TWI572061B - Semiconductor light-emitting structure - Google Patents

Semiconductor light-emitting structure Download PDF

Info

Publication number
TWI572061B
TWI572061B TW103143016A TW103143016A TWI572061B TW I572061 B TWI572061 B TW I572061B TW 103143016 A TW103143016 A TW 103143016A TW 103143016 A TW103143016 A TW 103143016A TW I572061 B TWI572061 B TW I572061B
Authority
TW
Taiwan
Prior art keywords
layer
magnetic
type doped
semiconductor layer
doped semiconductor
Prior art date
Application number
TW103143016A
Other languages
Chinese (zh)
Other versions
TW201622176A (en
Inventor
蔡佳龍
方彥翔
曾寶珠
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW103143016A priority Critical patent/TWI572061B/en
Priority to US14/583,775 priority patent/US20160172536A1/en
Publication of TW201622176A publication Critical patent/TW201622176A/en
Application granted granted Critical
Publication of TWI572061B publication Critical patent/TWI572061B/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/36Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the electrodes
    • H01L33/40Materials therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Led Devices (AREA)

Description

半導體發光結構 Semiconductor light emitting structure

本發明是有關於一種發光結構,且特別是有關於一種半導體發光結構。 The present invention relates to a light emitting structure, and more particularly to a semiconductor light emitting structure.

現今,世界各大發光二極體(light-emitting diode,LED)製造公司皆想在照明市場一展長才,並針對如何提高發光效率與減少耗電為開發之目標。LED的發光效率(如外部量子效率(external quantum efficiency,EQE)是內部量子效率(internal quantum efficiency,IQE)與光取出效率(light extraction efficiency)的乘積。在過去的20年中,藉由改善磊晶品質與設計量子井結構等技術以提升內部量子效率已至一門檻,這是因為影響內部量子效率的關鍵因素為電子-電洞對的復合效率。 Nowadays, the world's major light-emitting diode (LED) manufacturing companies want to develop their talents in the lighting market, and aim at how to improve luminous efficiency and reduce power consumption. The luminous efficiency of LEDs (such as external quantum efficiency (EQE) is the product of internal quantum efficiency (IQE) and light extraction efficiency. Over the past 20 years, by improving Lei Techniques such as crystal quality and design of quantum well structures have been at an attrition to improve internal quantum efficiency because the key factor affecting internal quantum efficiency is the recombination efficiency of electron-hole pairs.

由於電洞的遷移率(mobility)小於電子的遷移率數十倍,以及氮化鎵與藍寶石基板間晶格常數差異大所造成的量子侷限史塔克效應(quantum-confined Stark effect,QCSE),造成電子溢流(overflow),使得電子-電洞對的復合效率大幅降低。因此, 國際各大廠為了提高外部量子效率,皆從光取出效率著手。光取出效率的提升是在發光層前後作反射率的改變以使光取出效率提升,或是在後段製程作複雜的光學設計結構以提升光取出效率。無論採用那種方式提升光取出效率,都會增加LED製作的時間,進而影響到製造成本。 The quantum-confined Stark effect (QCSE) is caused by the mobility of the hole being less than ten times the mobility of the electron and the large difference in lattice constant between the gallium nitride and the sapphire substrate. The resulting electron overflow causes the recombination efficiency of the electron-hole pair to be greatly reduced. therefore, In order to improve the external quantum efficiency, major international manufacturers have started from the efficiency of light extraction. The improvement of the light extraction efficiency is to change the reflectance before and after the light-emitting layer to improve the light extraction efficiency, or to make a complicated optical design structure in the latter stage process to improve the light extraction efficiency. No matter which way to improve the efficiency of light extraction, it will increase the time of LED production, which will affect the manufacturing cost.

本發明提供一種半導體發光結構,其能夠在保持較低的操作電壓下具有較高的發光效率。 The present invention provides a semiconductor light emitting structure capable of having high luminous efficiency while maintaining a low operating voltage.

本發明的一實施例的一種半導體發光結構包括一第一型摻雜半導體層、一第二型摻雜半導體層、一發光層、一第一電極、一第二電極及一磁性層。發光層配置於第一型摻雜半導體層與第二型摻雜半導體層之間。第一電極電性連接至第一型摻雜半導體層,而第二電極電性連接至第二型摻雜半導體層。磁性層連接第一電極與第一型摻雜半導體層,其中磁性層的至少一部分具有磁性,磁性層的至少另一部分的能隙(bandgap)大於0電子伏特且小於或等於5電子伏特,且磁性層的材料包括金屬、金屬氧化物或其組合。 A semiconductor light emitting structure according to an embodiment of the invention includes a first type doped semiconductor layer, a second type doped semiconductor layer, a light emitting layer, a first electrode, a second electrode, and a magnetic layer. The light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The first electrode is electrically connected to the first type doped semiconductor layer, and the second electrode is electrically connected to the second type doped semiconductor layer. The magnetic layer connects the first electrode and the first type doped semiconductor layer, wherein at least a portion of the magnetic layer has magnetic properties, and at least another portion of the magnetic layer has a bandgap greater than 0 eV and less than or equal to 5 eV, and magnetic The material of the layer includes a metal, a metal oxide, or a combination thereof.

本發明的一實施例的一種半導體發光結構包括一第一型摻雜半導體層、一第二型摻雜半導體層、一發光層、一第一電極、一第二電極及一磁性層。發光層配置於第一型摻雜半導體層與第二型摻雜半導體層之間。第一電極電性連接至第一型摻雜半導體 層,而第二電極電性連接至第二型摻雜半導體層。磁性層連接第一電極與第一型摻雜半導體層,其中磁性層中摻雜的至少一摻雜元素的價電子數大於磁性層的主材料中的至少一元素的價電子數。 A semiconductor light emitting structure according to an embodiment of the invention includes a first type doped semiconductor layer, a second type doped semiconductor layer, a light emitting layer, a first electrode, a second electrode, and a magnetic layer. The light emitting layer is disposed between the first type doped semiconductor layer and the second type doped semiconductor layer. The first electrode is electrically connected to the first type doped semiconductor a layer, and the second electrode is electrically connected to the second type doped semiconductor layer. The magnetic layer connects the first electrode and the first type doped semiconductor layer, wherein the valence electron number of the at least one doping element doped in the magnetic layer is greater than the valence electron number of at least one element in the main material of the magnetic layer.

在本發明的實施例的半導體發光結構中,由於磁性層的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,或者由於磁性層中摻雜的至少一摻雜元素的價電子數大於磁性層的主材料中的至少一元素的價電子數,因此半導體發光結構能夠在保持較低的操作電壓下具有較高的發光效率。 In the semiconductor light emitting structure of the embodiment of the present invention, since the energy gap of at least another portion of the magnetic layer is greater than 0 eV and less than or equal to 5 eV, or due to valence electrons of at least one doping element doped in the magnetic layer The number is greater than the number of valence electrons of at least one of the main materials of the magnetic layer, and thus the semiconductor light-emitting structure can have higher luminous efficiency while maintaining a lower operating voltage.

為讓本發明的上述特徵和優點能更明顯易懂,下文特舉實施例,並配合所附圖式作詳細說明如下。 The above described features and advantages of the invention will be apparent from the following description.

100、100a、100b、100c‧‧‧半導體發光結構 100, 100a, 100b, 100c‧‧‧ semiconductor light-emitting structure

110、120c‧‧‧第一型摻雜半導體層 110, 120c‧‧‧ first type doped semiconductor layer

120、110c‧‧‧第二型摻雜半導體層 120, 110c‧‧‧Second type doped semiconductor layer

130‧‧‧發光層 130‧‧‧Lighting layer

140、140b、150c‧‧‧第一電極 140, 140b, 150c‧‧‧ first electrode

150‧‧‧第二電極 150‧‧‧second electrode

160、160a、160c‧‧‧磁性層 160, 160a, 160c‧‧‧ magnetic layer

162、162c‧‧‧磁性子層 162, 162c‧‧‧ magnetic sublayer

164、164c‧‧‧導電子層 164, 164c‧‧‧ conductive sublayer

170‧‧‧基板 170‧‧‧Substrate

180‧‧‧緩衝層 180‧‧‧buffer layer

190‧‧‧電子阻擋層 190‧‧‧Electronic barrier

210‧‧‧透明導電層 210‧‧‧Transparent conductive layer

圖1為本發明的一實施例的半導體發光結構的剖面示意圖。 1 is a cross-sectional view showing a semiconductor light emitting structure according to an embodiment of the present invention.

圖2為圖1之半導體發光結構與不含有磁性層的發光二極體的光功率相對於電流密度的曲線圖。 2 is a graph of optical power versus current density for the semiconductor light emitting structure of FIG. 1 and the light emitting diode without the magnetic layer.

圖3A為圖1之半導體發光結構與不含有磁性層的發光二極體的電致發光強度相對於波長的實驗曲線圖。 3A is an experimental graph of electroluminescence intensity versus wavelength for the semiconductor light emitting structure of FIG. 1 and the light emitting diode without the magnetic layer.

圖3B為圖1之半導體發光結構與不含有磁性層的發光二極體的電致發光強度相對於波長的模擬曲線圖。 3B is a simulated graph of electroluminescence intensity versus wavelength for the semiconductor light emitting structure of FIG. 1 and the light emitting diode without the magnetic layer.

圖4為本發明之另一實施例之半導體發光結構的剖面示意 圖。 4 is a cross-sectional view showing a semiconductor light emitting structure according to another embodiment of the present invention; Figure.

圖5為本發明之又一實施例之半導體發光結構的剖面示意圖。 FIG. 5 is a cross-sectional view showing a semiconductor light emitting structure according to still another embodiment of the present invention.

圖6為本發明之再一實施例之半導體發光結構的剖面示意圖。 6 is a cross-sectional view showing a semiconductor light emitting structure according to still another embodiment of the present invention.

圖1為本發明的一實施例的半導體發光結構的剖面示意圖。請參照圖1,本實施例的半導體發光結構100包括一第一型摻雜半導體層110、一第二型摻雜半導體層120、一發光層130、一第一電極140、一第二電極150及一磁性層160。發光層130配置於第一型摻雜半導體層110與第二型摻雜半導體層120之間。在本實施例中,第一型摻雜半導體層110為N型半導體層,且第二型摻雜半導體層120為P型半導體層。然而,在其他實施例中,亦可以是第一型摻雜半導體層110為P型半導體層,而第二型摻雜半導體層120為N型半導體層。此外,在本實施例中,發光層130例如為多重量子井層(multiple quantum well)或量子井層。在本實施例中,半導體發光結構100為一發光二極體(light-emitting diode,LED)。在本實施例中,第一型摻雜半導體層110、第二型摻雜半導體層120及發光層130所採用的材料可以是以氮化鎵(gallium nitride,GaN)為主的材料,其中多重量子井層的能井與能障可利用摻入不同濃度的銦(indium,In)來形成。 1 is a cross-sectional view showing a semiconductor light emitting structure according to an embodiment of the present invention. Referring to FIG. 1 , the semiconductor light emitting structure 100 of the present embodiment includes a first type doped semiconductor layer 110 , a second type doped semiconductor layer 120 , a light emitting layer 130 , a first electrode 140 , and a second electrode 150 . And a magnetic layer 160. The light emitting layer 130 is disposed between the first type doped semiconductor layer 110 and the second type doped semiconductor layer 120. In the present embodiment, the first type doped semiconductor layer 110 is an N type semiconductor layer, and the second type doped semiconductor layer 120 is a P type semiconductor layer. However, in other embodiments, the first type doped semiconductor layer 110 may be a P type semiconductor layer, and the second type doped semiconductor layer 120 may be an N type semiconductor layer. Further, in the present embodiment, the light-emitting layer 130 is, for example, a multiple quantum well or a quantum well layer. In the embodiment, the semiconductor light emitting structure 100 is a light-emitting diode (LED). In this embodiment, the materials used for the first type doped semiconductor layer 110, the second type doped semiconductor layer 120, and the light emitting layer 130 may be gallium nitride (GaN)-based materials, of which multiple The energy wells and energy barriers of the quantum well layer can be formed by incorporating different concentrations of indium (Indium, In).

第一電極140電性連接至第一型摻雜半導體層110,而第二電極150電性連接至第二型摻雜半導體層120。磁性層160連接第一電極140與第一型摻雜半導體層110。在本實施例中,第二電極150配置於第二型摻雜半導體層120上。此外,在本實施例中,磁性層160的至少一部分具有磁性,磁性層160的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,且磁性層160的材料包括金屬、金屬氧化物或其組合。在本實施例中,磁性層160例如為磁性半導體層,磁性層160中至少摻雜有摻雜元素,且此摻雜元素的價電子數大於磁性層160的主材料(host material)中的至少一元素的價電子數。在本說明書中,主材料是指非摻雜材料,且主材料中的任一元素在整個材料(在本實施例中例如是磁性層160的材料)中的莫耳百分比皆大於或等於7.5%。在本實施例中,第一電極140與第二電極150的材料例如為金屬或其他具有高導電率的材料。 The first electrode 140 is electrically connected to the first type doped semiconductor layer 110, and the second electrode 150 is electrically connected to the second type doped semiconductor layer 120. The magnetic layer 160 connects the first electrode 140 and the first type doped semiconductor layer 110. In the embodiment, the second electrode 150 is disposed on the second type doped semiconductor layer 120. In addition, in this embodiment, at least a portion of the magnetic layer 160 has magnetic properties, and at least another portion of the magnetic layer 160 has an energy gap greater than 0 eV and less than or equal to 5 eV, and the material of the magnetic layer 160 includes metal, metal oxide. Or a combination thereof. In this embodiment, the magnetic layer 160 is, for example, a magnetic semiconductor layer, and the magnetic layer 160 is doped with at least a doping element, and the doping element has a valence electron number greater than at least a host material of the magnetic layer 160. The valence electron number of an element. In the present specification, the main material means an undoped material, and any element in the main material has a molar percentage of 7.5% or more in the entire material (in the present embodiment, for example, the material of the magnetic layer 160). . In the present embodiment, the material of the first electrode 140 and the second electrode 150 is, for example, a metal or other material having high conductivity.

此外,在本實施例中,磁性層160例如為一堆疊層,且磁性層160包括堆疊的一磁性子層162與一導電子層164,其中導電子層164例如為透明導電子層。導電子層164配置於第一型摻雜半導體層110與磁性子層162之間,且磁性子層162配置於導電子層164與第一電極140之間。然而,在其他實施例中,亦可以是磁性子層162配置於第一型摻雜半導體層110與導電子層164之間,且導電子層164配置於磁性子層162與第一電極140之間。 In addition, in the present embodiment, the magnetic layer 160 is, for example, a stacked layer, and the magnetic layer 160 includes a magnetic sub-layer 162 and a conductive sub-layer 164 stacked thereon, wherein the conductive sub-layer 164 is, for example, a transparent conductive sub-layer. The electron-conducting layer 164 is disposed between the first-type doped semiconductor layer 110 and the magnetic sub-layer 162 , and the magnetic sub-layer 162 is disposed between the conductive sub-layer 164 and the first electrode 140 . In other embodiments, the magnetic sub-layer 162 is disposed between the first-type doped semiconductor layer 110 and the conductive sub-layer 164, and the conductive sub-layer 164 is disposed between the magnetic sub-layer 162 and the first electrode 140. between.

在本實施例中,波長為450奈米的光對於導電子層164 的穿透率大於或等於30%,且導電子層164的能隙大於0電子伏特且小於或等於5電子伏特。在一實施例中,波長450奈米的光對於導電子層164的穿透率例如是大於或等於70%。在本實施例中,磁性子層162的飽和磁化強度大於10-5電磁單位。舉例而言,在常溫下(例如在25℃下),磁性子層162的飽和磁化強度大於10-5電磁單位。此外,在本實施例中,磁性子層162的能隙大於0電子伏特,且磁性子層162的能隙小於或等於5電子伏特。具體而言,在一實施例中,磁性子層162的能隙可大於2.5電子伏特。 In the present embodiment, the transmittance of light having a wavelength of 450 nm to the conductive sub-layer 164 is greater than or equal to 30%, and the energy gap of the conductive sub-layer 164 is greater than 0 eV and less than or equal to 5 eV. In one embodiment, the transmittance of light having a wavelength of 450 nm to the conductive sub-layer 164 is, for example, greater than or equal to 70%. In the present embodiment, the magnetic sub-layer 162 has a saturation magnetization greater than 10 -5 electromagnetic units. For example, at normal temperature (e.g., at 25 ° C), the magnetic sub-layer 162 has a saturation magnetization greater than 10 -5 electromagnetic units. Further, in the present embodiment, the energy gap of the magnetic sub-layer 162 is greater than 0 eV, and the energy gap of the magnetic sub-layer 162 is less than or equal to 5 eV. In particular, in an embodiment, the energy gap of the magnetic sub-layer 162 can be greater than 2.5 electron volts.

具體而言,在本實施例中,磁性子層162的材料包括摻雜有鈷(Co)且未摻雜有其他刻意摻雜元素的氧化鋅(ZnO),或包括摻雜有鈷及其他摻雜元素的ZnO,其中此「其他摻雜元素」包括鎵(Ga)、鋁(Al)、銦(In)、錫(Sn)或其組合。舉例而言,磁性子層162的材料可以是摻雜有Ga與Co的ZnO、摻雜有Al與Co的ZnO、摻雜有Ga、Al及Co的ZnO…等,以此類推。此外,在本實施例中,導電子層164的材料包括摻雜有摻雜元素的ZnO,其中此摻雜元素包括Ga、Al、In、Sn或其組合。舉例而言,導電子層164的材料可以是摻雜有Ga的ZnO、摻雜有Al的ZnO、摻雜有Ga與Al的ZnO、…等,以此類推。其中,Co、Zn、Ga、Al、In、Sn及O分別為鈷、鋅、鎵、鋁、銦、錫及氧的元素符號。 Specifically, in the present embodiment, the material of the magnetic sub-layer 162 includes zinc oxide (ZnO) doped with cobalt (Co) and not doped with other intentionally doped elements, or includes doped cobalt and other doped ZnO of a hetero element, wherein the "other doping element" includes gallium (Ga), aluminum (Al), indium (In), tin (Sn), or a combination thereof. For example, the material of the magnetic sub-layer 162 may be ZnO doped with Ga and Co, ZnO doped with Al and Co, ZnO doped with Ga, Al, and Co, etc., and so on. Further, in the present embodiment, the material of the conductive sub-layer 164 includes ZnO doped with a doping element, wherein the doping element includes Ga, Al, In, Sn, or a combination thereof. For example, the material of the conductive sub-layer 164 may be ZnO doped with Ga, ZnO doped with Al, ZnO doped with Ga and Al, etc., and so on. Among them, Co, Zn, Ga, Al, In, Sn, and O are element symbols of cobalt, zinc, gallium, aluminum, indium, tin, and oxygen, respectively.

在本實施例中,導電子層164中至少摻雜有摻雜元素,且此摻雜元素的價電子數大於導電子層164的主材料中的至少一元素的價電子數。在本實施例中,導電子層的主材料中的任一元 素在導電子層中的莫耳百分比皆大於或等於7.5%。舉例而言,導電子層164的主材料為ZnO,Zn的價電子數為2,因此可摻雜價電子數為3的硼(B)、Ga、Al、In或鉈(Tl)等IIIA族元素。此外,由於ZnO的O的價電子數為6,因此可以摻雜價電子數為7的氟(F)、氯(Cl)、溴(Br)、碘(I)或砈(astatine,At)等VIIA族元素。其中,上述這些摻雜是用以作為電子施體(electron donor)。在本實施例中,磁性層160的材料包括過渡元素化合物。舉例而言,磁性子層162的材料可包括鈷(Co)。在一實施例中,導電子層164中的Ga的莫耳百分比可落在0.1%至3.5%的範圍內。 In this embodiment, the conductive sub-layer 164 is doped with at least a doping element, and the valence electron number of the doping element is greater than the valence electron number of at least one element of the main material of the conductive sub-layer 164. In this embodiment, any element in the main material of the conductive sublayer The percentage of moles in the conductive sublayer is greater than or equal to 7.5%. For example, the main material of the conductive sub-layer 164 is ZnO, and the valence electron number of Zn is 2, so that the IIIA group such as boron (B), Ga, Al, In or 铊 (Tl) can be doped with a valence electron number of 3. element. Further, since the valence electron number of O of ZnO is 6, it is possible to dope fluorine (F), chlorine (Cl), bromine (Br), iodine (I) or astatine (At) having a valence electron number of 7. VIIA family element. Among them, the above doping is used as an electron donor. In the present embodiment, the material of the magnetic layer 160 includes a transition element compound. For example, the material of the magnetic sub-layer 162 may include cobalt (Co). In an embodiment, the molar percentage of Ga in the conductive sub-layer 164 may fall within the range of 0.1% to 3.5%.

在本實施例中,導電子層164的厚度是落在20奈米至70奈米的範圍內。在一實施例中,導電子層164的厚度例如為30奈米。此外,在本實施例中,磁性子層162的厚度是落在30奈米至500奈米的範圍內。在一實施例中,磁性子層162的厚度是落在100奈米至130奈米的範圍內。舉例而言,磁性子層162的厚度為120奈米。 In the present embodiment, the thickness of the conductive sub-layer 164 is in the range of 20 nm to 70 nm. In an embodiment, the conductive sub-layer 164 has a thickness of, for example, 30 nm. Further, in the present embodiment, the thickness of the magnetic sub-layer 162 is in the range of 30 nm to 500 nm. In one embodiment, the thickness of the magnetic sub-layer 162 is in the range of from 100 nanometers to 130 nanometers. For example, the magnetic sub-layer 162 has a thickness of 120 nm.

在本實施例的半導體發光結構100中,由於磁性層160的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,或者由於磁性層160中摻雜的至少一摻雜元素的價電子數大於磁性層160的主材料中的至少一元素的價電子數,或者由於磁性層160包括磁性子層162與透明的導電子層164,因此半導體發光結構100能夠在保持較低的操作電壓下具有較高的發光效率。具體而言,來自第一電極140的電子在通過磁性子層162時,會 與磁性子層162內的磁矩產生交換耦合效應,而使電子在進入發光層130(即多重量子井層)前的遷移率(mobility)下降。一般而言,若未採用磁性子層162,電子的遷移率比電洞高,因此當部分電子移動得過快,而導致在穿越發光層130之後,才在第二型摻雜半導體層120中與電洞復合時,這種復合是不會發光的。然而,在本實施例中,由於採用磁性子層162來減緩電子的遷移率,將使得大部分的電子盡量在發光層130中與電洞復合,以發出光,如此便可增進半導體發光結構100的發光效率。 In the semiconductor light emitting structure 100 of the present embodiment, since the energy gap of at least another portion of the magnetic layer 160 is greater than 0 eV and less than or equal to 5 eV, or due to the price of at least one doping element doped in the magnetic layer 160 The electron number is greater than the number of valence electrons of at least one of the main materials of the magnetic layer 160, or since the magnetic layer 160 includes the magnetic sub-layer 162 and the transparent conductive sub-layer 164, the semiconductor light-emitting structure 100 can maintain a lower operating voltage It has a higher luminous efficiency. Specifically, when electrons from the first electrode 140 pass through the magnetic sub-layer 162, The exchange coupling effect with the magnetic moment within the magnetic sub-layer 162 causes the electrons to decrease in mobility before entering the luminescent layer 130 (ie, the multiple quantum well layer). In general, if the magnetic sub-layer 162 is not used, the mobility of electrons is higher than that of the holes, so that when a part of the electrons move too fast, it is caused in the second-type doped semiconductor layer 120 after passing through the light-emitting layer 130. When combined with a hole, this compound does not emit light. However, in the present embodiment, since the magnetic sub-layer 162 is used to slow the mobility of electrons, most of the electrons are combined with the holes in the light-emitting layer 130 as much as possible to emit light, thereby enhancing the semiconductor light-emitting structure 100. Luminous efficiency.

此外,當增加磁性子層162時,會使半導體發光結構100的順向電壓(forward voltage,VF)增加,進而使半導體發光結構100的操作電壓上升。因此,在本實施例中,採用了導電子層164,且使導電子層164中摻雜的至少一摻雜元素的價電子數大於導電子層164的主材料中的至少一元素的價電子數,如此便可有效地降低接觸電阻,進而降低半導體發光結構100的順向電壓與操作電壓。如此一來,半導體發光結構100便能夠在維持較低的順向電壓的情況下有效地提升發光效率。 In addition, when the magnetic sub-layer 162 is added, the forward voltage (V F ) of the semiconductor light-emitting structure 100 is increased, and the operating voltage of the semiconductor light-emitting structure 100 is increased. Therefore, in the present embodiment, the conductive sub-layer 164 is employed, and the valence electron number of at least one doping element doped in the conductive sub-layer 164 is greater than the valence electron of at least one element in the main material of the conductive sub-layer 164. Thus, the contact resistance can be effectively reduced, thereby reducing the forward voltage and operating voltage of the semiconductor light emitting structure 100. As a result, the semiconductor light emitting structure 100 can effectively improve the luminous efficiency while maintaining a low forward voltage.

圖2為圖1之半導體發光結構與不含有磁性層的發光二極體的光功率相對於電流密度的曲線圖,圖3A為圖1之半導體發光結構與不含有磁性層的發光二極體的電致發光強度相對於波長的實驗曲線圖,而圖3B為圖1之半導體發光結構與不含有磁性層的發光二極體的電致發光強度相對於波長的模擬曲線圖。請參照圖1、圖2、圖3A及圖3B,在圖2及圖3A的實驗中及在圖3B 的模擬中,半導體發光結構100的磁性層160的磁性子層162的材料是採用摻雜有Co的ZnO,而導電子層164的材料則是採用摻雜有Ga的ZnO,由圖2、圖3A及圖3B可明顯看出,採用本實施例之磁性層160的半導體發光結構100具有較高的發光效率。 2 is a graph showing optical power versus current density of a semiconductor light emitting structure of FIG. 1 and a light emitting diode without a magnetic layer, and FIG. 3A is a semiconductor light emitting structure of FIG. 1 and a light emitting diode without a magnetic layer. An experimental graph of electroluminescence intensity versus wavelength, and FIG. 3B is a simulated graph of electroluminescence intensity versus wavelength for the semiconductor light-emitting structure of FIG. 1 and the light-emitting diode without the magnetic layer. Please refer to FIG. 1 , FIG. 2 , FIG. 3A and FIG. 3B , in the experiments of FIG. 2 and FIG. 3A and in FIG. 3B . In the simulation, the material of the magnetic sub-layer 162 of the magnetic layer 160 of the semiconductor light-emitting structure 100 is ZnO doped with Co, and the material of the conductive sub-layer 164 is ZnO doped with Ga, as shown in FIG. 2 3A and FIG. 3B, it is apparent that the semiconductor light emitting structure 100 using the magnetic layer 160 of the present embodiment has high luminous efficiency.

在一實施例中,磁性子層162所採用的摻雜有Co的ZnO材料中的Co的莫耳百分比例如約為7%,磁性子層162的厚度例如為120奈米,導電子層164所採用的摻雜有Ga的ZnO的材料中的Ga的莫耳百分比例如約為3.5%,而導電子層164的厚度例如為30奈米。在一實施例中,磁性層160的下表面至第一型摻雜半導體層110的下表面的垂直距離可大於700奈米。 In one embodiment, the Mo group percentage of Co in the Co-doped ZnO material used in the magnetic sub-layer 162 is, for example, about 7%, and the magnetic sub-layer 162 has a thickness of, for example, 120 nm, and the conductive sub-layer 164 The molar percentage of Ga in the material doped with Ga-doped ZnO is, for example, about 3.5%, and the thickness of the conductive sub-layer 164 is, for example, 30 nm. In an embodiment, the vertical distance from the lower surface of the magnetic layer 160 to the lower surface of the first type doped semiconductor layer 110 may be greater than 700 nm.

上表一列出各種形式的半導體發光結構的實驗參數值。其中,「無磁性層」是指第一電極140與第一型摻雜半導體層110之間沒有配置磁性層的半導體發光結構;「單一ZnO:Co層」是指在第一電極140與第一型摻雜半導體層110之間配置有單一的摻 雜有Co的ZnO層的半導體發光結構;「單一ZnO:Ga層」是指在第一電極140與第一型摻雜半導體層110之間配置有單一的摻雜有Ga的ZnO層的半導體發光結構;「ZnO:Co層+ZnO:Ga層」是指本實施例之半導體發光結構100,亦即其中在第一電極140與第一型摻雜半導體層110之間配置有磁性層160,磁性層160包括磁性子層162與導電子層164,磁性子層162的材料為摻雜有Co的ZnO,而導電子層164的材料為摻雜有Ga的ZnO。此外,「平均光功率」與「平均順向電壓」是指實驗中多個半導體發光結構100所得到的平均值,而「平均光功率差值(%)」(或「平均順向電壓差值(%)」)分別是指該列的平均光功率(或平均順向電壓)先減去「無磁性層」那列的平均光功率(或平均順向電壓)後,再除以「無磁性層」那列的平均光功率(或平均順向電壓)所得到的百分比數值。 Table 1 above lists the experimental parameter values for various forms of semiconductor light-emitting structures. Here, the "non-magnetic layer" means a semiconductor light-emitting structure in which a magnetic layer is not disposed between the first electrode 140 and the first-type doped semiconductor layer 110; "single ZnO: Co layer" means the first electrode 140 and the first A single doping is disposed between the doped semiconductor layers 110 a semiconductor light-emitting structure of a ZnO layer doped with Co; "single ZnO:Ga layer" means a semiconductor light-emitting device in which a single Ga-doped ZnO layer is disposed between the first electrode 140 and the first-type doped semiconductor layer 110 Structure: "ZnO: Co layer + ZnO: Ga layer" refers to the semiconductor light emitting structure 100 of the present embodiment, that is, a magnetic layer 160 is disposed between the first electrode 140 and the first type doped semiconductor layer 110, and magnetic The layer 160 includes a magnetic sub-layer 162 and a conductive sub-layer 164. The material of the magnetic sub-layer 162 is ZnO doped with Co, and the material of the conductive sub-layer 164 is ZnO doped with Ga. In addition, "average optical power" and "average forward voltage" refer to the average value obtained by the plurality of semiconductor light emitting structures 100 in the experiment, and "average optical power difference (%)" (or "average forward voltage difference" (%)") means that the average optical power (or average forward voltage) of the column is first subtracted from the average optical power (or average forward voltage) of the "non-magnetic layer" column, and then divided by "non-magnetic". The percentage of the average optical power (or average forward voltage) of the column.

由表一可明顯看出,採用單一的ZnO:Co層時,雖然平均光功率提升了18.09%,但半導體發光結構的順向電壓也提升了16.19%,因而導致所需操作電壓過高,進而導致較高的功率消耗與較差的可應用性。此外,採用單一的ZnO:Ga層時,雖然平均順向電壓降低了-10.35%,但平均光功率幾乎沒有增加(只增加了0.53%),因而仍無法有效提升半導體發光結構的光功率。相較之下,在本實施例中,相對於不含有磁性層160的發光二極體(即表一所列的「無磁性層」),本實施例之半導體發光結構100所提供的輸出光功率多了18.68%,而操作電壓少了8.35%。也就是說, 操作電壓甚至還可以比不含有磁性層160的發光二極體低,而輸出光功率也有效地被提升。如此一來,本實施例之半導體發光結構100便可以具有較高的亮度與較佳的可應用性。 It can be clearly seen from Table 1 that when a single ZnO:Co layer is used, although the average optical power is increased by 18.09%, the forward voltage of the semiconductor light-emitting structure is also increased by 16.19%, thereby causing the required operating voltage to be too high, and thus Lead to higher power consumption and poor applicability. In addition, when a single ZnO:Ga layer is used, although the average forward voltage is lowered by -10.35%, the average optical power is hardly increased (only 0.53% is increased), so that the optical power of the semiconductor light-emitting structure cannot be effectively improved. In contrast, in the present embodiment, the output light provided by the semiconductor light emitting structure 100 of the present embodiment is relative to the light emitting diode that does not include the magnetic layer 160 (ie, the "non-magnetic layer" listed in Table 1). The power is 18.68% more, and the operating voltage is 8.35% less. That is, The operating voltage can even be lower than that of the light-emitting diode that does not contain the magnetic layer 160, and the output optical power is also effectively boosted. As a result, the semiconductor light emitting structure 100 of the embodiment can have higher brightness and better applicability.

在一實施例中,磁性子層162的厚度可以是落在30至500奈米的範圍內,磁性子層162所採用的摻雜有Ga與Co的ZnO或摻雜有Co的ZnO材料中的Co的莫耳百分比例如是落在從1%至3%的範圍內,磁性層160的下表面至第一型摻雜半導體層110的下表面的垂直距離可大於1微米,磁性子層162所採用的摻雜有Ga與Co的ZnO或摻雜有Co的ZnO材料中的O的莫耳百分比例如是落在45%與65%之間。此外,對於磁性子層162所採用的摻雜有Ga與Co的ZnO材料而言,Ga相對於Ga、Co與Zn的總合的莫耳百分比小於10%,且Co相對於Ga、Co與Zn的總合的莫耳百分比大於3%。 In an embodiment, the thickness of the magnetic sub-layer 162 may be in the range of 30 to 500 nm, and the magnetic sub-layer 162 is doped with ZnO doped with Ga and Co or ZnO doped with Co. The molar percentage of Co is, for example, falling within a range from 1% to 3%, and the vertical distance from the lower surface of the magnetic layer 160 to the lower surface of the first type doped semiconductor layer 110 may be greater than 1 micrometer, and the magnetic sub-layer 162 The percentage of moles of O used in the ZnO doped with Ga and Co or the ZnO material doped with Co is, for example, between 45% and 65%. In addition, for the ZnO material doped with Ga and Co for the magnetic sub-layer 162, the molar percentage of Ga with respect to the total of Ga, Co and Zn is less than 10%, and Co is relative to Ga, Co and Zn. The total molar percentage of the sum is greater than 3%.

在本實施例中,半導體發光結構100可更包括一基板170、一緩衝層(buffer layer)180、一電子阻擋層(electron blocking layer,EBL)190及一透明導電層210。緩衝層180配置於基板170上,而第一型摻雜半導體層110配置於緩衝層180上。在本實施例中,基板170的材料可以是藍寶石(sapphire)或其他適當材料,緩衝層180的材料例如為氮化鎵。電子阻擋層190配置於發光層130與第二型摻雜半導體層120之間,以盡量使電子在發光層130中與電洞復合,進而提升半導體發光結構100的發光效率。在本實施例中,電子阻擋層190的材料例如為氮化鋁鎵、氮化鋁銦鎵 或氮化鋁銦。透明導電層210配置於第二電極150與第二型摻雜半導體層120之間,以降低第二電極150與第二型摻雜半導體層120的接觸電阻。在本實施例中,透明導電層210的材料例如為氧化銦錫(indium tin oxide,ITO)或其他適當的材料。 In this embodiment, the semiconductor light emitting structure 100 further includes a substrate 170, a buffer layer 180, an electron blocking layer (EBL) 190, and a transparent conductive layer 210. The buffer layer 180 is disposed on the substrate 170, and the first type doped semiconductor layer 110 is disposed on the buffer layer 180. In this embodiment, the material of the substrate 170 may be sapphire or other suitable material, and the material of the buffer layer 180 is, for example, gallium nitride. The electron blocking layer 190 is disposed between the light emitting layer 130 and the second type doped semiconductor layer 120 to make electrons recombine with the holes in the light emitting layer 130 as much as possible, thereby improving the light emitting efficiency of the semiconductor light emitting structure 100. In this embodiment, the material of the electron blocking layer 190 is, for example, aluminum gallium nitride or aluminum indium gallium nitride. Or aluminum indium nitride. The transparent conductive layer 210 is disposed between the second electrode 150 and the second type doped semiconductor layer 120 to reduce the contact resistance between the second electrode 150 and the second type doped semiconductor layer 120. In this embodiment, the material of the transparent conductive layer 210 is, for example, indium tin oxide (ITO) or other suitable materials.

圖4為本發明之另一實施例之半導體發光結構的剖面示意圖。請參照圖4,本實施例之半導體發光結構100a類似於圖1之半導體發光結構100,而兩者的差異如下所述。在本實施例之半導體發光結構100a中,磁性層160a為一單一膜層。在本實施例中,磁性層160a具有磁性,磁性層160a的能隙大於0電子伏特且小於或等於5電子伏特,且磁性層160a的材料包括金屬、金屬氧化物或其組合。在一實施例中,磁性層160a的能隙大於2.5電子伏特。在本實施例中,磁性層160a例如為磁性半導體層,磁性層160a中至少摻雜有摻雜元素,且此摻雜元素的價電子數大於磁性層160a的主材料中的至少一元素的價電子數。 4 is a cross-sectional view showing a semiconductor light emitting structure according to another embodiment of the present invention. Referring to FIG. 4, the semiconductor light emitting structure 100a of the present embodiment is similar to the semiconductor light emitting structure 100 of FIG. 1, and the difference between the two is as follows. In the semiconductor light emitting structure 100a of the present embodiment, the magnetic layer 160a is a single film layer. In the present embodiment, the magnetic layer 160a has magnetic properties, the energy gap of the magnetic layer 160a is greater than 0 eV and less than or equal to 5 eV, and the material of the magnetic layer 160a includes a metal, a metal oxide, or a combination thereof. In one embodiment, the magnetic layer 160a has an energy gap greater than 2.5 electron volts. In the present embodiment, the magnetic layer 160a is, for example, a magnetic semiconductor layer, and the magnetic layer 160a is doped with at least a doping element, and the valence electron number of the doping element is greater than the valence of at least one element of the main material of the magnetic layer 160a. Electronic number.

在本實施例中,波長為450奈米的光對於磁性層160a的穿透率大於或等於30%,且磁性層160a的能隙大於0電子伏特且小於或等於5電子伏特。在一實施例中,波長450奈米的光對於磁性層160a的穿透率例如是大於或等於60%。在本實施例中,磁性層160a的飽和磁化強度大於10-5電磁單位。舉例而言,在常溫下(例如在25℃下),磁性層160a的飽和磁化強度大於10-5電磁單位。 In the present embodiment, the transmittance of light having a wavelength of 450 nm to the magnetic layer 160a is greater than or equal to 30%, and the energy gap of the magnetic layer 160a is greater than 0 eV and less than or equal to 5 eV. In one embodiment, the transmittance of light having a wavelength of 450 nm to the magnetic layer 160a is, for example, greater than or equal to 60%. In the present embodiment, the magnetic saturation of the magnetic layer 160a is greater than 10 -5 electromagnetic units. For example, at normal temperature (for example, at 25 ° C), the magnetic saturation of the magnetic layer 160a is greater than 10 -5 electromagnetic units.

在本實施例中,磁性層160a的材料包括過渡元素化合 物。舉例而言,磁性層160a的材料可包括鈷(Co)。 In this embodiment, the material of the magnetic layer 160a includes a transition element combination Things. For example, the material of the magnetic layer 160a may include cobalt (Co).

在本實施例中,磁性層160a的材料包括摻雜有Co與其他摻雜元素的ZnO,其中此「其他參雜元素」包括Ga、Al、In、Sn或其組合。舉例而言,磁性層160a的材料可以是摻雜有Ga與Co的ZnO、摻雜有Al與Co的ZnO、摻雜有Ga、Al及Co的ZnO等,以此類推。在一實施例中,磁性層160a中的Co的莫耳百分比例如約為7%。在一實施例中,磁性層160a中的Ga的莫耳百分比例如是落在從0.1%至3.5%的範圍內。在本實施例中,磁性層160a的厚度是落在100奈米至130奈米的範圍內。在一實施例中,磁性層160a的厚度例如為120奈米。 In the present embodiment, the material of the magnetic layer 160a includes ZnO doped with Co and other doping elements, wherein the "other doping elements" include Ga, Al, In, Sn, or a combination thereof. For example, the material of the magnetic layer 160a may be ZnO doped with Ga and Co, ZnO doped with Al and Co, ZnO doped with Ga, Al, and Co, and the like, and so on. In an embodiment, the molar percentage of Co in the magnetic layer 160a is, for example, about 7%. In an embodiment, the molar percentage of Ga in the magnetic layer 160a is, for example, falling within a range from 0.1% to 3.5%. In the present embodiment, the thickness of the magnetic layer 160a falls within the range of 100 nm to 130 nm. In an embodiment, the thickness of the magnetic layer 160a is, for example, 120 nm.

在本實施例中,由於呈單一膜層的磁性層160a中同時具有過渡元素Co與電子施體Ga,因此可在維持較低的順向電壓的情況下有效地提升發光效率。 In the present embodiment, since the magnetic layer 160a having a single film layer has both the transition element Co and the electron donor body Ga, the luminous efficiency can be effectively improved while maintaining a low forward voltage.

圖5為本發明之又一實施例之半導體發光結構的剖面示意圖。請參照圖5,本實施例之半導體發光結構100b與圖1之半導體發光結構100類似,而兩者的差異如下所述。圖1之半導體發光結構100為水平式發光二極體結構,也就是第一電極140與第二電極150位於半導體發光結構100的同一側。然而,本實施例之半導體發光結構100b為垂直式發光二極體結構,也就是第一電極140b與第二電極150位於半導體發光結構100b的相對兩側。具體而言,磁性層160可配置於第一型摻雜半導體層110的下表面上,而第一電極140b為一配置於磁性層160的下表面上之導電 層。在其他實施例中,圖5中的磁性層160也可以採用如圖4中的單一膜層的磁性層160a來取代。 FIG. 5 is a cross-sectional view showing a semiconductor light emitting structure according to still another embodiment of the present invention. Referring to FIG. 5, the semiconductor light emitting structure 100b of the present embodiment is similar to the semiconductor light emitting structure 100 of FIG. 1, and the difference between the two is as follows. The semiconductor light emitting structure 100 of FIG. 1 is a horizontal light emitting diode structure, that is, the first electrode 140 and the second electrode 150 are located on the same side of the semiconductor light emitting structure 100. However, the semiconductor light emitting structure 100b of the present embodiment is a vertical light emitting diode structure, that is, the first electrode 140b and the second electrode 150 are located on opposite sides of the semiconductor light emitting structure 100b. Specifically, the magnetic layer 160 may be disposed on the lower surface of the first type doped semiconductor layer 110, and the first electrode 140b is electrically conductive disposed on the lower surface of the magnetic layer 160. Floor. In other embodiments, the magnetic layer 160 of FIG. 5 may also be replaced with a magnetic layer 160a of a single film layer as in FIG.

圖6為本發明之再一實施例之半導體發光結構的剖面示意圖。請參照圖6,本實施例之半導體發光結構100c與圖1之半導體發光結構100類似,而兩者的差異如下所述。在本實施例之半導體發光結構100c中,第一型摻雜半導體層120c為P型半導體層,其配置於第一電極150c與電子阻擋層190之間,而第二型摻雜半導體層110c為N型半導體層,其配置於基板170與發光層130之間。也就是說,磁性層160c是配置於P型半導體層(即第一型摻雜半導體層120c)與第一電極150c之間。在本實施例中,磁性層160c的磁性子層162c配置於第一電極150c與導電子層164c之間,且導電子層164c是配置於磁性子層162c與第一型摻雜半導體層120c之間。 6 is a cross-sectional view showing a semiconductor light emitting structure according to still another embodiment of the present invention. Referring to FIG. 6, the semiconductor light emitting structure 100c of the present embodiment is similar to the semiconductor light emitting structure 100 of FIG. 1, and the difference between the two is as follows. In the semiconductor light emitting structure 100c of the present embodiment, the first type doped semiconductor layer 120c is a P type semiconductor layer disposed between the first electrode 150c and the electron blocking layer 190, and the second type doped semiconductor layer 110c is The N-type semiconductor layer is disposed between the substrate 170 and the light-emitting layer 130. That is, the magnetic layer 160c is disposed between the P-type semiconductor layer (ie, the first type doped semiconductor layer 120c) and the first electrode 150c. In this embodiment, the magnetic sub-layer 162c of the magnetic layer 160c is disposed between the first electrode 150c and the conductive sub-layer 164c, and the conductive sub-layer 164c is disposed between the magnetic sub-layer 162c and the first-type doped semiconductor layer 120c. between.

在其他實施例中,圖6中的磁性層160c也可以採用如圖4中的單一膜層的磁性層160a來取代。 In other embodiments, the magnetic layer 160c of FIG. 6 may also be replaced with a magnetic layer 160a of a single film layer as in FIG.

綜上所述,在本發明的實施例的半導體發光結構中,由於磁性層的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,或者由於磁性半導體層中摻雜的至少一摻雜元素的價電子數大於磁性層的主材料中的至少一元素的價電子數,或者由於堆疊層包括磁性子層與透明導電子層,因此半導體發光結構能夠在保持較低的操作電壓下具有較高的發光效率。 In summary, in the semiconductor light emitting structure of the embodiment of the present invention, since at least another portion of the magnetic layer has an energy gap greater than 0 eV and less than or equal to 5 eV, or due to at least one doping in the magnetic semiconductor layer The valence electron number of the doping element is greater than the valence electron number of at least one element in the main material of the magnetic layer, or since the stacked layer includes the magnetic sublayer and the transparent conductive sublayer, the semiconductor light emitting structure can maintain a lower operating voltage Has a high luminous efficiency.

雖然本發明已以實施例揭露如上,然其並非用以限定本 發明,任何所屬技術領域中具有通常知識者,在不脫離本發明的精神和範圍內,當可作些許的更動與潤飾,故本發明的保護範圍當視後附的申請專利範圍所界定者為準。 Although the present invention has been disclosed above by way of example, it is not intended to limit the present invention. The scope of the present invention is defined by the scope of the appended claims, which are defined by the scope of the appended claims, without departing from the spirit and scope of the invention. quasi.

100‧‧‧半導體發光結構 100‧‧‧Semiconductor light-emitting structure

110‧‧‧第一型摻雜半導體層 110‧‧‧First type doped semiconductor layer

120‧‧‧第二型摻雜半導體層 120‧‧‧Second type doped semiconductor layer

130‧‧‧發光層 130‧‧‧Lighting layer

140‧‧‧第一電極 140‧‧‧First electrode

150‧‧‧第二電極 150‧‧‧second electrode

160‧‧‧磁性層 160‧‧‧Magnetic layer

162‧‧‧磁性子層 162‧‧‧magnetic sublayer

164‧‧‧導電子層 164‧‧‧ conductive sublayer

170‧‧‧基板 170‧‧‧Substrate

180‧‧‧緩衝層 180‧‧‧buffer layer

190‧‧‧電子阻擋層 190‧‧‧Electronic barrier

210‧‧‧透明導電層 210‧‧‧Transparent conductive layer

Claims (13)

一種半導體發光結構,包括:一第一型摻雜半導體層;一第二型摻雜半導體層;一發光層,配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間;一第一電極,電性連接至該第一型摻雜半導體層;一第二電極,電性連接至該第二型摻雜半導體層;以及一磁性層,連接該第一電極與該第一型摻雜半導體層,其中該磁性層的至少一部分具有磁性,該磁性層的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,且該磁性層的材料包括金屬、金屬氧化物或其組合,其中該磁性層包括堆疊的一磁性子層與一導電子層,其中該磁性子層位於該第一電極與該導電子層之間,該導電子層位於該磁性子層與該第一型摻雜半導體層之間,該導電子層中至少摻雜有一摻雜元素,該摻雜元素的價電子數大於該導電子層的主材料中的至少一元素的價電子數。 A semiconductor light emitting structure comprising: a first type doped semiconductor layer; a second type doped semiconductor layer; and a light emitting layer disposed between the first type doped semiconductor layer and the second type doped semiconductor layer a first electrode electrically connected to the first type doped semiconductor layer; a second electrode electrically connected to the second type doped semiconductor layer; and a magnetic layer connecting the first electrode and the first electrode A type doped semiconductor layer, wherein at least a portion of the magnetic layer has magnetic properties, at least another portion of the magnetic layer has an energy gap greater than 0 eV and less than or equal to 5 eV, and the material of the magnetic layer includes metal, metal oxide Or a combination thereof, wherein the magnetic layer comprises a magnetic sublayer and a conductive sublayer stacked, wherein the magnetic sublayer is located between the first electrode and the conductive sublayer, and the conductive sublayer is located in the magnetic sublayer Between the first type doped semiconductor layers, at least one doping element is doped in the conductive sublayer, and the valence electron number of the doping element is greater than the valence electron number of at least one element in the main material of the conductive sublayer. 如申請專利範圍第1項所述的半導體發光結構,其中該導電子層的該主材料中的任一元素在該導電子層中的莫耳百分比皆大於或等於7.5%。 The semiconductor light emitting structure of claim 1, wherein any one of the main materials of the conductive sublayer has a molar percentage in the conductive sublayer of greater than or equal to 7.5%. 如申請專利範圍第1項所述的半導體發光結構,其中該磁性層包括堆疊的一磁性子層與一導電子層,且該磁性子層的飽和磁化強度大於10-5電磁單位。 The semiconductor light emitting structure of claim 1, wherein the magnetic layer comprises a magnetic sublayer and a conductive sublayer stacked, and the magnetic sublayer has a saturation magnetization greater than 10 -5 electromagnetic units. 如申請專利範圍第1項所述的半導體發光結構,其中該第一型摻雜半導體層為N型半導體層,且該第二型摻雜半導體層為P型半導體層。 The semiconductor light emitting structure of claim 1, wherein the first type doped semiconductor layer is an N type semiconductor layer, and the second type doped semiconductor layer is a P type semiconductor layer. 一種半導體發光結構,包括:一第一型摻雜半導體層;一第二型摻雜半導體層;一發光層,配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間;一第一電極,電性連接至該第一型摻雜半導體層;一第二電極,電性連接至該第二型摻雜半導體層;以及一磁性層,連接該第一電極與該第一型摻雜半導體層,其中該磁性層中摻雜的至少一摻雜元素的s軌域與p軌域的價電子數大於該磁性層的主材料中的至少一元素的s軌域與p軌域的價電子數。 A semiconductor light emitting structure comprising: a first type doped semiconductor layer; a second type doped semiconductor layer; and a light emitting layer disposed between the first type doped semiconductor layer and the second type doped semiconductor layer a first electrode electrically connected to the first type doped semiconductor layer; a second electrode electrically connected to the second type doped semiconductor layer; and a magnetic layer connecting the first electrode and the first electrode a doped semiconductor layer, wherein a number of valence electrons of the s orbital and p orbital domains of the at least one doping element doped in the magnetic layer is greater than an s orbital domain of at least one of the main materials of the magnetic layer and p The number of valence electrons in the orbital domain. 如申請專利範圍第5項所述的半導體發光結構,其中該磁性層包括堆疊的一磁性子層與一導電子層,波長為450奈米的光對於該導電子層的穿透率大於或等於30%,且該導電子層的能隙大於0電子伏特且小於或等於5電子伏特。 The semiconductor light emitting structure of claim 5, wherein the magnetic layer comprises a magnetic sublayer and a conductive sublayer stacked, and a transmittance of light having a wavelength of 450 nm is greater than or equal to a transmittance of the conductive sublayer. 30%, and the conductive sublayer has an energy gap greater than 0 eV and less than or equal to 5 eV. 如申請專利範圍第5項所述的半導體發光結構,其中該磁性層包括堆疊的一磁性子層與一導電子層,該導電子層中摻雜的至少一摻雜元素的價電子數大於該導電子層的主材料中的至少一元素的價電子數。 The semiconductor light emitting structure of claim 5, wherein the magnetic layer comprises a stacked magnetic sublayer and a conductive sublayer, wherein at least one doping element doped in the conductive sublayer has a valence electron number greater than the The number of valence electrons of at least one element in the main material of the electron-conducting layer. 如申請專利範圍第5項所述的半導體發光結構,其中該磁性層為一單一膜層,且該磁性層的飽和磁化強度大於10-5電磁單位。 The semiconductor light emitting structure of claim 5, wherein the magnetic layer is a single film layer, and the magnetic layer has a saturation magnetization greater than 10 -5 electromagnetic units. 如申請專利範圍第5項所述的半導體發光結構,其中該第一型摻雜半導體層為N型半導體層,且該第二型摻雜半導體層為P型半導體層。 The semiconductor light emitting structure of claim 5, wherein the first type doped semiconductor layer is an N type semiconductor layer, and the second type doped semiconductor layer is a P type semiconductor layer. 如申請專利範圍第5項所述的半導體發光結構,其中該至少一摻雜元素包括IIIA族元素、VIIA族元素或其組合。 The semiconductor light emitting structure of claim 5, wherein the at least one doping element comprises a Group IIIA element, a Group VIIA element, or a combination thereof. 如申請專利範圍第10項所述的半導體發光結構,其中該IIIA族元素包括鎵,且鎵在該磁性層中的莫耳百分比是落在0.1%至3.5%的範圍內。 The semiconductor light-emitting structure of claim 10, wherein the Group IIIA element comprises gallium, and the molar percentage of gallium in the magnetic layer falls within a range of 0.1% to 3.5%. 如申請專利範圍第5項所述的半導體發光結構,其中該磁性層的該主材料中的任一元素在該磁性層中的莫耳百分比皆大於或等於7.5%。 The semiconductor light-emitting structure of claim 5, wherein any element of the main material of the magnetic layer has a molar percentage of greater than or equal to 7.5% in the magnetic layer. 一種半導體發光結構,包括:一第一型摻雜半導體層;一第二型摻雜半導體層;一發光層,配置於該第一型摻雜半導體層與該第二型摻雜半導體層之間;一第一電極,電性連接至該第一型摻雜半導體層;一第二電極,電性連接至該第二型摻雜半導體層;以及一磁性層,連接該第一電極與該第一型摻雜半導體層,其中 該磁性層的至少一部分具有磁性,該磁性層的至少另一部分的能隙大於0電子伏特且小於或等於5電子伏特,且該磁性層的材料包括金屬、金屬氧化物或其組合,其中該磁性層為一單一膜層,且該磁性層的飽和磁化強度大於10-5電磁單位,其中該磁性層中摻雜的至少一摻雜元素的s軌域與p軌域的價電子數大於該磁性層的主材料中的至少一元素的s軌域與p軌域的價電子數。 A semiconductor light emitting structure comprising: a first type doped semiconductor layer; a second type doped semiconductor layer; and a light emitting layer disposed between the first type doped semiconductor layer and the second type doped semiconductor layer a first electrode electrically connected to the first type doped semiconductor layer; a second electrode electrically connected to the second type doped semiconductor layer; and a magnetic layer connecting the first electrode and the first electrode A type doped semiconductor layer, wherein at least a portion of the magnetic layer has magnetic properties, at least another portion of the magnetic layer has an energy gap greater than 0 eV and less than or equal to 5 eV, and the material of the magnetic layer includes metal, metal oxide Or a combination thereof, wherein the magnetic layer is a single film layer, and the magnetic layer has a saturation magnetization greater than 10 -5 electromagnetic units, wherein the magnetic field is doped with at least one doping element of the s orbital domain and the p-rail The number of valence electrons of the domain is greater than the number of valence electrons of the s orbital domain and the p orbital domain of at least one element of the main material of the magnetic layer.
TW103143016A 2014-12-10 2014-12-10 Semiconductor light-emitting structure TWI572061B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW103143016A TWI572061B (en) 2014-12-10 2014-12-10 Semiconductor light-emitting structure
US14/583,775 US20160172536A1 (en) 2014-12-10 2014-12-29 Semiconductor light-emitting structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW103143016A TWI572061B (en) 2014-12-10 2014-12-10 Semiconductor light-emitting structure

Publications (2)

Publication Number Publication Date
TW201622176A TW201622176A (en) 2016-06-16
TWI572061B true TWI572061B (en) 2017-02-21

Family

ID=56111994

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103143016A TWI572061B (en) 2014-12-10 2014-12-10 Semiconductor light-emitting structure

Country Status (2)

Country Link
US (1) US20160172536A1 (en)
TW (1) TWI572061B (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10649233B2 (en) 2016-11-28 2020-05-12 Tectus Corporation Unobtrusive eye mounted display
US10673414B2 (en) 2018-02-05 2020-06-02 Tectus Corporation Adaptive tuning of a contact lens
US10505394B2 (en) 2018-04-21 2019-12-10 Tectus Corporation Power generation necklaces that mitigate energy absorption in the human body
US10895762B2 (en) 2018-04-30 2021-01-19 Tectus Corporation Multi-coil field generation in an electronic contact lens system
US10838239B2 (en) 2018-04-30 2020-11-17 Tectus Corporation Multi-coil field generation in an electronic contact lens system
US10790700B2 (en) 2018-05-18 2020-09-29 Tectus Corporation Power generation necklaces with field shaping systems
US11137622B2 (en) 2018-07-15 2021-10-05 Tectus Corporation Eye-mounted displays including embedded conductive coils
US10529107B1 (en) 2018-09-11 2020-01-07 Tectus Corporation Projector alignment in a contact lens
US10838232B2 (en) 2018-11-26 2020-11-17 Tectus Corporation Eye-mounted displays including embedded solenoids
US10644543B1 (en) 2018-12-20 2020-05-05 Tectus Corporation Eye-mounted display system including a head wearable object
US10944290B2 (en) 2019-08-02 2021-03-09 Tectus Corporation Headgear providing inductive coupling to a contact lens
CN111129099B (en) * 2019-12-31 2022-10-18 武汉天马微电子有限公司 Display panel, preparation method thereof and display device
CN111430521B (en) * 2020-04-03 2022-04-08 东莞市中晶半导体科技有限公司 LED chip and crystal mixing method
CN113921731A (en) * 2021-09-30 2022-01-11 吉林大学 Electroluminescent LED based on Co-doped ZnO as electron transport layer and preparation method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201013967A (en) * 2008-09-16 2010-04-01 Chen Hsu Semiconductor light-emitting device with light-modulating function and method of fabricating the same
TW201303081A (en) * 2011-06-22 2013-01-16 Samsung Display Co Ltd Electrode including mangnetic material and organic light emitting device including the electrode
TW201327912A (en) * 2011-12-29 2013-07-01 Ind Tech Res Inst Nitride semiconductor light emitting device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041411A (en) * 2004-07-12 2007-04-18 로무 가부시키가이샤 Semiconductor light emitting device
US8536614B2 (en) * 2008-01-11 2013-09-17 Industrial Technology Research Institute Nitride semiconductor light emitting device with magnetic film
KR20120118307A (en) * 2011-04-18 2012-10-26 삼성코닝정밀소재 주식회사 Method of manufacturing zno based thin film for transparent electrode and zno based thin film for transparent electrode by the method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201013967A (en) * 2008-09-16 2010-04-01 Chen Hsu Semiconductor light-emitting device with light-modulating function and method of fabricating the same
TW201303081A (en) * 2011-06-22 2013-01-16 Samsung Display Co Ltd Electrode including mangnetic material and organic light emitting device including the electrode
TW201327912A (en) * 2011-12-29 2013-07-01 Ind Tech Res Inst Nitride semiconductor light emitting device

Also Published As

Publication number Publication date
TW201622176A (en) 2016-06-16
US20160172536A1 (en) 2016-06-16

Similar Documents

Publication Publication Date Title
TWI572061B (en) Semiconductor light-emitting structure
TWI535055B (en) Nitride semiconductor structure and semiconductor light-emitting element
KR101762728B1 (en) Surface treated nanocrystal quantum by hologen dots and Surface treatment of nanocrystal quantum dots by using halogen atom for surface stabilization
KR101436133B1 (en) Vertical light emitting diode having transparent electrode
CN103972345B (en) Nitride semiconductor structure and semiconductor light-emitting elements
TW201421735A (en) Nitride semiconductor structure and semiconductor light-emitting element
TWI528582B (en) Light emitting structure and semiconductor light emitting element having the same
Park et al. Nanostructural Effect of ZnO on Light Extraction Efficiency of Near‐Ultraviolet Light‐Emitting Diodes
TWI536606B (en) Light emitting diode structure
Huang et al. Study of deep ultraviolet light-emitting diodes with ap-AlInN/AlGaN superlattice electron-blocking layer
US20150179880A1 (en) Nitride semiconductor structure
Chen et al. High-performance GaN-based LEDs with AZO/ITO thin films as transparent contact layers
Lee et al. Enhanced optical power of InGaN/GaN light-emitting diode by AlGaN interlayer and electron blocking layer
Chang et al. AlGaInP-based LEDs with AuBe-diffused AZO/GaP current spreading layer
Kim et al. Influence of size reduction and current density on the optoelectrical properties of green III-nitride micro-LEDs
Chen et al. Low‐Cost ZnO: YAG‐Based Metal‐Insulator‐Semiconductor White Light‐Emitting Diodes with Various Insulators
CN108054255B (en) Light emitting diode structure
US9768359B2 (en) Semiconductor device, method for manufacturing same, light-emitting diode, and method for manufacturing same
TWI568016B (en) Semiconductor light-emitting device
CN215376866U (en) Display device with a light-shielding layer
CN103078020A (en) Light-emitting diode (LED) epitaxial structure
CN113036043B (en) Quantum dot light-emitting diode and preparation method thereof
TWI568022B (en) Semiconductor stack structure
Zeng et al. SiO2 Nanopillars on Microscale Roughened Surface of GaN‐Based Light‐Emitting Diodes by SILAR‐Based Method
KR20160014343A (en) Light emitting device and lighting system