TWI571719B - High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system - Google Patents

High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system Download PDF

Info

Publication number
TWI571719B
TWI571719B TW104129688A TW104129688A TWI571719B TW I571719 B TWI571719 B TW I571719B TW 104129688 A TW104129688 A TW 104129688A TW 104129688 A TW104129688 A TW 104129688A TW I571719 B TWI571719 B TW I571719B
Authority
TW
Taiwan
Prior art keywords
flight
module
aerial vehicle
unmanned aerial
obstacle
Prior art date
Application number
TW104129688A
Other languages
Chinese (zh)
Other versions
TW201710814A (en
Inventor
Wen-Yuan Chen
shi-yan Huang
Original Assignee
Nat Chin-Yi Univ Of Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Chin-Yi Univ Of Tech filed Critical Nat Chin-Yi Univ Of Tech
Priority to TW104129688A priority Critical patent/TWI571719B/en
Application granted granted Critical
Publication of TWI571719B publication Critical patent/TWI571719B/en
Publication of TW201710814A publication Critical patent/TW201710814A/en

Links

Landscapes

  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Description

高壓電礙子之無人飛行載具自動巡航路徑規劃及設定方法及系統 High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system

本發明係有關一種高壓電礙子之無人飛行載具自動巡航路徑規劃及設定方法及系統,尤指一種可以使無人飛行載具實現自動巡航路徑規劃之目的以執行礙子影像診斷或清洗的無人飛行載具控制技術。 The invention relates to an automatic cruise path planning and setting method and system for an unmanned aerial vehicle of a high-voltage electric obstacle, in particular to an automatic navigation path planning for an unmanned aerial vehicle to perform image diagnosis or cleaning of an obstacle image. Unmanned aerial vehicle control technology.

按習知礙子主要是用來作為高壓電塔與高壓線之間的電氣絕緣用途,由於電塔之搭建結構係由導電的鋼材或是其他金屬所組成,所以若是電力在輸送過程中未使用礙子絕緣,高壓電便會透過高壓電塔而傳導到地面,除了會產生無謂的電能耗費而造成損失之外,還會引起高壓電觸電的意外危險情事,為避免上述情事產生,一般的高壓電塔皆會裝設複數礙子。其次,礙子的組接形態會因高壓電塔的電力傳輸需求或是環境因素而有所不同,例如可呈縱向上下相互串組結構形態;或是呈與高壓線同樣水平延伸的相互串組結構形態。習知高壓電塔係於縱向的電塔設置一組或多組呈上下排列的橫架,每一橫架之二側端部分別設置縱向串組的礙子組,每一礙子組的底端則搭接高壓電線,再由多組如是設置高壓電塔組成,於此即可形成一高壓電力傳輸系統。由於礙子組經常暴露於外界開放的環境中,使得塵埃會直接沉積其上,加上台灣為四面環海的島嶼,所以會經常受到夾帶大量的海水鹽分季風的侵襲,使得礙子組會不斷的累積鹽分與灰塵(亦即俗稱的鹽霧危害),於此,當下雨或是溼度較高時,礙子上的鹽分 溶於水分或水氣即釋出離子,以致形成良好的導電介質,致使礙子遭受到鹽霧危害而無法維持電氣絕緣的功能。 According to the conventional knowledge, it is mainly used as an electrical insulation between the high-voltage electric tower and the high-voltage line. Since the structure of the electric tower is composed of conductive steel or other metals, if the electric power is not used in the transportation process. Insulation insulation, high-voltage electricity will be transmitted to the ground through the high-voltage electric tower, in addition to the loss of unnecessary electrical energy consumption and damage, it will also cause accidental danger of high-voltage electric shock, in order to avoid the above situation, In general, high-voltage electric towers will be equipped with multiple intrusions. Secondly, the connection form of the insufficiency may vary depending on the power transmission requirements of the high voltage electric tower or the environmental factors, for example, it may be in the form of a vertical and vertical string arrangement; or may be in the same horizontal extension as the high voltage line. Structural form. The conventional high-voltage electric tower is provided with one or more sets of cross-frames arranged one above the other in the longitudinal electric tower, and the two side ends of each cross-frame are respectively provided with a longitudinal string of obstacle groups, and each of the obstructed sub-groups The bottom end is connected with a high-voltage electric wire, and then a plurality of groups are arranged such as a high-voltage electric tower, thereby forming a high-voltage power transmission system. Because the hurricane group is often exposed to the open environment of the outside world, the dust will deposit directly on it, and Taiwan is an island surrounded by the sea, so it will often be affected by the entrainment of a large amount of sea salt and salt monsoon, making the hurricane group continue to Accumulating salt and dust (also known as salt spray hazard), where salt and salt are inflicted when it is raining or when humidity is high Dissolved in water or moisture, the ions are released, so that a good conductive medium is formed, which causes the insulator to suffer from salt spray and cannot maintain electrical insulation.

其次,一般電力輸配電線路上絕緣機制大多還是會採用上述的礙子,差別只是在於採用二串或三串的礙子組接形態。一般來說,於一段時間後,電力公司會定期針對礙子污損狀態做取樣與測試,以取得礙子相關的污損資料,藉以模擬研判實際供電中絕緣礙子的絕緣能力與污損程度,以作為判斷是否要清洗或更換礙子的依據,於此,人員必須至每一輸配電鐵塔實施定期量測,除了必須耗費人力成本之外,高壓電纜終端頭的污損程度判斷也同樣是依靠人力來實現完成,因而造成礙子監控上的不便與困擾。 Secondly, most of the insulation mechanisms on general power transmission and distribution lines still use the above-mentioned insulators. The only difference is the use of two or three strings of insults. Generally speaking, after a period of time, the power company will regularly sample and test the insults' fouling state to obtain the insult-related fouling data, so as to simulate and judge the insulation capacity and the degree of fouling of the insulation in the actual power supply. In order to judge whether it is necessary to clean or replace the insults, the personnel must perform regular measurement to each power transmission and distribution tower. In addition to the labor cost, the judgment of the degree of fouling of the high-voltage cable terminal is also the same. Relying on manpower to achieve completion, thus causing inconvenience and troubles in the monitoring of obstructions.

為改善上述缺失,相關技術領域業者已然開發出一種如新型第M283295『高壓電纜終端頭及絕緣礙子之污損診斷系統』所示的專利,其係在輸配電鐵塔附近之高壓電纜終端頭及絕緣礙子裝設偵測裝置,以得到一污損值及背景值,傳輸單元則將污損度、背景值、輸電線路、電塔等資訊傳至中央處理中心,並將污損值及背景值與一設定值相比較以判斷是否要清掃絕緣礙子。該專利雖然可避免派遣人員去取樣、測試所花費的人力成本;惟,該專利必須以人力方式架設線路以及裝設偵測裝置,而且線路與偵測裝置會因長期曝曬與受潮而較容易損壞;尤其是,在高山偏遠地區的高壓電塔架設該專利之線路與偵測裝置,則會產生施工難度高,致使架設成本過於高昂,因而無法普及應用於高山偏遠地區的高壓電塔之情事產生,不僅如此,線路與偵測裝置在保養上同樣是非常的困難的事情,以 致影響絕緣礙子之污損診斷效能,因此,該專利確實未臻完善仍有再改善的必要性。 In order to improve the above-mentioned deficiencies, the related art has developed a patent such as the new type M283295 "High-voltage cable terminal head and insulation damage diagnosis system", which is a high-voltage cable terminal near the transmission and distribution tower and The insulation block is equipped with a detecting device to obtain a stain value and a background value, and the transmission unit transmits information such as the degree of staining, the background value, the transmission line, the electric tower to the central processing center, and the fouling value and background. The value is compared to a set value to determine if the insulation barrier is to be cleaned. Although the patent can avoid the labor cost of sending personnel to sample and test; however, the patent must manually set up the line and install the detection device, and the line and the detection device are more likely to be damaged due to long-term exposure and moisture. In particular, the installation of the patented line and detection device in a high-voltage tower in a remote area of the mountain will result in high construction difficulty, resulting in too high a cost of erection, and thus cannot be widely applied to high-voltage towers in remote areas of the mountains. The situation is not only the case, but the line and the detection device are also very difficult to maintain. As a result of the impact diagnosis of the insulation barrier, the patent is indeed in need of improvement.

再者,為改善高山偏遠地區的高壓電塔受到鹽塵危害的程度,台電每年皆會編列一筆沖洗高壓塔礙子的經費,以委託民間航空業者出動直升機來清洗高壓電塔上的礙子組,於清洗的過程中,直升機必須接近礙子組的設置區域,再以人力方式控制高壓噴灑裝置的水槍,使水槍對準礙子組設置區域後噴出強力水柱。一般而言,操縱直升機的過程中是非常的驚險,除了考驗著駕駛的經驗與技術之外,還需由另一名操作員來負責高壓噴灑裝置的水槍伸出對準礙子的操作,此外還必須使水槍噴管與高壓電塔保持約2~3公尺左右的安全距離,不僅如此,直升機還必須於每一噴灑點盤旋至少30秒以上,於此,方能清洗一串約4公尺長的礙子組;假設遇到礙子爆炸時,那情況將會更為危險,故以直升機來清洗高壓電塔上的礙子組確實是一件非常危險的工作,由此可見,以直升機來清洗高壓電塔上的礙子所需人力與物力成本確實是相當的可觀,有鑑於此,如何開發出一套具備無人飛行之自動巡航沖洗高壓電塔礙子的自動化沖洗技術實已成為相關產學業者所急欲挑戰與克服的技術課題。 In addition, in order to improve the degree of salt and dust damage caused by high-voltage electric towers in remote areas of the mountains, Taipower will prepare a flush of high-pressure towers to insult each year to entrust civil aviation operators to dispatch helicopters to clean the high-voltage towers. Subgroup, in the process of cleaning, the helicopter must approach the setting area of the intrusion group, and then manually control the water gun of the high-pressure spraying device, so that the water gun is directed at the setting area of the insulting group and then sprays a strong water column. In general, the process of maneuvering the helicopter is very thrilling. In addition to testing the driving experience and technology, another operator is required to take charge of the lance of the high-pressure spray device. It is also necessary to keep the water gun nozzle and the high-voltage electric tower at a safe distance of about 2 to 3 meters. In addition, the helicopter must be hovered at each spraying point for at least 30 seconds, in order to clean a string of about 4 A metric block with a long length; it is more dangerous to assume that an obstacle is exploding, so it is a very dangerous job to clean the hamper on the high-voltage tower with a helicopter. The manpower and material cost required to clean the hamper on the high-voltage electric tower by helicopter is quite considerable. In view of this, how to develop an automatic rinsing with an unmanned automatic cruise flushing high-voltage electric tower Technology has become a technical issue that the relevant industry and academia is eager to challenge and overcome.

依據目前所知,尚未有一種具備無人自動巡航監控高壓電塔礙子技術的專利或是論文被提出,而且基於相關產業的迫切需求之下,本發明創作人等乃經不斷的努力研發之下,終於研發出一套有別於上述習知技術概念的本發明。 According to the current knowledge, there is no patent or paper with the technology of unmanned automatic cruise monitoring high voltage electric tower, and the creators of the present invention have been continuously researching and developing based on the urgent needs of related industries. Finally, a set of inventions different from the above-mentioned conventional technical concepts has been developed.

本發明主要目的,在於提供一種高壓電礙子之無人飛行載具 自動巡航路徑規劃及設定方法及系統,主要是藉由自動巡航路徑的規劃設定,讓無人飛行載具可實現對高壓電塔礙子施以影像辨識診斷或是高壓水柱沖洗,除了可以有效節省人力成本之外,並可透過影像辨識診斷而判斷出礙子鹽化與汙損的程度,故可在礙子絕緣劣化之前沖洗清潔,藉以降低礙子受到鹽霧污損的危害程度,以避免礙子短路所致的高壓電塔漏電的危險意外情事發生。達成本發明目的採用之技術手段,係提供具有第一無線通訊模組、飛行控制模組、影像擷取裝置及航行資訊感測模組的無人飛行載具,以及具有第二無線通訊模組、手動航程設定模組、自動航程設定模組及第二訊號處理模組的航程設定模組。規劃出無人飛行載具由一原點至高壓電塔目標點及返回原點的航行路徑,及由高壓電塔目標點至礙子目標點及返回該高壓電塔目標點的巡航路徑。以手動航程設定模組教導取得該航行參數、該巡航參數及該返航參數。以自動航程設定模組控制使無人飛行載具依據航行參數、巡航參數及返航參數執行巡航路徑及航行路徑之飛行至少一次,完成後記錄該航行參數、該巡航參數及該返航參數以做為下次執行自動航行的依據。 The main object of the present invention is to provide a high-voltage electric obstacle unmanned aerial vehicle The automatic cruising path planning and setting method and system are mainly provided by the planning of the automatic cruising path, so that the unmanned flying vehicle can realize image recognition diagnosis or high-pressure water column flushing on the high-voltage electric tower, in addition to saving In addition to labor costs, the degree of salting and fouling can be judged through image identification diagnosis, so it can be washed and cleaned before the insulation of the insulation is deteriorated, so as to reduce the damage of the insults to the salt spray, so as to avoid The danger of leakage of high-voltage electric tower caused by short circuit of the obstacle occurs. The technical means for achieving the object of the present invention is to provide an unmanned aerial vehicle having a first wireless communication module, a flight control module, an image capturing device and a navigation information sensing module, and a second wireless communication module. The voyage setting module of the manual voyage setting module, the automatic voyage setting module, and the second signal processing module. The navigation path of the unmanned aerial vehicle from the origin to the target point of the high-voltage tower and the return to the origin, and the cruising path from the target point of the high-voltage tower to the target point of the obstacle and returning to the target point of the high-voltage tower are planned. The navigation parameters, the cruise parameters, and the return parameters are obtained by the manual voyage setting module. The automatic voyage setting module control enables the unmanned aerial vehicle to perform the flight path and the navigation path flight at least once according to the navigation parameters, the cruise parameters and the return flight parameters, and after the completion, records the navigation parameters, the cruise parameters and the return flight parameters as the next The basis for performing automatic navigation.

1‧‧‧高壓電塔 1‧‧‧High Voltage Tower

1a‧‧‧礙子組 1a‧‧‧Insert Subgroup

1b‧‧‧橫架 1b‧‧‧cross frame

10‧‧‧無人飛行載具 10‧‧‧Unmanned aerial vehicle

11‧‧‧航行資訊感測模組 11‧‧‧Navigation Information Sensing Module

110‧‧‧障礙物感測器 110‧‧‧ obstacle sensor

111‧‧‧高度感測器 111‧‧‧ Height sensor

112‧‧‧方向感測器 112‧‧‧ Directional Sensor

113‧‧‧位置感測器 113‧‧‧ position sensor

114‧‧‧速度感測器 114‧‧‧Speed sensor

115‧‧‧距離感測模組 115‧‧‧ Distance sensing module

20‧‧‧第一無線通訊模組 20‧‧‧First wireless communication module

21‧‧‧第一訊號處理模組 21‧‧‧First Signal Processing Module

30‧‧‧航程設定模組 30‧‧‧voyage setting module

31‧‧‧第二無線通訊模組 31‧‧‧Second wireless communication module

33‧‧‧手動航程設定模組 33‧‧‧Manual voyage setting module

330‧‧‧動飛行操控模組 330‧‧‧Air Flight Control Module

331‧‧‧顯示設定模組 331‧‧‧Display setting module

331a‧‧‧電塔目標點設定模組 331a‧‧‧Electrical tower target point setting module

331b‧‧‧礙子目標點設定模組 331b‧‧‧Block target setting module

34‧‧‧自動航程設定模組 34‧‧‧Automatic Voyage Setting Module

340‧‧‧自動飛行操控模組 340‧‧‧Automatic flight control module

341‧‧‧最短路徑修正模組 341‧‧‧ Shortest Path Correction Module

35‧‧‧第二訊號處理模組 35‧‧‧second signal processing module

40‧‧‧飛行控制模組 40‧‧‧ Flight Control Module

50‧‧‧影像擷取裝置 50‧‧‧Image capture device

60‧‧‧高壓噴灑裝置 60‧‧‧High pressure spraying device

dn‧‧‧飛行路徑 Dn‧‧‧ flight path

o‧‧‧原點 O‧‧‧ origin

n‧‧‧目標點 N‧‧‧ target point

N‧‧‧目標點總數 N‧‧‧ total number of target points

圖1係本發明無人飛行載具巡航路徑規劃的實施示意圖。 1 is a schematic diagram of the implementation of the cruise path planning of the unmanned aerial vehicle of the present invention.

圖2係本發明Epipolar平面三角測距法的實施示意圖。 2 is a schematic view showing the implementation of the Epipolar planar triangulation method of the present invention.

圖3係本發明基本架構之功能方塊示意圖。 3 is a functional block diagram of the basic architecture of the present invention.

圖4係本發明具體架構之功能方塊示意圖。 4 is a functional block diagram of a specific architecture of the present invention.

圖5係本發明具體架構的遙控操縱實施示意圖。 FIG. 5 is a schematic diagram of remote control operation of a specific architecture of the present invention.

圖6係本發明航行路徑的實施示意圖。 Figure 6 is a schematic view showing the implementation of the navigation path of the present invention.

圖7係本發明無人飛行載具執行影像診斷的實施示意圖。 FIG. 7 is a schematic diagram of the implementation of the image diagnosis performed by the unmanned aerial vehicle of the present invention.

圖8係本發明執行手動遙控教導飛行的流程控制示意圖。 FIG. 8 is a schematic diagram of the flow control of the manual remote control teaching flight of the present invention.

圖9係本發明執行自動影像辨識診斷飛行的流程控制示意圖。 FIG. 9 is a schematic diagram of flow control of performing automatic image recognition diagnostic flight according to the present invention.

請配合參看圖1至9所示,本發明一種具體實施例,係包括: Referring to Figures 1 to 9, a specific embodiment of the present invention includes:

步驟(a),提供一無人飛行載具10及航程設定模組30,無人飛行載具10具有一第一無線通訊模組20、一飛行控制模組40、至少一影像擷取裝置50、一用以產生多種航行感測訊號(方向、速度、高度、座標)的航行資訊感測模組11及一用以處理前述各模組之訊號的第一訊號處理模組21,航程設定模組30包括有一第二無線通訊模組31、一手動航程設定模組33、一自動航程設定模組34及一用以處理各模組之訊號的第二訊號處理模組35。手動航程設定模組33包括一手動飛行操控模組330及包括一電塔目標點設定模組331a與一礙子目標點設定模組331b之一顯示設定模組331。自動航程設定模組34包括一自動飛行操控模組340。 In the step (a), an unmanned aerial vehicle 10 and a voyage setting module 30 are provided. The unmanned aerial vehicle 10 has a first wireless communication module 20, a flight control module 40, at least one image capturing device 50, and a The navigation information sensing module 11 for generating a plurality of navigation sensing signals (direction, speed, height, coordinates) and a first signal processing module 21 for processing the signals of the foregoing modules, the voyage setting module 30 The second wireless communication module 31, a manual flight setting module 33, an automatic flight setting module 34, and a second signal processing module 35 for processing the signals of the modules are included. The manual flight setting module 33 includes a manual flight control module 330 and a display setting module 331 including a tower target point setting module 331a and an obstacle target point setting module 331b. The automatic flight setting module 34 includes an automatic flight control module 340.

步驟(b),進行飛行路徑規劃。 Step (b), carry out flight path planning.

步驟(c),進行飛行路徑規劃教導及設定。 In step (c), the flight path planning teaching and setting are performed.

步驟(d),啟動自動航程設定模組34以完成整個規劃及設定。其中,飛行路徑規劃教導及設定,係以該航程設定模組30設定該無人飛行載具10起降之一原點,及產生至少一手動控制訊號,該至少一手動控制訊號經該第一無線通訊模組20及第二無線通訊模組31而傳輸至位於該無人飛行載具10上的飛行控制模組40,以控制無人飛行載具10執行一手動遙控教導飛行。 In step (d), the automatic flight setting module 34 is activated to complete the overall planning and setting. The flight path planning teaching and setting is to set an origin of the unmanned aerial vehicle 10 to take off and off, and generate at least one manual control signal, and the at least one manual control signal passes through the first wireless The communication module 20 and the second wireless communication module 31 are transmitted to the flight control module 40 located on the unmanned aerial vehicle 10 to control the unmanned aerial vehicle 10 to perform a manual remote guidance flight.

本發明步驟(b)飛行路徑規劃,係規劃無人飛行載具10由一原 點O至至少一高壓電塔目標點P1/P2及返回該原點O為一航行路徑N,及規劃該無人飛行載具10由該至少一高壓電塔目標點P1/P2至至少一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8及返回該至少一高壓電塔目標點P1/P2為一巡航路徑D1/D2The step (b) of the present invention is to plan the unmanned aerial vehicle 10 from an origin O to at least one high-voltage tower target point P 1 /P 2 and return to the origin O as a navigation path N, and plan The unmanned aerial vehicle 10 is from the at least one high voltage tower target point P 1 /P 2 to at least one obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 and returning the at least one high voltage tower target point P 1 /P 2 to a cruise path D 1 /D 2 .

本發明步驟(c)飛行路徑規劃教導及設定步驟,係以該航程設定模組30設定該無人飛行載具10起降之一原點O,及由手動航程設定模組33之手動飛行操控模組330產生至少一手動控制訊號,該至少一手動控制訊號經該第二無線通訊模組31及該第一無線通訊模組20而傳輸至位於該無人飛行載具10上的飛行控制模組40,以控制該無人飛行載具10執行一手動遙控教導飛行;亦即,於航程設定模組30設定而產生至少一控制訊號,該控制訊號可經無線通訊模組20而傳輸至位於無人飛行載具10上的飛行控制模組40,以控制無人飛行載具10執行一手動遙控教導飛行。於執行手動遙控教導飛行的步驟包括,步驟(c1)以該飛行控制模組40依據該至少一手動控制訊號來控制使該無人飛行載具10自該原點O依序飛行至每一高壓電塔目標點P1/P2,並依序轉換處理各航行資訊感測模組11所感測的各該航行感測訊號而獲得無人飛行載具的方向值、高度值、速度值、座標值及高壓電塔目標點所對應的序號值並記錄且設定為一組航行參數。其中,當該無人飛行載具10靠近該高壓電塔目標點P1/P2時,以顯示設定模組331之電塔目標點設定模組331a產生一第一觸發訊號,該第一觸發訊號經第二無線通訊模組31及第一無線通訊模組20傳輸至無人飛行載具10而啟動該影像擷取裝置50擷取包含有該高壓電塔影像,並將該高壓電塔影像透過該無線通訊模組20傳輸至該航程設定模組30中,再由航程設定模組30之顯示設定模組331將該高壓電塔影像顯示,當一使用者經由該高壓電塔影像確認該無人飛行載具10已飛至該高壓電塔目標點P1/P2時,按下該顯示設定模組331之電塔目標點設定模組331a的一確認鍵以確認高壓電塔目標點P1/P2並設定 其對應的序號且予以記錄;步驟(c2)以該飛行控制模組40依據該至少一手動控制訊號來控制使該無人飛行載具10自該高壓電塔目標點P1/P2依序飛行至每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8及返回該高壓電塔目標點P1/P2,依序轉換處理航行資訊感測模組11所感測的各該航行感測訊號為方向值、高度值、速度值、座標值及對應的序號值並記錄且設定為一組巡航參數,其中,當該無人飛行載具10靠近該礙子目標點n1/n2/n3/n4/n5/n6/n7/n8時,以顯示設定模組331之礙子目標點設定模組331b產生一第二觸發訊號,該第二觸發訊號經第二無線通訊模組31及第一無線通訊模組20傳輸至無人飛行載具10而啟動該影像擷取裝置50擷取包含有該礙子組影像,並將該礙子組影像透過該第一無線通訊模組20及第二無線通訊模組31傳輸至該航程設定模組30中,再由該顯示設定模組331將該礙子組影像顯示,當該使用者經由該礙子組影像確認該無人飛行載具10已飛至該礙子目標點n1/n2/n3/n4/n5/n6/n7/n8時,按下顯示設定模組331之該礙子目標點設定模組331b的一確認鍵以確認該礙子目標點n1/n2/n3/n4/n5/n6/n7/n8並設定其對應的序號且予以記錄;步驟(c3)以該飛行控制模組40依據該至少一手動控制訊號來控制使該無人飛行載具10飛行至每一高壓電塔目標點P1/P2時即獲得該航行參數,並重覆(c2)步驟以獲得該巡航參數;及步驟(c4)於取得最後一組該巡航參數之後,以該飛行控制模組40依據該至少一手動控制訊號來控制使該無人飛行載具10返回該原點O即獲得一組返航參數;該巡航參數用以使該無人飛行載具執行該巡航路徑D1/D2之飛行;該航行參數、該巡航參數及該返航參數用以使該無人載具執行該航行路徑N之飛行。航行路徑N等於OP1+D1+P1P2+D2+P2O的路徑。其中,如圖1所示,若是手動遙控教導設定的過程不完美時,則重新回到上述飛行路徑規劃教導及設定步驟,直至使用者認為符合需求為止。 In the step (c) of the present invention, the flight path planning teaching and setting step is to set the origin point O of the unmanned aerial vehicle 10 to take off and take off, and the manual flight control mode of the manual voyage setting module 33. The group 330 generates at least one manual control signal, and the at least one manual control signal is transmitted to the flight control module 40 located on the unmanned aerial vehicle 10 via the second wireless communication module 31 and the first wireless communication module 20 To control the unmanned aerial vehicle 10 to perform a manual remote control flight; that is, at least one control signal is generated by the voyage setting module 30, and the control signal can be transmitted to the unmanned flight via the wireless communication module 20 The flight control module 40 on the vehicle 10 controls the unmanned aerial vehicle 10 to perform a manual remote control flight. The step of performing the manual remote control flight includes the step (c1) of controlling, by the flight control module 40, the unmanned aerial vehicle 10 to sequentially fly from the origin O to each high voltage according to the at least one manual control signal. The electric tower target point P 1 /P 2 , and sequentially converts each navigation sensing signal sensed by each navigation information sensing module 11 to obtain the direction value, the height value, the speed value, and the coordinate value of the unmanned aerial vehicle. And the serial number corresponding to the target point of the high voltage electric tower is recorded and set as a set of navigation parameters. The first trigger signal is generated by the tower target point setting module 331a of the display setting module 331 when the unmanned aerial vehicle 10 is close to the high-voltage tower target point P 1 /P 2 . The signal is transmitted to the unmanned aerial vehicle 10 via the second wireless communication module 31 and the first wireless communication module 20, and the image capturing device 50 is activated to capture the image of the high voltage electric tower, and the high voltage electric tower is The image is transmitted to the voyage setting module 30 through the wireless communication module 20, and the high-voltage tower image is displayed by the display setting module 331 of the voyage setting module 30. When a user passes the high-voltage electric tower When the image confirms that the unmanned aerial vehicle 10 has flown to the high-voltage tower target point P 1 /P 2 , press a confirmation button of the tower target point setting module 331a of the display setting module 331 to confirm the high voltage. The electric tower target point P 1 /P 2 and set its corresponding serial number and record; step (c2) controls the flight control module 40 to make the unmanned aerial vehicle 10 from the high voltage according to the at least one manual control signal The tower target point P 1 /P 2 is sequentially flown to each obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 and returning to the high-voltage tower target point P 1 /P 2 , sequentially converting each navigation sensing signal sensed by the navigation information sensing module 11 as a direction value , a height value, a speed value, a coordinate value, and a corresponding serial number value are recorded and set as a set of cruise parameters, wherein when the unmanned aerial vehicle 10 approaches the obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 , the second trigger signal is generated by the second target wireless communication module 31 and the target target point setting module 331b of the display setting module 331 The first wireless communication module 20 transmits the image to the unmanned aerial vehicle 10 and activates the image capturing device 50 to capture the image including the image of the obstacle group, and transmits the image of the obstacle group to the first wireless communication module 20 and The wireless communication module 31 is transmitted to the flight setting module 30, and the display setting module 331 displays the image of the obstacle group. When the user confirms the unmanned aerial vehicle 10 via the image of the obstacle group fly to hinder the sub-target point n 1 / n 2 / n 3 / n 4 / n 5 / n 7 n 8 when 6 / n /, press the display setting module 331 of the sub-target point set hinder Module 331b is a confirmation key to confirm that hinder the sub-object point n 1 / n 2 / n 3 / n 4 / n 5 / n 6 / n 7 / n 8 and corresponding number and set to be recorded; step (c3 Obtaining the navigation parameter when the flight control module 40 controls the unmanned aerial vehicle 10 to fly to each high-voltage tower target point P 1 /P 2 according to the at least one manual control signal, and repeats (c2) The step of obtaining the cruise parameter; and the step (c4), after obtaining the last set of the cruise parameters, controlling, by the flight control module 40, the unmanned aerial vehicle 10 to return to the origin according to the at least one manual control signal Or obtaining a set of return parameters; the cruise parameter is used to enable the unmanned aerial vehicle to perform the flight of the cruise path D 1 /D 2 ; the navigation parameter, the cruise parameter and the return flight parameter are used to enable the unmanned vehicle to perform The flight of the sailing route N. The navigation path N is equal to the path of OP 1 + D 1 + P 1 P 2 + D 2 + P 2 O. Wherein, as shown in FIG. 1, if the process of manual remote teaching setting is not perfect, then return to the above flight path planning teaching and setting steps until the user thinks that the requirements are met.

本發明步驟(d)啟動該自動航程設定模組34,係使該自動飛行 操控模組340以依據該航行參數、該巡航參數及該返航參數產生至少一自動飛行控制訊號,使該無人飛行載具依據該至少一自動飛行控制訊號執行該巡航路徑及該航行路徑之飛行至少一次,完成後記錄該航行參數、該巡航參數及該返航參數以做為下次執行自動航行的依據。 Step (d) of the present invention activates the automatic range setting module 34 to enable the automatic flight The control module 340 generates at least one automatic flight control signal according to the navigation parameter, the cruise parameter and the return flight parameter, so that the unmanned aerial vehicle performs the cruise path and the flight path according to the at least one automatic flight control signal. Once, after completion, the navigation parameters, the cruise parameters and the return parameters are recorded as the basis for the next execution of the automatic navigation.

本發明一種較佳實施例,自動航程設定模組34更包括一最短路徑修正模組341;於上述步驟(d)之後,啟動該最短路徑修正模組341,計算出兩相鄰之該高壓電塔目標點之間,兩相鄰該礙子目標點之間及相鄰該高壓電塔目標點與該礙子目標點之間的一最短路徑,並取得對應於該最短路徑的修正航行參數、修正巡航參數及修正返航參數;再啟動該自動航程設定模組34,使該自動飛行操控模組340以依據該修正航行參數、該修正巡航參數及該修正返航參數產生至少一修正自動飛行控制訊號,使該無人飛行載具依據該修正至少一自動飛行控制訊號執行該巡航路徑及該航行路徑之飛行至少一次,完成後記錄該修正航行參數、該修正巡航參數及該修正返航參數以做為下次執行自動航行的依據。 In a preferred embodiment of the present invention, the automatic range setting module 34 further includes a shortest path correction module 341. After the step (d), the shortest path correction module 341 is activated to calculate the high voltage adjacent to each other. Between the target points of the electric tower, a shortest path between the adjacent target points of the obstruction and adjacent to the target point of the high voltage electric tower and the target point of the obstruction, and obtain a modified navigation corresponding to the shortest path The parameter, the modified cruise parameter and the modified return flight parameter; the automatic flight setting module 34 is further activated, and the automatic flight control module 340 generates at least one modified automatic flight according to the modified navigation parameter, the modified cruise parameter and the modified return flight parameter. Controlling the signal, causing the unmanned aerial vehicle to perform the cruise path and the flight path at least once according to the modified at least one automatic flight control signal, and after the completion, recording the modified navigation parameter, the modified cruise parameter and the modified return flight parameter The basis for the next automatic sailing.

為使無人飛行載具10可以避開障礙物,如圖3、8所示之一種應用實施例中,係於無人飛行載具10於執行手動遙控教導飛行時可執行一障礙物迴避步驟的操作設定,當航行資訊感測模組11之一障礙物感測器110感測到障礙物(高壓電塔、高壓線或山坡等)時,飛行控制模組40則以影像擷取裝置50擷取障礙物影像,並將障礙物影像透過無線通訊模組20傳輸至航程設定模組30之顯示設定模組331中,以供使用者評估障礙物狀態,當使用者若決定迴避障礙物時,則於航程設定模組30進行迴避之操作設定而產生相應之控制訊號,再控制使無人飛行載具10迴避該障礙物,並記錄迴避飛行所產生之方向值、高度值、速度值、座標值以及安全距離值為該目標點的航道資料,再將該航道資料列入該組航行參數中,於此,即可完 成上述障礙物迴避步驟的操作;至於障礙物感測器110可以是超音波感測器、使用者目視辨識;或是內建於顯示設定模組331的影像辨識軟體。 In order to enable the unmanned aerial vehicle 10 to avoid obstacles, an application embodiment as shown in FIGS. 3 and 8 can perform an obstacle avoidance step when the unmanned aerial vehicle 10 performs a manual remote control flight. It is set that when the obstacle sensor 110 of the navigation information sensing module 11 senses an obstacle (a high voltage electric tower, a high voltage line or a hillside, etc.), the flight control module 40 captures the image capturing device 50. The obstacle image is transmitted to the display setting module 331 of the voyage setting module 30 through the wireless communication module 20 for the user to evaluate the obstacle state. When the user decides to avoid the obstacle, the user The voyage setting module 30 performs an operation setting of the avoidance to generate a corresponding control signal, and then controls the unmanned aerial vehicle 10 to avoid the obstacle, and records the direction value, the altitude value, the speed value, the coordinate value generated by the evasive flight, and The safety distance value is the navigation channel data of the target point, and the navigation channel data is included in the navigation parameters of the group, and the The operation of the obstacle avoidance step is as follows; the obstacle sensor 110 may be an ultrasonic sensor, visually recognized by a user, or an image recognition software built in the display setting module 331.

再請配合參看圖3所示的具體實施例中,上述航行資訊感測模組11更包含一高度感測器111、一方向感測器112、一位置感測器113及一速度感測器114。高度感測器111(如陀螺儀)係量測無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8的離地高度,使無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8對應有一高度值並記錄之。方向感測器112(如陀螺儀)係量測無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8的方向,使無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8對應有一方向值並記錄之。位置感測器113(如GPS)係量測無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8的座標位置資料,使無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8對應有一座標值並記錄之。速度感測器114係量測無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8的速度,使無人飛行載具10至每一高壓電塔目標點P1/P2及每一礙子目標點n1/n2/n3/n4/n5/n6/n7/n8對應有一速度值。 Referring to the specific embodiment shown in FIG. 3, the navigation information sensing module 11 further includes a height sensor 111, a direction sensor 112, a position sensor 113, and a speed sensor. 114. The height sensor 111 (such as a gyroscope) measures the unmanned aerial vehicle 10 to each high-voltage tower target point P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 off-ground height, so that the unmanned flight vehicle 10 to each high-voltage tower target point P 1 /P 2 and each obstacle target point n 1 /n 2 / n 3 /n 4 /n 5 /n 6 /n 7 /n 8 corresponds to a height value and is recorded. The direction sensor 112 (such as a gyroscope) measures the unmanned aerial vehicle 10 to each of the high voltage tower target points P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 direction, so that the unmanned aerial vehicle 10 to each high-voltage tower target point P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 /n 7 /n 8 corresponds to a direction value and is recorded. The position sensor 113 (such as GPS) measures the unmanned aerial vehicle 10 to each high voltage tower target point P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 /n 4 / The coordinates of n 5 /n 6 /n 7 /n 8 make the unmanned aerial vehicle 10 to each high-voltage tower target point P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 / n 4 / n 5 / n 6 / n 7 / n 8 corresponds to a value and record it. The speed sensor 114 measures the unmanned aerial vehicle 10 to each of the high voltage tower target points P 1 /P 2 and each obstacle target point n 1 /n 2 /n 3 /n 4 /n 5 /n 6 / n 7 / n 8 speed, so that unmanned flight vehicle 10 to each high voltage tower target point P 1 / P 2 and each obstacle target point n 1 / n 2 / n 3 / n 4 / n 5 / n 6 / n 7 / n 8 corresponds to a speed value.

再請配合參看圖8所示的實施例中,為使無人飛行載具10與高壓電塔1保持一安全距離,以避免無人飛行載具10撞擊高壓電塔1,本發明無人飛行載具10於執行手動遙控教導飛行時可執行一安全距離估測步驟的操作設定,當無人飛行載具10接近其中一個位置點時,則啟動航行資訊感測模組11之一距離感測模組115,以感測與礙子組1a之間的距離,飛行控制模組40再以影像擷取裝置50擷取礙子組影像,並將礙子組影像透過無線通訊模組20傳輸至航程設定模組30之顯示設定模組331中,以供使 用者評估無人飛行載具10與礙子組1a之間的距離狀態,若是決定調整與礙子組1a之間的距離時,則於航程設定模組30進行距離調整之操作設定而產生相應之控制訊號,以控制使無人飛行載具10調整與礙子之間的距離,若確定與礙子組1a之間的安全距離時,則記錄位置點的距離值為該目標點的安全距離值,並列入該航道資料中;至於距離感測模組115可以是超音波感測器、影像辨識法、使用者目視辨識、內建於顯示設定模組331的影像辨識軟體以及Epipolar平面之三角測距法。如圖2所示之Epipolar平面三角測距法的實施例中,係於無人飛行載具10之二側分別設置一組影像擷取裝置50,當無人飛行載具10執行噴灑行程規劃設定飛行且抵達其中一位置點時,此二影像擷取裝置50則可擷取該位置點的左側礙子組影像及右側礙子組影像,該影像辨識模組則將左側礙子組影像及右側礙子組影像進行一Epipolar平面之三角測距法,以求出礙子組1a與對應之目標點n的安全距離即圖2中的d4,由於Epipolar平面三角測距法已為習知技術,故不再予以贅述。 Referring again to the embodiment shown in FIG. 8, in order to maintain the unmanned aerial vehicle 10 at a safe distance from the high voltage electric tower 1 to prevent the unmanned aerial vehicle 10 from striking the high voltage electric tower 1, the present invention is unmanned. The operation setting of the safety distance estimation step can be performed when the manual remote control teaching flight is performed. When the unmanned aerial vehicle 10 approaches one of the position points, the distance sensing module of the navigation information sensing module 11 is activated. 115. The sensing control module 40 uses the image capturing device 50 to capture the image of the subgroup and transmits the image of the obscuring group to the voyage setting through the wireless communication module 20. The display setting module 331 of the module 30 is provided for The user evaluates the distance state between the unmanned aerial vehicle 10 and the hurricane group 1a. If the distance between the adjustment and the obstacle group 1a is determined, the voyage setting module 30 performs the operation setting of the distance adjustment to generate a corresponding state. Controlling the signal to control the distance between the unmanned aerial vehicle 10 and the obstruction. If the safety distance between the unobstructed sub-group 1a is determined, the distance of the recording position point is the safe distance value of the target point. And the distance sensing module 115 can be an ultrasonic sensor, an image recognition method, a user visual identification, an image recognition software built in the display setting module 331, and a triangular ranging of the Epipolar plane. law. In the embodiment of the Epipolar planar triangulation method shown in FIG. 2, a set of image capturing devices 50 are respectively disposed on two sides of the unmanned aerial vehicle 10, and when the unmanned aerial vehicle 10 performs the spray stroke planning and setting flight, Upon reaching one of the positions, the second image capturing device 50 can capture the image of the left side of the position and the image of the right side of the group, and the image recognition module will image the left side of the image and the right side of the image. The group image is subjected to an Epipolar plane triangulation method to find the safety distance of the obstruction group 1a and the corresponding target point n, that is, d4 in FIG. 2, since the Epipolar plane triangulation method is a conventional technique, I will repeat them.

請參看圖9所示,為本發明的一種自動飛航的實施例,當航程設定模組30完成飛行路徑規劃教導及設定之後,飛行控制模組40則讀取該組航行參數時,則使無人飛行載具10執行一自動影像辨識診斷飛行,於執行自動影像辨識診斷飛行時,則控制無人飛行載具10自原點o起飛並依預定之序號、方向值、高度值、座標值以及安全距離值而沿著航行路徑N飛行至每一目標點n上,當無人飛行載具10抵達第一個目標點n(即n=1)時,飛行控制模組40則啟動影像擷取裝置50擷取該礙子組影像,並將礙子組影像透過無線通訊模組20傳輸至航程設定模組30中,再由航程設定模組30之顯示設定模組331將礙子組影像顯示,再由操作之使用者以目視方式辨識或是透過內建於顯示設定模組331的影像辨識軟體針對礙子組影像的鹽 霧污損程度進行影像辨識診斷,以作為是否清洗礙子組1a的依據;接著,當所有目標點(即N=n的總數)皆完成影像擷取時,飛行控制模組40則控制使無人飛行載具返回至原點o,於此,即可完成自動影像辨識診斷飛行的任務。 Please refer to FIG. 9 , which is an embodiment of the automatic flight of the present invention. After the flight setting module 30 completes the flight path planning teaching and setting, the flight control module 40 reads the navigation parameters of the group. The unmanned aerial vehicle 10 performs an automatic image recognition diagnostic flight, and when performing the automatic image recognition diagnostic flight, controls the unmanned aerial vehicle 10 to take off from the origin o and according to a predetermined serial number, direction value, altitude value, coordinate value, and safety. The distance control value flies along the navigation path N to each target point n. When the unmanned aerial vehicle 10 reaches the first target point n (ie, n=1), the flight control module 40 activates the image capturing device 50. The image of the obstruction group is captured, and the image of the obstructed subgroup is transmitted to the voyage setting module 30 through the wireless communication module 20, and then the display setting module 331 of the voyage setting module 30 displays the image of the obstruction group, and then Visually identifying by the user of the operation or by means of the image recognition software built into the display setting module 331 for the salt of the image of the intruder group The fogging degree is subjected to image recognition diagnosis as a basis for cleaning the obstacle group 1a; then, when all target points (i.e., the total number of N=n) complete image capturing, the flight control module 40 controls the unmanned The flying vehicle returns to the origin o, and the task of automatic image recognition diagnostic flight can be completed.

承上所述,如圖9所示,當無人飛行載具10執行自動影像辨識診斷飛行時,則可執行一修正航道步驟的操作設定,當飛行控制模組40則讀取其中一目標點n的該航道資料時,則使無人飛行載具10依目標點n的航道資料飛行,並判斷無人飛行載具10所處位置的座標值是否正確,判斷結果為是,則修正航行路徑N,判斷結果為否,則飛抵目標點n。 As described above, as shown in FIG. 9, when the unmanned aerial vehicle 10 performs an automatic image recognition diagnostic flight, an operational setting of a modified navigation step can be performed, and when the flight control module 40 reads one of the target points n When the navigation channel data is obtained, the unmanned aerial vehicle 10 is caused to fly according to the navigation data of the target point n, and it is judged whether the coordinates of the position of the unmanned aerial vehicle 10 are correct. If the judgment result is yes, the navigation path N is corrected and judged. If the result is no, it will fly to the target point n.

請參看圖5所示,為本發明的另一種自動飛航的實施例,無人飛行載具10裝載有一用以對礙子組1a進行高壓噴灑的高壓噴灑裝置60,當航程設定模組30完成飛行路徑規劃教導及設定步驟時,飛行控制模組40則讀取該組航行參數時,則使無人飛行載具10執行一自動噴灑模式飛行,於執行自動噴灑模式飛行時,則控制無人飛行載具10自原點起飛並依預定之序號、方向值、高度值、座標值以及安全距離值而沿著預設飛行路徑飛行至每一目標點n上,當無人飛行載具10抵達第一個目標點n(即n=1)時,飛行控制模組40則使無人飛行載具10盤旋停留一預設時間(30~60秒)並啟動高壓噴灑裝置60,以對礙子組1a進行高壓沖洗,當預設時間結束時,則關閉高壓噴灑裝置60,並控制無人飛行載具10往下一個目標點n(即n=n+1=2)飛行,當每一礙子組1a皆沖洗完畢時,飛行控制模組40則控制使無人飛行載具10返回至原點o,於此,即可完成自動噴灑模式飛行的任務。 Referring to FIG. 5, in another embodiment of the automatic flight of the present invention, the unmanned aerial vehicle 10 is loaded with a high-pressure spraying device 60 for performing high-pressure spraying on the sub-group 1a, when the voyage setting module 30 is completed. When the flight path planning teaching and setting steps are performed, the flight control module 40 reads the set of navigation parameters, and then causes the unmanned aerial vehicle 10 to perform an automatic spray mode flight, and when performing the automatic spray mode flight, controls the unmanned flight. Taking off from the origin and flying along the preset flight path to each target point n according to the predetermined serial number, direction value, altitude value, coordinate value and safety distance value, when the unmanned aerial vehicle 10 arrives at the first one When the target point n (i.e., n = 1), the flight control module 40 causes the unmanned aerial vehicle 10 to hover for a preset time (30 to 60 seconds) and activates the high pressure spraying device 60 to perform high voltage on the intrusion group 1a. Flushing, when the preset time is over, the high pressure spraying device 60 is turned off, and the unmanned aerial vehicle 10 is controlled to fly to the next target point n (ie, n=n+1=2), and each of the obstacle groups 1a is flushed. Upon completion, the flight control module 40 controls to disable Aerial vehicle 10 returns to the origin O, thereto, to complete the task of automatic sprinkler flight mode.

因此,藉由上述之具體實施例說明,本發明確實可藉由自動巡航路徑的規劃設定,讓無人飛行載具可實現對高壓電塔礙子施以影像辨識診斷或是高壓水柱沖洗,除了可以有效節省人力成本之外,並可透過影 像辨識診斷而判斷出礙子鹽化與汙損的程度,故可在礙子絕緣劣化之前沖洗清潔,藉以降低礙子受到鹽霧污損的危害程度,以避免礙子短路所致的高壓電塔漏電的危險意外情事發生。 Therefore, according to the above specific embodiments, the present invention can indeed enable the unmanned aerial vehicle to perform image recognition diagnosis or high-pressure water column flushing on the high-voltage electric tower by means of the planning of the automatic cruising path. Can effectively save labor costs, and can be seen through The degree of salting and fouling is judged by the identification diagnosis, so it can be washed and cleaned before the insulation of the insulation is deteriorated, so as to reduce the damage degree of the insult due to the salt mist pollution, so as to avoid the high voltage caused by the short circuit of the obstacle. The danger of electric tower leakage is unexpected.

以上所述,僅為本發明之可行實施例,並非用以限定本發明之專利範圍,凡舉依據下列請求項所述之內容、特徵以及其精神而為之其他變化的等效實施,皆應包含於本發明之專利範圍內。本發明所具體界定於請求項之結構特徵,未見於同類物品,且具實用性與進步性,已符合發明專利要件,爰依法具文提出申請,謹請 鈞局依法核予專利,以維護本申請人合法之權益。 The above is only a possible embodiment of the present invention, and is not intended to limit the scope of the patents of the present invention, and the equivalent implementations of other changes according to the contents, features and spirits of the following claims should be It is included in the patent of the present invention. The invention is specifically defined in the structural features of the request item, is not found in the same kind of articles, and has practicality and progress, has met the requirements of the invention patent, and has filed an application according to law, and invites the bureau to approve the patent according to law to maintain the present invention. The legal rights of the applicant.

11‧‧‧航行資訊感測模組 11‧‧‧Navigation Information Sensing Module

110‧‧‧障礙物感測器 110‧‧‧ obstacle sensor

111‧‧‧高度感測器 111‧‧‧ Height sensor

112‧‧‧方向感測器 112‧‧‧ Directional Sensor

113‧‧‧位置感測器 113‧‧‧ position sensor

114‧‧‧速度感測器 114‧‧‧Speed sensor

115‧‧‧距離感測模組 115‧‧‧ Distance sensing module

20‧‧‧第一無線通訊模組 20‧‧‧First wireless communication module

30‧‧‧航程設定模組 30‧‧‧voyage setting module

30‧‧‧第二無線通訊模組 30‧‧‧Second wireless communication module

40‧‧‧飛行控制模組 40‧‧‧ Flight Control Module

50‧‧‧影像擷取裝置 50‧‧‧Image capture device

Claims (9)

一種高壓電礙子之無人飛行載具自動巡航路徑規劃及設定方法,其包括以下步驟:(a)提供一具有一第一無線通訊模組、至少一影像擷取裝置、一飛行控制模組、至少一用以產生多種航行感測訊號的航行資訊感測模組及一第一訊號處理模組之無人飛行載具,及一包括有一第二無線通訊模組、一手動航程設定模組、一自動航程設定模組及一第二訊號處理模組之航程設定模組;該手動航程設定模組包括一手動飛行操控模組,及包括一電塔目標點設定模組及一礙子目標點設定模組之一顯示設定模組;該自動航程設定模組包括一自動飛行操控模組;(b)進行飛行路徑規劃:規劃該無人飛行載具由一原點至至少一高壓電塔目標點及返回該原點為一航行路徑,及規劃該無人飛行載具由該至少一高壓電塔目標點至至少一礙子目標點及返回該該至少一高壓電塔目標點為一巡航路徑;及(c)進行飛行路徑規劃教導及設定:以該航程設定模組設定該無人飛行載具起降之一原點,及由該手動航程設定模組之該手動飛行操控模組產生至少一手動控制訊號,該至少一手動控制訊號經該第二無線通訊模組及該第一無線通訊模組而傳輸至位於該無人飛行載具上的該飛行控制模組,以控制該無人飛行載具執行一手動遙控教導飛行,其中,執行該手動遙控教導飛行,包括:(c1)以該飛行控制模組依據該至少一手動控制訊號來控制使該無人飛行載具自該原點依序飛行至每一高壓電塔目標點,並依序轉換處理各該航行感測訊號而獲得方向值、高度值、速度值、座標值及對應的序號值並記錄且設定為一組航行參數;其中,當該無人飛行載具靠近該高壓電塔目 標點時,以該顯示設定模組之該電塔目標點設定模組產生一第一觸發訊號,該第一觸發訊號經該第二無線通訊模組及該第一無線通訊模組傳輸至無人飛行載具而啟動該影像擷取裝置以擷取包含有該高壓電塔影像,並將該高壓電塔影像透過該第一無線通訊模組及該第二無線通訊模組傳輸至該航程設定模組中,再由該顯示設定模組將該高壓電塔影像顯示,當一使用者經由該高壓電塔影像確認該無人飛行載具已飛至該高壓電塔目標點時,按下該顯示設定模組之該電塔目標點設定模組的一確認鍵以確認該高壓電塔目標點並設定其對應的序號且予以記錄;(c2)以該飛行控制模組依據該至少一手動控制訊號來控制使該無人飛行載具自該高壓電塔目標點依序飛行至每一礙子目標點及返回該高壓電塔目標點,依序轉換處理各該航行感測訊號為方向值、高度值、速度值、座標值及對應的序號值並記錄且設定為一組巡航參數,其中,當該無人飛行載具靠近該礙子目標點時,以該顯示設定模組之該礙子目標點設定模組產生一第二觸發訊號,該第二觸發訊號經該第二無線通訊模組及該第一無線通訊模組傳輸至無人飛行載具而啟動該影像擷取裝置以擷取包含有該礙子組影像,並將該礙子組影像透過該第一無線通訊模組及該第二無線通訊模組傳輸至該航程設定模組中,再由該顯示設定模組將該礙子組影像顯示,當該使用者經由該礙子組影像確認該無人飛行載具已飛至該礙子目標點時,按下該顯示設定模組之該礙子目標點設定模組的一確認鍵以確認該礙子目標點並設定其對應的序號且予以記錄;(c3)以該飛行控制模組依據該至少一手動控制訊號來控制使該無人飛行載具飛行至每一高壓電塔目標點時即獲得該航行參數,並重覆(c2)步驟以獲得該巡航參數;及(c4)於取得最後一組該巡航參數之後,以該飛行控制模組依據該至少 一手動控制訊號來控制使該無人飛行載具返回該原點即獲得一組返航參數;及(d)啟動該自動航程設定模組,使該自動飛行操控模組以依據該航行參數、該巡航參數及該返航參數產生至少一自動飛行控制訊號,使該無人飛行載具依據該至少一自動飛行控制訊號執行該巡航路徑及該航行路徑之飛行至少一次,完成後記錄該航行參數、該巡航參數及該返航參數以做為下次執行自動航行的依據;其中,該無人飛行載具於執行該手動遙控教導飛行時更包括一障礙物迴避步驟,當該航行資訊感測模組之一障礙物感測器感測到障礙物時,該飛行控制模組則啟動該影像擷取裝置擷取障礙物影像,並將該障礙物影像透過該無線通訊模組傳輸至該航程設定模組之該顯示設定模組中,以供該使用者評估該障礙物狀態,若決定迴避該障礙物時,則於該航程設定模組進行迴避之操作設定而產生相應之該控制訊號,以控制使該無人飛行載具迴避該障礙物,並記錄迴避飛行所產生之該方向值、該高度值、該速度值、該座標值以及該安全距離值為該目標點的該航道資料,再將該航道資料列入該組航行參數中。 An automatic cruise path planning and setting method for a high-voltage electric obstacle unmanned aerial vehicle includes the following steps: (a) providing a first wireless communication module, at least one image capturing device, and a flight control module At least one navigation information sensing module for generating a plurality of navigation sensing signals and an unmanned aerial vehicle of a first signal processing module, and a second wireless communication module, a manual flight setting module, An automatic voyage setting module and a voyage setting module of a second signal processing module; the manual voyage setting module includes a manual flight control module, and includes a tower target point setting module and an obstacle target point One of the setting modules displays a setting module; the automatic voyage setting module includes an automatic flight control module; (b) performs flight path planning: planning the unmanned aerial vehicle from an origin to at least one high voltage tower target Pointing and returning the origin as a navigation path, and planning the unmanned aerial vehicle from the at least one high voltage tower target point to the at least one obstacle target point and returning to the at least one high voltage tower target point a cruising path; and (c) performing flight path planning teaching and setting: setting an origin of the unmanned aerial vehicle's take-off and landing by the voyage setting module, and generating the manual flight control module by the manual voyage setting module At least one manual control signal transmitted by the second wireless communication module and the first wireless communication module to the flight control module located on the unmanned aerial vehicle to control the unmanned flight The vehicle performs a manual remote control flight, wherein the manual remote control flight is performed, including: (c1) controlling, by the flight control module, the unmanned aerial vehicle from the origin according to the at least one manual control signal Flying to each high-voltage tower target point, and sequentially converting each of the navigation sensing signals to obtain a direction value, a height value, a speed value, a coordinate value, and a corresponding serial number value, and recording and setting as a set of navigation parameters; Wherein, when the unmanned aerial vehicle is adjacent to the high voltage electric tower When the punctuation is performed, the first trigger signal is generated by the tower target point setting module of the display setting module, and the first trigger signal is transmitted to the unmanned flight via the second wireless communication module and the first wireless communication module. The image capturing device is activated to capture the image of the high voltage electric tower, and the high voltage electric tower image is transmitted to the voyage setting through the first wireless communication module and the second wireless communication module And displaying, by the display setting module, the image of the high voltage electric tower, and when a user confirms that the unmanned aerial vehicle has flown to the target point of the high voltage electric tower via the high voltage electric tower image, press Pressing a confirmation button of the tower target point setting module of the display setting module to confirm the high-voltage tower target point and setting its corresponding serial number and recording; (c2) according to the flight control module a manual control signal is used to control the unmanned aerial vehicle to sequentially fly from the target point of the high voltage tower to each obstacle target point and return to the target point of the high voltage tower, and sequentially convert and process each navigation sensing signal For direction value, height value, speed value And the coordinate value and the corresponding serial number value are recorded and set as a set of cruise parameters, wherein when the unmanned aerial vehicle approaches the target point of the obstacle, the obstacle target target setting module of the display setting module is generated. a second trigger signal, the second trigger signal is transmitted to the unmanned aerial vehicle via the second wireless communication module and the first wireless communication module, and the image capturing device is activated to capture the image including the obstacle group And transmitting the image of the obstruction group to the voyage setting module through the first wireless communication module and the second wireless communication module, and then displaying the image of the operative group by the display setting module, when the When the user confirms that the unmanned aerial vehicle has flown to the obstacle target point via the image of the obstacle group, press a confirmation button of the obstacle target point setting module of the display setting module to confirm the obstacle target Pointing and setting its corresponding serial number and recording; (c3) obtaining the navigation by the flight control module according to the at least one manual control signal to control the unmanned aerial vehicle to fly to each high-voltage tower target point Parameters and repeat (c2) step of obtaining the cruise parameter; and (c4) after obtaining the last set of the cruise parameters, the flight control module is based on the at least a manual control signal to control the return of the unmanned aerial vehicle to the origin to obtain a set of return parameters; and (d) activating the automatic flight setting module to cause the automatic flight control module to cruise according to the navigation parameter The parameter and the return flight parameter generate at least one automatic flight control signal, so that the unmanned aerial vehicle performs the cruise path and the flight path at least once according to the at least one automatic flight control signal, and records the navigation parameter and the cruise parameter after completion And the returning parameter is used as a basis for the next execution of the automatic navigation; wherein the unmanned aerial vehicle further includes an obstacle avoiding step when performing the manual remote control teaching flight, when the navigation information sensing module is an obstacle When the sensor senses the obstacle, the flight control module activates the image capturing device to capture the obstacle image, and transmits the obstacle image to the display of the voyage setting module through the wireless communication module. Setting the module for the user to evaluate the obstacle state, and if it is determined to avoid the obstacle, then avoiding the obstacle setting module Operating the setting to generate the corresponding control signal to control the unmanned aerial vehicle to avoid the obstacle, and record the direction value, the height value, the speed value, the coordinate value, and the safety distance value generated by the avoidance flight For the channel data of the target point, the channel data is included in the group navigation parameters. 如請求項1所述之方法,其中,該自動航程設定模組更包括一最短路徑修正模組;於步驟(d)之後,啟動該最短路徑修正模組,計算出兩相鄰之該高壓電塔目標點之間,兩相鄰該礙子目標點之間及相鄰該高壓電塔目標點與該礙子目標點之間的一最短路徑,並取得對應於該最短路徑的修正航行參數、修正巡航參數及修正返航參數;再啟動該自動航程設定模組,使該自動飛行操控模組以依據該修正航行參數、該修正巡航參數及該修正返航參數產生至少一修正自動飛行控制訊號,使該無人飛行載具依據該修正至少一自動飛行控制訊號執行該巡航路徑及該航行路徑之飛行至少一次,完成後記錄該修正航行參數、該修正巡航參數及該修正返航參數以做 為下次執行自動航行的依據。 The method of claim 1, wherein the automatic voyage setting module further comprises a shortest path correction module; after the step (d), the shortest path correction module is activated to calculate the two adjacent high voltages. Between the target points of the electric tower, a shortest path between the adjacent target points of the obstruction and adjacent to the target point of the high voltage electric tower and the target point of the obstruction, and obtain a modified navigation corresponding to the shortest path The parameter, the modified cruise parameter and the modified return flight parameter; the automatic flight setting module is further activated, so that the automatic flight control module generates at least one modified automatic flight control signal according to the modified navigation parameter, the modified cruise parameter and the modified return flight parameter. And causing the unmanned aerial vehicle to perform the cruise path and the flight path at least once according to the modified at least one automatic flight control signal, and after the completion, recording the modified navigation parameter, the modified cruise parameter and the modified return flight parameter to be performed The basis for the next automatic sailing. 如請求項1所述之方法,其中,該無人飛行載具於執行該手動遙控教導飛行時更包括一安全距離估測步驟,當該無人飛行載具接近其中一個該位置點時,則啟動該航行資訊感測模組之一距離感測模組,以感測與該礙子之間的距離,該飛行控制模組再啟動該影像擷取裝置擷取該礙子組影像,並將該礙子組影像透過該無線通訊模組傳輸至該航程設定模組之該顯示設定模組中,以供該使用者評估該無人飛行載具與該礙子組之間的距離狀態,其中,當決定調整與該礙子組之間的距離時,則於該航程設定模組進行距離調整之操作設定而產生相應之該控制訊號,以控制使該無人飛行載具調整與該礙子之間的距離,其中,當決定與該礙子之間的安全距離時,則記錄該位置點的距離值為該目標點的安全距離值,並列入該航道資料中。 The method of claim 1, wherein the unmanned aerial vehicle further includes a safety distance estimation step when the manual remote control teaching flight is performed, and when the unmanned aerial vehicle approaches one of the position points, the One of the navigation information sensing modules is located at a distance sensing module to sense a distance from the obstacle, and the flight control module restarts the image capturing device to capture the image of the obstacle group, and the obstacle is The sub-group image is transmitted to the display setting module of the voyage setting module through the wireless communication module, so that the user evaluates the distance state between the unmanned aerial vehicle and the occlusion subgroup, wherein, when determining Adjusting the distance between the obstructed subgroup and the operation setting of the distance setting module to generate a corresponding control signal to control the distance between the unmanned aerial vehicle and the obstruction Wherein, when determining a safe distance from the obstruction, the distance value of the position point is recorded as a safe distance value of the target point and included in the channel data. 如請求項3所述之方法,其中,該距離感測模組係選自超音波感測器、影像辨識法以及Epipolar平面之三角測距法的其中一種。 The method of claim 3, wherein the distance sensing module is selected from the group consisting of an ultrasonic sensor, an image recognition method, and a triangular ranging method of Epipolar plane. 如請求項1所述之方法,其中,當該航程設定模組完成飛行路徑規劃教導及設定步驟時,該飛行控制模組則讀取該組航行參數時,則使該無人飛行載具執行一自動影像辨識診斷飛行,於執行該自動影像辨識診斷飛行時,則控制該無人飛行載具自該原點起飛並依預定之該序號、該方向值、該高度值、該座標值以及安全距離值而沿著該飛行路徑飛行至每一該目標點上,當該無人飛行載具抵達第一個該目標點時,該飛行控制模組則啟動該影像擷取裝置擷取該礙子組影像,並將該礙子組影像透過該無線通訊模組傳輸至該航程設定模組中,再由該航程設定模組之該顯示設定模組將該礙子組影像顯示,再由一使用者以目視方式辨識或是透過內建於該顯示設定模組的影像辨識軟體針對該礙子組影像的鹽霧污損程度進行影像辨 識診斷,以作為是否清洗該礙子組的依據,當所有該目標點皆完成影像擷取時,該飛行控制模組則控制使該無人飛行載具返回至該原點。 The method of claim 1, wherein when the flight setting module completes the flight path planning teaching and setting step, the flight control module reads the set of navigation parameters, and then executes the unmanned aerial vehicle. Automatic image recognition diagnostic flight, when performing the automatic image recognition diagnostic flight, controlling the unmanned aerial vehicle to take off from the origin and according to the predetermined serial number, the direction value, the height value, the coordinate value, and the safety distance value And flying along the flight path to each of the target points, when the unmanned aerial vehicle reaches the first target point, the flight control module starts the image capturing device to capture the image of the obstacle group. And transmitting the image of the obstructed sub-group to the voyage setting module through the wireless communication module, and then displaying the image of the obstructed sub-group by the display setting module of the voyage setting module, and then visually viewing by a user Method identification or image recognition by the image recognition software built into the display setting module for the degree of salt fog staining of the image of the obstruction group The diagnosis is used as a basis for cleaning the obstruction group. When all the target points complete the image capture, the flight control module controls to return the unmanned aerial vehicle to the origin. 如請求項5所述之方法,其中,該無人飛行載具執行該自動影像辨識診斷飛行時更包括一修正航道步驟,當該飛行控制模組則讀取其中一該目標點的該航道資料時,則使該無人飛行載具依該目標點的該航道資料飛行,並判斷該無人飛行載具所處位置的座標值是否正確,判斷結果為是,則修正飛行路徑,判斷結果為否,則飛抵該目標點。 The method of claim 5, wherein the unmanned aerial vehicle further comprises a modified navigation step when performing the automatic image recognition diagnostic flight, and when the flight control module reads the navigation information of one of the target points And causing the unmanned aerial vehicle to fly according to the navigation channel data of the target point, and determining whether the coordinate value of the position of the unmanned aerial vehicle is correct, and if the determination result is yes, correcting the flight path, and if the determination result is no, Fly to the target point. 如請求項1所述之方法,其中,該無人飛行載具裝載有一用以對該礙子進行高壓噴灑的高壓噴灑裝置,當該航程設定模組完成飛行路徑規劃教導及設定步驟時,該飛行控制模組則讀取該組航行參數時,則使該無人飛行載具執行一自動噴灑模式飛行,於執行該自動噴灑模式飛行時,則控制該無人飛行載具自該原點起飛並依預定之該序號、該方向值、該高度值、該座標值以及安全距離值而沿著該飛行路徑飛行至每一該目標點上,當該無人飛行載具抵達第一個該目標點時,該飛行控制模組則使該無人飛行載具盤旋停留一預設時間並啟動該高壓噴灑裝置,以對該礙子組進行高壓沖洗,當該預設時間結束時,則關閉該高壓噴灑裝置,並控制該無人飛行載具往下一個該目標點飛行,當每一該礙子組皆沖洗完畢時,該飛行控制模組則控制使該無人飛行載具返回至該原點。 The method of claim 1, wherein the unmanned aerial vehicle is loaded with a high-pressure spraying device for high-pressure spraying of the obstruction, and when the voyage setting module completes the flight path planning teaching and setting steps, the flight When the control module reads the set of navigation parameters, the unmanned aerial vehicle performs an automatic spray mode flight, and when the automatic spray mode flight is executed, the unmanned aerial vehicle is controlled to take off from the origin and is scheduled. The serial number, the direction value, the height value, the coordinate value, and the safety distance value fly along the flight path to each of the target points, and when the unmanned aerial vehicle reaches the first target point, the The flight control module rotates the unmanned aerial vehicle for a predetermined time and activates the high pressure spraying device to perform high pressure flushing on the obstacle group. When the preset time is over, the high pressure spraying device is turned off, and Controlling the unmanned aerial vehicle to fly to the next target point, and when each of the obstacle groups is flushed, the flight control module controls to return the unmanned aerial vehicle to the origin. 如請求項1所述之方法,其中,該航行資訊感測模組更包含一高度感測器、一方向感測器、一位置感測器及一速度感測器,以該高度感測器量測每一該目標點的離地高度並列入該組航道資料中,使每一該目標點對應有一高度值;以該方向感測器量測至下一個該目標點的方向並列入該組航道資料中,使每一該目標點對應有一方向值;以該位置感測器量測每一該目標點的座標位置並列入該組航道資料中,使每一該目標點對應有一 座標值;以該速度感測器量測該無人飛行載具的速度並列入該組航道資料中,使每一該目標點之該組航道資料對應有一速度值。 The method of claim 1, wherein the navigation information sensing module further comprises a height sensor, a direction sensor, a position sensor and a speed sensor, and the height sensor Measuring the height of each target point from the ground and including it in the group of navigation data, so that each of the target points corresponds to a height value; measuring the direction to the next target point by the direction sensor and including the group In the channel data, each target point corresponds to a direction value; the coordinate position of each of the target points is measured by the position sensor and included in the group of channel data, so that each of the target points corresponds to one a coordinate value; the speed sensor is used to measure the speed of the unmanned aerial vehicle and is included in the set of navigation channel data, so that the set of navigation channel data of each of the target points corresponds to a velocity value. 一種高壓電礙子之無人飛行載具自動巡航路徑規劃系統,其包括:一無人飛行載具;至少一影像擷取裝置,其設於該無人飛行載具上;至少一航行資訊感測模組,其用以產生多種航行感測訊號;一無線通訊模組;一飛行控制模組;及一航程設定模組,其用以將一供該無人飛行載具起降的原點至至少一目標點規劃為一飛行路徑,且將高壓電塔設置礙子組附近的至少一位置點設定為該目標點,於該航程設定模組設定而產生至少一控制訊號,該至少一控制訊號經該無線通訊模組而傳輸至該飛行控制模組中,以控制該無人飛行載具執行一手動遙控教導飛行,於執行該手動遙控教導飛行時,則使該無人飛行載具自該原點依序飛行至每一該位置點,該飛行控制模組依序轉換處理各該航行感測訊號為方向值、高度值、速度值、座標值以及安全距離值,當該無人飛行載具靠近第一個該位置點時,則啟動該影像擷取裝置擷取包含有該礙子組影像,並將該礙子組影像透過該無線通訊模組傳輸至該航程設定模組中,再由該航程設定模組之一顯示設定模組將該礙子組影像顯示,當一使用者確認該無人飛行載具已飛至預定之該位置點上方時,則按下該顯示設定模組之一確認鍵,以確認該位置點為其中一個該目標點或該原點,將該目標點或該原點設定序號,再將該目標點或該原點之該方向值、該高度值、該速度值、該座標值以及該安全距離值設定為該目標點或該原點的航道資料,再將該航道資料列入一組航行參數中,並重覆上述步驟,當所有該位置點皆完成上述航道資料的設定時,該航程設定模 組則控制使該無人飛行載具返回至該原點;其中,該無人飛行載具於執行該手動遙控教導飛行時更包括一障礙物迴避步驟,當該航行資訊感測模組之一障礙物感測器感測到障礙物時,該飛行控制模組則啟動該影像擷取裝置擷取障礙物影像,並將該障礙物影像透過該無線通訊模組傳輸至該航程設定模組之該顯示設定模組中,以供該使用者評估該障礙物狀態,若決定迴避該障礙物時,則於該航程設定模組進行迴避之操作設定而產生相應之該控制訊號,以控制使該無人飛行載具迴避該障礙物,並記錄迴避飛行所產生之該方向值、該高度值、該速度值、該座標值以及該安全距離值為該目標點的該航道資料,再將該航道資料列入該組航行參數中。 An unmanned aerial vehicle automatic cruising path planning system for a high-voltage electric obstruction, comprising: an unmanned aerial vehicle; at least one image capturing device disposed on the unmanned aerial vehicle; at least one navigation information sensing module a group for generating a plurality of navigation sensing signals; a wireless communication module; a flight control module; and a voyage setting module for using an origin of the unmanned aerial vehicle to take off and landing to at least one The target point is planned as a flight path, and at least one position point in the vicinity of the high voltage electric tower is arranged as the target point, and the at least one control signal is generated by the voyage setting module, and the at least one control signal is Transmitting the wireless communication module to the flight control module to control the unmanned aerial vehicle to perform a manual remote control teaching flight, and when performing the manual remote control teaching flight, the unmanned aerial vehicle is adapted from the origin The flight control module flies to each of the position points, and the flight control module sequentially processes and processes each of the navigation sensing signals as a direction value, a height value, a speed value, a coordinate value, and a safety distance value, when the unmanned flight When the carrier is close to the first location, the image capture device is activated to capture the image containing the image, and the image of the obstacle is transmitted to the flight setting module through the wireless communication module. Then, the display module is displayed by one of the voyage setting modules, and when the user confirms that the unmanned aerial vehicle has flown to the predetermined position, the display setting module is pressed. One of the confirmation keys to confirm that the position point is one of the target points or the origin point, the target point or the origin is set to a sequence number, and the direction value or the height value of the target point or the origin point, The speed value, the coordinate value and the safety distance value are set as the target point or the channel data of the origin, and the channel data is included in a set of navigation parameters, and the above steps are repeated, when all the points are completed. The voyage setting mode when setting the above navigation channel data The group then controls to return the unmanned aerial vehicle to the origin; wherein the unmanned aerial vehicle further includes an obstacle avoiding step when performing the manual remote control teaching flight, when the navigation information sensing module is an obstacle When the sensor senses the obstacle, the flight control module activates the image capturing device to capture the obstacle image, and transmits the obstacle image to the display of the voyage setting module through the wireless communication module. The setting module is configured for the user to evaluate the obstacle state. If it is determined to avoid the obstacle, the voyage setting module performs an operation setting of the avoidance to generate a corresponding control signal to control the unmanned flight. The vehicle avoids the obstacle, and records the direction value generated by the avoidance flight, the height value, the speed value, the coordinate value, and the safety distance value as the channel data of the target point, and then the channel information is included In the group of navigation parameters.
TW104129688A 2015-09-08 2015-09-08 High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system TWI571719B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104129688A TWI571719B (en) 2015-09-08 2015-09-08 High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104129688A TWI571719B (en) 2015-09-08 2015-09-08 High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system

Publications (2)

Publication Number Publication Date
TWI571719B true TWI571719B (en) 2017-02-21
TW201710814A TW201710814A (en) 2017-03-16

Family

ID=58608493

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104129688A TWI571719B (en) 2015-09-08 2015-09-08 High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system

Country Status (1)

Country Link
TW (1) TWI571719B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530364A (en) * 2018-05-24 2019-12-03 旻新科技股份有限公司 Utilize the method in bird flight path programming unmanned vehicle path

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102510011A (en) * 2011-10-24 2012-06-20 华北电力大学 Method for realizing the intelligent tour-inspection of power tower based on miniature multi-rotor unmanned helicopter
CN102749926A (en) * 2012-07-12 2012-10-24 无锡汉和航空技术有限公司 Flying operation system of small pesticide-spraying unmanned helicopter
CN102570345B (en) * 2011-09-19 2014-05-28 天津全华时代航天科技发展有限公司 UAV (unmanned aerial vehicle) transmission-line patrolling system
CN204270115U (en) * 2014-11-14 2015-04-15 山东农业大学 The special flight control system of a kind of plant protection unmanned plane
CN204415735U (en) * 2015-02-03 2015-06-24 中国电子科技集团公司第二十七研究所 A kind of can autonomous flight the unmanned helicopter system of spraying insecticide entirely

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102570345B (en) * 2011-09-19 2014-05-28 天津全华时代航天科技发展有限公司 UAV (unmanned aerial vehicle) transmission-line patrolling system
CN102510011A (en) * 2011-10-24 2012-06-20 华北电力大学 Method for realizing the intelligent tour-inspection of power tower based on miniature multi-rotor unmanned helicopter
CN102749926A (en) * 2012-07-12 2012-10-24 无锡汉和航空技术有限公司 Flying operation system of small pesticide-spraying unmanned helicopter
CN204270115U (en) * 2014-11-14 2015-04-15 山东农业大学 The special flight control system of a kind of plant protection unmanned plane
CN204415735U (en) * 2015-02-03 2015-06-24 中国电子科技集团公司第二十七研究所 A kind of can autonomous flight the unmanned helicopter system of spraying insecticide entirely

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110530364A (en) * 2018-05-24 2019-12-03 旻新科技股份有限公司 Utilize the method in bird flight path programming unmanned vehicle path
CN110530364B (en) * 2018-05-24 2023-01-10 旻新科技股份有限公司 Method for planning unmanned aerial vehicle path by using bird flight path

Also Published As

Publication number Publication date
TW201710814A (en) 2017-03-16

Similar Documents

Publication Publication Date Title
CN109760837B (en) Unmanned aerial vehicle system is patrolled and examined in cable pit and tunnel
US10777004B2 (en) System and method for generating three-dimensional robotic inspection plan
CN106020233B (en) Unmanned aerial vehicle plant protection operation system, unmanned aerial vehicle for plant protection operation and control method
CN108496129B (en) Aircraft-based facility detection method and control equipment
US10633093B2 (en) Three-dimensional robotic inspection system
Luque-Vega et al. Power line inspection via an unmanned aerial system based on the quadrotor helicopter
CN102510011B (en) Method for realizing the intelligent tour-inspection of power tower based on miniature multi-rotor unmanned helicopter
CN105129064B (en) A kind of unmanned boat cruise control method and system
CN106976564B (en) A kind of Intelligent road scoring system and its method based on unmanned plane cooperation
CN106114857A (en) Outside Wall Cleaning method based on unmanned plane and unmanned plane
CN106774392A (en) The dynamic programming method of flight path during a kind of power circuit polling
CN109839951B (en) System and method for generating unmanned aerial vehicle autonomous tracking path model
CN110888453A (en) Unmanned aerial vehicle autonomous flight method for constructing three-dimensional real scene based on LiDAR data
CN110907500B (en) Unmanned aerial vehicle platform-based composite insulator hydrophobicity automatic detection method and device
CN110988871B (en) Unmanned airborne wall-penetrating radar high-rise building wall health off-line detection system and detection method
CN104851323B (en) Aircraft safety landing real-time monitoring system based on the Big Dipper
CN103984355A (en) Routing inspection flying robot and overhead power line distance prediction and maintaining method
CN205880671U (en) Unmanned aerial vehicle plant protection operating system and be used for unmanned aerial vehicle of plant protection operation
US20210380280A1 (en) Method and apparatus for automated de-icing of aircraft
CN104122890A (en) City underground railway inspection robot system and detection method
WO2020213290A1 (en) Information management method, identification-information-imparting device, and information management system
TWI571718B (en) Automatic cruise spray cleaning method and system for unmanned aerial vehicles
CN105511486B (en) It is a kind of based on different electric power sag detection method and system with aerial images
TWI571719B (en) High-voltage electric obstruction unmanned aerial vehicle automatic cruising path planning and setting method and system
CN104006804B (en) Method for detecting offset of contact net based on observation benchmark instability compensation

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees