en) * | 1998-10-23 | 2001-08-14 | Teradyne, Inc. | Remote test module for automatic test equipment |
US7043652B2 (en) * | 2001-08-03 | 2006-05-09 | Elpida Memory, Inc. | Calibration method and memory system |
US20100097096A1 (en) * | 2007-07-04 | 2010-04-22 | Elpida Memory, Inc. | Calibration circuit, semiconductor device including the same, and data processing system |
US20090019323A1 (en) * | 2007-07-11 | 2009-01-15 | Micron Technology, Inc. | System and method for initializing a memory system, and memory device and processor-based system using same |
US7624310B2 (en) * | 2007-07-11 | 2009-11-24 | Micron Technology, Inc. | System and method for initializing a memory system, and memory device and processor-based system using same |
US20090097329A1 (en) * | 2007-10-11 | 2009-04-16 | Elpida Memory, Inc. | Semiconductor storage device and high-speed address-latching method |
US7755383B2 (en) * | 2008-04-30 | 2010-07-13 | Hynix Semiconductor, Inc. | Calibration circuit, semiconductor memory device including the same, and operating method of the calibration circuit |
US20100005281A1 (en) * | 2008-07-01 | 2010-01-07 | International Business Machines Corporation | Power-on initialization and test for a cascade interconnect memory system |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI806516B (en) * | 2022-03-24 | 2023-06-21 | 瑞昱半導體股份有限公司 | Memory controller and method for calibrating data reception window |
Also Published As
Publication number | Publication date |
---|---|
DE202012013708U1 (en) | 2020-01-07 |
TW201246211A (en) | 2012-11-16 |
DE202012013709U1 (en) | 2020-01-07 |
DE202012013710U1 (en) | 2020-01-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10120591B2 (en) | Memory devices, systems and methods employing command/address calibration | |
US11513955B2 (en) | Memory module with local synchronization and method of operation | |
US11762788B2 (en) | Memory module with timing-controlled data buffering | |
US9135981B2 (en) | Memory system having memory ranks and related tuning method | |
US10482946B2 (en) | Management of strobe/clock phase tolerances during extended write preambles | |
TWI574258B (en) | Memory devices, systems and methods employing command/address calibration | |
US20230298642A1 (en) | Data-buffer controller/control-signal redriver |