TW201246211A - Memory devices, systems and methods employing command/address calibration - Google Patents

Memory devices, systems and methods employing command/address calibration Download PDF

Info

Publication number
TW201246211A
TW201246211A TW101110887A TW101110887A TW201246211A TW 201246211 A TW201246211 A TW 201246211A TW 101110887 A TW101110887 A TW 101110887A TW 101110887 A TW101110887 A TW 101110887A TW 201246211 A TW201246211 A TW 201246211A
Authority
TW
Taiwan
Prior art keywords
command
address
signal
calibration
clock
Prior art date
Application number
TW101110887A
Other languages
Chinese (zh)
Other versions
TWI574258B (en
Inventor
Young-Jin Jeon
Original Assignee
Samsung Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020110061319A external-priority patent/KR20120109958A/en
Priority claimed from US13/430,438 external-priority patent/US8760945B2/en
Application filed by Samsung Electronics Co Ltd filed Critical Samsung Electronics Co Ltd
Publication of TW201246211A publication Critical patent/TW201246211A/en
Application granted granted Critical
Publication of TWI574258B publication Critical patent/TWI574258B/en

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C8/00Arrangements for selecting an address in a digital store
    • G11C8/06Address interface arrangements, e.g. address buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/21Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements
    • G11C11/34Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices
    • G11C11/40Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors
    • G11C11/401Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using electric elements using semiconductor devices using transistors forming cells needing refreshing or charge regeneration, i.e. dynamic cells
    • G11C11/4063Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing
    • G11C11/407Auxiliary circuits, e.g. for addressing, decoding, driving, writing, sensing or timing for memory cells of the field-effect type
    • G11C11/409Read-write [R-W] circuits 
    • G11C11/4093Input/output [I/O] data interface arrangements, e.g. data buffers
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/022Detection or location of defective auxiliary circuits, e.g. defective refresh counters in I/O circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/023Detection or location of defective auxiliary circuits, e.g. defective refresh counters in clock generator or timing circuitry
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/02Detection or location of defective auxiliary circuits, e.g. defective refresh counters
    • G11C29/028Detection or location of defective auxiliary circuits, e.g. defective refresh counters with adaption or trimming of parameters
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/04Detection or location of defective memory elements, e.g. cell constructio details, timing of test signals
    • G11C29/08Functional testing, e.g. testing during refresh, power-on self testing [POST] or distributed testing
    • G11C29/12Built-in arrangements for testing, e.g. built-in self testing [BIST] or interconnection details
    • G11C29/18Address generation devices; Devices for accessing memories, e.g. details of addressing circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C29/00Checking stores for correct operation ; Subsequent repair; Testing stores during standby or offline operation
    • G11C29/52Protection of memory contents; Detection of errors in memory contents
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1051Data output circuits, e.g. read-out amplifiers, data output buffers, data output registers, data output level conversion circuits
    • G11C7/1066Output synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C7/00Arrangements for writing information into, or reading information out from, a digital store
    • G11C7/10Input/output [I/O] data interface arrangements, e.g. I/O data control circuits, I/O data buffers
    • G11C7/1078Data input circuits, e.g. write amplifiers, data input buffers, data input registers, data input level conversion circuits
    • G11C7/1093Input synchronization
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C2207/00Indexing scheme relating to arrangements for writing information into, or reading information out from, a digital store
    • G11C2207/22Control and timing of internal memory operations
    • G11C2207/2254Calibration

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Dram (AREA)
  • Memory System (AREA)

Abstract

During a command/address calibration mode, a memory controller may transmit multiple cycles of test patterns as signals to a memory device. Each cycle of test pattern signals may be transmitted at an adjusted relative phase with respect to a clock also transmitted to the memory device. The memory device may input the test pattern signals at a timing determined by the clock, such as rising and/or falling edges of the clock. The test pattern as input by the memory device may be sent to the memory controller to determine if the test pattern was successfully transmitted to the memory device during the cycle. Multiple cycles of test pattern transmissions are evaluated to determine a relative phase of command/address signals with respect to the clock for transmission during operation of the system.

Description

201246211 六、發明說明: 【發明所屬之技術領域】 本發明性概念係關於一種記憶體裝置、系統及方法,且 更特定而言,係關於命令/位址校準。 本申請案主張對2011年3月28日在美國專利及商標局提 出申請之第61/468,204號美國臨時申請案及2〇1 j年6月23曰 在韓國知識產權局提出申請之第1〇_2〇11_〇〇61319號韓國專 利申請案之優先權之權益,該兩個申請案之全部揭示内容 以引用方式併入本文中。 【先前技術】 在5己憶體系統(舉例而言,一動態隨機存取記憶體 (DRAM)系統)中,在一記憶體控制器與一 DRAM2間經由 一匯流排傳輸及接收之一信號經歷傳播延遲。傳播延遲可 受各種因素影響’例如匯流排、—基板或例如此類上之互 連電容器或寄生電容。隨著DRAM之一資料速率增加,一 傳播延遲及/或傳播延遲之變化形式使信號完整性降格。 期望尋找—最佳信號窗或補償信號之間的信號偏斜,例如 資料信號與一時脈信號之間 一命令信號與一時脈信號之 間及/或位址信號與一時脈信號之間。 【發明内容】 本發明揭示命令/位址校準方法’及採用命令/位址校準 之記憶體裝置及記憶體系統。根據本發明性概念之一態 樣’提供一種與一記憶體裝置通信之方法,該方法包括經 由-命令/位置匯流排發送一校準命令;經由該命令/位址 I63456.doc -4- 201246211 匯流排發送一序列之1!個第一測試信號,其中n係等於2或 更大之一整數;與該η個第一測試信號中之每一者一起經 由一第一時脈線發送一時脈信號’該η個第一測試信號中 之每一者係以相對於該時脈信號之一各別第一至第η個相 位發送的’該第一至第!!個相位中之每一者彼此不同;經 由一資料匯流排接收分別自經由該命令/位址匯流排發送 之該序列之η個第一測試信號導出之一序列之^個第二測試 仏號,比較該η個第一測試信號與該η個第二測試信號;及 回應於s亥比較該η個第一測試信號與該所接收之^個第二測 試信號而判定欲經由該命令/位址匯流排發送之信號相對 於該時脈信號之一較佳相位。 該η個第一測試信號中之每一者包括經由該命令/位址匯 流排並列發送之第一-複數個位元,該第一複數個位元可跟 隨有經由該命令/位址匯流排並列發送之第二複數個位 元。 s亥第一複數個位元及該第二複數個位元中之每一者可包 括一封包。 對於該η個第一測試信號中之每一者,可在該時脈信號 之一上升沿及該時脈信號之一下降沿中之一者處發送該第 一複數個位元’且可在該時脈信號之該上升沿及該時脈信 號之該下降沿之另一者處發送該第二複數個位元。 該序列之η個第二測試信號之至少一部分可係經由一資 料選通線接收,或經由至少在一校準模式期間專用於校準 之線接收。 163456.doc 201246211 該方法可進一步包括該等第 與一對應第一測試信號相同。 二測試信號中之每一者是否 第一至第η個相位中之 該較佳相位可經判定以對應於該 一者。 判定該較佳相位可係自判定兮楚 j疋該第—至第η個相位之一相 位序列導出,該相位序列中之盔 &lt;母一相位對應於判定為有效 之一第二測試信號。 根據另-態樣,-種介面訓練方法可包括:經由一命令/ 位址匯流排將-第-校準信號發送至—半導體裝置;與該 第一校準信號之該發送-起將—時脈㈣發送至該半導體 裝置’該時脈信號提供-時序至該半導體裝置以鎖存該第 一校準信狀邏輯位準;經由—資料匯㈣自料導體裝 置接收-第二校準信號,該第二校準信號係自該第—校準 信號之經鎖存邏輯位準導出;與該時脈信號之該發送一起 經由該命令/位址匯流排將命令及位址信號發送至該第一 半導體裝置’該等命令及健㈣㈣時脈信號之間的一 相位係回應於該第二校準信號。 該方法可進一步包括在發送該第一校準信號之同時經由 與該命令/位址匯流排分離之一第一線將一讀取請求信號 發送至該半導體裝置。 該第一線可係一時脈啟用線。 該第一校準信號可包括以至少為該時脈信號之週期之速 率兩倍之一速率傳輸之一序列之資料封包。 一第一校準信號至該半導體裝置之發送可包含經由該命 163456.doc 201246211 令/位址匯流排之多個線中之每一者發送一訓練型樣。 對於該命令/位址匯流排之該多個線中之每一者,該訓 練型樣可係相同的。 可針對該命令/位址匯流排之該多個線中之每一者個別 地調整該等命令及位址信號與該時脈信號之間的該相位。 可經由該命令/位址匯流排之一第一線以相對於該時脈 信號之一第一相位發送一第一信號,且可經由該命令/位 址匯流排之一第二線以相對於該時脈信號之一第二相位發 送一第二信號。 當該半導體裝置係一第一半導體裝置時,該方法可包含 經由該命令/位址匯流排將一第三校準信號發送至一第二 半導體裝置;與該第三校準信號之該發送一起將該時脈 信號發送至該第二半導體裝置’該時脈信.號提供一時序至 該第二半導體裝置以鎖存該第三校準信號之邏輯位準;經 由該資料匯流排自該第二半導體裝置接收一第四校準信 號,該第四校準信號係自該第三校準信號之經鎖存邏輯位 準導出,與該時脈信號之該發送一起經由該命令/位址匯 流排將命令及位址信號發送至該第二半導體裝置,該等命 令及位址信號與該時脈信號之間的一相位係回應於該第四 校準信號。 根據另一態樣’一種校準經由一記憶體裝置之一命令/ 位址匯流排之通信之方法可包括:經由一時脈信號線接收 一時脈信號;經由該命令/位址匯流排接收一校準命令; 在該時脈k號之一上升沿及該時脈信號之_下降沿中之一 163456.doc 201246211 者處經由該命令/位址匯流排接收一第一測試資料封包以 逢生第 达 一資訊;在該時脈信號之該上升沿及該時脈信號之 °亥下降沿中之另一者處經由該命令/位址匯流排接收一第 一測5式資料封包以產生第二資訊;及經由一資料匯流排傳 輸該第一資訊及該第二資訊。 該方法可包含在該時脈信號之上升沿及下降沿處經由該 命令/位址匯流排接收命令及位址。 本發明亦涵蓋系統及裝置。舉例而言,一種半導體裝置 可包括:—時脈產生器,其經組態以產生一時脈信號;一 時脈輸出端子’其連接至該時脈產生器且經組態以輸出該 時脈^號;一命令產生器電路’其經組態以產生命令;一 位址產生器電路’其經組態以產生位址;複數個命令/位 址端子; 一命令/位址緩衝器,其具有連接至該等命令/位 址端子之一輸出,該命令/位址緩衝器連接至該命令產生 器電路及該位址產生器電路以經由該等命令/位址端子自 該半導體裝置外部傳輸命令及位址信號;一相位控制器, 其經組態以控制該命令/位址緩衝器以經由該命令/位址匯 流排傳輸一序列之η個訓練型樣,η係大於2之一整數,該 相位控制器經組態以調整該η個訓練型樣中之至少某些訓 練型樣相對於該時脈信號之一相位;資料端子;及一資料 緩衝器,其連接至該等資料端子,其中該相位控制器經組 態以回應於由該資料緩衝器經由該等資料端子接收之第一 資訊而調整命令及位址信號相對於該時脈信號之一相位。 系統可包含此等裝置及/或實施此等方法。本發明並不限 163456.doc 201246211 於此摘要t所闌述之特徵,且藉由參考以下詳細說明將明 瞭其範疇及適用性。 【實施方式】 根據結合附圖進行之以下詳細說明冑更清楚地瞭解本發 明性概念之實例性實施例。 在後文中將參考其中展示本發明之較佳實施例之隨附 圖式詳細地Μ述本發明性概念之實·實施例。本發明性 概念之實例性實施例經提供以向熟習此項技術者更全面地 闡述本發明性概念。然而,本發明可以不同形式體現且不 應將其解釋為受限於本文中所闡述之實例性實施例。亦 即,該等實例性實施例僅係彼等實例:存在不需要本文中 所揭不之各種細節之眾多實施方案及變化形式。可對本發 明性概念作出各種改變,且本發明性概念可具有各種形 式。然而,此等實施例並非意欲將本發明性概念限於所揭 示之特定實施例,且應瞭解該等實施例包含在本發明性概 念之精神及範疇内之所有改變、等效物及替換。在所有圖 式中’相同元件符號指代相同組件。在隨附圖式中,為清 晰起見可能已將結構誇大。 本文中所使用之術語僅係出於闡述實施例之目的而並非 意欲係實例性實施例限制。如本文中所使用,單數形式意 欲亦包含複數形式’除非上下文明確指明。將進一步瞭 解,措詞「包括」、包含及/或「具有」(及相關措詞)規定 所陳述特徵、數目、步驟、操作、組件、元件或其一組合 之存在’但不排除一或多個其他特徵、數目、步驟、操 163456.doc 201246211 作、組件、元件或其組合之存在或添加,除非另外說明。 將瞭解,當稱一元件「連接」或「耦合」至另—元 時,其可直接連接或搞合至另―元件,或者可存在介=元 件。相比而言,當稱一元件「直接連接」或「直接輕人 至另一元件時’則不存在介人元件。如本文中所使用措 詞「及/或」包含所列舉相關聯物項中之一或多者之任一 及所有組合且可縮寫為「/」。 將瞭解’儘管本文中可使用第一、第__ 乐—等措詞來闡述各 種元件’但此等元件不應受限於此等措詞。此等措詞僅用 於將一個元件與另一元件區分開。舉例而言可將一第一 信號稱作一第二信號,且類似地,可將一第二信號稱作一 第一k號,此並不背離本揭示内容之教示。 除非另有規定,否則本文中所使用之所有術語(包含技 術術語及科學術語)具有與熟習實例性實施例所屬之技術 者通常所理解之含義相同之含義。將進_步瞭解,應將措 詞(例如常用字典中所定義之術語)解釋為具有與其在相 關技術背景中之含義相一致之一含義,而不將以一理想化 或過分形式化之意義來解釋,除非本文中明確如此規定。 自一半導體記憶體裝置期望一高速操作以及低功率消 耗。舉例而言,可期望滿足低功率雙倍資料速率(LPDDR)201246211 VI. Description of the Invention: TECHNICAL FIELD OF THE INVENTION The present invention relates to a memory device, system and method, and more particularly to command/address calibration. This application claims the first application of the US Provisional Application No. 61/468,204, filed on March 28, 2011, at the US Patent and Trademark Office, and filed at the Korean Intellectual Property Office on June 23, 2011. </ RTI> </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> <RTIgt; </ RTI> </ RTI> <RTIgt; [Prior Art] In a 5 memory system (for example, a dynamic random access memory (DRAM) system), a signal is transmitted and received via a bus between a memory controller and a DRAM 2 Propagation delay. Propagation delay can be affected by various factors, such as busbars, substrates, or interconnected capacitors or parasitic capacitors such as these. As one of the DRAM data rates increases, a variation in propagation delay and/or propagation delay degrades signal integrity. It is desirable to find a signal skew between the best signal window or the compensation signal, such as between a command signal and a clock signal between the data signal and a clock signal and/or between the address signal and a clock signal. SUMMARY OF THE INVENTION The present invention discloses a command/address calibration method and a memory device and a memory system using command/address alignment. According to one aspect of the inventive concept, a method of communicating with a memory device is provided, the method comprising transmitting a calibration command via a command/location bus; via the command/address I63456.doc -4- 201246211 The row transmits a sequence of 1! first test signals, wherein n is equal to an integer of 2 or greater; together with each of the n first test signals, a clock signal is transmitted via a first clock line 'Then each of the n first test signals is 'the first to the first' transmitted with respect to the first to nth phases of the clock signal; Each of the phases is different from each other; receiving a second test nickname from a sequence of n first test signals respectively derived from the sequence transmitted via the command/address bus via a data bus Comparing the n first test signals with the n second test signals; and comparing the n first test signals with the received second test signals in response to determining the via/bits The signal transmitted by the address bus is preferably phased with respect to one of the clock signals. Each of the n first test signals includes a first-plural number of bits transmitted in parallel via the command/address bus, the first plurality of bits may be followed by the command/address bus The second plurality of bits sent in parallel. Each of the first plurality of bits and the second plurality of bits may include a packet. For each of the n first test signals, the first plurality of bits may be transmitted at one of a rising edge of the clock signal and one of the falling edges of the clock signal and may be The second plurality of bits are transmitted by the rising edge of the clock signal and the falling edge of the clock signal. At least a portion of the n second test signals of the sequence may be received via a data strobe line or via a line dedicated to calibration during at least one calibration mode. 163456.doc 201246211 The method can further include the same as the first corresponding first test signal. Whether each of the first to nth phases of the two test signals is judged to correspond to the one. Determining the preferred phase may be derived from a phase sequence of one of the first to the nth phases, and the helmet &lt; parent phase in the phase sequence corresponds to a second test signal determined to be valid. According to another aspect, the interface training method may include: transmitting a -first calibration signal to a semiconductor device via a command/address bus; and transmitting the same to the first calibration signal (four) Sending to the semiconductor device 'the clock signal provides - timing to the semiconductor device to latch the first calibration signal logic level; receiving - the second calibration signal via the data sink (four) self-conductor device, the second calibration Transmitting a signal from the latched logic level of the first calibration signal; transmitting the command and address signals to the first semiconductor device via the command/address bus with the transmission of the clock signal Command and Health (4) (4) A phase between the clock signals is responsive to the second calibration signal. The method can further include transmitting a read request signal to the semiconductor device via one of the first lines separated from the command/address bus while transmitting the first calibration signal. The first line can be a clock enable line. The first calibration signal can include a data packet of a sequence transmitted at a rate that is at least twice the rate of the period of the clock signal. Transmitting a first calibration signal to the semiconductor device can include transmitting a training pattern via each of a plurality of lines of the command line address block/block address bus. The training pattern may be the same for each of the plurality of lines of the command/address bus. The phase between the command and the address signal and the clock signal can be individually adjusted for each of the plurality of lines of the command/address bus. A first signal may be transmitted via the first line of the command/address bus to transmit a first signal with respect to one of the clock signals, and may be via the command/address address of the second line of the bus bar relative to One of the clock signals transmits a second signal in a second phase. When the semiconductor device is a first semiconductor device, the method can include transmitting a third calibration signal to a second semiconductor device via the command/address bus; along with the transmitting of the third calibration signal Sending a clock signal to the second semiconductor device 'the clock signal number provides a timing to the second semiconductor device to latch a logic level of the third calibration signal; and the data is busted from the second semiconductor device Receiving a fourth calibration signal derived from the latched logic level of the third calibration signal, along with the transmission of the clock signal, via the command/address bus, the command and the address A signal is sent to the second semiconductor device, and a phase between the command and the address signal and the clock signal is responsive to the fourth calibration signal. According to another aspect, a method of calibrating communication via a command/address bus of a memory device can include receiving a clock signal via a clock signal line; receiving a calibration command via the command/address bus One of the rising edge of the clock k and one of the falling edges of the clock signal 163456.doc 201246211 receives a first test data packet via the command/address bus to meet the first Receiving, by the command/address bus, the first measurement type 5 data packet to generate the second information; and the other of the rising edge of the clock signal and the falling edge of the clock signal; And transmitting the first information and the second information via a data bus. The method can include receiving a command and an address via the command/address bus at the rising and falling edges of the clock signal. The invention also encompasses systems and devices. For example, a semiconductor device can include: a clock generator configured to generate a clock signal; a clock output terminal 'connected to the clock generator and configured to output the clock signal a command generator circuit 'which is configured to generate commands; an address generator circuit 'which is configured to generate an address; a plurality of command/address terminals; a command/address buffer with a connection Outputting to one of the command/address terminals, the command/address buffer being coupled to the command generator circuit and the address generator circuit for transmitting commands from outside the semiconductor device via the command/address terminals and a bit signal; a phase controller configured to control the command/address buffer to transmit a sequence of n training patterns via the command/address bus, the η system being greater than an integer of 2, The phase controller is configured to adjust a phase of at least some of the n training patterns relative to the one of the clock signals; a data terminal; and a data buffer coupled to the data terminals, wherein The phase Is prepared by adjusting the set state in response to the command and address signal via a first terminal receiving the data information such that data from the buffer to the one with respect to the phase of the clock signal. The system can include such devices and/or implement such methods. The present invention is not limited to the features of the present invention, and the scope and applicability thereof will be apparent from the following detailed description. [Embodiment] An exemplary embodiment of the inventive concept will be more clearly understood from the following detailed description. The embodiments of the present invention will be described in detail hereinafter with reference to the accompanying drawings in which: FIG. The exemplary embodiments of the present invention are provided to more fully explain the inventive concepts to those skilled in the art. However, the invention may be embodied in different forms and should not be construed as being limited to the exemplary embodiments set forth herein. That is, the exemplary embodiments are merely examples of their existence: numerous embodiments and variations that do not require the various details disclosed herein. Various changes can be made to the inventive concept, and the inventive concept can have various forms. However, the embodiments are not intended to limit the invention to the specific embodiments disclosed, and all such modifications, equivalents and substitutions are included in the spirit and scope of the invention. In all the figures, the same component symbols refer to the same components. In the accompanying drawings, the structure may have been exaggerated for clarity. The terminology used herein is for the purpose of describing the embodiments and is not intended to As used herein, the singular forms " It will be further understood that the word "comprising", "including" and / or "having" (and the associated wording) stipulates the existence of the stated features, number, steps, operations, components, components, or a combination thereof, but does not exclude one or more The existence or addition of other features, numbers, steps, operations, components, components, or combinations thereof, unless otherwise stated. It will be understood that when a component is referred to as being "connected" or "coupled" to another element, it can be directly connected or coupled to another element, or a device can be present. In contrast, when a component is referred to as being "directly connected" or "directly connected to another component," there is no intervening component. As used herein, the phrase "and/or" includes the recited. Any and all combinations of one or more of them may be abbreviated as "/". It will be understood that 'the various elements may be used in the context of the first, __le, and the like, but such elements should not be limited to such terms. These terms are only used to distinguish one element from another. For example, a first signal can be referred to as a second signal, and similarly, a second signal can be referred to as a first k number without departing from the teachings of the present disclosure. All terms (including technical and scientific terms) used herein have the same meaning as commonly understood by those skilled in the <RTIgt; It will be understood that the wording (such as the term defined in a commonly used dictionary) should be interpreted as having one meaning consistent with its meaning in the relevant technical context, without the meaning of being idealized or overly formalized. To explain, unless explicitly stated in this article. A high speed operation and low power consumption are desired from a semiconductor memory device. For example, it can be expected to meet low power double data rate (LPDDR)

規範之動態隨機存取記憶體(DRAM)。一 LPDDR DRAM 系統在一時脈信號之上升沿及下降沿兩者處在一 DRAM與 一外部裝置(例如,一記憶體控制器)之間雙向地傳輸及接 收資料。 163456.doc 201246211 作為加速記憶體操作之一方式,可在一時脈信號之上升 沿及下降沿兩者處將命令及位址傳輸至一記憶體裝置(例 如,一記憶體晶片,例如,一 DRAM非NAND快閃記憶體 晶片)。記憶體裝置經組態以在時脈信號之上升沿及下降 沿兩者處鎖存命令及/或位址資訊。用於傳輸一命令信號 及一位址信號兩者之一共同信號稱為一命令/位址信號 CMD/ADDR或CA。接針、端子、匯流排線、内部導體或 傳輸命令/位址信號之其他信號路徑亦可在本文中使用首 字母縮寫CA來指代。 圖1及圖2係用於闡述命令/位址校準之一實例之時序 圖。Specification of Dynamic Random Access Memory (DRAM). An LPDDR DRAM system transmits and receives data bidirectionally between a DRAM and an external device (e.g., a memory controller) on both the rising and falling edges of a clock signal. 163456.doc 201246211 As one of the methods of accelerating memory operation, commands and addresses can be transmitted to a memory device (for example, a memory chip, for example, a DRAM) at both the rising and falling edges of a clock signal. Non-NAND flash memory chip). The memory device is configured to latch command and/or address information at both the rising and falling edges of the clock signal. A common signal for transmitting a command signal and an address signal is referred to as a command/address signal CMD/ADDR or CA. Pins, terminals, bus bars, internal conductors, or other signal paths for transmitting command/address signals may also be referred to herein using the acronym CA. Figures 1 and 2 are timing diagrams illustrating one example of command/address calibration.

參考圖1,可透過校準調整(一起或個別地)一對時脈信 號(時脈信號對CK及CKB)與多個命令/位-址信號CMD/ ADDR之相對時序以使得每一命令/位址CMD/ADDR窗之中 間經定位以最佳地計時記憶體裝置之一輸入操作(例如, 一鎖存操作)。圖1表示已經調整以使得每一命令/位址 CMD/ADDR窗之中心部分處在當時脈信號CK之一上升沿 與時脈信號CKB之下降沿相交時(或反之亦然,即當時脈 信號CKB之一上升沿與時脈信號CK之下降沿相交時)之一 時序的命令/位址信號CMD/ADDR。交點可對應於時脈信 號CK及CKB彼此相等(例如,具有相同電壓位準)之一時 間。儘管圖1僅展示一個命令/位址CMD/ADDR信號(例 如,在複數個導體CMD/ADDR匯流排之導線上之一信號) 之命令/位址CMD/ADDR窗,但多個命令/位址CMD/ADDR 163456.doc •11 · 201246211 信號(例如,在各別不同命令/位址CMD/ADDR信號路徑上 接收之多個命令/位址CMD/ADDR信號)可各自如圖1中所 展示對準,且以下論述與每一此類命令/位址CMD/ADDR 信號相關。將命令/位址信號時序調整或匹配至時脈信號 CK及CKB之上升沿/下降沿。由於命令/位址CMD/ADDR窗 之中間在對應於時脈信號CK及CKB之上升沿與下降沿之 間的一交點之一位置處,可最大化或以其他方式相對改良 命令/位址CMD/ADDR之一時序裕量。圖1可表示時脈信號 CK及CKB以及命令/位址信號CMD/ADDR之一相對時序, 如接收此等信號之一記憶體裝置所見。時脈信號CK及 CKB以及命令/位址信號CMD/ADDR可由一外部源(例如, 一記憶體控制器、一 CPU、一主機電腦等)產生’且由該外 部源產生之時脈信號CK及CKB與命令/位址信號 CMD/ADDR之間的相對時序可在傳輸期間更改,且因此, 所產生之相對時序可不同於記憶體裝置所經歷之相對時序 (例如,由外部源產生之相對時序可不同於圖1中所展示之 相對時序)。 由於信號路徑之間的變化(例如佈局、信號驅動能力等 之變化),在時脈信號CK及CKB以及命令/位址信號 CMD/ADDR自一外部源至一記憶體裝置之傳輸期間,可在 時脈信號CK及CKB與命令/位址信號CMD/ADDR之間產生 一傳播時間差。如圖2中所展示,命令/位址CMD/ADDR窗 之中間可在時脈信號CK及CKB之上升沿及下降沿之前或 之後’藉此減小命令/位址CMD/ADDR之時序裕量。 163456.doc •12- 201246211 在圖2中所展示之四個命令/位址信號CMD/ADDR (CA1、CA2、CA3及CA4)中,對於第一命令/位址信號 CMD/ADDR CA1及第二命令/位址信號CMD/ADDR CA2, 時脈信號CK及CKB之時序可滯後於CA1及CA2信號之窗之 中間。若透過校準推遲第一命令/位址信號CMD/ADDR CA1及第二命令/位址信號CMD/ADDRCA2之時序,則CA1 及CA2之每一命令/位址CMD/ADDR窗之中間部分可經定 位以對應於時脈信號CK及CKB之上升沿與下降沿之間的 一交點。當在此推遲之後由記憶體裝置接收時,CA1及 CA2之每一命令/位址CMD/ADDR窗之中間部分可發生在 CK及CKB之上升沿/下降沿上。對於第四個命令/位址信號 CMD/ADDR CA4,可透過校準推遲時脈信號CK及CKB之 時序或可提前第四個命令/位址信號CMD/ADD-R CA4之時 序,以使得每一命令/位址CMD/ADDR窗之中間在對應於 時脈信號CK及CKB之上升沿與下降沿之間的一交點之一 位置處。 圖3係執行命令/位址校準之一實例性記憶體系統10之一 方塊圖^ 參考圖3,記憶體系統10包含一記憶體控制器20及一記 憶體裝置30,一時脈信號線11、一命令/位址匯流排12及 一 DQ匯流排13連接於其之間。透過時脈信號線11將由記 憶體控制器20產生之一時脈信號CK提供至記憶體裝置 3〇。可與一反相時脈信號CKB —起將時脈信號CK提供為 一連續交替反相信號。反相時脈信號CKB可係與時脈信號 163456.doc •13· 201246211 ck一起提供,亦即,由記憶體控制器20產生且提供至記 憶體裝置30(圖3中未展示)》可基於一對時脈信號CK與 CKB之間的交點來偵測時脈信號ck及CKB之上升沿及下降 沿,藉此改良時序準確性。. 亦可將單個時脈信號CK(不傳輸時脈信號cKB)作為一連 續交替反相信號提供至時脈信號線i丨。此實施方案減少記 隐體裝置3 0與§己憶體控制器2 0之間的信號線(及端子)。在 此情況下’為識別時脈信號CK之上升沿及下降沿,可彼 此比較時脈信號ck與一參考電壓Vref。若在參考電壓Vref 中發生雜訊波動,則在時脈信號CK之偵測中發生一移 位’藉此與使用時脈信號對CK及CKB相比降級時序準確 性。因此’可期望藉由使用時脈信號對CK及CKB來傳輸 彼此互補之連續交替反相信號。在此情況下,時脈信號線 11可包含傳輸時脈信號CK及時脈信號CKB之兩個信號線。 可將本發明性概念之實施例中所闡述之時脈信號ck闡述 為時脈信號對CK及CKB。出於簡便起見;將時脈信號對 CK及CKB闌述為時脈信號CK。 透過命令/位址匯流排12將由記憶體控制器2〇產生之命 令/位址信號CA提供至記憶體裝置3〇。命令/位址匯流排12 可將一命令信號或一位址信號載送至記憶體裝置3〇(在任 何時間係排他地)及/或命令/位址匯流排12可同時將一命令 信號及一位址信號載送至記憶體裝置3〇。記憶體控制器2〇 可透過命令/位址匯流排12傳輸指示一命令/位址校準模式 之一模式暫存器設定(MRS)命令。該MRS命令可包含一校 163456.doc is 201246211 準模式進入命令及一校準模式退出命令。可透過命令/位 址匯流排12傳輸指示校準模式進人命令之—校準開始信號 或指示校準模式退出命令之一校準結束信號。 當命令/位址匯流排12係由n個信號線(例如,導體)之命 令/位址信號CA組成(其中η為一自然數),且在時脈信號CK 之上升沿及下降沿處輸入命令/位址信號(:八(例如,以一雙 :資料速率⑽R)傳輸命令/位址信號CA)時,每個時脈^ 環可透過命令/位址匯流排12將2η個位元之命令/位址ca資 訊自記憶體控制器20提供至記憶體裝置3〇。在時脈信號 ck之上升沿處輸人之—命令/位址信號ca及在時脈信號 ck之下降沿處輸入之一命令/位址信號ca可各自構成含n 個位元之命令/位址CA資訊之不同組。 在正常操作中,-DQ匯流排13在t己憶體控制器2〇與記憶 體裝置30之間傳輸資料信號DQ(例如,在—寫人操作中, 將資料信號DQ自控制器傳輸至記憶體裝置3〇,且在一讀 取#作中’將資料信號Dq自記憶體裝置3〇傳輸至記憶體 控制器2G) 〇關於命令/位址校準之資訊(下文進—步詳細地 闡述)可在DQ匯流排13上輸出以提供至記憶體控制器。 Q匯流排13連接至汜憶體控制器2〇及記憶體裝置別兩者 之DQ墊(及/或其他裝置端子,例如焊料凸塊)上。可以各 種方式設定校準命令/位址資訊信號及DQ塾之映射。 舉例而3,當記憶體裝置3〇之資料信號DQ之位元組織 係x32 (DQ[31:0])時,DQ匯流排線之數目為32個。當命令/ &amp; it U由1 〇個導體組成且命令/位址信號在時脈信 163456.doc •15· 201246211 號ck之上升沿及下降沿兩者處傳輸丨〇個位元時,時脈 之每時脈循環,記憶體裝置30可接收2〇個位元之命令/位 址信號CA。由於0(^匯流排線之數目32大於命令/位址信號 之數目20,因此每一 DQ匯流排線可對應於命令/位址信號 位元CA中之一單個位元,從而提供彼對應單個命令/位址 信號位元之資訊(例如,兩個DQ匯流排線可傳輸關於命令/ 位址匯流排12中之一單個線之命令/位址校準之命令/位址 資訊)。因此,可執行映射,以使得針對時脈信號CK之每 一循環,將在時脈信號CK之上升沿處輪入之命令/位址信 號之一值輸出至1〇個DQ墊[9:0]且將在時脈信$CK之下降 沿處輸入之10位元命令/位址信號之一值輸出至另外1〇個 DQ塾[19:10]。因此’儘管可以一雙倍資料速率⑽即針 對時脈CK之每-循環兩組位元)將命令/位址CA信號傳輸 至記憶體裝置30’但可以-單倍資料速率(SDR)(針對時 脈CK之每一循環一組位元)將關於命令/位址校準之資訊 自S己憶體裝置30傳輸回至記憶體控制器2〇。注意,匯 流排可相對於不同於時脈CK之一時脈傳輸資料。下文進 -步論述之@ 5展示其中相對於—f料選通時脈师傳輸 資料之一實施例。 當記憶體裝置30之資料信號DQ之位元組織係_ (DQ[15:〇])時,DQ匯流排線之數目為16。由於dq匯流排 線之數目16小於命令/㈣㈣位元(簡賴循環CK所接 收)之數目20,因此,DQ匯流排線可不夠在時脈“之一個 循環期間將關於命令/位址校準之資訊作為—組位元來傳 163456.doc •16· 201246211 輸。因此,DQ匯流排13可按序傳輸關於命令/位址校準之 貧訊。舉例而言,DQ匯流排可一次傳輸關於在時脈信號 CK之上升沿處輸入至記憶體裝置3〇中之丨〇位元命令/位址 仏號之命令/位址校準資訊(例如,在Dq匯流排線DQ[〇:9] 上),且稍後,傳輸關於在時脈信號(:尺之下降沿處輸入之 10位元命令/位址信號之命令/位址校準資訊(例如,又在 DQ匯流排線DQ[0:9]上)。 圖4A及圖4B係用於闡述可由圖3中所展示之記憶體系統 10執行之命令/位址校準之圖式。 結合圖3參考圖4A及圖4B,記憶體控制器2〇偵測由記憶 體裝置30接收之命令/位址信號CA窗與時脈信號ck之沿 (自s己憶體控制器20提供)之—相對位置(或時序)是否是如 此以使得記憶體裝置30成功地解譯命令/位址信號。圖4A 及圖4B將命令/位置信號之數個成功解譯展示為一通過(或 P)且將命令/位址信號之不成功解譯展示為一失敗(F)。圖 4A表示一命令/位址信號沿著命令/位址匯流排u之一單個 命令/位址線之傳輸之多個循環。傳輸一校準測試型樣之 每-循環係由控制器調整以相比於前—傳輸循環改變時脈 ck與命令/位址信號之相對相位。圖4八及圖4b之實例展示 針對每後續傳輸循環,此相對相位改變一時脈CK循環 之1 /20(例如,18度)。取決於所期望準確性,可更多或更 夕地改變每一傳輸循環之相對相位。注意,記憶體裝置 針對一特定傳輸循環接收之時脈c κ與命令/位址信號之相 對相位可與由控制器傳輸之時脈CK與命令/位址信號之相 163456.doc 201246211 對相位不同。由於時脈信號(:尺之傳輸及命令位址匯流排 12之信號線之不同特性,自傳輸(自控制器2〇)至接收(由記 憶體裝置30)之時間可不同。此等不同特性可包含信號路 徑長度之一不同,信號路徑之導電率(例如,由於導體大 小所致)、信號路徑之寄生電容(例如,來自相鄰線)、溫度 等之不同。記憶體控制器20透過時脈信號線丨丨將時脈信號 CK傳輸至記憶體裝置30且透過命令/位址匯流排丨2之一信 號線將命令/位址信號CA傳輸至記憶體裝置3(^在接收經 相位調整之命令/位址信號CA之後,記憶體裝置3 〇透過Dq 匯流排13將如5己憶體裝置3 0解譯之命令/位置信號c a傳輸 至5己憶體控制器2 0。§己憶體控制器2 〇 &gt;(貞測命令/位址信號 中之哪些傳輸循環已將其資訊成功地傳輸至記憶體裝置3〇 (通過或Ρ)及哪些傳輸循環未成功(失敗或F)。 圖4Α展示一時脈信號(CK@記憶體)及由記憶體裝置3〇經 由命令/位址匯流排中之一線接收(經由數個傳輸循環接收) 之多個命令/位址信號。為使闡述簡易且更佳地強調命令/ 位址说與時脈CK之相對相位之移位,在圖4a中將命令/ 位址信號展示為垂直堆疊’而非呈一連續時序圖形式,然 而,應注意’在此實例中’圖4A中所展示之ca@記憶體 信號中之每一者係按時間順序接收(例如,經由命令/位址 匯流排C A之同一信號線)。在圖4B中,當時脈信號ck之沿 存在於命令/位址信號CA之一位置S1或S2處時,記憶體裝 置30可無法成功地解譯命令/位址信號cA(例如,無法在窗 處鎖存命令/位址信號CA之適當邏輯高態或邏輯低態),且 163456.doc •18· 201246211 記憶體控制器20可決定與S1及S2相關聯之傳輸循環為失敗 F。當時脈信號CK之沿存在於一位置S3、S4、S5、S6、 S7、S8、S9、S10或S11處時’記憶體裝置可成功地解譯命 令/位址信號C A(例如,成功地鎖存命令/位址信號c A之適 當邏輯高態或邏輯低態),且記憶體控制器2〇可決定與 S3、S4、S5、S6、S7、S8、S9、S10 或 S11相關聯之傳輸 循環為通過P。當時脈信號CK之沿存在於命令/位址信號 CA之一位置s 12或S13處時,記憶體控制器20可決定與S 12 或S13相關聯之傳輸循環為失敗f。 圖4A及圖4B之闡述表示由記憶體裝置3〇接收之時脈CK (ck@記憶體)之一時序應具有一時序以使得時脈信號ck之 一沿必須與欲鎖存之命令/位址信號CA之邏輯同時發生(例 如,發生在命令/位址信號CA之正確邏輯窗處)。然而,此 表示係為使闡述簡易且並非必須的,時脈信號CK之沿之 時序可不需要與欲鎖存之邏輯在同一時間,而(舉例而言) 可在時間上移位。舉例而言,除CK之外之一時脈可負責 觸發記憶體裝置3〇對命令/位址信號CA之鎖存。舉例而 ° 内邛時脈ICK可由記憶體裝置3 〇回應於時脈信號CK 產生,且此内部時脈ICK可由記憶體裝置30之一緩衝器(例 如,圖5中之CA接收器304)用來在ICK之一上升沿或一下 降〜之一時間鎖存CA匯流排12上之命令/位址信號CA之邏 輯即使外部接收之時脈CK及内部產生之時脈ICK具有相 同頻率及負載循環(可不係此情況),CK及ICK亦可在時間 上移位。因此,外部時脈CK之沿可不與欲鎖存之命令/位 I63456.doc 201246211 址信號CA之邏輯同時發生(例如,沿可在記憶體裝置30鎖 存之命令/位址信號CA之邏輯高態1之窗之外側(之前或之 後))。作為另一實例,甚至當將時脈CK之沿直接輸入至記 憶體裝置30之一緩衝器以觸發輸入至記憶體裝置之信號之 鎖存時’在鎖存動作足夠鎖存輸入信號之邏輯之前,可存 在某一延遲。 記憶體裝置3 0可在如上文所述之資料匯流排Dq上將關 於命令/位址校準之資訊傳輸至控制器2〇。舉例而言,記 憶體裝置30可在CA命令/位址匯流排〗2之命令/位址信號線 上傳輸由記憶體裝置30解譯(例如,鎖存)之信號。因此, 在一校準傳輸循環期間,若記憶體控制器在命令/位址匯 /爪排1 2之一彳s號線上傳輸一〗(例如,邏輯高態)至記憶體裝 置,但時脈ck與此傳輸之相對相位使得記憶體裝置3〇經 觸發以在適宜信號窗外側鎖存此信號線上之信號,則記憶 體裝置可不準確地將所傳輸信號解譯為一 〇 ^然而,該記 憶體裝置可經由DQ資料g流排13之__信號線傳輸值〇。記 憶體控制器20可判定與該傳輸播環相關聯之傳輸係不成功 的且决疋該傳輸係,-失敗F。在命令/位址校準期間之一後 續傳輸循環巾,可移位時脈CK與命令/位址校準信號(例 如’ 1)之傳輸之相對相位以使得記憶體裝置3G經觸發以在 表示1之信號窗中鎖存該信號線,且可將此值i傳輸至記憶 體控制器20(作為命令/位址校準資訊卜記龍控制器可 因此比較傳輸至記憶體裝置 記憶體裝置3 0接收之命令/位 30之命令/位址校準信號與自 址校準資訊(值1)係相同且判 163456.doc 201246211 定後續傳輸循環係成功(通過P)。 記憶體控制器20可分析命令/位址校準之傳輸循環群組 以判定時脈C K與在記憶體系統1 〇之正常操作期間在命令/ 位址CA信號之命令/位址信號線上發送之命令/位址信號之 間的一相對相位。此最佳相對相位可係由記憶體控制器2〇 在正常操作期間將命令及位址資訊傳輸至記憶體裝置中 實施。舉例而言,可藉由聚集判定為一通過p之所有傳輸 循環且選擇此群組之中心處之傳輸循環之一相對相位來判 定最佳相對相位。舉例而言,由於在圖4A及圖4B中與 S3、S4、S5、S6、S7、S8、S9 ' S10及 S11相關聯之傳輸 循環係成功的(通過P),因此記憶體控制器2〇可選擇與” 相關聯之傳輸循環之相對相位(時脈CK與命令/位址校準信 號之間)作為最佳相位。另__選擇為,記㈣控制器可 選擇最佳相位為與第一及最後一個成功傳輸循環相關聯之 相對相位之平均值(當母一傳輸循環之相對相位係有次 序時(例如,0度、15度、30度等))_在圖4A及圖4B之實例 中此將係與s 3及s 11相關聯之傳輸循環之相對相位之平 均值ϋ擇為’記憶體控制㈣可選擇最佳相位為與 將成功傳輸循帛夾在中間的最後—個及第—個未成功傳輸 循%相關聯之相對相位之一平均值(當每一傳輸循環之相 對相位係有次序時)_在圖4Α及圖犯之實例中,此將係與Μ 及S12相關聯之傳輸循環之相對相位之平均值。以此方 式’可執行命令/位址校準。Referring to FIG. 1, the relative timing of a pair of clock signals (clock signal pair CK and CKB) and a plurality of command/bit-address signals CMD/ADDR can be adjusted (either together or individually) such that each command/bit The middle of the address CMD/ADDR window is positioned to optimally clock an input operation of the memory device (e.g., a latch operation). Figure 1 shows that the center portion of each command/address CMD/ADDR window has been adjusted to intersect the falling edge of the clock signal CK with the falling edge of the clock signal CK (or vice versa, ie, the pulse signal) The command/address signal CMD/ADDR of one of the timings when one of the rising edges of the CKB intersects the falling edge of the clock signal CK. The intersection may correspond to one of the time when the clock signals CK and CKB are equal to each other (e.g., have the same voltage level). Although Figure 1 shows only the command/address CMD/ADDR window for a command/address CMD/ADDR signal (eg, one of the conductors on a plurality of conductor CMD/ADDR bus bars), multiple commands/addresses CMD/ADDR 163456.doc •11 · 201246211 Signals (eg, multiple command/address CMD/ADDR signals received on separate CMD/ADDR signal paths) may each be as shown in Figure 1. The following discussion is related to each such command/address CMD/ADDR signal. The command/address signal timing is adjusted or matched to the rising/falling edges of the clock signals CK and CKB. Since the middle of the command/address CMD/ADDR window is at one of the intersections between the rising and falling edges of the clock signals CK and CKB, the command/address CMD can be maximized or otherwise improved. One of the /ADDR timing margins. Figure 1 shows the relative timing of one of the clock signals CK and CKB and the command/address signal CMD/ADDR, as seen by the memory device receiving one of these signals. The clock signals CK and CKB and the command/address signals CMD/ADDR can be generated by an external source (for example, a memory controller, a CPU, a host computer, etc.) and the clock signal CK generated by the external source and The relative timing between the CKB and the command/address signal CMD/ADDR can be changed during transmission, and thus, the relative timing produced can be different from the relative timing experienced by the memory device (eg, relative timing generated by an external source) It can be different from the relative timing shown in Figure 1. Due to changes between signal paths (eg, changes in layout, signal drive capability, etc.), during transmission of clock signals CK and CKB and command/address signals CMD/ADDR from an external source to a memory device, A propagation time difference is generated between the clock signals CK and CKB and the command/address signal CMD/ADDR. As shown in FIG. 2, the middle of the command/address CMD/ADDR window can be used to reduce the timing margin of the command/address CMD/ADDR before or after the rising and falling edges of the clock signals CK and CKB. . 163456.doc •12- 201246211 In the four command/address signals CMD/ADDR (CA1, CA2, CA3 and CA4) shown in Figure 2, for the first command/address signal CMD/ADDR CA1 and second The command/address signal CMD/ADDR CA2, the timing of the clock signals CK and CKB can lag between the windows of the CA1 and CA2 signals. If the timing of the first command/address signal CMD/ADDR CA1 and the second command/address signal CMD/ADDRCA2 is postponed by calibration, the middle portion of each command/address CMD/ADDR window of CA1 and CA2 can be located. Corresponding to an intersection between the rising edge and the falling edge of the clock signals CK and CKB. When received by the memory device after this delay, the middle portion of each command/address CMD/ADDR window of CA1 and CA2 can occur on the rising/falling edges of CK and CKB. For the fourth command/address signal CMD/ADDR CA4, the timing of the delayed clock signals CK and CKB can be delayed by calibration or the timing of the fourth command/address signal CMD/ADD-R CA4 can be advanced to make each The middle of the command/address CMD/ADDR window is at a position corresponding to an intersection between the rising edge and the falling edge of the clock signals CK and CKB. 3 is a block diagram of an exemplary memory system 10 for performing command/address calibration. Referring to FIG. 3, the memory system 10 includes a memory controller 20 and a memory device 30, a clock signal line 11, A command/address bus 12 and a DQ bus 13 are connected therebetween. A clock signal CK generated by the memory controller 20 is supplied to the memory device 3 through the clock signal line 11. The clock signal CK can be provided as a continuous alternating inverted signal together with an inverted clock signal CKB. The inverted clock signal CKB may be provided with the clock signal 163456.doc •13·201246211 ck, that is, generated by the memory controller 20 and provided to the memory device 30 (not shown in FIG. 3). The intersection between the pair of clock signals CK and CKB detects the rising and falling edges of the clock signals ck and CKB, thereby improving the timing accuracy. A single clock signal CK (non-transmission clock signal cKB) may also be supplied to the clock signal line i as a continuous alternate inverted signal. This embodiment reduces the signal lines (and terminals) between the stealth device 30 and the § memory controller 20. In this case, to identify the rising and falling edges of the clock signal CK, the clock signal ck and a reference voltage Vref can be compared with each other. If noise fluctuation occurs in the reference voltage Vref, a shift occurs in the detection of the clock signal CK, thereby degrading the timing accuracy compared to the use of the clock signal pair CK and CKB. Therefore, it is desirable to transmit successive alternating inverted signals complementary to each other by using the clock signals CK and CKB. In this case, the clock signal line 11 may include two signal lines for transmitting the clock signal CK and the pulse signal CKB. The clock signal ck as set forth in the embodiment of the inventive concept can be described as a clock signal pair CK and CKB. For the sake of simplicity; the clock signal is described as CK and CKB as the clock signal CK. The command/address signal CA generated by the memory controller 2 is supplied to the memory device 3 via the command/address bus. The command/address bus 12 can carry a command signal or an address signal to the memory device 3 (except at any time) and/or the command/address bus 12 can simultaneously output a command signal and The address signal is transmitted to the memory device 3〇. The memory controller 2 can transmit a command mode/address calibration mode via a command/address bus 12 to transmit a mode register setting (MRS) command. The MRS command can include a 163456.doc is 201246211 quasi-mode entry command and a calibration mode exit command. A calibration start signal or a calibration end signal indicating one of the calibration mode exit commands may be transmitted through the command/address bus 12 to indicate a calibration mode entry command. When the command/address bus 12 is composed of command/address signals CA of n signal lines (for example, conductors) (where η is a natural number), and is input at the rising and falling edges of the clock signal CK When the command/address signal (: eight (for example, in a double: data rate (10) R) transmits the command/address signal CA), each clock ring can transmit 2n bits through the command/address bus 12 The command/address ca information is supplied from the memory controller 20 to the memory device 3A. Entering at the rising edge of the clock signal ck - the command/address signal ca and one of the command/address signals ca input at the falling edge of the clock signal ck can each constitute a command/bit containing n bits Different groups of address CA information. In normal operation, the -DQ bus 13 transmits a data signal DQ between the memory controller 2 and the memory device 30 (for example, in the write-to-write operation, the data signal DQ is transmitted from the controller to the memory. The body device 3〇, and transmits the data signal Dq from the memory device 3〇 to the memory controller 2G in a reading # 〇 information about the command/address calibration (described in detail below) It can be output on the DQ bus 13 to be supplied to the memory controller. The Q bus 13 is connected to the DQ pads (and/or other device terminals, such as solder bumps) of both the memory controller 2 and the memory device. The mapping of the calibration command/address information signal and DQ塾 can be set in various ways. For example, when the memory device 3's data signal DQ has a bit structure x32 (DQ[31:0]), the number of DQ bus lines is 32. When the command / & it U consists of 1 conductor and the command/address signal is transmitted at the rising and falling edges of the clock signal 163456.doc •15· 201246211 ck, the time is transmitted. Each clock cycle of the pulse, the memory device 30 can receive a command/address signal CA of 2 bits. Since 0 (the number of bus bars 32 is greater than the number of command/address signals 20), each DQ bus bar can correspond to a single bit in the command/address signal bit CA, thereby providing a single bit. Command/address signal bit information (for example, two DQ bus lines can transmit command/address information about command/address calibration of one of the command/address bus bars 12). Performing a mapping such that for each cycle of the clock signal CK, one of the command/address signals rounded at the rising edge of the clock signal CK is output to one DQ pad [9:0] and will One value of the 10-bit command/address signal input at the falling edge of the clock signal $CK is output to another 1 DQ塾[19:10]. Therefore, although it is possible to double the data rate (10) Each cycle of the pulse CK is transmitted to the memory device 30' but can be - single data rate (SDR) (for each cycle of the clock CK) Information about command/address calibration is transmitted back from the S-memory device 30 to the memory controller 2A. Note that the bus can transmit data relative to one of the clocks different from the clock CK. The following discussion of @5 shows an embodiment in which the pulse trainer transmits data relative to the -f material. When the bit structure of the data signal DQ of the memory device 30 is _ (DQ[15:〇]), the number of DQ bus bars is 16. Since the number 16 of dq bus bars is less than the number of commands / (four) (four) bits (received by the loop CK) 20, the DQ bus bars may not be sufficient for the command/address calibration during one cycle of the clock. The information is transmitted as a group of bits 163456.doc •16·201246211. Therefore, the DQ bus 13 can transmit the information about the command/address calibration in sequence. For example, the DQ bus can be transmitted at one time. The command/address calibration information of the bit command/address apostrophe input to the memory device 3〇 at the rising edge of the pulse signal CK (for example, on the Dq bus line DQ[〇:9]), And later, transmit command/address calibration information about the 10-bit command/address signal input at the falling edge of the clock signal (for example, again on the DQ bus line DQ[0:9] 4A and 4B are diagrams for explaining command/address calibration that can be performed by the memory system 10 shown in Fig. 3. Referring to Fig. 3 with reference to Figs. 4A and 4B, the memory controller 2 detects Measure the edge of the command/address signal CA window and the clock signal ck received by the memory device 30 (from the memory of s The controller 20 provides) whether the relative position (or timing) is such that the memory device 30 successfully interprets the command/address signals. Figures 4A and 4B present several successful interpretations of the command/position signals as Passing (or P) and presenting the unsuccessful interpretation of the command/address signal as a failure (F). Figure 4A shows a command/address signal along a single command/bit of the command/address bus Multiple cycles of transmission of the address line. Each cycle of transmitting a calibration test pattern is adjusted by the controller to change the relative phase of the clock ck and the command/address signal compared to the pre-transmission cycle. The example of Figure 4b shows that for each subsequent transmission cycle, this relative phase changes by 1 / 20 (e.g., 18 degrees) of a clock CK cycle. Depending on the desired accuracy, each transmission cycle can be changed more or more. Relative phase. Note that the relative phase of the clock c κ and command/address signals received by the memory device for a specific transmission cycle can be compared with the clock CK and command/address signals transmitted by the controller. 163456.doc 201246211 Different phase, due to clock The different characteristics of the signal transmission and the signal line of the command address bus 12 may vary from transmission (from controller 2〇) to reception (by memory device 30). These different characteristics may include signals. One of the path lengths is different, the conductivity of the signal path (eg, due to the size of the conductor), the parasitic capacitance of the signal path (eg, from an adjacent line), temperature, etc. The memory controller 20 transmits the clock signal line. The clock signal CK is transmitted to the memory device 30 and the command/address signal CA is transmitted to the memory device 3 through one of the signal lines of the command/address bus bar 2 (^ in receiving the phase adjusted command / After the address signal CA, the memory device 3 transmits the command/position signal ca interpreted by the 5 memory device 3 to the 5 memory controller 20 through the Dq bus 13 . § Recalling the controller 2 〇&gt; (Which of the transmission commands/address signals have successfully transmitted their information to the memory device 3 (pass or pass) and which transmission cycles were unsuccessful (failed or F) Figure 4A shows a clock signal (CK@Memory) and a plurality of command/address signals received by the memory device 3 via one of the command/address busses (received via several transmission cycles). In order to simplify and better emphasize the shifting of the relative phase of the command/address statement with the clock CK, the command/address signal is shown as a vertical stack in Figure 4a instead of in a continuous timing diagram, however It should be noted that each of the ca@memory signals shown in 'in this example' is shown in chronological order (eg, via the same signal line of the command/address bus CA). Figure 4B In the case where the edge of the clock signal ck exists at one of the positions S1 or S2 of the command/address signal CA, the memory device 30 cannot successfully interpret the command/address signal cA (for example, cannot be latched at the window) Appropriate logic high or logic low of command/address signal CA And 163456.doc • 18· 201246211 The memory controller 20 may determine that the transmission cycle associated with S1 and S2 is a failure F. The edge of the current pulse signal CK exists at a position S3, S4, S5, S6, S7, S8 At time S9, S10 or S11, the memory device can successfully interpret the command/address signal CA (eg, successfully latch the appropriate logic high or logic low of the command/address signal c A) and remember The body controller 2〇 may determine that the transmission cycle associated with S3, S4, S5, S6, S7, S8, S9, S10 or S11 is through P. The edge of the current pulse signal CK is present in one of the command/address signals CA At position s 12 or S13, the memory controller 20 may determine that the transmission cycle associated with S 12 or S 13 is a failure f. The illustration of Figures 4A and 4B shows the clock CK received by the memory device 3 ck (ck One of the @memory timings should have a timing such that one of the clock signals ck must coincide with the logic of the command/address signal CA to be latched (eg, the correct logic occurring at the command/address signal CA) At the window. However, this representation is for making the explanation simple and not necessary, the clock signal CK The timing along the edge may not need to be at the same time as the logic to be latched, and (for example) may be shifted in time. For example, one of the clocks other than CK may be responsible for triggering the memory device 3 to the command / The address signal CA is latched. For example, the internal clock ICK can be generated by the memory device 3 in response to the clock signal CK, and the internal clock ICK can be buffered by one of the memory devices 30 (for example, FIG. 5 The CA receiver 304) is used to latch the logic of the command/address signal CA on the CA bus 12 at one rising edge or one falling time of ICK, even if the externally received clock CK and internal generation time Pulse ICK has the same frequency and duty cycle (which may not be the case), and CK and ICK can also shift in time. Therefore, the edge of the external clock CK may not coincide with the logic of the command/bit I63456.doc 201246211 address signal CA to be latched (eg, along the logic high of the command/address signal CA that can be latched in the memory device 30) Outside the window of State 1 (before or after). As another example, even when the edge of the clock CK is directly input to one of the buffers of the memory device 30 to trigger the latching of the signal input to the memory device, 'before the latching action is sufficient to latch the logic of the input signal There can be some delay. The memory device 30 can transmit information about the command/address calibration to the controller 2 on the data bus Dq as described above. For example, the memory device 30 can transmit a signal interpreted (e.g., latched) by the memory device 30 on the command/address signal line of the CA command/address bus. Therefore, during a calibration transmission cycle, if the memory controller transmits a 〗 〖 (eg, logic high state) to the memory device on the □s line of the command/address hop/claw row 12, but the clock ck The relative phase with the transmission causes the memory device 3 to be triggered to latch the signal on the signal line outside the appropriate signal window, and the memory device can inaccurately interpret the transmitted signal as a memory. The device can transmit the value 〇 via the __ signal line of the DQ data g stream 13. The memory controller 20 can determine that the transmission associated with the transmission ring is unsuccessful and depends on the transmission, - F. The subsequent transmission of the loop during command/address calibration may shift the relative phase of the transmission of the clock CK to the command/address calibration signal (eg, '1) such that the memory device 3G is triggered to indicate The signal line is latched in the signal window, and this value i can be transmitted to the memory controller 20 (as a command/address calibration information, the Bu Keon controller can be compared to the memory device memory device 30 for comparison. The command/bit 30 command/address calibration signal is the same as the self-address calibration information (value 1) and is judged to be 163456.doc 201246211 The subsequent transmission cycle is successful (via P). The memory controller 20 can analyze the command/address The calibrated transmission cycle group determines a relative phase between the clock CK and the command/address signal transmitted on the command/address signal line of the command/address CA signal during normal operation of the memory system 1 。. The optimal relative phase may be implemented by the memory controller 2 to transmit command and address information to the memory device during normal operation. For example, it may be determined by aggregation as a transmission cycle through p and Selecting one of the relative phases of the transmission cycle at the center of the group to determine the optimal relative phase. For example, because of S3, S4, S5, S6, S7, S8, S9 'S10 and FIG. 4B and FIG. The transmission cycle associated with S11 is successful (via P), so the memory controller 2 can select the relative phase of the associated transmission cycle (between clock CK and command/address calibration signals) as the best Phase __ select, remember (4) the controller selects the optimum phase as the average of the relative phases associated with the first and last successful transmission cycles (when the relative phase of the parent-transmission cycle is ordered) (eg , 0 degrees, 15 degrees, 30 degrees, etc.)) _ In the example of FIG. 4A and FIG. 4B, the average of the relative phases of the transmission cycles associated with s 3 and s 11 is selected as 'memory control (four) The optimum phase may be selected as an average of the relative phases associated with the last and the first unsuccessful transmission cycles % of the successful transmission cycle (when the relative phase of each transmission cycle is ordered) )_ In the example of Figure 4 and the figure, this will be related to The average of the relative phases of the transmission cycles associated with S12. The command/address calibration can be performed in this manner.

儘管已在當前實施例中闞述對一單個命令/位址信號CA I63456.doc -21 - 201246211 (在命令/位址CA匯流排12之一單個線上)之校準,但可針 對透過命令/位址匯流排12傳輸之多個命令/位址信號CA執 行此命令/位址校準。可同時針對命令/位址匯流排丨2之所 有信號線進行此校準。記憶體控制器2〇可判定命令/位址 匯流排20之信號線中之每一者之一最佳相對相位(例如, 如上文所闡述)且個別地調整命令/位址匯流排2〇之信號線 中之每一者之相對相位。 另一選擇為,記憶體控制器20可判定整個信號線群組之 一最佳相對相位,且選擇相同最佳相位用於命令/位址匯 流排12之所有信號線群組。在選擇相同最佳相對相位用於 整個信號線群組中,記憶體控制器2〇可將一成功傳輸循環 (通過P)判定為其中命令/位址校準信號之所有位元皆由記 憶體裝置30成功地解譯之一個循環且將一未成功傳輸循環 (失敗F)判定為其中命令/位址校準信號之位元中之至少一 者未由記憶體裝置30成功地解譯之一個循環。可以類似於 上文關於命令/位址匯流排12之一單個信號線所闞述之一 方式藉由分析傳輸循環之通過P及失敗F標識來判定整個信 號線群組之最佳相對相位。 在另一替代方案中,記憶體控制器20可判定構成命令/ 位址匯流排12之多個信號線群組之一最佳相對相位。可如 本文中針對判定構成命令/位址匯流排12之整個信號線群 組之一最佳相對相位所闡述判定多個信號線群組中之每一 者之最佳相對相位。命令/位址匯流排12之信號線群組可 包括一相鄰信號線群組(例如,其中不間置有命令/位址匯 163456.doc •22· 201246211 流排12之其他信號線)。 在另一替代方案中,可如上文所闡述僅針對命令/位址 匯流排12之信號線之一子組判定最佳相對相位。亦即,命 令/位址校準信號可由控制器僅在命令/位址匯流排丨2之信 號線之一子組上傳輸且/或記憶體裝置30可傳輸僅關於命 令/位址匯流排之信號線之一子組之命令/位址校準資訊。 可針對命令/位址匯流排12之信號線之此子組判定最佳相 對相位。命令/位址匯流排12之信號線之其餘線可具有基 於針對信號線子組判定之最佳相對相位而判定之一最佳相 位。此可(例如)藉由内插(及/或外推)緊鄰信號線(信號線子 組的)之最佳相對相位作為一最佳相對相位來進行。舉例 而言’若命令/位址匯流排包括10個信號線(能夠一次發送 10個並列資訊位元),則奇數線(其中信號線係以1至1〇之次 序疋位)可具有如關於圖4 A及圖4B所闡述所判定之一最佳 相對相位(藉由控制器20之至記憶體裝置30之命令/位址校 準L號之多個傳輸循環及將命令/位址校準資訊自記憶體 裝置30發送至記憶體控制器2〇)。命令/位址匯流排12之偶 數線可具有其藉由内插命令/位址匯流排12之相鄰奇數線 之先前所判定最佳相對相位來判定之最佳相對相位。因 此,命令/位址匯流排12之信號線2可具有其判定為信號線 1及3之最佳相對相位之平均值之最佳相對相位。除對緊接 著相鄰者求平均之外,可執行其他内插(例如,若信號線 1、2及3不均勻地間隔開或具有某一已知長度差及/或該内 插可包含兩個以上奇數信號線之最佳相對相位判定)。類 163456.doc •23· 201246211 t地’信號線4可具有其藉由對針對信號線3及5判定之最 :相對相:求平均或内插針對信號線…判定之最佳相對 相位所判定之最佳相對相位。 _ _ , 田於在此實例中信號線1 0將 :具有兩個相鄰信號線’因此可將其最佳相對相位選擇為 :广9之最佳相對相位相同,或可自多個奇數信號線 外推(例如,自信號線7及9外推)。 圖5係可用於執行㈣述之任—命令/位址校準實施例之 記憶體系統10之一實例之一方塊圖。 參考圖5 ’記憶體系統1〇包含記憶體控制器2〇及記憶體 裝置30»記憶體控制器2〇可包含一時脈產生器2〇ι、一命 令/位址產生器202、一命令/位址傳輸器2〇3(其在後文中可 稱為一CA傳輸器)、—暫存器2〇4、-比較器裹、一相位/ 時序控制器208及一輸入/輸出單元21〇。 记憶體控制器20透過時脈信號線丨〗將自時脈產生器2〇1 產生之時脈信號CK提供至記憶體裝置3〇。命令/位址產生 器202產生一初始命令/位址信號CA〇且將其提供至ca傳輸 器 203 〇 CA傳輸器203接收具有一第一相位pl之一初始命令/位址 仏號CAspl ’且回應於相位/時序控制器2〇8之一控制信號 CTRL而調整初始命令/位址信號CAsp〗之一相位或時序以產 生具有一第二相位P2之一經相位調整之命令/位址信號 CASP2。CA傳輸器203亦可受控制信號CTRL控制以實質上 維持初始命令/位址信號CA之相位,以使得第一相位pl實 質上與第二相位p2相同(為使解釋簡易,即使在某些情形 •24· 163456.docAlthough the calibration of a single command/address signal CA I63456.doc -21 - 201246211 (on a single line of command/address CA bus 12) has been described in the current embodiment, it can be directed to the pass command/bit The command/address calibration is performed by a plurality of command/address signals CA transmitted by the address bus 12. This calibration can be performed for all signal lines of the command/address bus 2 at the same time. The memory controller 2 can determine the best relative phase of each of the signal lines of the command/address bus 20 (eg, as set forth above) and individually adjust the command/address bus 2 The relative phase of each of the signal lines. Alternatively, memory controller 20 can determine an optimal relative phase of the entire set of signal lines and select the same best phase for all of the signal line groups of command/address bus 12. In selecting the same optimal relative phase for the entire signal line group, the memory controller 2 can determine a successful transmission cycle (via P) as all of the bits of the command/address calibration signal are from the memory device. 30 successfully interprets one of the loops and determines an unsuccessful transmission loop (failure F) as one of the loops in which at least one of the bits of the command/address calibration signal is not successfully interpreted by the memory device 30. The optimal relative phase of the entire set of signal lines can be determined by analyzing the pass P of the transmission cycle and the F-Fail flag in a manner similar to that described above with respect to a single signal line of the command/address bus 12 . In another alternative, the memory controller 20 can determine the best relative phase of one of the plurality of signal line groups that make up the command/address bus. The optimal relative phase of each of the plurality of signal line groups can be determined as set forth herein for determining the best relative phase of one of the entire set of signal lines constituting the command/address bus. The signal line group of the command/address bus 12 may include a group of adjacent signal lines (for example, other signal lines with no command/address address 163456.doc • 22· 201246211 stream 12). In another alternative, the best relative phase can be determined only for a subset of the signal lines of the command/address busbar 12 as explained above. That is, the command/address calibration signal may be transmitted by the controller only on a subset of the signal lines of the command/address bus 2 and/or the memory device 30 may transmit signals only regarding the command/address bus Command/address calibration information for one of the lines. The best relative phase can be determined for this subgroup of signal lines of the command/address bus. The remaining lines of the signal line of the command/address bus 12 may have an optimum phase determined based on the optimum relative phase for the signal line sub-group decision. This can be done, for example, by interpolating (and/or extrapolating) the optimal relative phase of the immediately adjacent signal lines (of the subset of signal lines) as an optimal relative phase. For example, if the command/address bus includes 10 signal lines (capable of transmitting 10 parallel information bits at a time), the odd lines (where the signal lines are clamped in the order of 1 to 1) may have 4A and 4B determine one of the best relative phases (by the controller 20 to the memory device 30 command / address calibration L number of multiple transmission cycles and command / address calibration information from The memory device 30 is sent to the memory controller 2). The even line of the command/address bus 12 may have its optimum relative phase determined by the previously determined optimum relative phase of the adjacent odd line of the interpolated command/address bus. Therefore, the signal line 2 of the command/address bus 12 can have an optimum relative phase which is determined as the average of the optimum relative phases of the signal lines 1 and 3. In addition to averaging the neighbors, other interpolations may be performed (eg, if signal lines 1, 2, and 3 are unevenly spaced or have some known length difference and/or the interpolation may include two Optimal relative phase determination of more than one odd signal line). Class 163456.doc • 23· 201246211 t ground 'signal line 4 may have its most determined by respect to signal lines 3 and 5: relative phase: averaging or interpolation is determined for the optimal relative phase of the signal line... The best relative phase. _ _ , Tian Yu in this example signal line 10 will: have two adjacent signal lines 'so the best relative phase can be chosen as: the best relative phase of the wide 9 is the same, or can be from multiple odd signals Line extrapolation (for example, extrapolation from signal lines 7 and 9). Figure 5 is a block diagram of one example of a memory system 10 that can be used to perform the four-command/command/address calibration embodiment of (d). Referring to FIG. 5, the memory system 1 includes a memory controller 2 and a memory device 30. The memory controller 2 can include a clock generator 2, a command/address generator 202, and a command/ The address transmitter 2〇3 (which may be referred to as a CA transmitter hereinafter), the register 2〇4, the comparator package, a phase/timing controller 208, and an input/output unit 21A. The memory controller 20 supplies the clock signal CK generated from the clock generator 2〇1 to the memory device 3 through the clock signal line. The command/address generator 202 generates an initial command/address signal CA〇 and provides it to the ca transmitter 203. The CA transmitter 203 receives an initial command/address apostrophe CAspl' having a first phase pl and The phase or timing of one of the initial command/address signals CAsp is adjusted in response to one of the phase/timing controllers 2〇8 control signal CTRL to produce a phase-adjusted command/address signal CASP2 having a second phase P2. The CA transmitter 203 can also be controlled by the control signal CTRL to substantially maintain the phase of the initial command/address signal CA such that the first phase pl is substantially the same as the second phase p2 (for ease of interpretation, even in certain situations) •24· 163456.doc

201246211 下’初始命令/位址CAspl信號可不具有一相位調整,亦將 信號CASP2稱為一經相位調整之命令/位址信號ca)。將經 相位調整之命令/位址信號CASP2發送至暫存器2〇4,且將由 經相位調整之命令/位址信號CASP2表示之資訊儲存在暫存 器204中作為CAS。透過命令/位址匯流排12將經相位調整 之命令/位址信號CASP2提供至記憶體裝置3〇。該經相位調 整之命令/位址信號CASP2係與時脈信號CK —起提供至記憶 體裝置30。 暫存器204儲存經相位調整之命令/位址信號CAsp2之資訊 作為經發送命令/位址資訊CAS。比較器206比較儲存在暫 存器204中之經發送命令/位址資訊cAs與自輸入/輸出單元 210輸出之所接收之命令/位址校準資訊CAr (如本文中所闡 -述’由記穗體裝置30接收且發送回至記憶體控制器2〇)。 比較器204比較資訊CAS與資訊CAr以產生_通過或失敗信 號P或F。 相位/時序控制器2〇8根據由比較器206產生之通過或失 敗資訊P或F產生指示初始命令/位址信號c I之一相移之 控制信號CTRL。將控制信號CTRL提供至CA傳輸器2〇3, 且調整初始命令/位址信號Ά相位或時序以產生經相 位調整之命令/位址信號CAsp2。 在一正常操作模式中,資料輸人/輸出單元210透過DQ匯 流排13接收自記憶體裝置3G傳輸之讀取資料^d咖或透 過DQ匯流排13傳輸待寫入至記憶體裝置儿之寫入資料 W 一 Datal。另外,在命令/位址(CA)校準模式中,資料輸入/ I63456.doc -25- 201246211 輸出單元210可透過DQ匯流排13接收對應於由記憶體裝置 3〇自記憶體控制器20接收之經相位調整之命令/位址信號 CASP2之命令/位址校準資訊CAr »命令/位址校準資訊匚八『可 係由記憶體裝置30在經相位調整之命令/位址信號casp2正 被發送至記憶體裝置30時回應於時脈CK(例如,在時脈信 號CK之上升沿及/或下降沿之情形下)而鎖存之資訊。當 CK之時序係如此以適當地解譯(或鎖存)經相位調整之命令/ 位址k號CAsp2時,CAr可係與CAS相同之資訊,或當記憶 體裝置30不正確地解譯經相位調整之命令/位址信號cAsp2 時CAr可不同於CAS。資料輸入/輸出單元21〇輸出命令/位 址信號資訊CAr至比較器206。 輸入/輸出單元210可包含一輸入緩衝器212、一選擇單 元214及一輸出緩衝器216。輸入緩衝器212及輸出緩衝器 216可包括鎖存器及/或放大器以分別鎖存及/或放大所接收 信號。輸入緩衝器212經連接以接收透過Dq匯流排13自記 隐體裝置30傳輸之資料及命令/位址校準資訊cAr。選擇單 元214在正常操作模式中回應於一第一選擇信號SEU而將 由輸入緩衝器212接收之資料作為讀取資料R_DaUl傳輸至 記憶體控制器20之一内部電路區塊(未展示),且在CA校準 模式中回應於該第一選擇信號沾以而將由輸入緩衝器212 接收之命令/位址校準資訊CAr傳輸至比較器2〇6。選擇單 元214可係多工器。輸入緩衝器212可正確地解譯命令/位 址校準資訊CAr,DQ匯流排13在CA校準模式之前已在一 DQ校準模式中得到校準及/或命令/位址校準資訊CAr在 163456.doc • 26 - 201246211 匯流排13上傳輸至輸入緩衝器212係以一較慢速率以確保 在正確窗處鎖存DQ匯流排13上之資訊(例如,當命令/位址 校準係以一雙倍資料速率(DDR)時,較慢傳輸速率係以— 單倍資料速率(SDR))。在此例項中,在Dq匯流排13上接 收之命令/位址校準資訊CAr與由資料輸入/輸出單元2ι〇傳 輸至CA比較器206之命令/位址校準資訊CAr相同。輸出緩 衝器216透過DQ匯流排13傳輸待寫入至記憶體裝置3〇之寫 入資料W_Datal。 記憶體裝置30包含一時脈緩衝器3〇2、一命令/位址接收 器304(在後文中其將係稱為一 ca接收器304)及一資料輸入/ 輸出單元310。時脈緩衝器3〇2接收透過時脈信號線u傳輸 之時脈信號CK以產生一内部時脈信號ICK^透過命令/位 址匯流排12.將經相位調整之命令/位址信號CAsp2傳輸至記 憶體裝置30。CA接收器304回應於内部時脈信號ick產生 命令/位址校準資訊CAr,此可發生在藉由一晶片選擇信號/ CS及一時脈啟用信號CKE予以啟用時。晶片選擇信號/cs 及時脈啟用信號CKE可係與命令/位址信號線12分開提供, 如圖5中’或可係在命令/位址信號線12上載送以傳輸至記 憶體30,不同於圖5中所展示。 時脈啟用信號CKE可用作一偽命令,該偽命令在CA校準 模式中充當透過命令/位址匯流排12傳輸之經相位調整之 命令/位址信號CAsp2之一讀取命令。CA接收器304根據基 於當時脈啟用信號CKE處於一作用狀態中且當記憶體裝置 3〇藉由晶片選擇信號/CS啟用時接收之ICK之一時序(例 163456.doc • 27- 201246211 如 上升沿及/或下降沿)所鎖存之經相位調整之命令/位 址信號casp2來產生命令/位址校準資訊CA〆將命令/位址 校準資訊〇八,提供至資料輸入/輸出單元31〇。 資料輸入/輸出單元310經連接以接收命令/位址校準資訊 CAr及自記憶體裝置3〇之一内部電路區塊(例如,連接至儲 存讀取資料R_Data2之一記憶體陣列之資料讀取路徑電 路)(未展示)傳輸之讀取資#R_Data2,且在__正常讀取操 作模式中回應於一第二選擇信號SEL2將所接收讀取資料 R 一 Data2傳輸至DQ匯流排13。戈在一校準模式中回應於第 :選擇信號SEL2而將第二命令/位址信號㈤傳輸至叫匯 μ排13。在一正常寫入模式中,資料輸入/輸出單元透 過DQ匯流排13接收待寫入至記憶體裝置3〇之寫入資料 一Data 1且將所接收寫入資料W_Datal傳輸至記憶體裝 置3〇之内部電路區塊。資料輸入/輸出單元310包含一選擇 單元312、一輸出緩衝器314及一輸入緩衝器316。根據正 常操作模式或校準模式,選擇單元312回應於第二選擇信 號SEL2選擇自命令/位址接收器3〇4輸出之第二命令/位址 信號CA2及自記憶體裝置3〇之内部電路區塊提供之讀取資 #R_Data2中之一者,且將選定信號或資料傳輸至輸出緩 衝器314。選擇單元312可係一多工器。 輸出緩衝器314將自選擇單元312輸出之命令/位址校準 資訊CAr或讀取資料R_Data2傳輸至DQ匯流排13。輸入緩 衝器3 16接收透過DQ匯流排13傳輸之資料且將接收資料作 為寫入資料W一Data2傳輸至記憶體裝置3〇之内部電路區 163456.doc •28· 201246211 塊。舉例而言’寫入資料W一Data2可經由資料寫入路徑電 路傳輸至一記憶體陣列以寫入至該記憶體陣列中。資料寫 入路徑電路及資料讀取路徑電路可共用電路。 在當前實施例中,透過DQ匯流排13將自記憶體裝置3〇 之輸出緩衝器314輸出之命令/位址校準資訊cAr提供至記 憶體控制器20。此外,可透過一資料選通(DqS)線及Dq匯 流排13將自記憶體裝置30之輸出緩衝器314輸出之命令/位 址校準資訊CAr提供至記憶體控制器2〇。記憶體控制器2〇 之資料輸入/輸出單元210及記憶體裝置30之資料輸入/輸出 單元310可透過DQS線及DQ匯流排13連接至彼此。 可如下執行記憶體系統10中之CA校準。記憶體控制器 20之CA傳輸器203藉由回應於相位/時序控制器2〇8之控制 信號CTRL而調整初始命令/位址信號CAspi之相位或時序來 產生命令/位址信號CASP2。控制信號CTRL亦可具有維持命 令/位址信號之相位之一值,如先前所述。記憶體裝置3〇 之CA接收器304以根據内部時脈信號ICK之一時序且在藉 由時脈啟用信號CKE啟用時接收經相位調整之命令/位址信 號CASf&gt;2以產生命令/位址校準資訊CAf。回應於第二選擇信 號SEL2將記憶體裝置30之命令/位址校準資訊CAr傳輸至 DQ匯流排13。在校準命令/位址信號之前,自記憶體控制 器20傳輸之經相位調整之命令/位址信號CAsp2之一值及由 δ己憶體裝置30解譯(例如,鎖存)之命令/位址校準資訊匸、 之一值可(例如)由於在信號傳輸期間產生之雜訊及/或時脈 CK與由CA匯流排12傳輸之信號之間的信號傳輸時序變化 163456.doc •29- 201246211 可係彼此不同。校準命令/位址信號解決此問題。 在命令/位址校準模式中’記憶體控制器20回應於第一 選擇信號SEL1將經由DQ匯流排13接收之命令/位址校準資 訊CAr傳輸至比較器2〇6。若Dq匯流排13在CA校準模式之 前在DQ校準模式中得到校準,則記憶體控制器不正 確地解譯命令7位址校準資訊(例如,由輸人緩衝器212 所解譯)之機會減小。比較器2〇6比較由記憶體控制器2〇傳 輸至記憶體裝置30且儲存在暫存器2〇4中之命令/位址信號 CASP2之一值與由記憶體控制器接收之命令/位址校準資訊 CAr之一值,且在該兩個值係彼此相同時產生一通過信號p 且在該兩個值係不同時產生一失敗信號F。相位/時序控制 器208產生指示初始命令/位址信號(:八叩1之一新相移(以獲 得具有與時脈CK之一新相對相位差之一新經相位調整之 命令/位址信號CASP2)之控制信號CTRL,且針對相對於時 脈CK具有一不同相對相位之新初始命令/位址信號cAsy重 複該過程。在此過程之多個循環(每一循環具有由CA傳輸 器203造成之初始命令/位址信號CAspi之一不同相移)之 後’控制器分析通過P及失敗F信號之群組以判定正常操作 之C A彳§號線(或若干線或匿流排)之最佳相對相位。儘管圖 5中未展示’但可將控制信號CTRl傳輸至時脈產生器2〇1 以調整時脈信號CK之時序或相位從而調整命令/位址信號 與時脈信號CK之相對相位。 藉由重複先前CA校準,記憶體控制器20之相位/時序控 制器208判定用以將命令/位址信號之輸入(例如,鎖存)計 163456.doc -30- 201246211 時至命令/位址信號CA窗之中間部分之最佳時序(例如,通 過P位置之中間),且產生一命令/位址信號CA,以使得命 令/位址信號CA窗之中間對應於記憶體裝置30之此輸入(其 可對應於時脈信號CK之一沿),且以命令/位址信號〇八與 時脈ck之間的最佳相對相位將所產生命令/位址信號€八及 時脈CK提供至記憶體裝置3〇。因此’當命令/位址信號之 輸入(例如,鎖存)之時序對應於由記憶體裝置3〇接收之時 脈信號CK之沿時’記憶體裝置30接收針對其一有效窗之 中間對應於時脈信號CK之上升沿及下降沿(嚴格地說)時脈 心號CK及CKB之上升沿及下降沿之命令/位址信號c A。 儘管已闡述對命令/位址匯流排12之一單個線上之單個 命令/位址信號之校準,但可如先前所述針對複數個或所 有命令/位址匯流排線執行此校準。 圖6係用於闡述一實例性命令/位址校準方法之一圖式。 圖6係用於闡述可在記憶體系統丨〇中實施之一命令/位址校 準方法之一時序圖,其中記憶體裝置30之資料DQ之位元 組織係x32 (DQ匯流排係由連接至記憶體裝置3〇之32個dq 端子(例如,墊、凸塊等)及記憶體控制器2〇之32個〇(^端子 之32個DQ信號線組成)。 結合圖5參考圖6,記憶體控制器2〇產生用於記憶體装置 3〇之時脈信號CK。記憶體控制器2〇將一進入命令/位址校 準模式指令發送至記憶體裝置3卜記憶體控制㈣透過命 令/位址匯流排12傳輸進人命令/位址校準模式指令。進入 p 7位址;k準模式指令可係使用—模式暫存器設定 163456.doc •31- 201246211 命令格式程式化記憶體裝置之一模式暫存器以指示一命令/ 位址校準模式來輸入。記憶體裝置30可回應於模式暫存器 設定資訊以對命令/位址校準模式指示作出回應從而進入 命令/位址校準模式。記憶體控制器20可透過命令/位址匯 流排12傳輸命令/位址結束信號。命令/位址結束信號可係 使用指示自校準模式退出之一 MRS命令來輸入。 在時間t〇處,在記憶體裝置處透過命令/位址匯流排12與 晶片選擇信號/CS之一邏輯低態位準之啟動一起接收命令/ 位址校準開始信號。由記憶體裝置20接收之時脈信號CK 之一上升沿觸發鎖存進入命令/位址校準模式指令。舉例 而言,傳輸一第一模式暫存器命令(MRW#41)作為進入命 令/位址校準模式指令。當在命令/位址匯流排12上載送10 個位元之命令/位址信號CA[9:0]時,MRW#41命令可包括 用以指示該命令係一模式暫存器設定命令之命令/位址信 號CA[3:0]及用以指示模式暫存器設定命令係進入命令/位 址校準模式之一命令之命令/位址信號CA[9:4]。 在此實例中,在時脈信號CK之上升沿及下降沿兩者處 輸入MRW#41命令;在圖6中,MRW#41命令首先在時間t〇 處回應於時脈CK之上升沿而被記憶體裝置鎖存,且回應 於時脈CK之緊接著後續下降沿被記憶體裝置30第二次鎖 存。亦即,在時脈信號CK之時間tG處對應開始之時脈信號 CK之上升沿及下降沿處輸入同一 MRW#41命令。亦即,由 於當透過一命令/位址信號線以一雙倍資料速率(DDR)輸入 一MRS命令時,可產生一錯誤,以使得具有一高操作頻率 -32- 163456.doc 201246211 之一 S己憶體裝置錯過該]y[RS命令。此外,亦可將一不同命 令錯誤地解譯為進入命令/位址校準模式命令。為減小錯The 201246211 lower 'initial command/address CAspl signal may not have a phase adjustment, and the signal CASP2 is also referred to as a phase adjusted command/address signal ca). The phase adjusted command/address signal CASP2 is sent to the register 2〇4, and the information represented by the phase adjusted command/address signal CASP2 is stored in the temporary memory 204 as a CAS. The phase adjusted command/address signal CASP2 is provided to the memory device 3 via the command/address bus. The phase-adjusted command/address signal CASP2 is provided to the memory device 30 in conjunction with the clock signal CK. The register 204 stores the information of the phase adjusted command/address signal CAsp2 as the transmitted command/address information CAS. The comparator 206 compares the transmitted command/address information cAs stored in the register 204 with the received command/address calibration information CAr output from the input/output unit 210 (as described herein) The body device 30 receives and sends back to the memory controller 2). The comparator 204 compares the information CAS with the information CAr to generate a pass or fail signal P or F. The phase/timing controller 2〇8 generates a control signal CTRL indicating a phase shift of one of the initial command/address signals c1 based on the pass or fail information P or F generated by the comparator 206. The control signal CTRL is supplied to the CA transmitter 2〇3, and the initial command/address signal Ά phase or timing is adjusted to produce a phase-adjusted command/address signal CAsp2. In a normal operation mode, the data input/output unit 210 receives the read data transmitted from the memory device 3G through the DQ bus 13 or transmits the write to the memory device through the DQ bus 13 Enter the data W a Datal. In addition, in the command/address (CA) calibration mode, the data input / I63456.doc -25 - 201246211 output unit 210 can be received through the DQ bus 13 corresponding to the memory device 3 received from the memory controller 20 The phase-adjusted command/address signal CASP2 command/address calibration information CAr » command/address calibration information 『8 can be sent by the memory device 30 to the phase-adjusted command/address signal casp2 to The memory device 30 then latches the information in response to the clock CK (eg, in the case of a rising edge and/or a falling edge of the clock signal CK). When the timing of CK is such that the phase-adjusted command/address k number CAsp2 is properly interpreted (or latched), the CAr can be the same information as the CAS, or when the memory device 30 incorrectly interprets the The CAr can be different from the CAS when the phase adjustment command/address signal cAsp2. The data input/output unit 21 outputs the command/address signal information CAr to the comparator 206. Input/output unit 210 can include an input buffer 212, a selection unit 214, and an output buffer 216. Input buffer 212 and output buffer 216 may include latches and/or amplifiers to latch and/or amplify the received signals, respectively. The input buffer 212 is coupled to receive data and command/address calibration information cAr transmitted through the Dq bus 13 from the hidden device 30. The selecting unit 214 transmits the data received by the input buffer 212 as the read data R_DaU1 to the internal circuit block (not shown) of the memory controller 20 in response to a first selection signal SEU in the normal operation mode, and The command/address calibration information CAr received by the input buffer 212 is transmitted to the comparator 2〇6 in response to the first selection signal being smeared in the CA calibration mode. Selection unit 214 can be a multiplexer. The input buffer 212 can correctly interpret the command/address calibration information CAr. The DQ bus 13 has been calibrated in a DQ calibration mode prior to the CA calibration mode and/or the command/address calibration information CAr is at 163456.doc • 26 - 201246211 The bus 13 is transmitted to the input buffer 212 at a slower rate to ensure that the information on the DQ bus 13 is latched at the correct window (for example, when the command/address calibration is doubled) At rate (DDR), the slower transfer rate is at - Single Data Rate (SDR). In this example, the command/address calibration information CAr received on the Dq bus 13 is the same as the command/address calibration information CAr transmitted from the data input/output unit 2 to the CA comparator 206. The output buffer 216 transmits the write data W_Data1 to be written to the memory device 3 through the DQ bus 13. The memory device 30 includes a clock buffer 3, a command/address receiver 304 (which will hereinafter be referred to as a ca receiver 304), and a data input/output unit 310. The clock buffer 3〇2 receives the clock signal CK transmitted through the clock signal line u to generate an internal clock signal ICK^ transmits the command/address bus. 12. The phase-adjusted command/address signal CAsp2 is transmitted. To the memory device 30. The CA receiver 304 generates command/address calibration information CAr in response to the internal clock signal ick, which may occur when enabled by a wafer select signal /CS and a clock enable signal CKE. The chip select signal /cs clock enable signal CKE may be provided separately from the command/address signal line 12, as in FIG. 5 or may be carried on the command/address signal line 12 for transmission to the memory 30, unlike Shown in Figure 5. The clock enable signal CKE can be used as a pseudo command that acts as a read command for one of the phase adjusted commands/address signals CAsp2 transmitted through the command/address bus 12 in the CA calibration mode. The CA receiver 304 is based on one of the ICKs received when the clock enable signal CKE is in an active state and is enabled when the memory device 3 is enabled by the chip select signal /CS (eg 163456.doc • 27-201246211 as rising edge) And/or falling edge) the phase-adjusted command/address signal casp2 is latched to generate command/address calibration information CA to provide command/address calibration information to the data input/output unit 31. The data input/output unit 310 is connected to receive command/address calibration information CAr and an internal circuit block from the memory device 3 (for example, a data read path connected to one of the memory arrays storing the read data R_Data2) The circuit (not shown) transmits the read resource #R_Data2, and transmits the received read data R_Data2 to the DQ bus 13 in response to a second selection signal SEL2 in the __ normal read mode of operation. In a calibration mode, the second command/address signal (5) is transmitted to the calling bank 13 in response to the selection signal SEL2. In a normal write mode, the data input/output unit receives the write data 1 to be written to the memory device 3 through the DQ bus 13 and transmits the received write data W_Data1 to the memory device 3〇. Internal circuit block. The data input/output unit 310 includes a selection unit 312, an output buffer 314, and an input buffer 316. According to the normal operation mode or the calibration mode, the selection unit 312 selects the second command/address signal CA2 output from the command/address receiver 3〇4 and the internal circuit area from the memory device 3〇 in response to the second selection signal SEL2. The block provides one of the readings #R_Data2 and transmits the selected signal or data to the output buffer 314. The selection unit 312 can be a multiplexer. The output buffer 314 transmits the command/address calibration information CAr or the read data R_Data2 output from the selection unit 312 to the DQ bus 13. The input buffer 3 16 receives the data transmitted through the DQ bus 13 and transmits the received data as the write data W-Data2 to the internal circuit area of the memory device 3 163456.doc • 28· 201246211. For example, the write data W-Data2 can be transferred to a memory array via a data write path circuit for writing to the memory array. The data write path circuit and the data read path circuit can share the circuit. In the present embodiment, the command/address alignment information cAr output from the output buffer 314 of the memory device 3A is supplied to the memory controller 20 through the DQ bus 13 . In addition, the command/address calibration information CAr output from the output buffer 314 of the memory device 30 can be supplied to the memory controller 2 via a data strobe (DqS) line and a Dq bus 13. The data input/output unit 210 of the memory controller 2 and the data input/output unit 310 of the memory device 30 can be connected to each other through the DQS line and the DQ bus 13. The CA calibration in the memory system 10 can be performed as follows. The CA transmitter 203 of the memory controller 20 generates the command/address signal CASP2 by adjusting the phase or timing of the initial command/address signal CAspi in response to the control signal CTRL of the phase/timing controller 2〇8. The control signal CTRL can also have a value that maintains the phase of the command/address signal as previously described. The CA device 304 of the memory device 3 receives the phase-adjusted command/address signal CASf&gt;2 according to one of the internal clock signals ICK and when enabled by the clock enable signal CKE to generate a command/address Calibration information CAf. The command/address calibration information CAr of the memory device 30 is transmitted to the DQ bus 13 in response to the second selection signal SEL2. The value of one of the phase adjusted command/address signal CAsp2 transmitted from the memory controller 20 and the command/bit interpreted (eg, latched) by the delta memory device 30 prior to the calibration command/address signal Address calibration information 之一, one value can be, for example, due to noise generated during signal transmission and/or signal transmission timing change between clock CK and signal transmitted by CA bus 12 163456.doc • 29- 201246211 Can be different from each other. The calibration command/address signal solves this problem. In the command/address calibration mode, the memory controller 20 transmits the command/address calibration information CAr received via the DQ bus 13 to the comparator 2〇6 in response to the first selection signal SEL1. If the Dq bus 13 is calibrated in the DQ calibration mode prior to the CA calibration mode, the memory controller incorrectly interprets the command 7 address calibration information (eg, interpreted by the input buffer 212). small. The comparator 2〇6 compares one value of the command/address signal CASP2 transmitted from the memory controller 2 to the memory device 30 and stored in the register 2〇4 with the command/bit received by the memory controller. The address calibration information CAr has a value, and when the two values are identical to each other, a pass signal p is generated and a failure signal F is generated when the two values are different. The phase/timing controller 208 generates a command/address signal indicating the initial command/address signal (: one of the new phase shifts of the gossip (to obtain a new phase adjustment with one of the new relative phase differences from the clock CK) The control signal CTRL of CASP2) repeats the process for a new initial command/address signal cAsy having a different relative phase with respect to the clock CK. Multiple cycles in this process (each cycle has a CA transmitter 203 After the initial command/address signal CAspi has a different phase shift), the controller analyzes the group of P and failed F signals to determine the best operation of the CA彳§ line (or several lines or hidden rows). Relative phase. Although not shown in FIG. 5, the control signal CTR1 can be transmitted to the clock generator 2〇1 to adjust the timing or phase of the clock signal CK to adjust the relative phase of the command/address signal and the clock signal CK. By repeating the previous CA calibration, the phase/timing controller 208 of the memory controller 20 determines that the command/address signal is input (eg, latched) by 163456.doc -30-201246211 to the command/bit Address signal CA window The optimum timing of the intermediate portion (eg, through the middle of the P position) and a command/address signal CA is generated such that the middle of the command/address signal CA window corresponds to the input of the memory device 30 (which corresponds to On the edge of the clock signal CK, and the optimal relative phase between the command/address signal 〇8 and the clock ck is supplied to the memory device 3 with the generated command/address signal 八八脉脉 CK. Therefore, 'when the timing of the input (for example, latch) of the command/address signal corresponds to the edge of the clock signal CK received by the memory device 3', the memory device 30 receives the intermediate corresponding to a valid window thereof. The command/address signal c A at the rising and falling edges of the clock signal CK (strictly speaking) the rising and falling edges of the clock heart numbers CK and CKB. Although the command/address bus 12 has been explained Calibration of a single command/address signal on a single line, but this calibration can be performed for multiple or all command/address bus bars as previously described. Figure 6 is a diagram illustrating an example command/address calibration method One of the diagrams. Figure 6 is used to illustrate A timing diagram of one of the command/address calibration methods implemented in the memory system, wherein the data structure DQ of the memory device 30 is x32 (the DQ bus is connected to 32 of the memory device 3) Dq terminals (for example, pads, bumps, etc.) and 32 memory ports of the memory controller 2 (composed of 32 DQ signal lines of the ^ terminal). Referring to FIG. 6 with reference to FIG. 6, the memory controller 2 is generated for use. The clock signal CK of the memory device 3. The memory controller 2 sends an incoming command/address calibration mode command to the memory device 3, and the memory control (4) transmits the incoming command through the command/address bus 12 / Address calibration mode command. Enter p 7 address; k-mode command can be used - mode register setting 163456.doc • 31- 201246211 Command format One of the program memory devices mode register is input to indicate a command / address calibration mode . The memory device 30 can enter the command/address calibration mode in response to the mode register setting information in response to the command/address calibration mode indication. The memory controller 20 can transmit a command/address end signal via the command/address bus. The command/address end signal can be entered using one of the MRS commands that indicate self-calibration mode exit. At time t, the command/address alignment start signal is received at the memory device via the command/address bus 12 together with the activation of one of the wafer select signals /CS logic low level. A rising edge of one of the clock signals CK received by the memory device 20 triggers a latch into the command/address calibration mode command. For example, a first mode register command (MRW#41) is transmitted as an entry command/address calibration mode command. When a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#41 command may include a command to indicate that the command is a mode register setting command. The address signal CA[3:0] and the command/address signal CA[9:4] for instructing the mode register setting command to enter one of the command/address calibration modes. In this example, the MRW#41 command is input at both the rising and falling edges of the clock signal CK; in Figure 6, the MRW#41 command is first responded to the rising edge of the clock CK at time t〇. The memory device is latched and is secondarily latched by the memory device 30 in response to the subsequent lapse of the clock CK. That is, the same MRW #41 command is input at the rising edge and the falling edge of the clock signal CK corresponding to the start at the time tG of the clock signal CK. That is, since an MRS command is input at a double data rate (DDR) through a command/address signal line, an error can be generated to have a high operating frequency of -32-163456.doc 201246211 one S The memory device missed the]y[RS command. In addition, a different command can be erroneously interpreted as an incoming command/address calibration mode command. To reduce the error

誤可此性’在對應於時脈信號CK之時間tQ之時脈信號CK 之上升沿及下降沿處輸入同一 MRW#41命令《亦即,由於 在時脈信號CK之上升沿及下降沿處輸入同一命令/位址信 號’因此可獲得與以一單倍資料速率(SDR)傳輸類似之一 結果’且可減小尤其在尚未校準命令/位址信號線時所導 致的進入校準模式之一失敗(或,至校準模式之一非有意 進入)。 在自首先輸入MRW#41命令時之時間t〇延遲一預定時間 之後’與晶片選擇信號/CS之邏輯低態位準之啟動一起啟 動時脈啟用信號CKE(在圖6中在位址/命令校準期間在一邏 輯低態位準下係-有效)。在時間tl處,命令/位址信號CAxR 係由記憶體控制器20發送且由記憶體裝置30接收,隨後跟 隨在下半個時脈週期(此處時脈CK之緊接著隨後沿)傳輸及 接收CAxF。命令/位址信號cAxR及CAxF係透過命令/位址 匯流排12自記憶體控制器2〇傳輸至記憶體裝置3〇。時間 tMRW可係一模式暫存器設定寫入循環時間以提供充分時 間使記憶體裝置30將指示資料寫入至記憶體裝置3〇之模式 暫存器設定。 在此實例中’命令/位址信號CAxR構成在時脈信號CK之 上升沿處輸入之在命令/位址匯流排12之所有線上傳輸之 複數個信號,且命令/位址信號CAxF構成在時脈信號CK之 下降沿處輸入之在命令/位址匯流排12之所有線上傳輸之 163456.doc 33· 201246211 複數個信號。該對C AxR及C AxF可構成一命令/位址測試型 樣信號,該命令/位址測試型樣信號在命令/位址校準期間 傳輸至記憶體裝置以判定該記憶體裝置是否適當地解譯由 該測試型樣信號表示之資訊。在圖6之實例中,測試型樣 (針對每一相對相位序列發送)包括命令/位址匯流排丨2之每 一命令/位址信號線之含兩個位元之一序列(命令/位址校準 信號之兩個邏輯窗)。然而,測試型樣可包括含兩個以上 位元之一序列,或可包括一個位元(關於圖4A及圖4B之閣 述可暗指經相位調整之命令/位址信號CAsp2之傳輸中之— 一個位元測試型樣,然而,經相位調整之命令/位址信號 CAsp2可係經由命令/位址匯流排12之線中之每一者(或某此 者)發送的一含一個位元、兩個位元或兩個以上位元之序 列)。透過命令/位址匯流排12輸入至記憶體裝置3〇之命令/ 位址信號CAxR及命令/位址信號CAxF可係表示不同位元組 之不同信號。舉例而言,當命令/位址匯流排12係由1〇個 位兀之命令/位址信號CA[9:〇]組成時,可將1〇個位元之命 令/位址信號CAxR及10個位元之命令/位址信號CAxF區分 為不同信號。因此,可透過與10個位元之命令/位址匯流 排12連接之記憶體裝置3〇之命令/位址 焊料凸塊等)(未展示)將洲Μ之命令2 =準= CA[9:〇]輸入至記憶體裝置3〇β記憶體裝置%可以由時脈 CK之沿判定之一時序(例如,同時或在時⑽之適宜觸發 沿之前或之後之_預定或固定時間處)輸人(例如,鎖存)命 令/位址校準信號。記憶體裝置3〇可將所輸入命令校準, 163456.doc • 34 - 201246211 號(如由記憶體裝置所解譯-其可被正確地解釋或不正確地 解釋)傳輸至記憶體控制器30,如上文(舉例而言)關於圖 4A、圖4B及/或圖5所述。 由於要求記憶體裝置30具有大容量,因此整合程度及記 憶體胞之數目增加。隨著記憶體胞之數目增加,用於尋址 記憶體胞之位址位元之數目亦增加。位址接針之數目之增 加導致晶片大小之增加。因此,需要一種用於抑制大多數 在一記憶體晶片中所需之位址接針之數目之增加的方法。 由於在此實例中,在一時脈信號之上升沿及下降沿兩者處 輸入命令/位址信號,因此可減小記憶體裝置30之命令/位 址接針之數目。 在此實例中,在命令/位址匯流排之校準模式期間,不 能透過命令/位址信號線自記憶體控制器20傳輸一讀取命 令。因此,在命令/位址信號匯流排之校準模式中,時脈 啟用信號CKE充當命令/位址信號CAxR及CAxF之一讀取命 令。當在一邏輯低態位準下啟動時脈啟用信號CKE時,以 由時脈CK之沿判定之一時序輸入命令/位址信號CAxR及 CAxF,且透過資料匯流排DQ13將其結果輸出至記憶體控 制器20。因此,時脈啟用信號CKE用作一偽命令且使得記 憶體裝置能夠輸入命令/位址校準測試型樣(例如,信號 CAxR及CAxF)。在關於圖5所闡述之實施例中自記憶體控 制器20傳輸之經相位調整之命令/位址信號CAsp2對應於圖6 中之命令/位址信號CAxR或CAxF . . . CAyR及CAyF(在後 文中,總稱為CAnR及CAnF)之值。每一 CAnR及CAnF對對 163456.doc -35- 201246211 應於一經相位調整之命令/位址信號CAsp2之一傳輸之一循 環,每一循環傳輸與先前CAnR及CAnF信號相比相對於時 脈CK具有一新相對相位差之命令/位址信號cAnR及CAnF 信號對。為使解釋簡易,在圖6中未展示每一 CAnR及 CAnF信號對之經調整相位差(參見圖4A及圖4B以及相關闡 述)。因此’可經由命令/位址匯流排與一時脈信號一起發 送n(n為等於2或更大之一整數)個測試命令/位址測試型樣 信號(例如,η個CAnR及CAnF信號對),其中η個測試型樣 信號中之每一者係以相對於時脈信號之一各別不同第1至 第η個相位發送。 在自於彼時啟動時脈啟用信號CKE之時脈信號CK之時間 ti延遲時間tADR之時間η處,透過DQ匯流排13在命令/位 址信號CAxR或CAxF中將在由記憶體裝置30解譯(例如,鎖 存)時由記憶體裝置3 0輸入之命令/位址校準測試型樣caxR 及CAxF之值(對應於命令/位址校準資訊CAr)自記憶體裝置 30輸出至記憶體控制器20。時間tADR可係預定的,且基 於記憶體裝置之操作之一已知時序。(注意在圖6中,圖解 說明與表示時間h之虛線垂直對準之CK、CA、CS及CKE 之時序之時序圖之部分在比此等時序中由戴斷符號表示之 時間h晚之一時間處。)如圖6中所展示,在期間發生時脈 C K之複數個時脈沿之一時間段内在D q匯流排丨3之偶數D q 線(DQ0、DQ2等)上輸出由時脈CK之上升沿觸發之由記憶 體裝置30輸入之命令/位址信號CAxR之值(例如,與CAxR 相關聯之命令/位址校準資訊)。在此例項中,輪出至記情 •36- 163456.doc is 201246211 體控制器20之命令/位址校準資訊之時間可發生在時脈ck 之複數個週期内。如圖6所展示,在與由記憶體裝置扣輸 入之命令/位址信號CAxR之值相同之時間且以與其相同之 方式在DQ匯流排13上輸出由記憶體裝置輸入之命令/位址 信號CAxF之值(例如,與CAxF相關聯之命令/位址校準資 訊),除了命令/位址信號CAxF之值係在〇卩匯流排13之奇 數DQ線上輸出外。當自一自上至下視角觀看時,dq匯流 排線可(但不需要)實質上沿相同方向伸展於記憶體裝置3〇 與控制器20之間’且自編號,其中州係dq匯流排 之匯流排線之數目》 若時脈CK與位址/命令校準測試型樣信號CAxR&amp; cAxF 之相對相位觸發在正確邏輯窗處輸入(例如,鎖存)位址/命 令校準測試型樣信號,則記憶體裝置應正確 地解#該校準測試型樣信號。在此例項中,記憶體控制器 2〇將判定一通過p(針對時脈CK與位置/命令校準測試型樣 信號CAxR及CAxF測試型樣信號之相對相位)^若與 R及CAxF號之相對相位導致對由位址/命令校準測試 型樣彳5號CAxR及CAxF所表示之資訊之不正確解譯,則記 憶體控制器20將判定一失敗f。 可以夕種方式設定DQ墊與用於透過dq線將由記憶體裝 置30接收之第二命令/位址信號CA2之值傳輸至記憶體控制 器20之經校準命令/位址信號CAxR及CAxF之間的映射。映 射之一實例展示於圖8中,其中可將由記憶體裝置3〇在時 4號CK之上升沿處輸入之命令/位置信號c AxR(位元 163456.doc •37- 201246211 CA0至CA9)之值輸出至記憶體裝置30 dq墊Dq[9:〇],且可 將由記憶體裝置30在時脈信號Ck之下降沿處輸入之命令/ 位址信號CAxF之值輸出至記憶體裝置dq墊dq[19:1〇;^映 射之另一實例展示於圖9中,其中可將在時脈信號CK之上 升沿處輸入之命令/位址信號CAxR當中之一命令/位址信號 CA9之一值輸出至記憶體裝置3〇之一 DQS墊DQS0,且可將 命令/位址信號CA[8:0]之值輸出至記憶體裝置3〇 Dq塾Dq [8:0]。可將在時脈信號CK之下降沿處輸入之命令/位址信 號CAxF當中之命令/位址信號CA9之一值輸出至記憶體裝 置之一DQS墊DQS1且可將命令/位址信號CA[8:0]之值輸出 至記憶體裝置DQ墊DQ[17:9]。 在記憶體控制器20處,更改時脈CK與發送至記憶體裝 置30之經相位調整之命令/位址信號(例如,cAyR及CAyF) 之間的相對相位,且實施命令/位址校準之一新循環。如 圖ό中所展示,其係在命令/位址匯流排12上將命令/位置校 準信號CAyR(在時間u處)及CAyF(在CK之緊接著後續時脈 沿處)傳輸至記憶體裝置30,且由記憶體裝置30以類似於 上文關於C AxR及C AxF所闡述之一方式將由該記憶體裝置 解譯之值發送至記憶體控制器20之一中間循環之一實例, 且因此此處一重複闡述係不必要的。 剛好在時間之前’與晶片選擇信號/CS之邏輯低態位準 之啟動一起’去啟動時脈啟用信號CKE。此可發生在當命 令/位址校準信號CAnR及CAnF(在命令/位址校準工作階段 内自記憶體裝置30傳輸至控制器20之η個命令/位址校準資 163456.doc • 38 - 201246211 訊組中之最後一個組)透過命令/位址匯流排12自記憶體控 制器20傳輸至記憶體裝置30之時。命令/位址校準資訊 CAnR及CAnF可以與命令/位址校準資訊CAxR及CAxF之傳 輸相同之方式傳輸。 在一時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟 動一起,透過命令/位址匯流排12傳輸結束命令/位址校準 模式命令。(注意,圖6中針對偶數DQ及奇數DQ圖解說明 之與時間15垂直對準之時序發生在時間15之前 參見偶數 DQ及奇數DQ時序中之截斷記號。)舉例而言,傳輸一第二 模式暫存器(MRW#42)命令作為結束命令/位址校準模式命 令。若在命令/位址匯流排12上載送1 0個位元之命令/位址 信號CA[9:0],則MRW#42命令可包括用以將該命令識別為 一模式暫存器設定命令之命令/位址信號CA[3:0]及用以將 該模式暫存器設定命令識別為一結束命令/位址校準模式 命令之命令/位址信號CA[9:4]。 在對應於時間t5之時脈信號CK之上升沿及下降沿兩者處 輸入MRW#42命令。亦即,在時間t5處之時脈信號CK之上 升沿及時脈信號CK之緊接著後續下降沿兩者處輸入相同 MRW#42命令兩次。當使用在一 DDR下之命令信號輸入一 MRS命令時,可產生一錯誤以使得具有一高操作頻率之一 記憶體裝置錯過該MRS命令。為減小此錯誤之機會,在時 脈信號CK之上升沿及下降沿處輸入相同MRW#42命令兩 次。 存在使記憶體裝置判定何時鎖存退出命令/位址校準模 163456.doc -39- 201246211 式命令(此處,為MRW#42)之眾多方式。在一項實施方案 中,記憶體裝置可經組態以在關於時脈啟用信號CKE自低 態有效至高態之轉變具有一預定關係(例如,時序)之時脈 信號CK之沿處鎖存在CA匯流排12上提供之資訊。舉例而 言,如圖6中所展示,記憶體裝置可經組態以在緊接著時 脈啟用信號CKE自低態有效至高態之轉變之時脈CK之兩個 沿處鎖存在CA匯流排12上提供之資訊。當CKE係高時,記 憶體裝置30將命令位址匯流排CA 12上之資訊視為一命令 (欲(例如)由記憶體裝置30之一命令解碼器處理)而非一校 準測試型樣。亦應注意,可僅在某些操作期間將時脈啟用 信號CKE認為係低態有效,例如僅在CA校準模式期間,且 在其他時間,將其解譯為一高態有效信號。 在自在彼時輸入MRW#42命令之時間t5延遲一預定時間 tMRZ之後,終止命令/位址信號CAnR及CAnF至記憶體裝 置DQ墊之輸出。自在彼時輸入MRW#41命令(其係命令/位 址校準開始信號)之時脈信號CK之時間至在彼時輸入 MRW#42命令之時脈信號CK之時間t5之一段時期加上時間 tMRZ可係CA校準週期。 圖7係用於闡述一實例性模式暫存器命令設定方法之一 真值圖。 參考圖7,可藉由時脈啟用信號CKE、晶片選擇信號/CS 以及命令/位址信號CA[9:0]設定MRW#41命令及MRW#42命 令。當時脈啟用信號CKE在一邏輯高態(H)位準下,晶片 選擇信號/CS在一邏輯低態(L)位準下,命令/位址信號 163456.doc -40· 201246211 CA[3:0]在一邏輯低態(L)位準下且命令/位址信號CA[9:4] 在邏輯位準H-L-H-L-L-H下時,MRW#41命令可用以設定 記憶體裝置30之MRS暫存器(例如,寫入至MRS暫存器)。 亦即,MRW#41命令可包括命令/位址信號CA[9:0] 29H。 可在時脈信號CK之上升沿及下降沿兩者處在命令/位址匯 流排12上將相同MRW#41命令發送至記憶體裝置。記憶體 裝置30可經組態以在當由記憶體裝置30輸入時適當地解譯 發送至記憶體裝置30之兩個MRW#4 1命令中之至少一者時 將模式暫存器設定成指示記憶體裝置30在一命令/位址校 準命令中。(注意,將兩個MRW#41命令發送至記憶體裝置 30可包括維持在命令/位址匯流排上發送之命令而不對命 令/位址信號之兩個邏輯窗進行更改-該兩個邏輯窗可包括 -時脈CK之一完_整時脈週斯。) 當時脈啟用信號CKE在一邏輯高態位準下、晶片選擇信 號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在一邏 輯低態位準下,且命令/位址信號CA[9:4]在邏輯位準H-L-H-L-H-L下時,MRW#42命令可用以設定記憶體裝置30之 MRS暫存器。亦即,MRW#42命令可包括命令/位址信號 CA[9:0] 2AH。可在時脈信號CK之上升沿及下降沿兩者處 在命令/位址匯流排12上將相同MRW#42命令發送至記憶體 裝置兩次。本文中,可將命令/位址信號CA[9:4]用作模式 暫存器設定位址MA[5:0]。 圖8係根據一實施例展示用於闡述命令/位址信號與DQ墊 之間的映射之一實例之一圖式。由於在當前實施例中,在 163456.doc 201246211 時脈信號ck之上升沿及下降沿兩者處輸入命令/位址仏號 CA[9:0],因此命令/位址信號CA[9:0]可由20個位元組成 就此而言,記憶體裝置30之資料DQ之位元組織係且2 此,DQ墊之數目係32。DQ墊之數目大於命令/位址信號之 數目,以使得DQ墊町一對一地對應於命令/位址仏號 &gt; 參考圖8,在時脈信號CK之上升沿處輸入之命7 ^ 號CA[9:0]之值可經映射以輸出至DQ墊DQ[9:〇]。在時脈仏 號ck之下降沿處輸入之命令/位址信號CA[t〇]之值玎紅映 ii4r jti 射以輸出至E)Q墊〇Q[19:1〇]。舉例而言,在圖6中, 對應於時間t!之時脈信號CK之上升沿處輸入之命7 Μ 信號CAxR之值輸出至DQ墊DQ[9:0],且將在對應於時間11 之時脈信號CK之下降沿處輸入之命令/位址信號cAxF之 輸出至DQ墊DQ[19:10]。將在對應於時間U之時脈彳&amp;號CK 之上升沿處輸入之命令/位址信號CAxR之值輸出直DQ&amp; DQ[9:0],且將在對應於時間t4之時脈信號CK之下降/σ 輸入之命令/位址信號CAxF之值輸出至DQ墊DQ[19:1G] ° 圖9係根據另一實施例展示用於闡述命令/位址信號與DQ 及DQS墊之間的映射之另一實例之一圖式》 參考圖9,在時脈信號CK之上升沿處輸入至記憶體裝置 30之命令/位址信號CA[9:0](例如,CAxR)之值可經映射以 輸出至DQS墊DQS0及DQS1以及偶數DQ墊DQ[0、2、4、 6、8、10、12及14]。亦即,將命令/位址信號CA9之輸入 值輸出至DQS墊DQS1,將命令/位址信號CA4之輸入值輸 出至DQS0 ’將命令/位址信號CA[3:0]之輸入值分別輸出至 1634S6.doc • 42· 201246211 DQ墊DQ[6、4、2、〇]且將命令/位址信號CA[8:5]2輸入值 分別輸出至DQ墊DQ[14、12、10、8J。 在時脈信號C K之下降沿處輸入至記憶體裝置3 〇之命令/ 位址信號CA[9:0](例如,CAxF)之值可經映射以輸出至 DQS墊/DQS0及/DQS1以及DQ墊DQ[17:9]。亦即,可將命 令/位址信號CA9之輸入值輸出至DQS墊/DQS1,可將ca4 之輸入值輸出至DQS墊/DQS0,可將命令/位址信號 CA[3:0]之輸入值分別輸出至DQ墊DQ[7、5、3、1]且將命 7 /位址仏號CA[8:5]之輸入值分別輸出至Dq墊Dq[15、 13、11 及9]。 圖10係用於闡述根據另一實施例之一命令/位址校準方 法之一圖式。 圖10係用於闡述記憶體裝置30.中之一命令/位址校準方 法之一時序圖,其中記憶體裝置3〇之資料dq之位元組織 係 x32。 結合圖5參考圖10,記憶體控制器2〇產生用於記憶體裝 置3 0之時脈彳5號ck »§己憶體控制器2〇透過命令/位址匯流 排12發出一進入命令/位址校準模式命令(或指令)至記憶體 裝置30。進入命令/位址校準模式命令可係使用本文中關 於其他實施例所闡述之MRS命令之特例來輸入。記憶體控 制器20透過命令/位址匯流排12傳輸退出命令/位址校準模 式命令(或指令)。退出命令/位址校準模式命令可係使用本 文中關於其他實施例所闡述之MRS命令之特例來輸入。 在時脈信號CK之時間t〇處’與晶片選擇信號/cs之一邏 163456.doc •43· 201246211 輯低態位準之啟動一起,透過命令/位址匯流排12傳輸係 進入命令/位址校準命令之MRW#41命令。舉例而言,在於 時間t〇處開始之時脈信號CK之上升沿及下降沿兩者處輸入 MRW#41命令。亦即,可在於時間t〇處開始之時脈信號CK 之上升沿及下降沿處輸入相同MRW#41命令。 在自於彼時輸入MRW#41命令之時脈信號CK之tQ延遲時 間tMRW之後之時間q處,與晶片選擇信號/CS之邏輯低態 位準之啟動一起,針對時脈信號CK之一個循環以一預定 脈寬啟動時脈啟用信號CKE,且透過命令/位址匯流排12按 序傳輸命令/位址信號CAxR及CAxF。 在於時間t!處之時脈信號CK之上升沿處輸入命令/位址 信號CAxR,且在時脈信號CK之下降沿處(在時間ti之後之 時脈CK之緊接著後續下降沿處)輸入命令/位址信號 C AxF。透過命令/位址匯流排12輸入之命令/位址信號 CAxR及命令/位址信號CAxF可係表示不同資訊(例如,不 同測試型樣資訊)之不同信號。 在校準模式中,時脈啟用信號CKE充當對應於圖5中由 記憶體裝置30接收之第二命令/位址信號CA2之值之命令/ 位址信號CAxR及CAxF之一讀取命令。在命令/位址校準模 式期間(且當晶片選擇/CS係有效(邏輯低態)時),記憶體裝 置將在一邏輯低態位準下之時脈啟用信號CKE之一啟動解 譯為在時脈信號CK之後續沿處輸入命令/位址信號匯流排 上之信號之一指令,且因此,例如,如圖10中所展示,輸 入由記憶體裝置30接收之命令/位址信號CAxR或CAxF之 163456.doc .44- 201246211 值。 在自時間h延遲時間tADR之時間t3處開始’將命令/位址 信號CAxR及CAxF之值(由記憶體裝置所解譯/輸入)輸出至 DQ墊。在時間t3處,將輸入命令/位址信號CAxR輸出至偶 數DQ墊,且在時脈CK之緊接著後續時脈沿期間,將輪入 命令/位址信號CAxF輸出至奇數DQ塾。 可以各種方式設定命令/位址信號CAxR及CAxF與DQ墊 之間的映射。於圖11中圖解說明一映射實例,其中可將在 時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸 出之偶數DQ墊DQ[2n],其中η係0至9,且可將在時脈信號 CK之下降沿處輸入之命令/位址信號CAxF之值輸出至奇數 DQ塾DQ[2n+l],其中η係0至9。 作為另一映射實例,可將對在時脈信號CK之上升沿處 輸入之命令/位址信號CAxR當中之命令/位址信號CA[3:0] 之校準之結果輸出至偶數DQ墊DQ[2n],其中η係0至3,可 將一命令/位址信號CA4之一值輸出至DQS墊DQS0,可將 命令/位址信號CA[8:5]之值輸出至偶數DQ墊DQ[2n],其中 η係4至7,且可將命令/位址信號CA9之一值輸出至DQS墊 DQS 1。可將在時脈信號CK之下降沿處輸入之命令/位址信 號CAxF當中之命令/位址信號CA[3:0]之值輸出至奇數DQ 墊DQ[2n+l],其中η係0至3,可將命令/位址信號CA4之一 值輸出至DQS墊/DQSO,可將命令/位址信號CA[8:5]之值 輸出至奇數DQ墊DQ[2n+l],其中η係4至7,且可將命令/ 位址信號CA9之一值輸出至DQS墊/DQS1。 163456.doc •45· 201246211 在時間t4處,與晶片選擇信號/cs之邏輯低態位準之啟動 一起,針對時脈信號CK之一個循環以預定脈寬啟動時脈 啟用信號CKE,且由記憶體裝置30輸入透過命令/位址匯流 排12傳輸之命令/位址信號CAyR及CAyF。 在於時間t4處之時脈信號CK之上升沿處輸入命令/位址 信號CAyR,且在時脈信號CK之下降沿處(在時間t4之後之 時脈CK之緊接著後續時脈沿處)輸入命令/位址信號 CAyF。透過命令/位址匯流排12輸入之命令/位址信號 CAyR及命令/位址信號CAyF可係不同信號(例如,測試型 樣之不同位元組)。 在校準模式中,時脈啟用信號CKE充當命令/位址信號 CAyR及CAyF之一讀取命令,且因此,當時脈啟用信號 CKE在一邏輯低態位準下啟動時,將由記憶體裝置30接收 之命令/位址信號CAyR及CAyF之值輸出至偶數DQ墊且以 回應於時脈CK之一時序由記憶體裝置30輸入奇數DQ墊。 在自時脈信號CK之時間t4延遲預定時間tADR之後,將 命令/位址信號CAyR及CAyF(如在時間t4處開始由記憶體裝 置作為輸入)之值輸出至DQ墊。亦即,將由記憶體裝置30 作為輸入之命令/位址信號CAyR輸出至偶數DQ墊且將由記 憶體裝置30作為輸入之命令/位址信號CAyF輸出至奇數DQ 塾0 當記憶體裝置30將命令/位址信號CAyR及CAyF傳輸至記 憶體控制器20時,可以各種方式設定與DQ墊之映射。作 為一映射實例,可將在時脈信號CK之上升沿處輸入之命 163456.doc -46- 201246211 令/位址信號CAyR之值輸出至偶數Dq墊DQ[2n],其中η係0 至9,且可將在時脈信號CK之下降沿處輸入之命令/位址信 號CAyF之值輸出至奇數DQ墊DQ[2n+l],其中η係0至9。 作為另一映射實例,可將在時脈信號CK之上升沿處輸 入之命令/位址信號CAyR當中之命令/位址信號CA[3:0]之 值輸出至偶數DQ墊DQ[2n],其中n係〇至3,可將一命令/ 位址信號CA4之一值輸出至DQS墊DQS0,可將命令/位址 信號CA[8:5]之值輸出至偶數DQ墊DQ[2n],其中11係4至 7,且可將命令/位址信號CA9之一值輸出至DQS墊DQS1。 可將在時脈信號CK之下降沿處輸入之命令/位址信號CAyF 當中之命令/位址信號CA[3:0]之值輸出至奇數DQ墊 DQ[2n+l],其中η係0至3,可將命令/位址信號CA4之一值 輸出至DQS墊/DQS0,·可將命令/位址信號CA[8:5]之值輸 出至奇數DQ墊DQ[2n+l],其中η係4至7,且可將命令/位 址信號CA9之一值輸出至DQS墊/DQS1。 在時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟動 一起,透過命令/位址匯流排12傳輸係一退出命令/位址校 準模式命令之MRW#42命令。在此實例中,在對應於時間 t5之時脈信號CK之上升沿及下降沿兩者處輸入MRW#42命 令。亦即,在對應於時間t5之時脈信號CK之上升沿及下降 沿處輸入相同MRW#42命令。 存在眾多方法使記憶體裝置30將命令/位址匯流排12上 之信號辨識為一命令(而非針對一新循環之另一組測試型 樣校準資訊)。舉例而言,可存在於其後記憶體裝置30預 163456.doc -47- 201246211 期接收《Ρ令的發送至該記憶體裝置之測試型樣資訊之預 疋數目個韻,記憶體裝置3G可計數測試型樣資訊之循環 之數目且當該計數達到預定數目(或例如,前—個計數或 後個-十數)時,預期接收―命令。另_選擇4 裝置30可監視經由命令/位址匯流排12輸人之所有資訊(例 如,監視命令/位址校準資訊CAr)以伯測一預定程式碼(例 如,一命令碼),且當偵測到預定程式碼時(及/或將預定程 式碼辨識為退出命令/位址校準命令碼)退出該校準模式, 或否則將輸人資訊視為由校準模式之—循環期間之測試型 樣傳輸產生之校準資訊。 在自於彼時輸入MRW#42命令之時間ts延遲預定時間 tMRZ之後,終止經校準命令/位址信號CAyR^DQ墊之輸 出。自時間t〇(在彼時輸入係進入命令/位址校準模式命令 之MRW#4 1命令)至時間ts(在彼時輸入係退出命令/位址校 準模式命令之MRW#42命令)之一段時期加上時間tMRZ可 對應於一 CA校準模式週期。 儘管圖10僅展示在校準模式週期期間發送之兩組測試型 樣(對CAxR及CAxF以及對CAyR及CAyF),但在一校準週期 期間可發送兩組以上測試型樣。另外,圖1 〇圖解說明經定 位以使其邏輯窗中心對應於時脈CK之對應時脈沿之命令/ 位址校準信號之邏輯窗。然而,此僅係用於闡述之目的; 預期控制器20將更改命令/位址校準信號(表示校準測試型 樣)中之每一者之相對相位,以使得時脈沿CK針對命令/位 址校準信號中之眾多命令/位址校準信號之時序將在時間 163456.doc • 48· 201246211 上移位(且可係相對於命令/位址校準信號邏輯窗之中心移 位(例如,在其外側)以使得記憶體裝置3〇不正確地解譯命 令/位址校準信號邏輯之一時序)。 圖11係展示用於闞述根據另一實施例之命令/位址信號 與DQ墊之間的映射之一實例之一表。 參考圖11,在時脈信號CK之上升沿處輸入之命令/位址 信號CA[9:0]之值可經映射以輸出至偶數DQ墊DQ[2n],其 中η係0至9。在時脈信號CK之下降沿處輸入之命令/位址信 號CA[9:0]之值可經映射以輸出至奇數DQ墊DQ[2n+l],其 中η係0至9。舉例而言,在圖1〇中,可將在對應於時間^之 時脈信號CK之上升沿處輸入之命令/位址信號CAxR之值輸 出至偶數DQ墊DQ[2n] ’其中η係0至9,且可將在時脈信號 CK之下降沿處輸入之命.令/位址信號CAxF之值輸出至奇數 DQ墊DQ[2n+l],其中η係0至9。可將在於時間t4處之時脈 信號CK之上升沿處輸入之命令/位址信號CAxR之值輸出至 偶數DQ墊DQ[2n] ’其中η係0至9,且可將在時脈信號CK 之下降沿處輸入之命令/位址信號CAxF之值輸出至奇數DQ 墊DQ[2n+l],其中η係0至9。 圖12係展示用於闡述根據另一實施例之命令/位址信號 與記憶體裝置30之DQ墊之間的映射之另一實例之一表。 參考圖12,在時脈信號CK之上升沿處輸入至記憶體裝置 30之命令/位址信號ca[9:0](例如’ CAxR)之值可經映射以 輸出至DQS塾DQS0及DQ塾DQ[8:0]。亦即,可將命令/位 址信號CA9之值輸出至dqs^dqso,且可將命令/位址信 163456.doc -49- 201246211 號CA[8:0]之值輸出至DQ墊DQ[8:0]。 在時脈信號C K之下降沿處輸入至記憶體裝置3 〇之命令/ 位址信號CA[9:0](例如,CAxF)之值可經映射以輸出至 DQS墊DQS1及DQ墊DQ[17:9]。亦即,可將命令/位址信號 CA9之值輸出至DQS墊DQS1,且可將命令/位址信號 CA[8:0]之值輸出至DQ墊DQ[17:9]。 圖13係闡述根據另一實施例之記憶體裝置3 〇中之一命令/ 位址校準方法之一時序圖。記憶體裝置3〇之資料Dq之位 元組織係16X。在當前實施例中,在時脈信號CK之上升沿 及下降沿兩者處輸入命令/位址信號CA[9:〇],且因此,每 一命令/位址測試型樣CA[9:〇]可由2〇個位元組成。就此而 言’由於記憶體裝置30之資料DQ之位元組織係χ16,因此 DQ塾之數目係16。關於由記憶體控制器20產生之一特定 相對相位發送之命令/位址測試型樣位元之數目大於Dq墊 之數目’以使得DQ墊不能唯一地對應於命令/位址信號。 因此,可以預定時間間隔將DQ墊分配至在命令/位址匯流 排12之不同信號線上接收之命令/位址信號。 結合圖5參考圖13,記憶體控制器2〇產生用於記憶體裝 置30之時脈信號CK。記憶體控制器2〇透過命令/位址匯流 排12發送一進入命令/位址校準模式命令(或指令)至記憶體 裝置30°進入命令/位址校準模式命令可使用本文中其他 地方所闡述之特定MRS命令格式。記憶體控制器20透過命 令/位址匯流排12傳輸退出命令/位址校準模式命令。退出 命令/位址校準模式命令可使用本文中其他地方所闡述之 163456.docThe error can be entered as the same MRW #41 command at the rising edge and the falling edge of the clock signal CK corresponding to the time tQ of the clock signal CK, that is, due to the rising edge and the falling edge of the clock signal CK. Entering the same command/address signal 'so you can get one of the results similar to a single data rate (SDR) transmission' and can reduce one of the incoming calibration modes resulting especially when the command/address signal line has not been calibrated Failed (or, one of the calibration modes was not intentionally entered). The clock enable signal CKE is started together with the start of the logic low state of the wafer select signal /CS after the time t〇 after the first input of the MRW#41 command is delayed by a predetermined time (in Figure 6 at address/command) The calibration period is valid at a logic low level. At time t1, the command/address signal CAxR is transmitted by the memory controller 20 and received by the memory device 30, followed by transmission and reception following the second half of the clock cycle (here the clock CK is followed by the subsequent edge) CAxF. The command/address signals cAxR and CAxF are transmitted from the memory controller 2 to the memory device 3 via the command/address bus. The time tMRW can be set by a mode register to set the write cycle time to provide sufficient time for the memory device 30 to write the indication data to the mode register settings of the memory device 3. In this example, the 'command/address signal CAxR constitutes a plurality of signals transmitted on all lines of the command/address bus 12 input at the rising edge of the clock signal CK, and the command/address signal CAxF is formed at the time. 163456.doc 33· 201246211 A plurality of signals transmitted on all lines of the command/address bus 12 input at the falling edge of the pulse signal CK. The pair of C AxR and C AxF may constitute a command/address test pattern signal that is transmitted to the memory device during command/address calibration to determine whether the memory device is properly resolved. Translate the information represented by the test pattern signal. In the example of Figure 6, the test pattern (sent for each relative phase sequence) includes a sequence of two bits of each command/address signal line of the command/address bus 丨2 (command/bit Two logical windows of the address calibration signal). However, the test pattern may include a sequence of one or more bits, or may include one bit (in the transmission of the phase-adjusted command/address signal CAsp2, the description of FIG. 4A and FIG. 4B may be implied) – a bit test pattern, however, the phase adjusted command/address signal CAsp2 may be one bit transmitted by each of the lines of the command/address bus 12 (or some) , two bits or a sequence of more than two bits). The command/address signal CAxR and the command/address signal CAxF input to the memory device through the command/address bus 12 can represent different signals of different bytes. For example, when the command/address bus 12 is composed of one or more command/address signals CA[9:〇], one-bit command/address signals CAxR and 10 can be used. The bit command/address signal CAxF is divided into different signals. Therefore, the command of the memory device 3〇 connected to the command/address bus 12 of 10 bits/address solder bumps, etc. (not shown) will be the command of the continent 2 = quasi = CA [9 :〇] input to the memory device 3〇β memory device% can be determined by one of the timings of the edge of the clock CK (for example, at the same time or at a predetermined or fixed time before or after the appropriate trigger edge of the time (10)) A person (eg, latch) command/address calibration signal. The memory device 3 can transmit the input command to the memory controller 30, 163456.doc • 34 - 201246211 (as interpreted by the memory device - which can be correctly interpreted or incorrectly interpreted), As described above, for example, with respect to Figures 4A, 4B, and/or 5 . Since the memory device 30 is required to have a large capacity, the degree of integration and the number of memory cells are increased. As the number of memory cells increases, the number of address bits used to address the memory cells also increases. The increase in the number of address pins results in an increase in the size of the wafer. Therefore, there is a need for a method for suppressing the increase in the number of address pins required in most memory chips. Since the command/address signal is input at both the rising and falling edges of a clock signal in this example, the number of command/address pins of the memory device 30 can be reduced. In this example, a read command cannot be transmitted from the memory controller 20 through the command/address signal line during the calibration mode of the command/address bus. Therefore, in the calibration mode of the command/address signal bus, the clock enable signal CKE acts as one of the command/address signals CAxR and CAxF read commands. When the clock enable signal CKE is activated at a logic low state, the command/address signals CAxR and CAxF are input at a timing determined by the edge of the clock CK, and the result is output to the memory through the data bus DQ13. Body controller 20. Thus, the clock enable signal CKE acts as a dummy command and enables the memory device to input command/address calibration test patterns (e.g., signals CAxR and CAxF). The phase adjusted command/address signal CAsp2 transmitted from the memory controller 20 in the embodiment illustrated with respect to FIG. 5 corresponds to the command/address signal CAxR or CAxF in FIG. 6 . . . CAyR and CAyF (in In the following text, the values are collectively referred to as CAnR and CAF. Each of the CANR and CAF pairs 163456.doc -35- 201246211 shall be transmitted in one of the phase-adjusted commands/address signals CAsp2, each of which is transmitted relative to the previous CAnR and CAF signals relative to the clock CK Command/address signals cAnR and CAnF signal pairs with a new relative phase difference. For ease of explanation, the adjusted phase difference for each CAnR and CAnF signal pair is not shown in Figure 6 (see Figures 4A and 4B and related descriptions). Therefore, n (n is an integer equal to 2 or greater) test command/address test pattern signals (eg, n CARR and CAnF signal pairs) can be transmitted along with a clock signal via a command/address bus. , wherein each of the n test pattern signals is transmitted in a first to nth phase different from one of the clock signals. At the time η from the time ti delay time tADR at which the clock enable signal CKE of the clock enable signal CKE is started, the DQ bus bar 13 will be solved by the memory device 30 in the command/address signal CAxR or CAxF. The value of the command/address calibration test patterns caxR and CAxF (corresponding to the command/address calibration information CAr) input by the memory device 30 at the time of translation (for example, latching) is output from the memory device 30 to the memory control. 20. The time tADR can be predetermined and based on one of the operations of the memory device known timing. (Note that in Figure 6, the portion of the timing diagram illustrating the timing of CK, CA, CS, and CKE that are vertically aligned with the dashed line representing time h is one of the times h that is represented by the wear symbol in these timings. At the time.) As shown in FIG. 6, during the period of the plurality of clocks of the clock CK, the even-numbered Dq lines (DQ0, DQ2, etc.) of the Dq bus bar 3 are outputted by the clock. The value of the command/address signal CAxR input by the memory device 30 triggered by the rising edge of CK (eg, command/address calibration information associated with CAxR). In this example, the time to turn to the note • 36-163456.doc is 201246211 The command/address calibration information of the body controller 20 can occur within a plurality of cycles of the clock ck. As shown in FIG. 6, the command/address signal input by the memory device is output on the DQ bus 13 at the same time as the value of the command/address signal CAxR input by the memory device and in the same manner as it is. The value of CAxF (e.g., command/address calibration information associated with CAxF), except that the value of the command/address signal CAxF is output on the odd DQ line of the bus bar 13. When viewed from a top-down perspective, the dq bus bar can (but need not) extend substantially in the same direction between the memory device 3 and the controller 20' and self-numbering, where the state dq bus Number of bus lines" If the relative phase of the clock CK and the address/command calibration test pattern signal CAxR&amp; cAxF triggers input (eg, latch) address/command calibration test pattern signal at the correct logic window, The memory device should correctly resolve the calibration test pattern signal. In this example, the memory controller 2〇 will determine a pass p (for the clock CK and the position/command calibration test pattern signal CAxR and CAxF test pattern signal relative phase) ^ if and R and CAxF number The relative phase results in an incorrect interpretation of the information represented by the address/command calibration test pattern No. 5 CAxR and CAxF, and the memory controller 20 will determine a failure f. The DQ pad can be set in an evening manner to transfer the value of the second command/address signal CA2 received by the memory device 30 through the dq line to the calibrated command/address signals CAxR and CAxF of the memory controller 20. Mapping. An example of a map is shown in Figure 8, where the command/position signal c AxR (bits 163456.doc • 37 - 201246211 CA0 to CA9) input by the memory device 3 at the rising edge of the 4th CK can be used. The value is output to the memory device 30 dq pad Dq[9:〇], and the value of the command/address signal CAxF input by the memory device 30 at the falling edge of the clock signal Ck can be output to the memory device dq pad dq. Another example of [19:1〇;^ mapping is shown in Figure 9, where one of the command/address signals CA9, which is one of the command/address signals CAxR input at the rising edge of the clock signal CK, can be used. It is output to one of the DQS pads DQS0 of the memory device 3, and the value of the command/address signal CA[8:0] can be output to the memory device 3〇Dq塾Dq[8:0]. One value of the command/address signal CA9 among the command/address signals CAxF input at the falling edge of the clock signal CK can be output to one of the DQS pads DQS1 of the memory device and the command/address signal CA can be used. The value of 8:0] is output to the memory device DQ pad DQ[17:9]. At the memory controller 20, the relative phase between the clock CK and the phase adjusted command/address signals (e.g., cAyR and CAyF) sent to the memory device 30 is changed, and command/address calibration is performed. A new cycle. As shown in FIG. ,, it transmits command/position calibration signals CAyR (at time u) and CAyF (at the CK followed by subsequent clock edges) to the memory device on the command/address bus 12 30, and the memory device 30 transmits a value interpreted by the memory device to one of an intermediate loop of one of the memory controllers 20 in a manner similar to that described above with respect to C AxR and C AxF, and thus A repeated explanation here is not necessary. The clock enable signal CKE is activated just before the time 'together with the start of the logic low state of the wafer select signal /CS'. This can occur when the command/address calibration signals CAnR and CAnF (nine commands/address calibrations transmitted from the memory device 30 to the controller 20 during the command/address calibration session are 163456.doc • 38 - 201246211 The last group in the group is transmitted from the memory controller 20 to the memory device 30 through the command/address bus. Command/Address Calibration Information CAnR and CAnF can be transmitted in the same way as command/address calibration information CAxR and CAxF. At a time t5, an end command/address calibration mode command is transmitted through the command/address bus 12, together with the activation of the logic low state of the wafer select signal /CS. (Note that the timing of vertical alignment with time 15 illustrated in Figure 6 for even DQ and odd DQ occurs before time 15 sees truncation marks in even DQ and odd DQ timings.) For example, transmitting a second mode The register (MRW#42) command is used as the end command/address calibration mode command. If a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#42 command may include a command to identify the command as a mode register setting command. The command/address signal CA[3:0] and the command/address signal CA[9:4] for identifying the mode register setting command as an end command/address calibration mode command. The MRW #42 command is input at both the rising edge and the falling edge of the clock signal CK corresponding to time t5. That is, the same MRW #42 command is input twice at the time pulse signal CK at the time t5 and immediately after the time pulse signal CK followed by the subsequent falling edge. When a MRS command is input using a command signal under a DDR, an error can be generated to cause the memory device to miss the MRS command with one of the high operating frequencies. To reduce the chance of this error, enter the same MRW#42 command twice at the rising and falling edges of the clock signal CK. There are numerous ways in which the memory device can determine when to latch the exit command/address calibration mode 163456.doc -39 - 201246211 (here, MRW #42). In one embodiment, the memory device can be configured to latch at the edge of the clock signal CK with a predetermined relationship (eg, timing) with respect to the transition from the low state active to the high state of the clock enable signal CKE. Information provided on bus bar 12. For example, as shown in FIG. 6, the memory device can be configured to latch at the CA busbar 12 at both edges of the clock CK following the transition from the low state active to the high state of the clock enable signal CKE. Information provided on. When the CKE is high, the memory device 30 treats the information on the command address bus CA 12 as a command (to be processed, for example, by the command decoder of one of the memory devices 30) rather than a calibration test pattern. It should also be noted that the clock enable signal CKE may be considered to be active low only during certain operations, such as during the CA calibration mode, and at other times, as a high active signal. After the predetermined time tMRZ is delayed from the time t5 at which the MRW #42 command is input, the command/address signals CAnR and CAnF are terminated to the output of the memory device DQ pad. The period from the time when the clock signal CK of the MRW#41 command (which is the command/address calibration start signal) is input to the time t5 when the clock signal CK of the MRW#42 command is input at that time plus the time tMRZ Can be CA calibration cycle. Figure 7 is a diagram showing a true value of an exemplary mode register command setting method. Referring to Figure 7, the MRW #41 command and the MRW #42 command can be set by the clock enable signal CKE, the chip select signal /CS, and the command/address signal CA[9:0]. When the pulse enable signal CKE is at a logic high state (H) level, the chip select signal /CS is at a logic low state (L) level, and the command/address signal 163456.doc -40· 201246211 CA[3: 0] At a logic low (L) level and the command/address signal CA[9:4] is at the logic level HLHLLH, the MRW#41 command can be used to set the MRS register of the memory device 30 ( For example, write to the MRS register). That is, the MRW #41 command can include the command/address signal CA[9:0] 29H. The same MRW #41 command can be sent to the memory device on the command/address bus 12 at both the rising and falling edges of the clock signal CK. The memory device 30 can be configured to set the mode register to indicate when the at least one of the two MRW #4 1 commands sent to the memory device 30 is properly interpreted when input by the memory device 30 The memory device 30 is in a command/address calibration command. (Note that sending two MRW #41 commands to the memory device 30 may include maintaining the command sent on the command/address bus without changing the two logical windows of the command/address signal - the two logic windows It may include - one of the clocks CK and the whole clock period.) The clock enable signal CKE is at a logic high level, the wafer select signal /CS is at a logic low level, and the command/address signal is When CA[3:0] is in a logic low state and the command/address signal CA[9:4] is under the logic level HLHLHL, the MRW#42 command can be used to set the MRS temporary storage of the memory device 30. Device. That is, the MRW #42 command may include the command/address signal CA[9:0] 2AH. The same MRW #42 command can be sent to the memory device twice on the command/address bus 12 at both the rising and falling edges of the clock signal CK. In this paper, the command/address signal CA[9:4] can be used as the mode register setting address MA[5:0]. Figure 8 is a diagram showing one example of a mapping between a command/address signal and a DQ pad, in accordance with an embodiment. Since in the current embodiment, the command/address apostrophe CA[9:0] is input at both the rising edge and the falling edge of the clock signal ck of 163456.doc 201246211, the command/address signal CA[9:0 ] can be composed of 20 bits. In this regard, the bit structure of the data DQ of the memory device 30 is 2 and the number of DQ pads is 32. The number of DQ pads is greater than the number of command/address signals so that DQ padding corresponds one-to-one to the command/address apostrophe&gt; Referring to Figure 8, the input of the clock signal CK is at the rising edge of 7^ The value of the number CA[9:0] can be mapped to output to the DQ pad DQ[9:〇]. The value of the command/address signal CA[t〇] input at the falling edge of the clock signal ck is red ii4r jti is output to E) Q pad [Q[19:1〇]. For example, in FIG. 6, the value of the input 7 Μ signal CAxR corresponding to the input of the rising edge of the clock signal CK at time t! is output to the DQ pad DQ[9:0], and will correspond to time 11 The output of the command/address signal cAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[19:10]. The value of the command/address signal CAxR input at the rising edge of the pulse &amp; CK corresponding to the time U is output to the direct DQ &amp; DQ[9:0], and will be at the clock signal corresponding to the time t4. CK drop / σ input command / address signal CAxF value output to DQ pad DQ [19: 1G] ° Figure 9 is shown according to another embodiment for illustrating the command / address signal and DQ and DQS pad One of the other examples of mappings, with reference to Figure 9, the value of the command/address signal CA[9:0] (e.g., CAxR) input to the memory device 30 at the rising edge of the clock signal CK can be It is mapped to output to DQS pads DQS0 and DQS1 and even DQ pads DQ [0, 2, 4, 6, 8, 10, 12 and 14]. That is, the input value of the command/address signal CA9 is output to the DQS pad DQS1, and the input value of the command/address signal CA4 is output to the DQS0'. The input values of the command/address signal CA[3:0] are respectively output. To 1634S6.doc • 42· 201246211 DQ pad DQ[6, 4, 2, 〇] and output the command/address signal CA[8:5]2 input values to DQ pad DQ[14, 12, 10, 8J respectively . The value of the command/address signal CA[9:0] (eg, CAxF) input to the memory device 3 at the falling edge of the clock signal CK can be mapped to be output to the DQS pad/DQS0 and /DQS1 and DQ. Pad DQ [17:9]. That is, the input value of the command/address signal CA9 can be output to the DQS pad/DQS1, and the input value of ca4 can be output to the DQS pad/DQS0, and the input value of the command/address signal CA[3:0] can be input. The output values are respectively output to the DQ pad DQ[7, 5, 3, 1] and the input values of the command 7 / address apostrophe CA [8:5] are respectively output to the Dq pad Dq [15, 13, 11 and 9]. Figure 10 is a diagram for illustrating one of the command/address calibration methods in accordance with another embodiment. Figure 10 is a timing diagram for explaining one of the command/address calibration methods in the memory device 30. The memory device 3 has a bit structure d32 of the data dq. 5, the memory controller 2 generates a clock for the memory device 30. The address calibration mode command (or instruction) is to the memory device 30. The entry command/address calibration mode command can be entered using a special case of the MRS commands described herein with respect to other embodiments. The memory controller 20 transmits an exit command/address calibration mode command (or command) through the command/address bus. The Exit Command/Address Calibration Mode command can be entered using a special case of the MRS commands described herein with respect to other embodiments. At the time t〇 of the clock signal CK', together with the start of the low-level level of the chip select signal /cs, the command/address bus 12 transmits the command/bit through the command/address bus 12 The MRW#41 command for the address calibration command. For example, the MRW#41 command is input at both the rising edge and the falling edge of the clock signal CK starting at time t〇. That is, the same MRW #41 command can be input at the rising edge and the falling edge of the clock signal CK starting at time t〇. At a time q after the tQ delay time tMRW of the clock signal CK inputting the MRW#41 command at that time, together with the activation of the logic low state of the wafer selection signal /CS, one cycle for the clock signal CK The clock enable signal CKE is activated with a predetermined pulse width, and the command/address signals CAxR and CAxF are sequentially transmitted through the command/address bus. The command/address signal CAxR is input at the rising edge of the clock signal CK at time t!, and is input at the falling edge of the clock signal CK (which is followed by the subsequent falling edge of the clock CK after the time ti) Command/address signal C AxF. The command/address signal CAxR and the command/address signal CAxF input through the command/address bus 12 can represent different signals of different information (for example, different test type information). In the calibration mode, the clock enable signal CKE acts as one of the command/address signals CAxR and CAxF corresponding to the value of the second command/address signal CA2 received by the memory device 30 in FIG. During the command/address calibration mode (and when the wafer select/CS is active (logic low)), the memory device initiates the interpretation of one of the clock enable signals CKE at a logic low level to An instruction of one of the signals on the command/address signal bus is input to the subsequent edge of the clock signal CK, and thus, for example, as shown in FIG. 10, the command/address signal CAxR received by the memory device 30 is input or CAxF 163456.doc .44- 201246211 value. The value of the command/address signals CAxR and CAxF (interpreted/input by the memory device) is output to the DQ pad starting at time t3 of the time h delay time tADR. At time t3, the input command/address signal CAxR is output to the even DQ pad, and during the subsequent clock edge of the clock CK, the round command/address signal CAxF is output to the odd DQ. The mapping between the command/address signals CAxR and CAxF and the DQ pad can be set in various ways. An example of mapping is illustrated in FIG. 11, in which the value of the command/address signal CAxR input at the rising edge of the clock signal CK can be output to the even DQ pad DQ[2n], where η is 0 to 9, and The value of the command/address signal CAxF input at the falling edge of the clock signal CK can be output to the odd DQ 塾 DQ [2n + 1], where η is 0 to 9. As another mapping example, the result of the calibration of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK can be output to the even DQ pad DQ [ 2n], where η is 0 to 3, one value of a command/address signal CA4 can be output to the DQS pad DQS0, and the value of the command/address signal CA[8:5] can be output to the even DQ pad DQ [ 2n], where η is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad DQS 1. The value of the command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+l], where η is 0 Up to 3, a value of the command/address signal CA4 can be output to the DQS pad/DQSO, and the value of the command/address signal CA[8:5] can be output to the odd DQ pad DQ[2n+l], where η The system is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad/DQS1. 163456.doc •45· 201246211 At time t4, together with the activation of the logic low state of the chip select signal /cs, the clock enable signal CKE is started with a predetermined pulse width for one cycle of the clock signal CK, and is remembered by the memory. The body device 30 inputs the command/address signals CAyR and CAyF transmitted through the command/address bus. The command/address signal CAyR is input at the rising edge of the clock signal CK at time t4, and is input at the falling edge of the clock signal CK (the clock CK immediately after the time t4 is followed by the subsequent clock edge) Command/address signal CAyF. The command/address signal CAyR and the command/address signal CAyF input through the command/address bus 12 can be different signals (e.g., different bytes of the test pattern). In the calibration mode, the clock enable signal CKE acts as one of the command/address signals CAyR and CAyF read commands, and therefore, when the pulse enable signal CKE is enabled at a logic low level, it will be received by the memory device 30. The values of the command/address signals CAyR and CAyF are output to the even DQ pads and the odd DQ pads are input by the memory device 30 in response to a timing of the clock CK. After a predetermined time tADR is delayed from time t4 of the clock signal CK, the values of the command/address signals CAyR and CAyF (as started by the memory device as input at time t4) are output to the DQ pad. That is, the command/address signal CAyR input by the memory device 30 is output to the even DQ pad and the command/address signal CAyF input by the memory device 30 is output to the odd DQ 塾0 when the memory device 30 will command When the address signals CAyR and CAyF are transmitted to the memory controller 20, the mapping to the DQ pad can be set in various ways. As a mapping example, the value of the input 163456.doc -46 - 201246211 command / address signal CAyR input to the rising edge of the clock signal CK can be output to the even Dq pad DQ[2n], where η is 0 to 9 And the value of the command/address signal CAyF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where η is 0 to 9. As another mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAyR input at the rising edge of the clock signal CK can be output to the even DQ pad DQ[2n], Where n is 〇 to 3, a value of a command/address signal CA4 can be output to the DQS pad DQS0, and the value of the command/address signal CA[8:5] can be output to the even DQ pad DQ[2n], 11 is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad DQS1. The value of the command/address signal CA[3:0] in the command/address signal CAyF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+l], where η is 0 Up to 3, a value of the command/address signal CA4 can be output to the DQS pad/DQS0, and the value of the command/address signal CA[8:5] can be output to the odd DQ pad DQ[2n+l], wherein η is 4 to 7, and a value of the command/address signal CA9 can be output to the DQS pad/DQS1. At time t5, together with the activation of the logic low state of the wafer select signal /CS, the MRW #42 command of the exit command/address alignment mode command is transmitted through the command/address bus 12 . In this example, the MRW #42 command is input at both the rising and falling edges of the clock signal CK corresponding to time t5. That is, the same MRW #42 command is input at the rising edge and the falling edge of the clock signal CK corresponding to time t5. There are numerous ways for memory device 30 to recognize the signal on command/address bus 12 as a command (rather than another set of test pattern calibration information for a new cycle). For example, the memory device device 30 can receive the pre-existing number of the test type information sent to the memory device by the memory device 30, 163456.doc -47 - 201246211, and the memory device 3G can The number of cycles of the test pattern information is counted and when the count reaches a predetermined number (or, for example, the first count or the last tenth), the command is expected to be received. Another_select 4 device 30 can monitor all information (eg, monitoring command/address calibration information CAr) input via the command/address bus 12 to test a predetermined code (eg, a command code), and when Exit the calibration mode when the predetermined code is detected (and/or the predetermined code is recognized as the exit command/address calibration command code), or otherwise the input information is considered to be the calibration mode - the test pattern during the cycle The calibration information generated by the transmission. The output of the calibrated command/address signal CAyR^DQ pad is terminated after the predetermined time tMRZ is delayed from the time ts at which the MRW #42 command is input. From the time t〇 (in the case of the input system enters the command/address calibration mode command MRW#4 1 command) to the time ts (in the case of the input system exit command / address calibration mode command MRW #42 command) The period plus time tMRZ may correspond to a CA calibration mode period. Although Figure 10 shows only two sets of test patterns (for CAxR and CAxF and for CAyR and CAyF) sent during the calibration mode period, more than two test patterns can be sent during a calibration cycle. In addition, Figure 1 illustrates a logic window that is positioned such that its logic window center corresponds to the command/address calibration signal for the corresponding clock edge of clock CK. However, this is for illustrative purposes only; it is contemplated that controller 20 will change the relative phase of each of the command/address calibration signals (representing the calibration test pattern) such that clock edge CK is for command/address The timing of the numerous command/address calibration signals in the calibration signal will shift at time 163456.doc • 48· 201246211 (and may be shifted relative to the center of the command/address calibration signal logic window (eg, on the outside) In order for the memory device 3 to incorrectly interpret the timing of the command/address calibration signal logic). Figure 11 is a table showing one example of a mapping between a command/address signal and a DQ pad in accordance with another embodiment. Referring to Figure 11, the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be mapped to output to the even DQ pad DQ[2n], where η is 0 to 9. The value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK can be mapped to be output to the odd DQ pad DQ[2n+l], where η is 0 to 9. For example, in FIG. 1A, the value of the command/address address CAxR input at the rising edge of the clock signal CK corresponding to the time ^ can be output to the even DQ pad DQ[2n] 'where η is 0 Up to 9, and the value of the command/address address CAxF input at the falling edge of the clock signal CK can be output to the odd DQ pad DQ[2n+1], where η is 0 to 9. The value of the command/address signal CAxR input at the rising edge of the clock signal CK at time t4 can be output to the even DQ pad DQ[2n] 'where η is 0 to 9, and can be in the clock signal CK The value of the command/address signal CAxF input at the falling edge is output to the odd DQ pad DQ[2n+l], where η is 0 to 9. Figure 12 is a table showing another example of a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment. Referring to FIG. 12, the value of the command/address signal ca[9:0] (eg, 'CAxR) input to the memory device 30 at the rising edge of the clock signal CK can be mapped to be output to DQS, DQS0, and DQ. DQ[8:0]. That is, the value of the command/address signal CA9 can be output to dqs^dqso, and the value of the command/address address 163456.doc -49-201246211 CA[8:0] can be output to the DQ pad DQ[8 :0]. The value of the command/address signal CA[9:0] (eg, CAxF) input to the memory device 3 at the falling edge of the clock signal CK can be mapped to the DQS pad DQS1 and the DQ pad DQ[17 :9]. That is, the value of the command/address signal CA9 can be output to the DQS pad DQS1, and the value of the command/address signal CA[8:0] can be output to the DQ pad DQ[17:9]. Figure 13 is a timing diagram illustrating one of the command/address calibration methods in a memory device 3 in accordance with another embodiment. The memory device 3's data Dq is located in the 16X organization. In the current embodiment, the command/address signal CA[9:〇] is input at both the rising and falling edges of the clock signal CK, and therefore, each command/address test pattern CA[9:〇 ] can be composed of 2 units. In this connection, since the bit structure of the data DQ of the memory device 30 is χ16, the number of DQ塾 is 16. The number of command/address test pattern bits transmitted by a particular relative phase generated by the memory controller 20 is greater than the number of Dq pads' such that the DQ pad does not uniquely correspond to the command/address signal. Therefore, the DQ pads can be assigned to command/address signals received on different signal lines of the command/address bus 12 at predetermined time intervals. Referring to Figure 13 in conjunction with Figure 5, the memory controller 2 generates a clock signal CK for the memory device 30. The memory controller 2 sends an incoming command/address calibration mode command (or command) to the memory device via the command/address bus 12. The 30° entry command/address calibration mode command can be used elsewhere in this document. The specific MRS command format. The memory controller 20 transmits an exit command/address calibration mode command through the command/address bus 12 . Exit Command/Address Calibration Mode commands can be used as described elsewhere in this article 163456.doc

-50- 201246211 特定MRS命令格式。 在時間t〇處,與晶片選擇信號/CS之一邏輯低態位準之啟 動一起,透過命令/位址匯流排12傳輸進入命令/位址校準 模式命令。舉例而言,傳輸一第三模式暫存器(MRW#43) 命令作為命令/位址校準開始信號。當在命令/位址匯流排 12上載送10個位元之命令/位址信號CA[9:0]時,MRW#43 命令可係包括指示該命令係一模式暫存器設定命令之命令/ 位址信號CA[3:0]及指示該模式暫存器設定命令係一進入 校準模式命令之命令/位址信號CA[9:4]之一模式暫存器設 定命令。 在於時間t〇處開始之時脈信號CK之上升沿及下降沿兩者 處輸入MRW#43命令。亦即,在於時間to處之時脈信號CK .之上升沿處-且再-次在時脈信號CK之-緊接著後續下降沿處 輸入相同MRW#43命令。此係由於可能產生一錯誤以使得 具有一高操作頻率(例如,在一 DDR操作期間)之一記憶體 裝置錯過或錯誤解譯MRS命令。為減小此錯誤之機會,在 對應於時間t〇之時脈信號CK之上升沿及下降沿處輸入相同 MRW#43命令。 在自於彼時輸入MRW#43命令之時脈信號CK之時間t〇延 遲預定時間tMRW之時間^處,與晶片選擇信號/CS之邏輯 低態位準之啟動一起,針對時脈信號CK之一個循環以一 預定脈寬啟動時脈啟用信號CKE,且透過命令/位準匯流排 12傳輸命令/位址信號CAxR及CAxF。時間tMRW可係一模 式暫存器設定寫入循環時間。 163456.doc •51 - 201246211 在於時間t,處之時脈信號CK之上升沿處輸入命令/位址 信號CAxR,且在時脈信號CK之下降沿處(在之後之時脈 k號CK之緊接著後續下降沿處)輸入命令/位址信號 CAxF。透過命令/位址匯流排12輸入之命令/位址信號 CAxR及命令/位址信號CAxF可係不同信號。舉例而言,當 命令/位址匯流排12係由1〇個位元之命令/位址信號CA[9:〇] 組成時’可將1〇個位元之命令/位址信號CAxr&amp;10個位元 之命令/位址信號CAxF區分為不同信號。因此,可透過與 10個位元之命令/位址匯流排12連接之記憶體裝置3〇之命 令/位址端子(例如,墊、接針或凸塊-未展示)將2〇個位元 之命令/位址信號CA[9:0]輸入至記憶體裝置30。 由於要求s己憶體裝置30具有一大容量,因此整合程度及 記憶體胞之數目增加。隨著記憶體胞之數目增加,用於尋 址記憶體胞之位址位元之數目亦增加。位址接針之數目之 增加導致晶片大小之增加。因此,期望一種用於抑制大多 數在記憶體晶片中所需之位址接針之數目之增加的方法。 由於在當前實施例中在一時脈信號之上升沿及下降沿兩者 處輸入命令/位址信號’因此可減小記憶體裝置3〇之命令/ 位址接針之數目。 在命令/位址校準模式期間,時脈啟用信號CKE充當命 令/位址信號CAxR及CAxF之一讀取命令。當在一邏輯低態 位準下啟動時脈啟用信號CKE時,以回應於時脈CK之一時 序輸入命令/位址信號CAxR及CAxF,且輸出其結果作為一 資料信號DQ。因此,時脈啟用信號CKE用作一偽命令。 163456.doc •52- 201246211 在自時間q延遲預定時間tADR之後,輸出由記憶體裝置 30作為輸入之命令/位址信號CAxR及CAxF作為一資料信號 DQ。時間tADR可係自時脈啟用信號CKE之啟動至資料輸 出至DQ墊之一設定延遲時間。 在時間t3處,經由記憶體裝置30之DQ墊輸出由記憶體裝 置30作為輸入之經校準命令/位址信號CAxR。在經校準命 令/位址信號CAxR輸出至DQ墊達一預定時間tADD之後之 時間14處,經由記憶體裝置30之DQ墊輸出由記憶體裝置30 作為輸入之經校準命令/位址信號CAxF。 可以各種方式設定經校準命令/位址信號CAxR及CAxF與 DQ墊之間的映射。作為一映射實例,可將在時脈信號CK 之上升沿處輸入之命令/位址信號CAxR之值輸出至DQ墊 -DQ[9:0],且然後可將在時脈信號CK之下降沿處輸入之命 令/位址信號CAxF之值輸出至DQ墊DQ[9:0]。 作為另一映射實例,將在時脈信號CK之上升沿處輸入 之命令/位址信號CAxR當中之命令/位址信號CA[4:0]之值 輸出至DQ墊DQ[4:0],且然後亦將對命令/位址信號CA [9:5]之校準之結果輸出至DQ墊DQ[4:0]。將在時脈信號CK 之下降沿處輸入之命令/位址信號CAxF當中之命令/位址信 號CA[4:0]之值輸出至DQ墊DQ[9:5],且然後,亦將對命令/ 位址信號CA[9:5]之校準之結果輸出至DQ墊DQ[9:5]。 作為又一映射實例,將在時脈信號CK之上升沿處輸入 之命令/位址信號CAxR當中之命令/位址信號CA[3:0]之值 輸出至DQ墊DQ[3:0],將一命令/位址信號CA4之一值輸出 163456.doc -53- 201246211 至一 DQS墊DQSO,將命令/位址信號CA[8:5]之值輸出至 DQ墊DQ[4:0],且將一命令/位址信號CA9之一值輸出至一 DQS墊DQS1 〇將在時脈信號CK之下降沿處輸入之命令/位 址信號CAxF當中之命令/位址信號CA[3:0]之值輸出至DQ 墊DQ[7:4],將命令/位址信號CA4之一值輸出至一DQS墊/ DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊 DQ[7:4],且將命令/位址信號CA9之一值輸出至一 DQS墊/ DQS1。 在時間t4處開始,與晶片選擇信號/CS之邏輯低態位準之 啟動一起,針對時脈信號CK之一個循環以預定脈寬啟動 時脈啟用信號CKE,且透過命令/位址匯流排12將命令/位 址信號CAyR及CAyF自記憶體控制器20傳輸至記憶體裝置 30 ° 在於時間t4處之時脈信號CK之上升沿處輸入命令/位址 信號CAyR,且在時脈信號CK之緊接著後續下降沿處輸入 命令/位址信號CAyF。透過命令/位址匯流排12輸入之命令/ 位址信號CAyR及命令/位址信號CAyF可係不同信號。 在自時間t4延遲預定時間tADR之後,經由DQ墊將由記 憶體裝置30作為輸入之命令/位址信號CAyR及CAyF輸出至 DQ匯流排13。在將經校準命令/位址信號CAyR(如由記憶 體裝置30作為輸入)輸出至DQ墊之後,輸出經校準命令/位 址信號CAyF(如由記憶體裝置30作為輸入)。-50- 201246211 Specific MRS command format. At time t, the command/address alignment mode command is transmitted through the command/address bus 12 along with the activation of one of the logic select signals /CS. For example, a third mode register (MRW#43) command is transmitted as a command/address calibration start signal. When a command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#43 command may include a command indicating that the command is a mode register setting command/ The address signal CA[3:0] and the mode register setting command indicating that the mode register setting command is one of the command/address signals CA[9:4] entering the calibration mode command. The MRW#43 command is input at both the rising and falling edges of the clock signal CK starting at time t〇. That is, at the rising edge of the clock signal CK at time to - and again - at the subsequent pulse edge of the clock signal CK - the same MRW #43 command is input. This is due to the possibility of generating an error such that one of the memory devices with a high operating frequency (e.g., during a DDR operation) misses or misinterprets the MRS command. To reduce the chance of this error, the same MRW #43 command is entered at the rising and falling edges of the clock signal CK corresponding to time t〇. The time t〇 of the clock signal CK from which the MRW#43 command is input is delayed by a predetermined time tMRW, together with the activation of the logic low state of the wafer selection signal /CS, for the clock signal CK One cycle starts the clock enable signal CKE with a predetermined pulse width and transmits the command/address signals CAxR and CAxF through the command/level bus 12. The time tMRW can be set by a mode register to set the write cycle time. 163456.doc •51 - 201246211 At the time t, the command/address signal CAxR is input at the rising edge of the clock signal CK, and at the falling edge of the clock signal CK (the clock k after the CK is tight) The command/address signal CAxF is then input at the subsequent falling edge. The command/address signal CAxR and the command/address signal CAxF input through the command/address bus 12 can be different signals. For example, when the command/address bus 12 is composed of a command/address signal CA[9:〇] of one bit, 'a command/address signal of one bit can be CAxr&amp;10 The bit command/address signal CAxF is divided into different signals. Therefore, the command/address terminal (for example, pad, pin or bump-not shown) of the memory device 3 connected to the 10-bit command/address bus 12 can be 2 bits. The command/address signal CA[9:0] is input to the memory device 30. Since the suffix device 30 is required to have a large capacity, the degree of integration and the number of memory cells are increased. As the number of memory cells increases, the number of address bits used to address memory cells also increases. An increase in the number of address pins results in an increase in the size of the wafer. Therefore, a method for suppressing an increase in the number of address pins required in most memory chips is desired. Since the command/address signal is input at both the rising and falling edges of a clock signal in the present embodiment, the number of command/address pins of the memory device 3 can be reduced. During the command/address calibration mode, the clock enable signal CKE acts as one of the command/address signals CAxR and CAxF read commands. When the clock enable signal CKE is activated at a logic low state, the command/address signals CAxR and CAxF are input in response to one of the clocks CK, and the result is output as a data signal DQ. Therefore, the clock enable signal CKE is used as a pseudo command. 163456.doc • 52- 201246211 After delaying the predetermined time tADR from time q, the command/address signals CAxR and CAxF input by the memory device 30 are output as a data signal DQ. The time tADR can be set from the start of the clock enable signal CKE to the data output to one of the DQ pads to set the delay time. At time t3, the calibrated command/address signal CAxR, which is input by the memory device 30, is output via the DQ pad of the memory device 30. At time 14 after the calibration command/address signal CAxR is output to the DQ pad for a predetermined time tADD, the calibrated command/address signal CAxF input by the memory device 30 is output via the DQ pad of the memory device 30. The mapping between the calibrated command/address signals CAxR and CAxF and the DQ pad can be set in various ways. As a mapping example, the value of the command/address signal CAxR input at the rising edge of the clock signal CK can be output to the DQ pad -DQ[9:0], and then the falling edge of the clock signal CK can be The value of the command/address signal CAxF input is output to the DQ pad DQ[9:0]. As another mapping example, the value of the command/address signal CA[4:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[4:0], The result of the calibration of the command/address signal CA [9:5] is then also output to the DQ pad DQ[4:0]. The value of the command/address signal CA[4:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[9:5], and then, will also be The result of the calibration of the command/address signal CA[9:5] is output to the DQ pad DQ[9:5]. As a further mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[3:0], Output a value of a command/address signal CA4 to 163456.doc -53-201246211 to a DQS pad DQSO, and output the value of the command/address signal CA[8:5] to the DQ pad DQ[4:0], And outputting a value of a command/address signal CA9 to a DQS pad DQS1, a command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK. The value is output to the DQ pad DQ[7:4], one value of the command/address signal CA4 is output to a DQS pad/DQS0, and the value of the command/address signal CA[8:5] is output to the DQ pad DQ. [7:4], and output a value of the command/address signal CA9 to a DQS pad / DQS1. Starting at time t4, together with the activation of the logic low state of the wafer select signal /CS, the clock enable signal CKE is initiated with a predetermined pulse width for one cycle of the clock signal CK, and through the command/address bus 12 Transmitting the command/address signals CAyR and CAyF from the memory controller 20 to the memory device 30° at the rising edge of the clock signal CK at time t4, inputting the command/address signal CAyR, and at the clock signal CK The command/address signal CAyF is entered immediately after the subsequent falling edge. The command/address signal CAyR and the command/address signal CAyF input through the command/address bus 12 can be different signals. After the predetermined time tADR is delayed from time t4, the command/address signals CAyR and CAyF which are input by the memory device 30 are output to the DQ bus 13 via the DQ pad. After outputting the calibrated command/address signal CAyR (as input from the memory device 30) to the DQ pad, the calibrated command/address signal CAyF (as input by the memory device 30) is output.

可以各種方式設定經校準命令/位址信號CAyR及CAyF與 DQ墊之間的映射。作為一映射實例,可將在時脈信號CK 163456.doc • 54· 201246211 之上升沿處輸入之命令/位址信號CAyR之值輸出至DQ墊 DQ[9:0],且然後可將在時脈信號CK之下降沿處輸入之命 令/位址信號CAyF之值輸出至DQ墊DQ[9:0]。 作為另一映射實例,可將在時脈信號CK之上升沿處輸 入之命令/位址信號CAxR當中之命令/位址信號CA[4:0]之 值輸出至DQ墊DQ[4:0],且然後,亦將對命令/位址信號 CA[9:5]之校準之結果輸出至DQ墊DQ[4:0]。將在時脈信號 CK之下降沿處輸入之命令/位址信號CAxF當中之命令/位 址信號CA[4:0]之值輸出至DQ墊DQ[9:5],且然後,亦將對 命令/位址信號CA[9:5]之校準之結果輸出至DQ墊 DQ[9:5]。 作為又一映射實例,將在時脈信號CK之上升沿處輸入 之命令/位址信號CAxR當中之命令/位址信號CA[3:0]之值 輸出至DQ墊DQ[3:0],將命令/位址信號CA4之一值輸出至 DQS墊DQS0,將命令/位址信號CA[8:5]之值輸出至DQ墊 DQ[4:0],且將命令/位址信號CA9之一值輸出至DQS墊 DQS 1。將在時脈信號CK之下降沿處輸入之命令/位址信號 CAxF當中之命令/位址信號CA[3:0]之值輸出至DQ墊 DQ[7:4],將命令/位址信號CA4之一值輸出至DQS墊/ DQS0,將命令/位址信號CA[8:5]之值輸出至I)Q墊 DQ[7:4],且將命令/位址信號CA9之一值輸出至DQS墊/ DQS1。 在時間t5處,與晶片選擇信號/CS之邏輯低態位準之啟動 一起,透過命令/位址匯流排12傳輸退出校準/位址校準模 163456.doc -55· 201246211 式命令。舉例而言,傳輸一第四模式暫存器(MRW#44)命 令作為命令/位址校準結束信號。當在命令/位址匯流排12 上載送10個位元之命令/位址信號CA[9:0]時,可藉由一模 式暫存器設定命令來設定MRW#44命令,該模式暫存器設 定命令可包括用以指示該命令係一模式暫存器設定命令之 CA[3:0]及用以指示該模式暫存器設定命令係一退出命令/ 位址校準模式命令之命令/位址信號CA[9:4]。 可在對應於時間t5之時脈信號CK之上升沿及下降沿兩者 處輸入MRW#44命令。亦即,在於時間t5處開始之時脈信 號CK之上升沿及下降沿兩者處輸入相同MRW#44命令。在 自於彼時輸入MRW#44命令之時脈信號CK之時間t5延遲預 定時間tMRZ之後,終止經校準命令/位址信號CAyR經由 DQ墊之輸出。自在彼時輸入MRW#41命令之時間t0至在彼 時輸入MRW#44命令之時間t5 CK之一段時期加上tMRZ可 係一 CA校準週期。 儘管圖13僅展示在校準模式週期期間發送之兩組測試型 樣(對CAxR及CAxF以及對CAyR及CAyF),但在一校準週期 期間可發送兩組以上測試型樣。另外,圖13圖解說明經定 位以使其邏輯窗中心對應於時脈CK之對應時脈沿之命令/ 位址校準信號之邏輯窗。然而,此僅係用於闡述之目的; 預期控制器20將更改命令/位址校準信號(表示校準測試型 樣)中之每一者之相對相位,以使得時脈沿CK針對命令/位 址校準信號中之眾多命令/位址校準信號之時序將在時間 上移位(且可係相對於命令/位址校準信號邏輯窗之中心移The mapping between the calibrated command/address signals CAyR and CAyF and the DQ pad can be set in various ways. As a mapping example, the value of the command/address signal CAyR input at the rising edge of the clock signal CK 163456.doc • 54· 201246211 can be output to the DQ pad DQ[9:0], and then the time can be The value of the command/address signal CAyF input at the falling edge of the pulse signal CK is output to the DQ pad DQ[9:0]. As another mapping example, the value of the command/address signal CA[4:0] among the command/address signals CAxR input at the rising edge of the clock signal CK can be output to the DQ pad DQ[4:0]. And then, the result of the calibration of the command/address signal CA[9:5] is also output to the DQ pad DQ[4:0]. The value of the command/address signal CA[4:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[9:5], and then, will also be The result of the calibration of the command/address signal CA[9:5] is output to the DQ pad DQ[9:5]. As a further mapping example, the value of the command/address signal CA[3:0] among the command/address signals CAxR input at the rising edge of the clock signal CK is output to the DQ pad DQ[3:0], Output a value of the command/address signal CA4 to the DQS pad DQS0, output the value of the command/address signal CA[8:5] to the DQ pad DQ[4:0], and place the command/address signal CA9 One value is output to the DQS pad DQS 1. The value of the command/address signal CA[3:0] among the command/address signals CAxF input at the falling edge of the clock signal CK is output to the DQ pad DQ[7:4], and the command/address signal is output. One value of CA4 is output to DQS pad/DQS0, and the value of command/address signal CA[8:5] is output to I) Q pad DQ[7:4], and one value of command/address signal CA9 is output. To DQS pad / DQS1. At time t5, along with the activation of the logic low state of the wafer select signal /CS, the command/address bus 12 is transmitted through the exit calibration/address calibration mode 163456.doc -55·201246211. For example, a fourth mode register (MRW#44) command is transmitted as a command/address calibration end signal. When the command/address signal CA[9:0] of 10 bits is uploaded in the command/address bus 12, the MRW#44 command can be set by a mode register setting command, and the mode is temporarily stored. The device setting command may include a CA[3:0] for indicating that the command is a mode register setting command and a command/bit for indicating the mode register setting command is an exit command/address calibration mode command. Address signal CA[9:4]. The MRW #44 command can be input at both the rising and falling edges of the clock signal CK corresponding to time t5. That is, the same MRW #44 command is input at both the rising edge and the falling edge of the clock signal CK starting at time t5. After the predetermined time tMRZ is delayed from the time t5 at which the clock signal CK of the MRW #44 command is input, the output of the calibrated command/address signal CAyR via the DQ pad is terminated. The period from the time t0 when the MRW #41 command is input to the time t5 CK at which the MRW #44 command is input at that time plus tMRZ can be a CA calibration period. Although Figure 13 shows only two sets of test patterns (for CAxR and CAxF and for CAyR and CAyF) sent during the calibration mode period, more than two test patterns can be sent during a calibration cycle. In addition, Figure 13 illustrates a logic window that is positioned such that its logic window center corresponds to the command/address calibration signal for the corresponding clock edge of clock CK. However, this is for illustrative purposes only; it is contemplated that controller 20 will change the relative phase of each of the command/address calibration signals (representing the calibration test pattern) such that clock edge CK is for command/address The timing of the numerous command/address calibration signals in the calibration signal will be shifted in time (and may be center shifted relative to the command/address calibration signal logic window)

163456.doc 56 - S 201246211 位(例如,在其外側)以使得記憶體裝置30不正確地解譯命 令/位址校準信號邏輯之一時序)。 圖14係用於闡述根據另一實施例之一模式暫存器命令設 定方法之一表。 參考圖14,可藉由時脈啟用信號CKE、晶片選擇信號/ CS及命令/位址信號CA[9:0]設定MRW#43命令及MRW#44 命令。當時脈啟用信號CKE在一邏輯高態位準下,晶片選 擇信號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在 一邏輯低態位準下,且命令/位址信號CA[9:4]分別在一邏 輯位準H-L-H-L-H-H下時,可設定MRW#43命令。亦即, MRW#43命令可由一命令/位址信號CA[9:0]值2BH表示。 如上文所述,MRW#43命令在時脈信號CK之上升沿及下降 沿兩者處可係相同的,然而,可替代地將一不同值(例 如,2BH之逆值)發送至記憶體裝置30。 當時脈啟用信號CKE在一邏輯高態位準下,晶片選擇信 號/CS在一邏輯低態位準下,命令/位址信號CA[3:0]在一邏 輯低態位準下,且命令/位址信號CA[9:4]分別在邏輯位準 H-L-H-H-L-L下時可設定MRW#44命令。亦即,可在時脈 信號CK之上升沿及下降沿兩者處相同地設定MRW#44命 令。本文中,命令/位址信號CA[9:4]可用作模式暫存器設 定位址MA[5:0]。 圖15係用於闡述根據另一實施例之命令/位址信號與記 憶體裝置30之DQ墊之間的映射之一實例之一圖式。 參考圖15,在時脈信號CK之上升沿處輸入之命令/位址 163456.doc -57- 201246211 信號CA[9:0]之值可經映射以輸出至記憶體裝置30之DQ墊 DQ[9:0]。此後,對在時脈信號CK之下降沿處輸入之命令/ 位址信號CA[9:0]之校準之結果可經映射以輸出至DQ墊 DQ[9:0]。舉例而言,在圖13中,在對應於時間^之時脈信 號CK之上升沿處輸入之命令/位址信號CAxR之值可經映射 以輸出至DQ墊DQ[9:0],且然後在對應於時間ti之時脈信 號CK之下降沿處輸入之命令/位址信號CAxF之值可經映射 以輸出至DQ墊DQ[9:0]。在對應於時間t4之時脈信號CK之 上升沿處輸入之命令/位址信號CAyR之值可經映射以輸出 至DQ墊DQ[9:0],且然後,在對應於時間t4之時脈信號CK 之下降沿處輸入之命令/位址信號CAyF之值可經映射以輸 出至 DQ墊 DQ[9:0]。 圖16係展示用於闡述根據另一實施例之命令/位址信號 與記憶體裝置30之DQ墊之間的映射之另一實例之一圖 式。 參考圖16,在時脈信號CK之上升沿處輸入之命令/位址 信號CA[9:0]之值之部分可經順序映射而以預定時間間隔 輸出至DQ墊DQ[4:0]。在時脈信號CK之下降沿處輸入之命 令/位址信號CA[9:0]之值之部分可經順序映射而以預定時 間間隔輸出至DQ墊DQ[5:9]。 舉例而言,在圖13中,在於時間q處之時脈信號CK之上 升沿及下降沿處分別輸入命令/位址信號CAxR及CAxF之命 令/位址信號CA[9:0]之值之後,可經由DQ墊DQ[4:0]分別 輸出CAxR之值CA[4:0](作為輸入),在一隨後時間跟隨經 163456.doc -58 - 201246211 由DQ墊DQ[4:0]分別輸出CAxR之值CA[9:5](作為輸入)之 一輸出。然而,經由DQ墊DQ[9:5]輸出CAxF之命令/位址 信號CA[4:0]之值(作為輸入),跟隨經由DQ墊DQ[9:5]輸出 CAxF之命令/位址信號CA[9:5]之值(作為輸入)。 圖17係展示根據另一實施例之命令/位址信號與DQ墊之 間的映射之另一實例之一圖式。 參考圖17,可將在時脈信號CK之上升沿處輸入之命令/ 位址信號CA[9:0]之輸入值之部分順序輸出至DQS墊DQS0 及DQS1以及DQ墊DQ[3:0]。舉例而言,經由DQ塾DQ[3:0] 輸出CAxR之命令/位址信號CA[3:0]之值,其中CAxR之命 令/位址信號CA4之值係經由DQS墊DQS0輸出。然後,經 由DQ墊DQ[3:0]輸出CAxR之命令/位址信號CA[8:5]之值, 其中命令/位址信號CA9之值係經由DQS墊DQS1輸出q -可將在時脈信號CK之下降沿處輸入之命令/位址信號 CA[9:0]之輸入值之部分順序輸出至DQS墊/DQS0及/DQS1 以及DQ墊DQ[7:4]。舉例而言,在如上文所述輸出CAxR之 部分之後,經由DQ墊DQ[7:4]輸出CAxF之命令/位址信號 CA[3:0]之值,經由DQS墊/DQSO輸出CAxF之命令/位址信 號CA4之值,經由DQ墊DQ[7:4]輸出CAxF之命令/位址信 號CA[8:5]之值,且經由DQS墊/DQS1輸出CAxF之命令/位 址信號CA9之值。 圖18係根據另一實施例之一實例性命令/位址校準方法 之一圖式。圖18係闡述圖5中所展示之記憶體裝置30中之 一命令/位址校準方法之一時序圖,其中記憶體裝置30之 163456.doc -59· 201246211 資料DQ之位元組織係16又。由圖18所表示之方法可係與上 文關於圖1G所閣述之方法或其#代方案相同,&amp;了由圖a 所表示之方法可在命令/位址校準資訊自記憶體裝置“至 記憶體控制器20之輸出方面不同。另外,_圖解說明使 用Μ刪43之特定實例作為一進入命令/位址校準模式命令 且使用MR刪4之特定實例作為—退出命令績址校準模式 命令之一選項。由於上文已闡述圖1〇之實施例及其替代方 案之記憶體系統10之時序及操作,因此此處不需要重複圖 10及圖i8之實施例之共用特徵之一重複性㈣。可以各種 方式設定輸入命令/位址信號(:八\11及(:入\17與]〇(5墊之間的 映射。作為一映射實例,可以預定時間間隔將在時脈信號 CK之上升沿處輸入之命令/位址信號CAxRi值之部分順序 輸出至偶數DQ墊DQ[2n],且可以預定時間間隔將在時脈 k號CK之下降沿處輸入之命令/位址信號CAxF之值之部分 順序輸出至奇數DQ墊DQ[2n+1],其中至4。進一步關 於圖19闡述此之一實例。 作為另一映射實例,將在時脈信號CK2上升沿處輸入 之CAxR之命令/位址信號CA[3:〇]之值分別輸出至偶數dq 墊DQ[2n]其中η係3至0,同時將CAxR之命令/位址信號 CA4之值輸出至〇(^墊〇(^〇,同時將CAxR之命令/位址信 號CA[8:5]之值分別輸出至偶數DQ墊DQ[2n],其中n係8至 5,且同時將CAxR之命令/位址信號cA9之值輸出至 塾DQS1 °與此同時,將CAxF之命令/位址信號ca[3:〇]之 值分別輸出至奇數DQ墊DQ[2n+1],其中11係3至〇,同時將 163456.doc 201246211 CAxF之命令/位址信號CA4之值輸出至DQS墊/ DQS0,同 時將CAxF之命令/位址信號CA[8:5]之值分別輸出至奇數 DQ墊DQ[2n+l],其中η係8至5,且同時將命令/位址信號 CA9之值輸出至DQS墊/DQS1 〇在此實施例及本文中所闡 述之所有其他實施例中,可以如上文關於CAxR及CAxF所 闡述之一方式進行對應於稍後校準循環之命令/位址信號 (例如’其他CAnR及CAnF,例如CAyR及CAyF)之其他值至 記憶體裝置之輸出之映射及輸出,但此並非必須的。另 外’儘管已關於記憶體裝置30之端子(例如,墊、接針、 凸塊等)闡述該映射及輸出,但對於本文中所闞述之所有 實施例,此等闡述同樣適用於在記憶體裝置3〇與記憶體控 制器20之間提供通信之相關聯匯流排及信號線以及記憶體 控制器-之端子(墊、接針、凸塊等)。舉例而言,在某一實 施例中對某些命令位址資訊(或值)至記憶體裝置3 〇之偶數 DQ墊之一輸出之一闞述涵蓋彼命令位址資訊(或值)經由 DQ匯流排13之偶數DQ線之傳輸及由記憶體控制器2()透過 對應偶數DQ端子之接收。 圖19係展示根據一實施例之命令/位址信號與Dq墊之間 的映射之一實例之一圖式。 參考圖19,可將在時脈信號(:1&lt;:之上升沿處輸入之命令/ 位址信號CA[9:0]之值之部分順序輸出至偶數DQ墊dq [2η],其中n係〇至4。可將在時脈信號CK2下降沿處輸入 之命令/位址信號CA[9:0]之值之部分順序輸出至奇數〇9墊 DQ[2n+1],其中以系❽至4。舉例而言,在圖1〇中可將在 163456.doc • 61 * 201246211 對應於時間t!之時脈信號CK之上升沿處輸入之cAxR之命 令/位址信號CA[0:4]之值輸出至偶數dq墊DQ[2n],同時將 在時脈信號CK之下降沿處輸入之CAxF之命令/位址信號 CA[0:4]之值輸出至奇數DQ墊DQ[2n+l],其中η係0至4。 在一後續時間(其可緊接在此輸出之後)處,可將CAxR之命 令/位址信號CA[5:9]之值輸出至偶數DQ墊DQ[2n],且可將 CAxF之命令/位址信號CA[5:9]之值輸出至奇數DQ墊 DQ[2n+l],其中η係0至4。在一稍後時間處,可以一類似 方式輸出與其他校準循環相關聯之校準資訊,例如,關於 圖10所闡述之CAyF及CAyR。 圖20係展示用於闡述根據一實施例之命令/位址信號與 DQ墊之間的映射之另一實例之一圖式。 參考圖20,在時脈信號CK之上升沿處輸入之命令/位址 信號CA[9:0](例如’ CAxR)之值可經映射以輸出至DQS墊 DQS0及DQS1以及偶數DQ墊DQ[2n],其中η係0至3 »舉例 而言,將CAxR之命令/位址信號CA[0:3]之值輸出至偶數 DQ墊DQ[2n],同時將CAxR之命令/位址信號CA4之值輸出 至DQS墊DQS0 (其中n係〇至3)。然後,將CAxR之命令/位 址信號CA[5:8]之值輸出至偶數DQ墊DQ[2n],同時將 CAxR之命令/位址信號cA9之值輸出至DQS墊DQS1 (其中η 係0至3)。 在時脈信號CK之下降沿處輸入之命令/位址信號 CA[9:0](例如,CAxF)之值可經映射以輸出至dqs墊/Dqs〇 及/DQS1以及奇數Dq墊DQ[2n+l],其中n係〇至3。舉例而 丨 63456.doc 善 s 201246211 言,將CAxF之命令/位址信號CA[0:3]之值輸出至奇數DQ 墊DQ[2n+l],同時將CAxF之命令/位址信號CA4之值輸出 至DQS墊/DQS0。然後,將CAxF之命令/位址信號CA[5:8] 之值輸出至奇數DQ墊DQ[2n+l],同時將CAxF之命令/位址 信號CA9之值輸出至DQS墊/DQS1。CAxR之CA[4:0]及 CAxF之CA[4:0]之輸出可同時發生。cAxR之CA[5:9]及 CAxF之CA[5:9]之輸出可同時發生。在一稍後時間處,可 以一類似方式輸出與其他校準循環相關聯之校準資訊,例 如關於圖10所闡述之CAyF及CAyR。 圖21係展示可用於實施本文中所闡述之一或多個ca校 準實施例之一記憶體系統之另一實例之一方塊圖。 參考圖2 1,δ己憶體系統4〇不同於圖5中所展示之記憶體 系統ίο,此乃因命令/位址校準資訊CAr(如由記憶體裝置 60所解譯之來自控制器5〇之經相位調整之校準信號cAsp2) 係透過一單獨校準匯流排CA_Cal 15而非匯流排Η提供 至記憶體控制器50。校準匯流排CA—⑸15可專用於在校 準模式期間傳輸所接收之命令/位址資訊CAr。當不在校準 模式中(在JL常操作期間)’校準m流排cA_Cal丨5可用於 另-功能,或可不使用。舉例而言,校準匯流排ca—Μ 15可用於在-Dq匯流排校準模式期間自記憶體裝置的至 記憶體控制器50傳輸叫校準資訊。DQ校準可係與本文中 關於CA校準實施例中之任一者所閣述之ca校準相同,且 DQf準資訊可傳、與CA校準資訊相同1 了 DQ校準係在校 準^係在經由DQE流排傳輪之情形下執行的,且因 163456.doc -63- 201246211 此,此處不需要進行一重複性闡述。因此,在命令/位址 信號之校準期間’可透過係額外信號線之一 DQ信號線及 一 DQS信號線傳輸其他信號’藉此改良效率。為避免一重 複性闡述’將不提供對與圖5中相同之組件之一詳細闡 述。 在記憶體控制器50中,時脈產生器201產生一時脈信號 CK以透過時脈信號線11將時脈信號CIC提供至記憶體裝置 60。CA傳輸器203回應於相位/時序控制器208之控制信號 CTRL而調整初始命令/位址信號CAspi之相位或時序以產生 經相位調整之命令/位址信號C Asp2 » 在5己憶體裝置60中,C A接收器3 04以回應於内部時脈信 號ICK之一時序且在藉由時脈啟用信號cke及晶片選擇信 號/CS啟用時接收經相位調整之命令/位址信號casp2,以產 生命令/位址校準資訊CAr。命令/位址校準資訊CAr係透過 校準匯流排CA一Cal 15由記憶體裝置60提供至記憶體控制 器50。透過校準匯流排cA_Cal 15,將命令/位址校準資訊 CAr提供至記憶體控制器50之比較器206。163456.doc 56 - S 201246211 bits (eg, on the outside thereof) such that memory device 30 incorrectly interprets one of the command/address alignment signal logic timings). Figure 14 is a table for explaining one of the mode register command setting methods according to another embodiment. Referring to FIG. 14, the MRW #43 command and the MRW #44 command can be set by the clock enable signal CKE, the wafer select signal /CS, and the command/address signal CA[9:0]. When the clock enable signal CKE is in a logic high state, the chip select signal /CS is in a logic low state, the command/address signal CA[3:0] is in a logic low state, and the command When the address signals CA[9:4] are respectively under a logic level HLHLHH, the MRW#43 command can be set. That is, the MRW #43 command can be represented by a command/address signal CA[9:0] value of 2BH. As described above, the MRW #43 command may be the same at both the rising and falling edges of the clock signal CK, however, a different value (eg, the inverse of 2BH) may alternatively be sent to the memory device. 30. When the pulse enable signal CKE is in a logic high state, the chip select signal /CS is in a logic low state, the command/address signal CA[3:0] is in a logic low state, and the command The MRW#44 command can be set when the address signals CA[9:4] are respectively under the logic level HLHHLL. That is, the MRW #44 command can be set identically at both the rising edge and the falling edge of the clock signal CK. In this paper, the command/address signal CA[9:4] can be used as the mode register location address MA[5:0]. Figure 15 is a diagram for illustrating one example of a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment. Referring to FIG. 15, the command/address 163456.doc -57-201246211 signal CA[9:0] input at the rising edge of the clock signal CK can be mapped to be output to the DQ pad DQ of the memory device 30 [ 9:0]. Thereafter, the result of the calibration of the command/address signal CA[9:0] input at the falling edge of the clock signal CK can be mapped to be output to the DQ pad DQ[9:0]. For example, in FIG. 13, the value of the command/address signal CAxR input at the rising edge of the clock signal CK corresponding to the time ^ can be mapped to be output to the DQ pad DQ[9:0], and then The value of the command/address signal CAxF input at the falling edge of the clock signal CK corresponding to the time ti can be mapped to be output to the DQ pad DQ[9:0]. The value of the command/address signal CAyR input at the rising edge of the clock signal CK corresponding to time t4 can be mapped to be output to the DQ pad DQ[9:0], and then, at time corresponding to time t4 The value of the command/address signal CAyF input at the falling edge of signal CK can be mapped to output to DQ pad DQ[9:0]. Figure 16 is a diagram showing one example of another example for illustrating a mapping between a command/address signal and a DQ pad of a memory device 30 in accordance with another embodiment. Referring to Fig. 16, a portion of the value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be sequentially mapped to the DQ pad DQ[4:0] at predetermined time intervals. A portion of the value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK may be sequentially mapped to the DQ pad DQ[5:9] at predetermined time intervals. For example, in FIG. 13, after the values of the command/address signals CA[9:0] of the command/address signals CAxR and CAxF are respectively input at the rising edge and the falling edge of the clock signal CK at time q, respectively. The value of CAxR CA[4:0] (as input) can be output via DQ pad DQ[4:0], respectively, followed by 163456.doc -58 - 201246211 by DQ pad DQ[4:0] The output CAxR is output as one of the values CA[9:5] (as input). However, the value of the command/address signal CA[4:0] of CAxF is output via DQ pad DQ[9:5] (as an input), followed by the command/address signal outputting CAxF via DQ pad DQ[9:5] The value of CA[9:5] (as input). Figure 17 is a diagram showing one example of another example of mapping between a command/address signal and a DQ pad in accordance with another embodiment. Referring to FIG. 17, a portion of the input value of the command/address signal CA[9:0] input at the rising edge of the clock signal CK can be sequentially output to the DQS pads DQS0 and DQS1 and the DQ pad DQ[3:0]. . For example, the value of the command/address signal CA[3:0] of CAxR is output via DQ塾DQ[3:0], where the value of the command/address signal CA4 of CAxR is output via the DQS pad DQS0. Then, the value of the command/address signal CA[8:5] of CAxR is output via the DQ pad DQ[3:0], wherein the value of the command/address signal CA9 is output via the DQS pad DQS1 q - can be in the clock The portion of the input value of the command/address signal CA[9:0] input at the falling edge of the signal CK is sequentially output to the DQS pad/DQS0 and /DQS1 and the DQ pad DQ[7:4]. For example, after outputting the portion of CAxR as described above, the value of the command/address signal CA[3:0] of CAxF is output via the DQ pad DQ[7:4], and the command of CAxF is output via the DQS pad/DQSO. / The value of the address signal CA4, the value of the command/address signal CA[8:5] of the CAxF is output via the DQ pad DQ[7:4], and the command/address signal CA9 of the CAxF is output via the DQS pad/DQS1. value. Figure 18 is a diagram of an exemplary command/address calibration method in accordance with another embodiment. FIG. 18 is a timing diagram illustrating a command/address calibration method in the memory device 30 shown in FIG. 5, wherein the memory device 30 is 163456.doc-59·201246211. . The method represented by FIG. 18 may be the same as the method described above with respect to FIG. 1G or its #代代方案, &amp; the method represented by FIG. a may be used to calibrate information from the memory device at command/address. The output to memory controller 20 differs. In addition, _ illustrates the use of a specific instance of Μ 43 43 as an entry command/address calibration mode command and uses a specific instance of MR 4 4 as the quit command summary calibration mode command One of the options. Since the timing and operation of the memory system 10 of the embodiment of FIG. 1 and its alternatives have been described above, there is no need to repeat one of the common features of the embodiment of FIG. 10 and FIG. (4) The input command/address signal can be set in various ways (: eight\11 and (:in\17 and ]〇(the mapping between the 5 pads. As a mapping example, the time interval can be scheduled at the clock signal CK The portion of the command/address signal CAxRi value input at the rising edge is sequentially output to the even DQ pad DQ[2n], and the command/address signal CAxF input at the falling edge of the clock k number CK can be input at predetermined time intervals. Partial sequential output of values To the odd DQ pad DQ[2n+1], to to 4. An example of this is further explained with respect to Fig. 19. As another mapping example, the command/address signal CA of the CAxR input at the rising edge of the clock signal CK2 will be CA. The value of [3:〇] is output to the even dq pad DQ[2n], where η is 3 to 0, and the value of CAxR command/address signal CA4 is output to 〇(^〇(^〇, meanwhile CAxR) The values of the command/address signals CA[8:5] are output to the even DQ pads DQ[2n], where n is 8 to 5, and the value of the command/address signal cA9 of CAxR is simultaneously output to 塾DQS1 ° At the same time, the value of CAxF command/address signal ca[3:〇] is output to the odd DQ pad DQ[2n+1], where 11 is 3 to 〇, and 163456.doc 201246211 CAxF is commanded / The value of the address signal CA4 is output to the DQS pad/DQS0, and the values of the CAxF command/address signals CA[8:5] are respectively output to the odd DQ pads DQ[2n+l], where the η is 8 to 5, And simultaneously outputting the value of the command/address signal CA9 to the DQS pad/DQS1. In this embodiment and all other embodiments set forth herein, the method may be performed as described above with respect to CAxR and CAxF. The mapping and output of the command/address signals of the loop (eg, 'other CAnR and CAnF, eg CAyR and CAyF) to the output of the memory device are later calibrated, but this is not required. Also 'although already related to memory The terminals (eg, pads, pins, bumps, etc.) of the body device 30 illustrate the mapping and output, but for all of the embodiments described herein, the same applies to the memory device 3 and the memory controller. 20 provides communication between the associated bus and signal lines and the memory controller - terminals (pads, pins, bumps, etc.). For example, in one embodiment, some command address information (or value) is output to one of the even DQ pads of the memory device 3, and the command address information (or value) is included via DQ. The transmission of the even DQ lines of the bus bar 13 and the reception by the memory controller 2() through the corresponding even DQ terminals. Figure 19 is a diagram showing one example of a mapping between a command/address signal and a Dq pad, in accordance with an embodiment. Referring to FIG. 19, a portion of the value of the command/address signal CA[9:0] input at the rising edge of the clock signal (:1&lt;: may be sequentially output to the even DQ pad dq [2η], where n is 〇 to 4. The part of the value of the command/address signal CA[9:0] input at the falling edge of the clock signal CK2 can be sequentially output to the odd 〇9 pad DQ[2n+1], where To 4. For example, in Figure 〇, the command/address signal CA[0:4 of cAxR input at the rising edge of the clock signal CK corresponding to the time t! at 163456.doc • 61 * 201246211 can be entered. The value is output to the even dq pad DQ[2n], and the value of the CAxF command/address signal CA[0:4] input at the falling edge of the clock signal CK is output to the odd DQ pad DQ[2n+ l], where η is 0 to 4. At a subsequent time (which can be immediately after this output), the value of the CAxR command/address signal CA[5:9] can be output to the even DQ pad DQ [ 2n], and the value of the CAxF command/address signal CA[5:9] can be output to the odd DQ pad DQ[2n+l], where η is 0 to 4. At a later time, it can be similar Mode outputs calibration information associated with other calibration cycles, for example, Regarding CAyF and CAyR as illustrated in Figure 10. Figure 20 is a diagram showing one example of another example for illustrating the mapping between a command/address signal and a DQ pad in accordance with an embodiment. The value of the command/address signal CA[9:0] (eg, 'CAxR) input at the rising edge of signal CK can be mapped to output to DQS pads DQS0 and DQS1 and even DQ pads DQ[2n], where η is 0 To 3 » For example, the value of the CAxR command/address signal CA[0:3] is output to the even DQ pad DQ[2n], and the value of the CAxR command/address signal CA4 is output to the DQS pad DQS0. (where n is 〇 to 3.) Then, the value of the CAxR command/address signal CA[5:8] is output to the even DQ pad DQ[2n], and the value of the CAxR command/address signal cA9 is output. To DQS pad DQS1 (where η is 0 to 3.) The value of the command/address signal CA[9:0] (for example, CAxF) input at the falling edge of the clock signal CK can be mapped to output to the dqs pad. /Dqs〇 and /DQS1 and odd Dq pad DQ[2n+l], where n is 〇 to 3. For example, 丨63456.doc 善s 201246211, the CAxF command/address signal CA[0:3] The value is output to the odd DQ pad DQ[2n+l], The value of the CAxF command/address signal CA4 is output to the DQS pad/DQS0. Then, the value of the CAxF command/address signal CA[5:8] is output to the odd DQ pad DQ[2n+l], The value of the CAxF command/address signal CA9 is output to the DQS pad/DQS1. The output of CA[4:0] of CAxR and CA[4:0] of CAxF can occur simultaneously. The output of CA[5:9] of cAxR and CA[5:9] of CAxF can occur simultaneously. At a later time, calibration information associated with other calibration cycles can be output in a similar manner, such as CAyF and CAyR as illustrated with respect to FIG. 21 is a block diagram showing another example of a memory system that can be used to implement one or more of the ca calibration embodiments set forth herein. Referring to FIG. 2, the delta recall system 4 is different from the memory system shown in FIG. 5, because of the command/address calibration information CAr (as interpreted by the memory device 60 from the controller 5). The phase-adjusted calibration signal cAsp2) is provided to the memory controller 50 via a separate calibration bus CA_Cal 15 instead of the bus bar. The calibration bus CA-(5) 15 can be dedicated to transmitting the received command/address information CAr during the calibration mode. When not in the calibration mode (during normal operation of JL), the calibration m stream cA_Cal丨5 can be used for another function or not. For example, the calibration busbar ca-Μ 15 can be used to transfer calibration information from the memory device to the memory controller 50 during the -Dq bus calibration mode. The DQ calibration can be the same as the ca calibration described in any of the CA calibration embodiments herein, and the DQf quasi-information can be transmitted and the CA calibration information is the same. 1 The DQ calibration system is in the calibration system. Executed in the case of a passing wheel, and because of 163456.doc -63- 201246211, there is no need for a repetitive statement here. Therefore, during the calibration of the command/address signal, 'the other signal can be transmitted through one of the additional signal lines DQ signal line and one DQS signal line', thereby improving efficiency. To avoid a repetitive statement, a detailed description of one of the components in Fig. 5 will not be provided. In the memory controller 50, the clock generator 201 generates a clock signal CK to supply the clock signal CIC to the memory device 60 through the clock signal line 11. The CA transmitter 203 adjusts the phase or timing of the initial command/address signal CAspi in response to the control signal CTRL of the phase/timing controller 208 to produce a phase adjusted command/address signal C Asp2 » in the 5 memory device 60 The CA receiver 308 receives the phase-adjusted command/address signal casp2 in response to a timing of the internal clock signal ICK and when the clock enable signal cke and the wafer select signal /CS are enabled to generate a command. / Address calibration information CAr. The command/address calibration information CAr is supplied from the memory device 60 to the memory controller 50 through the calibration bus CA-Cal 15. The command/address calibration information CAr is supplied to the comparator 206 of the memory controller 50 through the calibration bus cA_Cal 15.

s己憶體控制器50之比較器206比較經發送命令/位址資訊 CAS (其可係經相位調整之命令/位址信號CAsp2之資訊之資 料-其可係與初始命令/位址信號CAspl之資訊相同)與所接 收之命令/位址校準資訊CAr以產生通過信號p或失敗信號 F。相位/時序控制器208根據由比較器2〇6產生之通過信號 P或失敗信號F產生指示經相位調整之命令/位址信號c A ^ P ^ 之一相移之控制信號CTRL。CA傳輸器203根據控制信號 163456.doc •64· 201246211 CTRL產生經相位調整之命令/位址信號〜。在記憶體裝 置60與記憶體控制器5〇之間的命令/位址通信之一校準期 間,可執行發送經相位調整之命令/位址信號^叫之多個 循衣(每循環具有相對於時脈CK之—不同經調整相對相 )且可基於多個通過P及失敗F判定來選擇時脈CK與自 記憶體控制器50發送至記憶體裝置6〇之命令/位址信號之 間的最佳相對相位’如本文中關於其他實施例所閣述(例 如,闞述圖5之記憶體控制器2〇及記憶體裝置3〇之實施 例)舉例而a ’藉由重複CA校準循環,記憶體控制器% 之相位/時序控制器2〇8判定用以觸發記憶體裝置6〇在命令/ 位址L號C A由之中間處對其輸入(例如,鎖存)的時脈 與一個、複數個或所有命令/位址信號之一最佳相對相 位。因此,記憶體裝置6〇接收針對其一有效窗之中間對應 於時脈信號CK之上升沿及下降沿(其可係時脈信號CK及 CKB兩者之上升沿及下降沿)之命令/位址信號ca。 如同本文中所闡述之其他實施例,可針對一單個命令/ 位址信號線CA(該校準可用於判定一命令/位址匯流排丨2之 所有#號線之一單個最佳相對相位)、針對命令/位址匯流 排12之某些但非所有命令/位址信號線或針對命令/位址匯 流排12之所有命令/位址信號線(個別地或者作為一群組)執 行校準。該等結果可用於判定並控制時脈CK與命令/位址 匯流排12之佗號線之間的相對相位,命令/位址匯流排丄2 之信號線或者作為一單個群組(例如,命令位址匯流排之 所有信號線發送具有與時脈CK之相同最佳相對相位之信 163456.doc -65- 201246211 號)、複數個群組(亦即,命令/位址匯流排丨2之信號線群組 中之每一者具有由記憶體控制器50判定之一對應最佳相對 相位且在正常操作期間可共用電路以達成此經判定最佳相 對相位-例如CA相位/時序控制器208)或個別地(例如,命令/ 位址匯流排12之信號線中之每一者具有由記憶體控制器5〇 判定之一對應最佳相對相位且在正常操作期間可具有專用 (非共用)電路以達成此經判定最佳相對相位,例如一專用 CA相位/時序控制器208)。 圖22係展示可用於實施本文中所闡述之一或多個命令/ 位址校準實施例之一記憶體系統之另一實例之一方塊圖。 參考圖22,一 s己憶體系統70可包含一記憶體控制器8〇及 一記憶體裝置90。記憶體控制器80可包含一時脈產生器 801、一命令/位址(CA)產生器8〇2、一 ca產生參考單元 8〇3、一暫存器單元8〇4、一比較器8〇6、一相位/時序控制 器808及資料輸入/輸出單元81〇及812。記憶體控制器肋透 過時脈仏號線11將由時脈產生器8〇1產生之時脈信號提 供至記憶體裝置90。 記憶體系統70額外地包含一 CA參考信號線CA_Ref 16。 CA參考信號線CA_Ref 16在記憶體控制器8〇與記憶體裝置 70之間的命令/位址CA通信之(^八校準模式中傳輸一信號 CA一Refj接收一 CA參考校準資訊CA_Refr。將CA參考校 準資訊CA_Refr提供至CA_Ref比較器8〇6以判定CA校準之 一循環之一結果(例如,通過P或失敗F),該結果係提供至 相位/時序控制器808以藉由提供一控制信號〇1111^至〇八產 163456.doc -66· 201246211 生器802來調整命令/位址信號CA相對於時脈CK之相對相 位或時序。由於提供一 CA參考信號線CA—Ref 16,可與經 由命令/位址匯流排12傳輸命令/位址信號CA同時執行命令/ 位址CA通信之校準。 CA產生器802產生具有已回應於控制信號CTRL而判定 (可能地,調整)之一相位或時序之一 CA信號,且透過命令/ 位址匯流排12將其傳輸至記憶體裝置90。CA產生參考單 元803可係與CA產生器802相同地組態(例如,可使用來自 一記憶體胞程式庫之相同單元記憶體胞之相同電路構 造),且產生經發送命令/位址參考信號CA_Refs。經發送 命令/位址參考信號CA_Refs可係與由CA產生器802產生之 命令/位址信號CA相同或完全獨立於命令/位址信號CA。 可以由控制信號CTRL判定之一相位產生經發送命冷/位址 參考信號CA_Refs,該控制信號CTRL可係由CA相位時序 控制器808提供(或自由CA相位時序控制器808提供之資訊 導出)。由控制信號CTRL控制之經發送命令/位址參考信號 CA—Refsi相位可係與由CA產生器802輸出之CA信號之相 位相同》 · 將經發送命令/位址參考信號CA_Refs提供至暫存器單元 804以儲存由經發送命令/位址參考信號示之資 訊。將經發送命令/位址參考信號CA_Refs提供至將經發送 命令/位址參考信號CA_Refs傳輸至記憶體裝置90之CA參考 信號線CA_ref 16。 暫存器單元804儲存由經發送命令/位址參考信號 163456.doc -67· 201246211 —s表示之資°凡。比較器806比較儲存在暫存器單元 m中之經料命令/位址參考信紅A_Refs之資訊與經由 〇己隐體控制器8G之資料輸人單元81()自記憶體裝置9〇接收 之所接收之命令/位址參考校準資訊以&gt;卜比較器8〇6 比較儲存在CA_Ref暫存㈣4中之經發送命令/位址參考信 號CA_Refs之資訊與所接收之命令/位址參考校準資訊 C A—Refr以產生通過信號p或失敗信號f。以可係與本文中 關於其他實施例所闡述4方式相同之方式,命令/位 址通信校準之每一循環(每一循環對應於處於一特定相位 之^ A—Refs之一傳輸)執行通過信號p或失敗信號f之產 生,且在命令/位址通信校準模式期間產生之通過p及失敗 F信號之群組可用於判定經由c a匯流排丨2傳輸之命令/位址 信號與時脈CK之間的一最佳相對相位。 舉例而言,相位/時序控制器8〇8根據由比較器8〇8在校 準模式期間產生之通過或失敗信號5&gt;或F之群組產生指示命 令/位址信號CA之一相移之控制信號CTRL。控制信號 CTRL用於判定(例如’調整或維持)命令/位址信號ca與時 脈ck之相對相位或時序,且產生經由命令/位址匯流排12 傳輸之經相位調整之命令/位址信號CA。 可係一輸入緩衝器及/或放大器之資料輸入單元81〇透過 CA參考信號線CA_ref 16自記憶體裝置90接收所接收之命 令/位址參考校準資訊CA_Refr,且將所接收之命令/位址參 考校準資訊CA一Refr遞送至比較器8〇6。可係一輸出緩衝器 及/或放大器之資料輸出單元812接收由CA產生參考單元 163456.doc $ -68 - 201246211 803產生之經發送命令/位址參考信號CA_Refs,且將經發 送命令/位址參考信號CA_Refs傳輸至CA參考信號線CA_ref 16 〇 記憶體裝置90包含一時脈緩衝器902、一 CA接收器 904、一 CA參考接收器906及輸入/輸出單元908及910(其可 分別係輸入及輸出緩衝器及/或放大器)。時脈緩衝器902接 收透過時脈信號線11傳輸之時脈信號CK以產生内部時脈 信號ICK。内部時脈信號ICK可具有與外部時脈信號CK相 同之時序(例如,相位及負載循環),或其可係不同的(例 如,在相位及/或負載循環方面)。CA接收器904接收晶片 選擇信號/CS及時脈啟用信號CKE以及透過命令/位址匯流 排12傳輸之命令/位址信號CA。時脈啟用信號CKE可用作 如本文中其他地方所闡述充當透過命令/位址匯流排12傳 輸之命令/位址信號CA之一讀取命令的一偽命令。當時脈 啟用信號CKE在一有效狀態中時,CA接收器304可接收命 令/位址信號CA。The comparator 206 of the suffix controller 50 compares the transmitted command/address information CAS (which may be the information of the phase-adjusted command/address signal CAsp2 - which may be associated with the initial command/address signal CAspl The information is the same) and the received command/address calibration information CAr is used to generate the pass signal p or the fail signal F. The phase/timing controller 208 generates a control signal CTRL indicating a phase shift of one of the phase adjusted commands/address signals c A ^ P ^ based on the pass signal P or the fail signal F generated by the comparator 2〇6. The CA transmitter 203 generates a phase adjusted command/address signal ~ according to the control signal 163456.doc • 64· 201246211 CTRL. During the calibration of one of the command/address communications between the memory device 60 and the memory controller 5, a plurality of loops of the phase-adjusted command/address signal can be executed (each cycle has a relative The clock CK - different adjusted relative phase) and may select between the clock CK and the command/address signal transmitted from the memory controller 50 to the memory device 6 based on a plurality of P and F failure decisions. The preferred relative phase is as exemplified herein with respect to other embodiments (eg, the memory controller 2 and the memory device 3 of FIG. 5) and a 'by repeating the CA calibration cycle, the memory The phase/timing controller 2〇8 of the controller % determines the clock used to trigger the memory device 6 to input (for example, latch) the command/address L number CA from the middle thereof with one or more clocks. Or one of the best relative phases of any command/address signal. Therefore, the memory device 6 receives a command/bit corresponding to the rising edge and the falling edge of the clock signal CK (which can be the rising and falling edges of the clock signals CK and CKB) for the middle of one of the effective windows. Address signal ca. As with the other embodiments set forth herein, a single command/address signal line CA can be used (this calibration can be used to determine a single optimal relative phase of one of all ## lines of a command/address bus 丨2), Calibration is performed for some but not all command/address signal lines of the command/address bus 12 or for all command/address signal lines of the command/address bus 12 (individually or as a group). The results can be used to determine and control the relative phase between the clock CK and the apostrophe line of the command/address busbar 12, the signal line of the command/address bus 丄2 or as a single group (eg, command) All signal lines of the address bus are sent with the same best relative phase as the clock CK 163456.doc -65- 201246211), a plurality of groups (ie, the signal of the command/address bus 丨2) Each of the line groups has one of the best relative phases determined by the memory controller 50 and can share circuitry during normal operation to achieve the determined optimal relative phase - for example, the CA phase/timing controller 208) Or individually (eg, each of the signal lines of the command/address bus 12 has one of the best relative phases determined by the memory controller 5 且 and may have a dedicated (non-shared) circuit during normal operation) To achieve this determined optimal relative phase, such as a dedicated CA phase/timing controller 208). 22 is a block diagram showing another example of a memory system that can be used to implement one or more of the command/address alignment embodiments set forth herein. Referring to Figure 22, a memory system 70 can include a memory controller 8A and a memory device 90. The memory controller 80 can include a clock generator 801, a command/address (CA) generator 8〇2, a ca generating reference unit 8〇3, a register unit 8〇4, and a comparator 8〇. 6. A phase/timing controller 808 and data input/output units 81 and 812. The memory controller rib supplies the clock signal generated by the clock generator 8〇1 to the memory device 90 via the clock signal line 11. The memory system 70 additionally includes a CA reference signal line CA_Ref 16. The CA reference signal line CA_Ref 16 communicates with the command/address CA between the memory controller 8 and the memory device 70 (a signal CA-Refj is transmitted in the eight-calibration mode to receive a CA reference calibration information CA_Refr. CA The reference calibration information CA_Refr is provided to the CA_Ref comparator 8〇6 to determine one of the results of one of the CA calibration cycles (eg, by P or F), which is provided to the phase/timing controller 808 to provide a control signal 〇1111^至〇八产163456.doc -66· 201246211 The generator 802 adjusts the relative phase or timing of the command/address signal CA with respect to the clock CK. Since a CA reference signal line CA_Ref 16 is provided, The command/address signal CA is simultaneously transmitted via the command/address bus 12 to perform the calibration of the command/address CA communication. The CA generator 802 generates one phase that has been determined (possibly adjusted) in response to the control signal CTRL or One of the timing CA signals is transmitted to the memory device 90 via the command/address bus 12. The CA generation reference unit 803 can be configured identically to the CA generator 802 (eg, can be used from a memory cell) Library The same circuit memory cell has the same circuit configuration, and generates a transmitted command/address reference signal CA_Refs. The transmitted command/address reference signal CA_Refs may be the same as the command/address signal CA generated by the CA generator 802. Or completely independent of the command/address signal CA. The transmitted cold/address reference signal CA_Refs may be generated by one of the control signals CTRL, which may be provided by the CA phase timing controller 808 (or free CA) The information provided by the phase timing controller 808 is derived. The transmitted command/address reference signal CA_Refsi phase controlled by the control signal CTRL can be the same as the phase of the CA signal output by the CA generator 802. The /address reference signal CA_Refs is provided to the register unit 804 to store the information indicated by the transmitted command/address reference signal. The transmitted command/address reference signal CA_Refs is provided to the transmit command/address reference signal CA_Refs The CA reference signal line CA_ref 16 is transmitted to the memory device 90. The register unit 804 stores the transmitted command/address reference signal 163456.doc -67·2012462 11 - s indicates that the comparator 806 compares the information of the throughput command/address reference letter A_Refs stored in the register unit m with the data input unit 81 via the 隐 隐 hidden controller 8G ( The received command/address reference calibration information received from the memory device 9 以 compares the information and the transmitted command/address reference signal CA_Refs stored in the CA_Ref temporary (4) 4 with the comparator comparator 〇6 The received command/address references the calibration information CA_Refr to generate a pass signal p or a fail signal f. Each pass of the command/address communication calibration (each cycle corresponds to one of the transmissions of a certain phase of A-Refs) performs a pass signal in the same manner as described herein with respect to the other embodiments. The generation of p or failure signal f, and the group of pass and fail F signals generated during the command/address communication calibration mode can be used to determine the command/address signal and clock CK transmitted via the bus bus 2 An optimal relative phase between. For example, the phase/timing controller 8〇8 generates control of the phase shift of one of the command/address signals CA based on the pass or fail signal 5&gt; or group of F generated by the comparator 8〇8 during the calibration mode. Signal CTRL. The control signal CTRL is used to determine (eg, 'adjust or maintain" the relative phase or timing of the command/address signal ca and the clock ck, and generate a phase adjusted command/address signal transmitted via the command/address bus 12 CA. The data input unit 81, which can be an input buffer and/or an amplifier, receives the received command/address reference calibration information CA_Refr from the memory device 90 through the CA reference signal line CA_ref 16, and receives the received command/address The calibration information CA-Refr is delivered to the comparator 8〇6. A data output unit 812, which may be an output buffer and/or amplifier, receives the transmitted command/address reference signal CA_Refs generated by the CA generation reference unit 163456.doc $-68 - 201246211 803 and will send the command/address The reference signal CA_Refs is transmitted to the CA reference signal line CA_ref. The memory device 90 includes a clock buffer 902, a CA receiver 904, a CA reference receiver 906, and input/output units 908 and 910 (which can be input and Output buffer and / or amplifier). The clock buffer 902 receives the clock signal CK transmitted through the clock signal line 11 to generate an internal clock signal ICK. The internal clock signal ICK may have the same timing (e.g., phase and duty cycle) as the external clock signal CK, or it may be different (e.g., in terms of phase and/or duty cycle). The CA receiver 904 receives the wafer select signal /CS time pulse enable signal CKE and the command/address signal CA transmitted through the command/address bus bank 12. The clock enable signal CKE can be used as a pseudo-command as one of the commands/address signals CA that are transmitted through the command/address bus 12 as explained elsewhere herein. The CA receiver 304 can receive the command/address signal CA when the clock enable signal CKE is in an active state.

輸入單元908接收透過CA參考匯流排CA_ref 16自記憶體 控制器80傳輸之經發送命令/位址參考信號CA_Refs,且將 其傳輸至CA接收參考接收器906。CA接收參考接收器906 可係與CA接收器904相同地組態。CA接收參考接收器906 接收晶片選擇信號/CS、時脈啟用信號CKE及透過CA參考 匯流排CA_ref 16傳輸之經發送命令/位址參考信號 CA_Refs,且在時脈ICK之一上升沿及/或下降沿(其可係與 外部時脈CK之沿之時間相同之時間或相依於外部時脈CK 163456.doc -69- 201246211 之沿之時間)處鎖存經發送命令/位址參考信號CA_Refs。 由CA_Ref接收器906鎖存之經發送命令/位址參考信號 CA一Refs之資訊係所接收之命令/位址參考校準資訊 CA_Refr ’所接收之命令/位址參考校準資訊cA_Refr可與 由經發送命令/位址參考信號CA_Refs表示之資訊相同或不 同(舉例而言’基於在命令/位址校準之此循環期間由時脈 CK與經發送命令/位址參考信號cA_Refs之相對相位產生之 鎖存之時序)》 所接收之命令/位址參考校準資訊CA_Refr可係與自經由 CA匯流排12接收之一信號獲得之資訊相同,將該資訊自 CA接收器904輸出至記憶體裝置70内部之一源(在當CA接 收器904接收晶片選擇信號/cs、時脈啟用信號CKE及透過 命令/位址匯流排12傳輸之命令/位址信號CA時回應於内部 時脈信號ICK將該資訊輸入至CA接收器904之後)。所接收 之命令/位址參考校準資訊CA_Refr係經由CA參考信號線 CA一ref 16及輸出單元910傳輸至記憶體控制器80。 記憶體系統70可執行CA校準之複數個循環,如下闡述 一實例性單個循環。記憶體控制器80之CA產生器802回應 於相位/時序控制器808之控制信號CTRL而調整命令/位址 信號CA之相位或時序^ CA產生參考單元803產生可係與命 令/位址信號CA相同之經發送命令/位址參考信號 CA__Refs,且經由CA參考信號線CA_ref 16將經發送命令/ 位址參考信號CA_Refs傳輸至記憶體裝置90。記憶體裝置 90之CA參考接收器906在根據内部時脈信號ICK且藉由時 163456.doc •70· 201246211 脈啟用信號CKE啟用之-時間處輸入經發送命令/位址參考 信號CA_Refs,且產生所接收之命令/位址參考校準資訊 CA_Refr 、”呈由CA參考k號線ca一ref 16將記憶體裝置9〇之 所接收之命令/位址參考校準^傳輸至記憶體控 • 制器80。 將所接收之命令/位址參考校準資訊CA—Refr提供至比較 器_。&amp;較器806比較經發送命令/位址參考信號CA 一叫 之資訊與所接收之命令/位址參考校準資訊CA_Refr以針對 命令/位址校準之此循環產生通過信號p或失敗信號F ^透 過前述CA校準循環之重複,記憶體控制器8〇之相位/時序 控制器808判定由CA產生器802經由CA匯流排12傳輸之CA 信號與時脈CK之間的一最佳相對相位。此最佳相對相位 可係如本文中其-他地方所闡述來選擇,且可促進CA接收 器904以對應於命令/位址信號ca邏輯窗之中間部分之時序 輸入(例如,鎖存)在正常操作期間藉由CA匯流排12傳輸之 命令/位址信號(例如’以使得命令/位址信號邏輯窗之中間 對應於時脈信號CK及/或内部時脈信號ick之一沿)。 儘管在當前實施例中已闌述對CA匯流排12之一單個命 令/位址信號CA之校準,但所闡述之校準可用於調整在命 令/位址匯流排12之所有信號線上傳輸之信號之相位。此 可係僅使用單個CA_ref信號線16來完成(將其校準結果應 用於命令/位址匯流排12之所有信號線)。另一選擇為, CA_ref信號線16可係複教個C A_ref信號線中之一者,該複 數個CA_ref信號線中之每一者用於調整ca匯流排12之一 163456.doc •71 · 201246211 對應信號線或信號線群組。另外,複數信號線16 中之每一者可係毗鄰於其用於校準之CA匯流排12之信號 線之一信號線(例如,緊鄰2或3個信號線或在2或3個信號 線内)。此可包含間置於CA匯流排12之信號線之間的複數 個CA一ref信號線。此外,在替代實施例中,CA—ref線16可 在CA校準之外之模式(例如,正常操作)期間用於其他目的 (例如’電力或其他資訊信號之傳輸)。 本文中所闞述之記憶體控制器及記憶體裝置可呈眾多形 式。舉例而言,記憶體控制器可包括一半導體晶片或可係 一封裝(例如,囊封在一保護殼(例如,樹脂)中之一或多個 晶片)。記憶體裝置可包括一半導體晶片或可係一封裝(例 如,囊封在一保護殼(例如,樹脂)中之一或多個半導體記 憶體晶片)》該記憶體裝置可係一NAND快閃記憶體(包含 3D NAND 快閃記憶體)、DRAM、pRAM、RRAM&amp; / 或 MRAM。記憶體控制器及記憶體裝置可係封裝在相同半導 體封裝中(例如’一記憶體控制器晶片及一或多個記憶體 晶片堆疊在一起且囊封在一封裝中)。控制器/裝置封裝可 係一封裝疊加(POP)。 控制器可包括充當一或多個從控記憶體晶片之一主控裝 置之一主控記憶體晶片之一部分,所闡述之校準係針對主 控記憶體晶片與從控記憶體晶片中之—或多者之間的命令/ 位址通信執行。主控記憶體晶片及一或多個從控晶片可係 堆疊且經由彼此連接之每-晶片之穿基板通孔(TSV)(例如 穿矽通孔)通信(其中本文中所閣述之時脈信號u '命令/位 163456.doc •72· 201246211 址匯流排12、DQ匯流排13、晶片選擇信號線/cs、時脈啟 用CKE及資料選通線DQS之所有或某些係由穿石夕通孔中之 -或多者形成)。記憶體控制器及記憶體裝置可係一記憶 體卡(敌入式或可抽換式)之元件。 • 記憶體控制器及記憶體裝置可係安裝在可包含以下各項 - t相同印刷電路板或在—單個計算系統内連接之複數個電 路板上.包括一記憶體模組之元件《印刷電路、一計算 裝置(舉例而言’ -個人電腦)之一母板或其他印刷電路板 (例如,在一行動電話、個人資料助理(pD句或平板電腦 内)。 對於某些應用,控制器及記憶體裝置可藉助同一單片半 導體基板(例如’相同半導體晶片之部分)整體形成。舉例 而言,該記憶體可係一微處理器、一通信晶片或一數位信 號處理器中之嵌入式記憶體。 此外,儘管已將以上實施例闡述為與一記憶體系統相 關,但本發明亦可用於校準在記憶體系統外部之其他命令/ 位址通信(例如在伺服器、電腦等之一母板互連之節點之 間)以幫助附接至母板之裝置之間的通信。 此外,儘管該等實施例闡述自記憶體裝置傳輸至記憶體 . 控制器之命令/位址校準資訊之一實例係自記憶體控制器 毛送至s己憶體裝置之命令/位址校準信號之解譯(例如,由 隐體裝置作為輸入),然而’亦可發送其他類型之資 Λ舉例而言,若測試型樣係預定的(無論係在製造時或 將要進行命令/位址校準時程式化的),則該記憶體裝置本 163456.doc •73· 201246211 :::定其已輸入之資訊是否是無錯誤地輸入以回應於此 、通過P或失敗F指示至記憶體控制器。另一選擇為, 記憶體裝置可含有箱细m 4 ㈣為 有構成在父準循環期間發送之測試 之―系列位元之間及/或作為測試型樣之部分並列接 :之位元之位元之間的某一關係(且因此產生發送至記憶 控制器之一通過或失敗信號)之邏輯。 此外’已闡述命令/位址通信之校準以校準用於將命令/ 位址信號輸人至記憶體裝置中之—時序,然而,可執行命 令:位址通信之其他類型之校準。舉例而言,對於命令/位 址通信校準之每-循環,控制器可更改—信號功率、控制 器及/或記憶體裝置之一端子阻抗(例如,一可調整晶粒上 終止(上拉及/或串聯))及/或命令/位址校準信號之一負载循 環。 應注意,該說明闡述藉助經由一命令/位址匯流排發送 之校準測試型樣信號對一命令/位址通信之校準。預期某 些實施方案將允許一命令/位址匯流排之信號線中之某些 但非所有彳§號線在正常操作期間為命令及位址資訊兩者共 用。舉例而言,一設計可需要22個位址位元及1〇個命令位 元,此可產生不用於傳輸一命令位元之命令/位址匯流排 之信號線中之一或多者(例如,若命令/位址匯流排丨2係由 傳輸二十二(22)個位址位元(按序含--(11)個位元之兩個 組)之十一個信號線組成,則通信可僅需要十一(1丨)個信號 線上之一命令之十(10)個位元,留下該等信號線中之一者 不用於命令通信)。作為另一實例,命令/位址匯流排之所 163456.doc •74· 201246211 有信號線可用於命令通信’但該等信號線中之某些信號線 可不用於位址通信(例如,一命令資訊之十一個位元及位 址資訊之二十(20)個位元可留下—十一個信號線命令/位址 匯流排之信號線中之一者不用於位址通信)。 儘管已參考本發明性概念之實例性實施例特定展示及闡 述本發明性概念,但其係用於說明之目的而提供,且熟習 此項技術者將瞭解,可根據本發明性概念作出各種修改及 等效其他實施例。因此’本發明性概念之範疇應由隨附申 請專利範圍界定。 【圖式簡單說明】 圖1及圖2係用於闡述命令/位址校準之概念之時序圖; 圖3係用於闡述執行命令/位址校準之一記憶體系統之一 方塊圖;. 圖4 Α及圖4Β係用於闡述(例如)由圖3中所展示之記憶體 系統執行之命令/位址校準之圖式; 圖5係可用於實施本文中所闡述之一或多個命令/位址校 準實施例之一記憶體系統之一第一實例之一方塊圖; 圖6係用於闡述根據一第一實施例之一命令/位址校準方 法之一表; 圖7係用於闡述根據一第一實施例之一模式暫存器命令 設定方法之一圖式; 圖8係展示用於闡述根據一實施例之命令/位址信號與DQ 墊之間的映射之一實例之一圖式;The input unit 908 receives the transmitted command/address reference signal CA_Refs transmitted from the memory controller 80 through the CA reference bus CA_ref 16 and transmits it to the CA receive reference receiver 906. The CA Receive Reference Receiver 906 can be configured the same as the CA Receiver 904. The CA receive reference receiver 906 receives the wafer select signal /CS, the clock enable signal CKE, and the transmitted command/address reference signal CA_Refs transmitted through the CA reference bus CA_ref 16, and is on a rising edge of the clock ICK and/or The transmit command/address reference signal CA_Refs is latched at the falling edge (which may be the same time as the edge of the external clock CK or dependent on the time of the external clock CK 163456.doc -69 - 201246211). The command/address reference calibration information CA_Refr received by the message/address reference signal CA_Refs latched by the CA_Ref receiver 906 can be transmitted with the command/address reference calibration information cA_Refr The information indicated by the command/address reference signal CA_Refs is the same or different (for example, 'based on the latch generated by the relative phase of the clock CK and the transmitted command/address reference signal cA_Refs during this cycle of command/address calibration) The received command/address reference calibration information CA_Refr may be the same as the information obtained from one of the signals received via the CA bus 12, and the information is output from the CA receiver 904 to one of the internals of the memory device 70. The source (in response to the internal clock signal ICK inputting the information to the CA receiver 904 when receiving the wafer select signal /cs, the clock enable signal CKE, and the command/address signal CA transmitted through the command/address bus 12 After the CA receiver 904). The received command/address reference calibration information CA_Refr is transmitted to the memory controller 80 via the CA reference signal line CA_ref 16 and the output unit 910. The memory system 70 can perform a plurality of cycles of CA calibration, an exemplary single cycle being set forth below. The CA generator 802 of the memory controller 80 adjusts the phase or timing of the command/address signal CA in response to the control signal CTRL of the phase/timing controller 808. The CA generation reference unit 803 generates a commandable/address/address signal CA. The same command/address reference signal CA__Refs is transmitted, and the transmitted command/address reference signal CA_Refs is transmitted to the memory device 90 via the CA reference signal line CA_ref16. The CA reference receiver 906 of the memory device 90 inputs the transmitted command/address reference signal CA_Refs at the time according to the internal clock signal ICK and is enabled by the time 163456.doc • 70· 201246211 pulse enable signal CKE enabled, and generates The received command/address reference calibration information CA_Refr, "transceives the command/address reference calibration received by the memory device 9 from the CA reference k line ca ref 16 to the memory controller 80 The received command/address reference calibration information CA_Refr is provided to the comparator_. &amp; 806 compares the transmitted command/address reference signal CA with the received information and the received command/address reference calibration The information CA_Refr is generated by the loop for the command/address alignment to generate a pass signal p or a fail signal F^ through the aforementioned CA calibration loop, and the phase/timing controller 808 of the memory controller 8 determines the CA generator 802 via the CA. An optimal relative phase between the CA signal transmitted by the bus 12 and the clock CK. This optimal relative phase may be selected as described herein, and may facilitate the CA receiver 904 to correspond to the command. / The timing input (eg, latch) of the middle portion of the address signal ca logic window is a command/address signal transmitted by the CA bus 12 during normal operation (eg, such that the middle of the command/address signal logic window corresponds to One of the clock signal CK and/or the internal clock signal ick.) Although the calibration of a single command/address signal CA of the CA bus 12 has been described in the current embodiment, the calibration described can be used for Adjust the phase of the signal transmitted on all signal lines of the command/address bus 12. This can be done using only a single CA_ref signal line 16 (applying its calibration results to all signal lines of the command/address bus 12) Alternatively, the CA_ref signal line 16 may be one of the C A_ref signal lines, and each of the plurality of CA_ref signal lines is used to adjust one of the ca bus bars 12 163456.doc • 71 · 201246211 corresponds to a signal line or group of signal lines. In addition, each of the plurality of signal lines 16 may be adjacent to one of the signal lines of the CA bus 12 for calibration (eg, immediately adjacent to 2 or 3 signals) Line or in 2 or 3 letters In-line) This may include a plurality of CA-ref signal lines interposed between the signal lines of the CA bus 12. In addition, in an alternative embodiment, the CA-ref line 16 may be in a mode other than CA calibration ( For example, during normal operation) for other purposes (such as 'transmission of power or other information signals). The memory controller and memory device described herein may take many forms. For example, the memory controller may include a The semiconductor wafer may be a package (eg, one or more wafers encapsulated in a protective casing (eg, a resin)). The memory device may comprise a semiconductor wafer or may be a package (eg, one or more semiconductor memory chips encapsulated in a protective case (eg, resin)). The memory device may be a NAND flash memory. Body (including 3D NAND flash memory), DRAM, pRAM, RRAM &amp; / or MRAM. The memory controller and memory device can be packaged in the same semiconductor package (e.g., a memory controller chip and one or more memory chips stacked together and encapsulated in a package). The controller/device package can be a package overlay (POP). The controller can include a portion of a master memory chip that acts as one of the master devices of one or more slave memory chips, the calibration being performed for the master memory chip and the slave memory chip - or Command/address communication between multiples is performed. The master memory chip and the one or more slave wafers can be stacked and communicated via a through-substrate via (TSV) (eg, through-via via) of each of the wafers connected to each other (wherein the clock is described herein) Signal u 'command/bit 163456.doc •72· 201246211 Address bus 12, DQ bus 13, chip selection signal line / cs, clock enable CKE and data strobe line DQS all or some of - or more of the through holes are formed). The memory controller and memory device can be a component of a memory card (either enemy or removable). • The memory controller and memory device can be mounted on a number of boards that can include the following - the same printed circuit board or in a single computing system. Includes a component of the memory module "Printed Circuitry a computing device (for example, a - personal computer) or other printed circuit board (for example, in a mobile phone, personal data assistant (pD sentence or tablet). For some applications, the controller and The memory device can be integrally formed by the same single semiconductor substrate (eg, a portion of the same semiconductor wafer). For example, the memory can be embedded in a microprocessor, a communication chip, or a digital signal processor. Furthermore, although the above embodiments have been described as being associated with a memory system, the present invention can also be used to calibrate other command/address communications external to the memory system (eg, on a motherboard such as a server, computer, etc.) Between the interconnected nodes) to facilitate communication between devices attached to the motherboard. Further, although the embodiments illustrate the transfer from the memory device to the memory An example of a command/address calibration information of a controller is an interpretation of a command/address calibration signal sent from a memory controller to a memory device (eg, by a hidden device as an input), However, 'other types of assets may also be sent. For example, if the test pattern is predetermined (whether it is programmed or will be programmed when command/address calibration is performed), then the memory device is 163456.doc • 73· 201246211::: Determine whether the information it has entered is entered without error in response to this, indicated to the memory controller by P or F. Another option is that the memory device can contain a box of m 4 (d) for the purpose of having a relationship between the series of bits that constitute the test transmitted during the parent quasi-cycle and/or as part of the test pattern: a bit between the bits of the bit (and thus sent to memory) The logic of one of the controller's pass or fail signals. In addition, the calibration of the command/address communication has been explained to calibrate the timing used to input the command/address signal into the memory device, however, the executable command: Address communication Type calibration. For example, for each cycle of command/address communication calibration, the controller can change - terminal power of one of the signal power, controller, and/or memory device (eg, an adjustable die termination) One of the load cycles (up and/or in series) and/or command/address calibration signals. It should be noted that this description illustrates a command/bit by means of a calibration test pattern signal sent via a command/address bus. Calibration of address communications. It is contemplated that certain embodiments will allow some but not all of the signal lines of a command/address bus to be shared between command and address information during normal operation. A design may require 22 address bits and 1 command bit, which may result in one or more of the signal lines of the command/address bus that are not used to transmit a command bit (eg, if commanded) / address bus 2 is composed of eleven signal lines transmitting twenty-two (22) address bits (in groups of two groups of - (11) bits), then communication can only Requires ten of ten (1) signal lines (10) Bits, leaving one of these signal lines are not used for command communication). As another example, the command/address bus bar 163456.doc •74· 201246211 has signal lines available for command communication 'but some of these signal lines may not be used for address communication (eg, one command) Twenty (20) bits of the information's eleven bits and address information may be left—one of the eleven signal line commands/address bus lines is not used for address communication). Although the present invention has been particularly shown and described with reference to the exemplary embodiments of the present inventive concepts, which are provided for illustrative purposes, and those skilled in the art will appreciate that various modifications can be made in accordance with the inventive concepts. And equivalent to other embodiments. Therefore, the scope of the inventive concept should be defined by the scope of the accompanying application patent. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 and FIG. 2 are timing diagrams for explaining the concept of command/address calibration; FIG. 3 is a block diagram for explaining one of memory systems for executing command/address calibration; 4 and FIG. 4 are diagrams illustrating, for example, a command/address calibration performed by the memory system shown in FIG. 3; FIG. 5 is used to implement one or more of the commands set forth herein/ One of the first examples of one of the memory systems of the address calibration embodiment; FIG. 6 is a table for explaining one of the command/address calibration methods according to a first embodiment; FIG. 7 is for explaining Figure 1 is a diagram showing one example of a mapping between a command/address signal and a DQ pad according to an embodiment. formula;

圖9係展示用於闡述根據一實施例之命令/位址信號與DQ 163456.doc -75- 201246211 墊之間的映射之另一實例之一圖式; 圖1 〇係用於闡述根據另一實施例之一命令/位址校準方 法之一圖式; 圖11係展示用於闞述根據另一實施例之命令/位址信號 與DQ墊之間的映射之一實例之一圖式; 圖12係展示用於闞述根據另一實施例之命令/位址信號 與DQ墊之間的映射之另一實例之一圖式; 圖13係用於闡述根據另一實施例之一命令/位址校準方 法之一圖式; 圖14係用於闡述根據另一實施例之一模式暫存器命令設 定方法之一圖式; 圖15係展示用於闡述根據另一實施例之命令/位址信號 與DQ塾之間的映射之一實例之一圖式; 圖16係展示用於闡述根據另一實施例之命令/位址信號 與DQ墊之間的映射之另一實例之一圖式; 圖17係展示用於闡述根據另一實施例之命令/位址信號 與DQ墊之間的映射之另一實例之一圖式; 圖18係用於根據另一實施例之命令/位址校準方法之一 圖式; 圖19係展示用於闡述根據另一實施例之命令/位址信號 與DQ墊之間的映射之一實例之一圖式; 圖20係展示用於闡述根據另一實施例之命令/位址信號 與DQ墊之間的映射之另一實例之一圖式; 圖21係展示可用於實施本文中所闡述之一或多個命令/ 163456.doc9 is a diagram showing another example of a mapping between a command/address signal and a DQ 163456.doc -75 - 201246211 pad according to an embodiment; FIG. 1 is used to illustrate another One of the commands/address calibration methods of one embodiment; FIG. 11 is a diagram showing one example of a mapping between a command/address signal and a DQ pad according to another embodiment; 12 is a diagram showing one example of another example for describing a mapping between a command/address signal and a DQ pad according to another embodiment; FIG. 13 is for explaining a command/bit according to another embodiment. Figure 14 is a diagram for explaining one of the mode register command setting methods according to another embodiment; Figure 15 is a diagram for explaining a command/address according to another embodiment Figure 1 is a diagram showing one example of another example of a mapping between a command/address signal and a DQ pad in accordance with another embodiment; 17 is a diagram for explaining between a command/address signal and a DQ pad according to another embodiment. Figure 1 is a diagram of one of the command/address calibration methods for another embodiment; Figure 19 is a diagram for illustrating a command/address signal in accordance with another embodiment. One of the examples of mapping between a DQ pad and FIG. 20 is a diagram showing another example of a mapping between a command/address signal and a DQ pad according to another embodiment; The 21 Series display can be used to implement one or more of the commands described in this article / 163456.doc

S •76· 201246211 位址校準實施例之一記憶體系統之另一實例之一方塊圖; 且 圖22係展示可用於實施本文中所闡述之一或多個命令/ 位址校準實施例之一記憶體系統之另一實例之一方塊圖。 【主要元件符號說明】 10 記憶體系統 11 時脈信號線 12 命令/位址匯流排 13 資料信號匯流排 15 單獨校準匯流排/校準匯流排 20 記憶體控制器 30 記憶體裝置 40 記憶體系統 50 記憶體控制器 60 記憶體裝置 70 記憶體系統 80 記憶體控制器 90 記憶體裝置 201 時脈產生器 202 命令/位址產生器 203 命令/位址傳輸器/ 204 暫存器 206 比較器 208 相位/時序控制器 163456.doc •77· 201246211 210 輸入/輸出單元 212 輸入緩衝器 214 選擇單元 216 輸出緩衝器 302 時脈緩衝器 304 命令/位址接收器 310 資料輸入/輸出單元 312 選擇單元 314 輸出緩衝器 316 輸入緩衝器 801 時脈產生器 802 命令/位址(CA)產生器 803 命令/位址產生參考單元 804 暫存器單元 806 比較器 808 相位/時序控制器 810 資料輸入單元 812 資料輸出單元 902 時脈緩衝器 904 命令/位址接收器 906 命令/位址參考接收器 908 輸入單元 910 輸出單元 CA 命令/位址信號 163456.doc 78. [s 201246211S 76. 201246211 Address Calibration Example One block diagram of another example of a memory system; and FIG. 22 shows one of the embodiments of one or more command/address alignments that may be used to implement the ones described herein. A block diagram of another example of a memory system. [Main component symbol description] 10 Memory system 11 Clock signal line 12 Command/address bus 13 Data signal bus 15 Separate calibration bus/calibration bus 20 Memory controller 30 Memory device 40 Memory system 50 Memory Controller 60 Memory Device 70 Memory System 80 Memory Controller 90 Memory Device 201 Clock Generator 202 Command/Address Generator 203 Command/Address Transmitter / 204 Register 206 Comparator 208 Phase /Sequence Controller 163456.doc •77· 201246211 210 Input/Output Unit 212 Input Buffer 214 Selection Unit 216 Output Buffer 302 Clock Buffer 304 Command/Address Receiver 310 Data Input/Output Unit 312 Selection Unit 314 Output Buffer 316 Input Buffer 801 Clock Generator 802 Command/Address (CA) Generator 803 Command/Address Generation Reference Unit 804 Register Unit 806 Comparator 808 Phase/Timing Controller 810 Data Input Unit 812 Data Output Unit 902 Clock Buffer 904 Command/Address Receiver 906 Command/Address Reference Receiver 908 Input Unit 910 Output Unit CA Command/Address Signal 163456.doc 78. [s 201246211

CA_Cal CA_Refr CA_Refs CA1 CA2 CA3 CA4 CAnF CAnR CAr CAS C ASp i CAsp2 CAxF CAxR CAyF CAyR CK CKB CKE CMD/ADDR /cs CTRL DQ 單獨校準匯流排/校準匯流排 所接收之命令/位址參考校準資訊 經發送命令/位址參考信號 第一命令/位址信號 第一命令/位址信號 命令/位址信號 命令/位址信號 命令/位址信號 命令/位址信號 所接收之命令/位址校準資訊 經發送命令/位址資訊 初始命令/位址信號 經相位調整之命令/位址信號 命令/位址信號 命令/位址信號 命令/位址信號 命令/位址信號 時脈信號 時脈信號 時脈啟用信號 命令/位址信號 晶片選擇信號 控制信號 資料信號 163456.doc •79· 201246211 DQS 資料選通時脈 ICK 内部時脈信號 MRW#41 第一模式暫存器命令 MRW#42 第二模式暫存器命令 MRW#43 第三模式暫存器命令 - MRW#44 第四模式暫存器命令 . R_DATA1 讀取資料 R_DATA2 讀取資料 SEL1 第一選擇信號 SEL2 第二選擇信號 W_DATA1 寫入資料 W DATA2 寫入資料 I63456.doc •80-CA_Cal CA_Refr CA_Refs CA1 CA2 CA3 CA4 CAnF CAnR CAr CAS C ASp i CAsp2 CAxF CAxR CAyF CAyR CK CKB CKE CMD/ADDR /cs CTRL DQ Individually calibrated bus/calibration bus received command/address reference calibration information sent command /address reference signal first command / address signal first command / address signal command / address signal command / address signal command / address signal command / address signal received command / address calibration information is sent Command/address information initial command/address signal phase-adjusted command/address signal command/address signal command/address signal command/address signal command/address signal clock signal clock signal clock enable signal Command/address signal chip select signal control signal data signal 163456.doc •79· 201246211 DQS data strobe clock ICK internal clock signal MRW#41 first mode register command MRW#42 second mode register command MRW#43 Third Mode Register Command - MRW#44 Fourth Mode Register Command. R_DATA1 Read Data R_DATA2 Read Data SEL1 First Select Signal SEL2 Second Optional signal W_DATA1 write data W DATA2 written information I63456.doc • 80-

Claims (1)

201246211 七、申請專利範圍: 1. 一種與一記憶體裝置通彳§之方法’其包括: 經由一命令/位址匯流排發送一校準命令; 經由該命令/位址匯流排發送一序列之η個第一測試信 號,其中η係等於2或更大之一整數; 與該η個第一測試信號中之每一者一起經由一第一時 脈線發送一時脈信號,該η個第一測試信號中之每一者 係以相對於該時脈信號之一各別第一至第η個相位來發 送’該第一至第η個相位中之每一者係彼此不同; 經由一資料匯流排接收分別自經由該命令/位址匯流排 發送之該序列之η個第一測試信號導出之一序列之rl個第 二測試信號; 比較該η個第一測試信號與該η個第二測試信號;及 回應於該比較該η個第一測試信號與該所接收之η個第 一測忒化號而判定欲經由該命令/位址匯流排發送之信號 相對於該時脈信號之一較佳相位。 2. 如清求項1之方法,其中該η個第一測試信號中之每一者 。括跟隨有經由該命令/位址匯流排並列發送之第二複數 個位疋的級由該命令/位址匯流排並列發送之第-複數個 位元。 3·如请求項2之方法 ^4., 力在’其中該第一複數個位元及該第二複 數個位元中之每— ^ 者包括一封包。 4.如請求項2之方沐 .^ 力去’其中對於該η個第一測試信號中之每 μ寸账信號之一上升沿及該時脈信號之一下降 163456.doc 201246211 一複數個位元,且在該時脈信號 號之該下降沿中之另一者處發送 /0中之一者處發送該第 之該上升沿及該時脈信 該第一複數個位元。 5·如請求項1之方法,以經由-資料選通線接收該序列 之η個第二測試信號之至少一部分。 6.如請求们之方法1中經由至少在一校準模式期間專 用於校準之線接收該序列之η個第二測試信號之至少一 部分。 7.如明求項!之方法,其中比較該η個第一測試信號與該。 個第二測試信號之步驟包括:判定該等第二測試信號中 之每一者是否與一對應第一測試信號相同。 8 ·如明求項1之方法,其中該較佳相位經判定以對應於該 第一至第η個相位中之一者。 9.如請求項8之方法,其中判定該較佳相位包括:判定該 第至第11個相位之一相位序列,該相位序列中之每一 相位對應於判定為有效之該第二測試信號。 10· —種介面訓練方法,其包括: 經由一命令/位址匯流排將一第一校準信號發送至一半 導體裝置; 與該第一校準信號之該發送一起將一時脈信號發送至 該半導體裝置,該時脈信號提供一時序至該半導體裝置 以鎖存該第一校準信號之邏輯位準; 經由一資料匯流排自該半導體裝置接收一第二校準信 號’ 3玄第一校準信號係自該第一校準信號之經鎖存邏輯 163456.doc 201246211 位準導出; 與該時脈信號之該發送一起經由該命令/位址匯流排將 命令及位址信號發送至該半導體裝置,該等命令及位址 信號與該時脈信號之間的一相位係回應於該第二校準信 號。 11.如請求項10之方法,其進一步包括在發送該第一校準信 號之同時經由與該命令/位址匯流排分離之一第一線將一 讀取請求信號發送至該半導體裝置。 1 2·如請求項11之方法,其中該第一線係一時脈啟用線。 13. 如請求項10之方法,其中該第一校準信號包括以至少為 該時脈信號之週期之速率兩倍之一速率傳輸之一資料封 包序列。 14. 如請求項10之方法,其中 一第一校準信號至該半導體裝置之該發送包括經由該 命令/位址匯流排之多個線中之每一者發送一訓練型樣。 15. 如請求項14之方法,其中對於該命令/位址匯流排之該多 個線中之每一者,該訓練型樣係相同的。 如請求項14之方法,其中該等命令及位址信號經由該命 令/位址匯流排之該發送包括:針對該命令/位址匯流排 之该多個線中之每一者個別地調整該等命令及位址信號 與該時脈信號之間的該相位。 17.如咕求項14之方法,其中該等命令及位址信號經由該命 •7 /位址匯流排之該發送包括:經由該命令/位址匯流排 之一第一線以相對於該時脈信號之一第一相位發送一第 163456.doc 201246211 一信號及經由該命令/位址匯流排之一第二線以相對於該 時脈信號之一第二相位發送一第二信號。 18. 如請求項10之方法,其中發送該命令/位址信號包括:經 由該命令/位址匯流排之多數線中之每一者發送位址資訊 及命令資訊兩者。 19. 如請求項1 〇之方法, 其中該半導體裝置係一第一半導體裝置,且 其中該方法進一步包括: 經由該命令/位址匯流排將一第三校準信號發送至一第 二半導體裝置; 與該第三校準信號之該發送一起將該時脈信號發送至 s亥第二半導體裝置,該時脈信號提供一時序至該第二半 導體裝置以鎖存該第三校準信號之邏輯位準; 經由該資料匯流排自該第二半導體裝置接收一第四校 準信號’該第四校準信號係自該第三校準信號之經鎖存 邏輯位準導出; 與該時脈信號之該發送一起經由該命令/位址匯流排將 命令及位址信號發送至該第二半導體裝置,該等命令及 位址信號與該時脈信號之間的一相位係回應於該第四校 準信號。 20. —種校準經由一記憶體裝置之一命令/位址匯流排之通信 之方法,其包括: 經由一時脈信號線接收一時脈信號; 經由該命令/位址匯流排接收一校準命令; • 4 - 163456.doc201246211 VII. Patent application scope: 1. A method for communicating with a memory device, which comprises: transmitting a calibration command via a command/address bus; sending a sequence of η via the command/address bus First test signals, wherein η is equal to one integer greater than 2 or greater; together with each of the n first test signals, transmitting a clock signal via a first clock line, the n first test Each of the signals is transmitted with a respective first to nth phase relative to one of the clock signals, 'each of the first to nth phases being different from each other; via a data bus Receiving, by each of the n first test signals sent from the sequence of the command/address bus, a rl second test signal; and comparing the n first test signals with the n second test signals And determining, in response to the comparing the n first test signals and the received n first measurement signals, that the signal to be transmitted via the command/address bus is relative to one of the clock signals Phase. 2. The method of claim 1, wherein each of the n first test signals. The first plurality of bits followed by the second plurality of bits transmitted in parallel via the command/address bus are serially transmitted by the command/address bus. 3. The method of claim 2, wherein the force includes a packet in the first plurality of bits and each of the second plurality of bits. 4. As in the case of claim 2, the force is "to" one of the rising edges of one of the n first test signals and one of the clock signals is decreased by 163456.doc 201246211 a plurality of bits And transmitting the first rising edge and the clock signal to the first plurality of bits at one of the other ones of the falling edges of the clock signal number. 5. The method of claim 1, wherein at least a portion of the n second test signals of the sequence are received via a data gating line. 6. The method of claim 1 wherein at least a portion of the n second test signals of the sequence are received via a line dedicated to calibration during at least one calibration mode. 7. If you ask for it! The method of comparing the n first test signals with the same. The step of the second test signal includes determining whether each of the second test signals is identical to a corresponding first test signal. 8. The method of claim 1, wherein the preferred phase is determined to correspond to one of the first to nth phases. 9. The method of claim 8, wherein determining the preferred phase comprises determining a phase sequence of the first to the eleventh phases, each phase of the phase sequence corresponding to the second test signal determined to be valid. An interface training method, comprising: transmitting a first calibration signal to a semiconductor device via a command/address bus; transmitting a clock signal to the semiconductor device together with the transmitting of the first calibration signal The clock signal provides a timing to the semiconductor device to latch the logic level of the first calibration signal; receiving a second calibration signal from the semiconductor device via a data bus. The first calibration signal is latched logic 163456.doc 201246211 level derived; along with the transmission of the clock signal, the command and address signals are sent to the semiconductor device via the command/address bus, the commands and A phase between the address signal and the clock signal is responsive to the second calibration signal. 11. The method of claim 10, further comprising transmitting a read request signal to the semiconductor device via one of the first lines separated from the command/address bus while transmitting the first calibration signal. The method of claim 11, wherein the first line is a clock enable line. 13. The method of claim 10, wherein the first calibration signal comprises transmitting a data packet sequence at a rate that is at least twice a rate of a period of the clock signal. 14. The method of claim 10, wherein the transmitting of the first calibration signal to the semiconductor device comprises transmitting a training pattern via each of the plurality of lines of the command/address bus. 15. The method of claim 14, wherein the training pattern is the same for each of the plurality of lines of the command/address bus. The method of claim 14, wherein the transmitting of the command and address signals via the command/address bus includes: individually adjusting each of the plurality of lines of the command/address bus The phase between the command and the address signal and the clock signal. 17. The method of claim 14, wherein the transmitting of the command and address signals via the command/address bus comprises: passing the first line of the command/address bus to be relative to the One of the first signals of the clock signal transmits a signal 163456.doc 201246211 and a second line via one of the command/address bus bars to transmit a second signal with respect to one of the second phase of the clock signal. 18. The method of claim 10, wherein transmitting the command/address signal comprises transmitting both address information and command information via each of a plurality of lines of the command/address bus. 19. The method of claim 1, wherein the semiconductor device is a first semiconductor device, and wherein the method further comprises: transmitting a third calibration signal to a second semiconductor device via the command/address bus; Transmitting the clock signal to the second semiconductor device together with the transmitting of the third calibration signal, the clock signal providing a timing to the second semiconductor device to latch a logic level of the third calibration signal; Receiving, via the data bus, a fourth calibration signal from the second semiconductor device, the fourth calibration signal being derived from a latched logic level of the third calibration signal; via the transmission of the clock signal The command/address bus sends a command and an address signal to the second semiconductor device, and a phase between the command and the address signal and the clock signal is responsive to the fourth calibration signal. 20. A method of calibrating communication via a command/address bus of a memory device, comprising: receiving a clock signal via a clock signal line; receiving a calibration command via the command/address bus; 4 - 163456.doc 201246211 在該時脈信號之一上升沿及該時脈信號之一下降沿中 之一者處經由該命令/位址匯流排接收一第一測試資料封 包以產生第一資訊; 在該時脈信號之該上升沿及該時脈信號之該下降沿中 之另一者處經由該命令/位址匯流排接收一第二測試資料 封包以產生第二資訊;及 經由一資料匯流排傳輸該第一資訊及該第二資訊。 21.如請求項20之方法’其進一步包括在該時脈信號之上升 /〇及下降沿處經由該命令/位址匯流排接收命令及位址。 22· —種半導體裝置,其包括: 一時脈產生器’其經組態以產生一時脈信號; 一時脈輸出端子,其連接至該時脈產生器且經組態以 輸出該時脈信號; 一命令產生器電路,其經組態以產生命令; 一位址產生器電路’其經組態以產生位址; 複數個命令/位址端子; 命令/位址緩衝器,其具有連接至該等命令/位址端 子之一輸出,該命令/位址緩衝器連接至該命令產生器電 路及該位址產生器電路以經由該等命令/位址端子自該半 導體裝置外部傳輸命令/位址信號; 一相位控制器,其經組態以控制該命令/位址緩衝器以 經由該命令/位址匯流排傳輸一序列之η個訓練型樣,η係 大於2之一整數,該相位控制器經組態以調整該η個訓練 里樣中之至J/某些訓練型樣相對於該時脈信號之一相 163456.doc 201246211 位; 資料端子;及 一資料緩衝器,其連接至該等資料端子, 其中該相位控制器經組態以回應於由該資料緩衝器經 由該等資料端子接收之第一資訊而調整命令及位址信號 相對於該時脈信號之一相位。 23.如請求項22之裝置,其中該相位控制器經組態以控制該 命令/位址緩衝器經由該等命令/位址端子傳輸一進入校 準模式命令。 24·如請求項23之裝置’其中該相位控制器經組態以控制該 命令/位址緩衝器以至少為該時脈信號之週期之速率兩倍 之速率傳輸該n個訓練型樣中之每一者作為經修改之 一序列並列資料。 25. 如請求項24之裝置,其中該η個訓練型樣中之每一者係 相同型樣。 26. 如請求項24之裝置,其中該η個訓練型樣中之至少某些 訓練型樣彼此不同。 27·如請求項22之裝置,其中由該資料緩衝器經由該等資料 端子接收之該第一資訊係回應於該η個訓練型樣。 28.如請求項27之裝置,其中由該資料緩衝器經由該等資料 端子接收之該第一資訊係自該η個訓練型樣之經鎖存邏 輯位準導出。 29·如請求項22之裝置,其進一步包括: 一讀取啟用電路;及 163456.doc S 201246211 一第一端子,其連接至該讀取啟用 序列之-個㈣«時-時間期㈣輸㈣ 電路產生之一讀取啟用信號。 30·如請求項29之裝置,其進一步包括: -時脈啟用電路,其連接至㈣—端子以在不傳輪該 序列之讀麟型樣時之—時間自間產生―時脈啟用信 號。 31. 如請求項22之裝置’其中該相位控制器經組態以針對該 命令/位址匯流排之多個線中之每一者個別地調整該等命 令及位址信號相對於該時脈信號之一相位。 32. —種系統,其包括: 如請求項22之裝置, 印刷電路板其上安裝有如請求項22之裝置,該印 刷電路板包含連接至如請求項22之裝置之該等命令/位址 端子之一命令/位址匯流排;及 一第二裝置,其安裝在該印刷電路板上,連接至該命 令/位址匯流排》 33. 如請求項32之系統,其中該第二裝置係_半導體記憶體 裝置。 34. —種通信方法,其包括: 經由一命令/位址匯流排接收一訓練信號; 與該訓練信號之該接收一起接收—鎖存作號; 回應於該鎖存信號之至少一個沿而鎖存該訓練信號以 產生訓練信號資訊; 163456.doc 201246211 傳輸該訓練信號資訊; 經由該命令/位址匯流排接收命令信號及位址信號; 與该專命令信號及該等位址信號之該接收一起接收該 鎖存信號’該鎖存信號相對於該等命令信號及該等位址 信號之一相位係回應於該經傳輸訓練信號資訊;及 回應於該鎖存信號之至少一個沿而鎖存該等命令信號 及該等位址信號。 35. 如請求項34之方法,其中鎖存該訓練信號及鎖存該等命 令信號及該等位址信號包括:回應於該鎖存信號之上升 沿及下降沿而進行鎖存。 36. 如請求項35之方法,其進一步包括: 在該命令/位址匯流排上接收一進入校準模式命令; 回應於該進入校準模式命令而進入一校準模式。 3 7.如請求項3 6之方法, 其中該進人校準模式命令係' —模式暫存器設定(MRS) 命令,且 其中進人校準模式之步驟包括程式化—模式暫存器 設定。 38. 如請求項36之方法,其進_步包括: 在該命令/位址匿流排上接收-退出校準模式命令;及 回應於該退出校準模式命令而退出一校準模式。 39. 如請求項36之方法,其進一步包括: 監視該訓練信號資訊; 偵測該訓練信號資訊含有-退出校準模式命令;及 163456.doc 201246211 回應於偵測到該訓練信號資訊含有一退出校準模式命 令而退出該校準模式。 40. 如請求項34之方法,其進一步包括: 在接收一訓練信號之同時在一第一輸入上接收一信 號;及 回應於在該第一輸入上接收之信號而啟用該訓練信號 之鎖存。 41. 如晴求項40之方法,其中該第一輸入係一時脈啟用輸 入0 42·如請求項34之方法,其中傳輸該訓練信號資訊包括:經 由該命令/位址匯流排傳輸該訓練信號資訊。 43 如請求項34之方法’其中傳輸該訓練信號資訊包括:經 由至少在一校準模式期間專用於訓練之一揍針傳輸該訓 練信號資訊。 44. 一種半導體裝置,其包括: 命令/位址端子; 一第一端子; 一命令/位址緩衝器,其連接至該等命令/位址端子以 接收包含命令資訊、位址資訊及校準資訊之第一資訊, 該命令/位址緩衝器係回應於經由該第一端子接收之一時 脈來鎖存經由該等命令/位址端子接收之資訊; 一命令電路,其連接至該命令/位址緩衝器以接收該命 令資訊且回應於該命令資訊而提供内部命令; 一解碼器’其連接至該命令/位址緩衝器以接收並解碼 163456.doc 201246211 該位址資訊;及 一杈準控制電路,其連接至該命令/位址緩衝器,經組 態以接收該才交準資訊且將該才交準資訊傳輸至 一外部源。 45. 如請求項44之半導體裝置,其進一步包括: 資料端子;及 一資料緩衝器,其連接至該等資料端子, *其中該校準控制電路係連接至該資料緩衝器以經由該 等資料端子將該校準資訊傳輸至該外部源。 46. 如請求項44之裝置,其進一步包括: 一模式暫存器設定, 其中忒命令電路經組態以接收一進入校準模式命令, 且回應於該進人校準模式命令用一第__程式碼程式化該 模式暫存器设定以致使該裝置進入一校準模式中, 其中該校準控制電路回應於該第一程式碼來將該校準 資訊傳輸至一外部源。 47. 如請求項46之裝置’其中該校準控制電路經組態以偵測 在該校準模式期間接收之該校準資訊中之—退出校準模 式,且經組態以導致修改該模式暫存器設定從而致使該 裝置退出該校準模式。 48.如請求項44之褒置, 其中該装置係包括一動態隨機存取記憶體陣列之一動 態隨機存取記憶體半導體裝置, 其中該解碼器經組態以回應於該位址資訊而存取該動 態隨機存取記憶體陣列内之位置。 163456.doc S •10· 201246211 49.如請求項44之裝置, 其中該裝置係包括一 NAND快閃記憶體陣列之一 NAND快閃記憶體半導體裝置, 其中該解碼器經組態以回應於該位址資訊而存取該 NAND快閃記憶體陣列内之位置。 163456.doc201246211 receiving, by one of the rising edge of the clock signal and one of the falling edges of the clock signal, a first test data packet via the command/address bus to generate the first information; Receiving, by the other of the rising edges and the falling edge of the clock signal, a second test data packet via the command/address bus to generate second information; and transmitting the first via a data bus Information and the second information. 21. The method of claim 20, further comprising receiving a command and an address via the command/address bus at the rising/falling and falling edges of the clock signal. 22. A semiconductor device, comprising: a clock generator configured to generate a clock signal; a clock output terminal coupled to the clock generator and configured to output the clock signal; a command generator circuit configured to generate a command; an address generator circuit 'configured to generate an address; a plurality of command/address terminals; a command/address buffer having a connection to the One of a command/address terminal output coupled to the command generator circuit and the address generator circuit for transmitting a command/address signal from outside the semiconductor device via the command/address terminals a phase controller configured to control the command/address buffer to transmit a sequence of n training patterns via the command/address bus, the η system being greater than one integer of 2, the phase controller Configuring to adjust one of the n training samples to J/some training patterns relative to one of the clock signals 163456.doc 201246211 bits; a data terminal; and a data buffer connected to the data Promoter, wherein the phase controller is configured to adjust the response via the command and address signals received from the first terminal of the information data such that data from the buffer to the one with respect to the phase of the clock signal. 23. The device of claim 22, wherein the phase controller is configured to control the command/address buffer to transmit an enter calibration mode command via the command/address terminals. 24. The apparatus of claim 23, wherein the phase controller is configured to control the command/address buffer to transmit the n training patterns at a rate that is at least twice the rate of the period of the clock signal Each is a side-by-side sequence of one of the modified sequences. 25. The device of claim 24, wherein each of the n training patterns is of the same type. 26. The device of claim 24, wherein at least some of the n training patterns are different from one another. 27. The device of claim 22, wherein the first information received by the data buffer via the data terminals is responsive to the n training patterns. 28. The device of claim 27, wherein the first information received by the data buffer via the data terminals is derived from latched logic levels of the n training patterns. The device of claim 22, further comprising: a read enable circuit; and 163456.doc S 201246211 a first terminal connected to the read enable sequence - (four) «hour-time period (four) input (four) The circuit generates one of the read enable signals. 30. The apparatus of claim 29, further comprising: - a clock enable circuit coupled to the (four)-terminal to generate a "clock enable signal" from time to time when the sequence of the sequence is not transmitted. 31. The device of claim 22, wherein the phase controller is configured to individually adjust the command and address signals for each of the plurality of lines of the command/address bus relative to the clock One phase of the signal. 32. A system comprising: the apparatus of claim 22, wherein the printed circuit board has a device as claimed in claim 22, the printed circuit board including the command/address terminal connected to the device of claim 22 a command/address bus; and a second device mounted on the printed circuit board, connected to the command/address bus. 33. The system of claim 32, wherein the second device is Semiconductor memory device. 34. A communication method, comprising: receiving a training signal via a command/address bus; receiving - latching a number with the receiving of the training signal; locking in response to at least one edge of the latch signal Storing the training signal to generate training signal information; 163456.doc 201246211 transmitting the training signal information; receiving the command signal and the address signal via the command/address bus; and receiving the special command signal and the address signals Receiving the latch signal together, the latch signal is responsive to the transmitted training signal information with respect to one of the command signals and the address signals; and latching in response to at least one edge of the latch signal The command signals and the address signals. 35. The method of claim 34, wherein latching the training signal and latching the command signals and the address signals comprises latching in response to rising and falling edges of the latch signal. 36. The method of claim 35, further comprising: receiving an incoming calibration mode command on the command/address bus; entering a calibration mode in response to the entering the calibration mode command. 3. The method of claim 3, wherein the incoming calibration mode command is a 'mode register setting (MRS) command, and wherein the step of entering the calibration mode comprises a stylized-mode register setting. 38. The method of claim 36, wherein the step of: receiving: exiting the calibration mode command on the command/address stream; and exiting a calibration mode in response to the exiting the calibration mode command. 39. The method of claim 36, further comprising: monitoring the training signal information; detecting the training signal information containing an exit calibration mode command; and 163456.doc 201246211 responding to detecting that the training signal information includes an exit calibration Exit the calibration mode by mode command. 40. The method of claim 34, further comprising: receiving a signal on a first input while receiving a training signal; and enabling latching of the training signal in response to a signal received on the first input . 41. The method of claim 40, wherein the first input is a clock enable input 0 42. The method of claim 34, wherein transmitting the training signal information comprises: transmitting the training signal via the command/address bus News. 43. The method of claim 34 wherein transmitting the training signal information comprises transmitting the training signal information via one of the training sessions dedicated to training during at least one calibration mode. 44. A semiconductor device comprising: a command/address terminal; a first terminal; a command/address buffer coupled to the command/address terminal for receiving command information, address information, and calibration information a first information, the command/address buffer is responsive to receiving a signal received via the command/address terminal via a clock received by the first terminal; a command circuit coupled to the command/bit The address buffer provides internal commands in response to the command information and in response to the command information; a decoder 'connects to the command/address buffer to receive and decode the address information of 163456.doc 201246211; A control circuit coupled to the command/address buffer is configured to receive the prioritized information and transmit the prioritized information to an external source. 45. The semiconductor device of claim 44, further comprising: a data terminal; and a data buffer coupled to the data terminal, wherein the calibration control circuit is coupled to the data buffer to communicate via the data terminal The calibration information is transmitted to the external source. 46. The apparatus of claim 44, further comprising: a mode register setting, wherein the command circuit is configured to receive an incoming calibration mode command and to respond to the incoming calibration mode command with a first __ program The code stylizes the mode register settings to cause the device to enter a calibration mode, wherein the calibration control circuit transmits the calibration information to an external source in response to the first code. 47. The apparatus of claim 46, wherein the calibration control circuit is configured to detect the calibration information received during the calibration mode, exiting the calibration mode and configured to cause the mode register setting to be modified This causes the device to exit the calibration mode. 48. The apparatus of claim 44, wherein the apparatus comprises a dynamic random access memory semiconductor device of a dynamic random access memory array, wherein the decoder is configured to store in response to the address information Take the location within the array of dynamic random access memory. 163. The device of claim 44, wherein the device comprises a NAND flash memory semiconductor device, wherein the decoder is configured to respond to the Address information accesses the location within the NAND flash memory array. 163456.doc
TW101110887A 2011-03-28 2012-03-28 Memory devices, systems and methods employing command/address calibration TWI574258B (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161468204P 2011-03-28 2011-03-28
KR1020110061319A KR20120109958A (en) 2011-03-28 2011-06-23 Memory device employing command/address calibration
US13/430,438 US8760945B2 (en) 2011-03-28 2012-03-26 Memory devices, systems and methods employing command/address calibration

Publications (2)

Publication Number Publication Date
TW201246211A true TW201246211A (en) 2012-11-16
TWI574258B TWI574258B (en) 2017-03-11

Family

ID=48094515

Family Applications (1)

Application Number Title Priority Date Filing Date
TW101110887A TWI574258B (en) 2011-03-28 2012-03-28 Memory devices, systems and methods employing command/address calibration

Country Status (2)

Country Link
DE (3) DE202012013709U1 (en)
TW (1) TWI574258B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI806516B (en) * 2022-03-24 2023-06-21 瑞昱半導體股份有限公司 Memory controller and method for calibrating data reception window

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6442644B1 (en) * 1997-08-11 2002-08-27 Advanced Memory International, Inc. Memory system having synchronous-link DRAM (SLDRAM) devices and controller
US6275962B1 (en) * 1998-10-23 2001-08-14 Teradyne, Inc. Remote test module for automatic test equipment
JP2003050738A (en) * 2001-08-03 2003-02-21 Elpida Memory Inc Calibration method and memory system
JP4920512B2 (en) * 2007-07-04 2012-04-18 エルピーダメモリ株式会社 Calibration circuit, semiconductor device including the same, and data processing system
US7624310B2 (en) * 2007-07-11 2009-11-24 Micron Technology, Inc. System and method for initializing a memory system, and memory device and processor-based system using same
JP5600235B2 (en) * 2007-10-11 2014-10-01 ピーエスフォー ルクスコ エスエイアールエル Semiconductor memory device and method for speeding up address latch
KR100933676B1 (en) * 2008-04-30 2009-12-23 주식회사 하이닉스반도체 Calibration circuit, semiconductor memory device including the same, and operating method of the calibration circuit
US8139430B2 (en) * 2008-07-01 2012-03-20 International Business Machines Corporation Power-on initialization and test for a cascade interconnect memory system

Also Published As

Publication number Publication date
DE202012013708U1 (en) 2020-01-07
DE202012013710U1 (en) 2020-01-07
DE202012013709U1 (en) 2020-01-07
TWI574258B (en) 2017-03-11

Similar Documents

Publication Publication Date Title
US10120591B2 (en) Memory devices, systems and methods employing command/address calibration
US11513955B2 (en) Memory module with local synchronization and method of operation
US20210149829A1 (en) Memory module with timing-controlled data buffering
US9135981B2 (en) Memory system having memory ranks and related tuning method
US8400805B2 (en) Semiconductor device
WO2019108274A1 (en) Systems and methods for improving write preambles in ddr memory devices
US11783908B2 (en) Stacked semiconductor device and semiconductor system including the same
TW201246211A (en) Memory devices, systems and methods employing command/address calibration
CN113886313B (en) Memory subsystem register clock driver clock T-wiring
CN111406285A (en) System and method for generating staggered delays in a memory device
WO2022051128A1 (en) Data-buffer controller/control-signal redriver
US20230360689A1 (en) Semiconductor memory device and memory
CN117012247A (en) Semiconductor memory device and memory system