TWI571436B - A preparation method of nanometer graphite sheet precursor - Google Patents

A preparation method of nanometer graphite sheet precursor Download PDF

Info

Publication number
TWI571436B
TWI571436B TW104100135A TW104100135A TWI571436B TW I571436 B TWI571436 B TW I571436B TW 104100135 A TW104100135 A TW 104100135A TW 104100135 A TW104100135 A TW 104100135A TW I571436 B TWI571436 B TW I571436B
Authority
TW
Taiwan
Prior art keywords
graphite
carbon
sheet precursor
preparing
nanographite
Prior art date
Application number
TW104100135A
Other languages
English (en)
Other versions
TW201625482A (zh
Inventor
Chuen Ming Gee
Tzeng Lu Yeh
Pai Lu Wang
Ching Jang Lin
Cheng Te Lin
Lain Jong Li
Original Assignee
Nat Chung-Shan Inst Of Science And Tech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nat Chung-Shan Inst Of Science And Tech filed Critical Nat Chung-Shan Inst Of Science And Tech
Priority to TW104100135A priority Critical patent/TWI571436B/zh
Publication of TW201625482A publication Critical patent/TW201625482A/zh
Application granted granted Critical
Publication of TWI571436B publication Critical patent/TWI571436B/zh

Links

Landscapes

  • Carbon And Carbon Compounds (AREA)

Description

一種奈米石墨片前驅物製備方法
本發明係關於一種前驅物製備方法,特別是關於一種奈米石墨片前驅物製備方法。
目前奈米石墨片(石墨烯)的製備方法可概分為七類:第一類為微機械剝離法,利用膠帶黏附力或其他機械剪切力剝離。第二類為液相剝離法,利用超音波震盪進行剝離。第三類為化學剝離法,利用製備氧化石墨作為前驅體,再使用化學還原、溶劑熱還原與熱還原等方式獲得,另有使用電化學方式電解剝離出獲得,第四類為化學合成法,包含有機前驅體合成與溶劑熱合成兩種方法,第五類為碳化矽磊晶成長法。第六類為觸媒成長法,包含化學氣相沉積與鑽石高溫轉化等方法,第七類為其他製備方法,包含奈米碳管切割法、快速淬火法與超臨界流體插層快速膨脹法。
目前奈米石墨片(石墨烯)之製備方法雖然眾多,且各具優缺點,但能以低成本大量生產方式製備,經評估可能只有化學剝離法與電化學剝離法,是目前低成本可獲致大量奈米石墨片(石墨烯)最可行的方法,可最早應用於儲能與觸媒領域。但化學剝離法須先利用強氧化劑或強酸進行反 應,再利用還原方式獲得,其製程較繁瑣,且獲得之產物缺陷較多;電化學剝離法具有單一製程、操作簡易、環保(如果使用離子液體電解液或水性表面活性劑)與室溫環境下操作等優點,且不需揮發性溶劑或還原劑就可形成高可控的薄片,使用已知的電化學單元設計與工程原理可很容易放量生產,整個製程可能只需數分鐘或數小時即可完成,此結果可快速製備大量奈米石墨片(石墨烯)。
雖然電化學剝離方法可快速大量生產,但仍有一關鍵問題尚未克服一石墨電極,現今所採用之石墨電極大多為價格昂貴之高純度石墨棒、高結晶度天然石墨片或高方向性熱裂解石墨,且高純度石墨棒與高方向性熱裂解石墨之石墨結晶度較小,所剝離出之產物片尺寸也相對較小,另高結晶度單晶石墨片之尺寸太小,無法長時間電解剝離,且不易挾持,不符合工業生產效率。
因此目前業界極需發展出一種高效率、易控制且具有高經濟效應之一種石墨烯薄片前驅物之製備方法,如此一來,方能同時兼具成本與時效,有效產出石墨烯薄片。
鑒於上述悉知技術之缺點,本發明之主要目的在於提供一種高分子複合材料之製作方法,整合一碳或石墨材、一黏結基材、一氣氛環境下及一熱處理製程等,以製備 出可協助產出高品質石墨烯薄片的奈米石墨片前驅物。
為了達到上述目的,根據本發明所提出之一方案,提供一種奈米石墨片前驅物製備方法,步驟包括:(A)提供一碳或石墨材及一黏結基材,將該碳或石墨材與該黏結基材混合成一均勻混合物;(B)將該均勻混合物進行一成型製程而得一塊材胚體;(C)將該塊材胚體於氣氛環境下進行一熱處理製程而得一奈米石墨片前驅物。
步驟(A)中的碳或石墨材,可選自石油焦碳、煤焦碳、天然石墨、脈石墨、熱裂解石墨、介相碳微球、介相碳材、奈米碳管、氣相成長碳纖維、碳纖維、石墨纖維、人工石墨粉等材料其中之一或上述材料之混合物;而黏結基材則可選自石油瀝青、煤焦瀝青、介相瀝青、酚醛樹脂、呋喃樹脂、環氧樹脂、聚醯亞胺等高分子材料其中之一或上述高分子材料之混合物;上述碳或石墨材及黏結基材之混合,可利用攪拌、球磨、行星式轉動混合、高速均質混合進行混合該碳或石墨材與該黏結基材,其中,該碳或石墨材與該黏結基材的重量百分比的範圍係為1~19比1。
本發明步驟(B)中包含一成型製程,該成型製程可選自油壓、模壓、熱壓、擠出、押出、射出、紡出、熔紡等製程其中之一或利用上述製程任意組合來進行成型製程,成型製程主要的功用係利用上述的不同手段達到對材料的加壓,利用壓力提高該複合材料的密度以產出一塊材胚體。
步驟(C)中包含一熱處理製程,其中該熱處理的溫度範圍可為150~3200℃,較佳的熱處理範圍為500~3200℃,熱處理的作用可增加該複合材料導電性及調整適當的黏結強度,並促使該碳或石墨材與黏結基材轉化成具有良好的石墨結晶性,因而產生包含一層狀石墨結構的複合材料;上述的加熱製程應避免氧氣的干擾,因此該熱處理製程應在充滿氮氣、氬氣、其他惰性氣體或其他不與該複合材料發生反應的氣體環境裡進行。
以上之概述與接下來的詳細說明及附圖,皆是為了能進一步說明本創作達到預定目的所採取的方式、手段及功效。而有關本創作的其他目的及優點,將在後續的說明及圖式中加以闡述。
S101-S103‧‧‧步驟
第一圖係為一種奈米石墨片前驅物之製備方法流程示意圖;第二圖係為一種奈米石墨片之拉曼(Raman)分析圖譜;第三圖係為一種電化學剝離出奈米石墨片之原子力顯微鏡(AFM)量測圖。
以下係藉由特定的具體實例說明本創作之實施 方式,熟悉此技藝之人士可由本說明書所揭示之內容輕易地了解本創作之優點及功效。
本發明奈米石墨片前驅物是應用於利用電化學方法製備奈米石墨片(石墨烯),但電極材料不選用價格昂貴之高純度石墨棒、高結晶度單晶石墨片或高方向性熱裂解石墨,改用一般工業用天然石墨片與瀝青製作石墨電極,以價格低廉之一般工業用天然石墨片與瀝青製作石墨電極,來解決石墨電極塊材尺寸大,解決價格昂貴、電極小,無法長時間電解剥離,且不易挾持等工業量產問題。
請參考第一圖,為一種奈米石墨片前驅物之製備方法流程示意圖。如圖所示,本發明提供一種石墨烯薄片前驅物之製備方法,其步驟如下:首先,如步驟(A)提供一碳或石墨材及一黏結基材,將該碳或石墨材與該黏結基材混合成一均勻混合物S101,在本實施例中,黏結基材選用瀝青,碳或石墨材可用天然石墨;當該天然石墨與瀝青利用一行星式轉動混合時,黏結基材可作為一黏結劑,因而該黏結基材與該天然石墨逐漸均勻混合及黏合在一起而成一均勻混合物,其中,經上述步驟,該瀝青會趨向均勻地包覆該天然石墨。
接著如步驟(B)將該均勻混合物進行一成型製程而得一塊材胚體S102,在本實施例中,可使用熱壓成型製程將該均勻混合物壓成一塊材胚體,其中,將該均勻混合物進行600℃持溫1小時與壓力20MPa的熱壓成型,經此製程 後,將製備出高密度之複合材料。
然後,如步驟(C)再將該塊材胚體於氣氛環境下進行一熱處理製程而得一奈米石墨片前驅物S103,在本實施例中,將該該塊材胚體放置在氮或氬氣等保護氣氛下進行不同溫度之熱處理,溫度控制範圍為150~3,200℃,較佳溫度控制範圍可是500~3,200℃,其目的在增加複合材料導電性及調整出適當的黏結強度,同時促使該複合材料轉化成具有良好的石墨結晶性,產生層狀石墨結構,因而製備出高品質的石墨烯前驅物;在本實施例中,步驟(C)中係將含有天然石墨片與瀝青的塊材胚體進行二階段熱處理製程,先經1000℃碳化後再進行2300℃石墨化熱處理,即完成奈米石墨片前驅物的製作。
請參考第二圖,為本發明一種奈米石墨片之拉曼(Raman)分析圖譜、第三圖,為本發明一種電化學剝離出奈米石墨片之原子力顯微鏡(AFM)量測圖。如圖所示,本發明製備之奈米石墨片前驅物,以電化學方式剝離出奈米石墨片,奈米石墨片前驅物與電化學剝離出奈米石墨片之拉曼(Raman)分析圖,可發現奈米石墨片前驅物具有高G峰與小D峰(如圖二所示),表示具有良好的石墨層狀結構排列,剝離之奈米石墨片,D峰明顯增加與G峰藍移出現,其ID/IG比值約為1.21,顯示出奈米石墨片表面含有缺陷;而從利用本發明製備出的奈米石墨片前驅物經電化學法後可剝離出奈米石墨片,經原 子力顯微鏡(AFM)量測(如圖三),從邊緣量測厚度約為2.2nm,可被認定為雙層的石墨烯,因此本發明製備出的奈米石墨片前驅物經一般習知的電化學法後可產出雙層的石墨烯片。
上述之實施例僅為例示性說明本創作之特點及功效,非用以限制本創作之實質技術內容的範圍。任何熟悉此技藝之人士均可在不違背創作之精神及範疇下,對上述實施例進行修飾與變化。因此,本創作之權利保護範圍,應如後述之申請專利範圍所列。
S101-S103‧‧‧步驟

Claims (7)

  1. 一種奈米石墨片前驅物製備方法,係應用在產出石墨烯,步驟包括:(A)提供一碳或石墨材及一黏結基材,利用一行星式轉動混合將該碳或石墨材與該黏結基材混合成一均勻混合物;(B)將該均勻混合物在約600℃進行一成型製程而得一塊材胚體;(C)將該塊材胚體於氣氛環境下進行一碳化及石墨化熱處理製程而得一奈米石墨片前驅物;其中,該奈米石墨片前驅物經電化學方式剝離出寡層石墨烯。
  2. 如申請專利範圍第1項所述之奈米石墨片前驅物製備方法,其中,該碳或石墨材係選自石油焦碳、煤焦碳、天然石墨、脈石墨、熱裂解石墨、介相碳微球、介相碳材、奈米碳管、氣相成長碳纖維、碳纖維、石墨纖維、人工石墨粉等材料其中之一或上述材料之混合物。
  3. 如申請專利範圍第1項所述之奈米石墨片前驅物製備方法,其中,該黏結基材係選自石油瀝青、煤焦瀝青、介相瀝青、酚醛樹脂、呋喃樹脂、環氧樹脂、聚醯亞胺等高分子材料其中之一或上述高分子材料之混合物。
  4. 如申請專利範圍第1項所述之奈米石墨片前驅物製備方法,其中,該碳或石墨材與該黏結基材的重量百分比的範圍係為1~19比1。
  5. 如申請專利範圍第1項所述之奈米石墨片前驅物製備方法,其中,該成型製程係為熱壓成型製程。
  6. 如申請專利範圍第5項所述之奈米石墨片前驅物製備方法,其中,該氣氛係選用氮氣、氬氣。
  7. 如申請專利範圍第1項所述之奈米石墨片前驅物製備方法,其中,該熱處理的溫度範圍係為150~3,200℃。
TW104100135A 2015-01-06 2015-01-06 A preparation method of nanometer graphite sheet precursor TWI571436B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104100135A TWI571436B (zh) 2015-01-06 2015-01-06 A preparation method of nanometer graphite sheet precursor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104100135A TWI571436B (zh) 2015-01-06 2015-01-06 A preparation method of nanometer graphite sheet precursor

Publications (2)

Publication Number Publication Date
TW201625482A TW201625482A (zh) 2016-07-16
TWI571436B true TWI571436B (zh) 2017-02-21

Family

ID=56985029

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104100135A TWI571436B (zh) 2015-01-06 2015-01-06 A preparation method of nanometer graphite sheet precursor

Country Status (1)

Country Link
TW (1) TWI571436B (zh)

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王彥鈞, 林永仁, 上架時間:2012.8.11. 黏結劑、強化材及含浸對焦炭-碳複合材料之影響, 大同大學, 材料工程研究所, 頁數:全文 *

Also Published As

Publication number Publication date
TW201625482A (zh) 2016-07-16

Similar Documents

Publication Publication Date Title
Inagaki New carbons-control of structure and functions
EP3080047B1 (en) Carbon composites and methods of manufacture
CN102383071B (zh) 一种原位反应制备碳纳米管增强钛基复合材料的方法
KR100958444B1 (ko) 팽창흑연시트에 혼합분산용액을 코팅한 혼합카본시트의 제조방법
US20060216222A1 (en) Process for nano-scaled graphene plates
Wang et al. Highly efficient growth of boron nitride nanotubes and the thermal conductivity of their polymer composites
CN104891479B (zh) 植物基类石墨烯及其制备方法
Tu et al. Superior mechanical properties of sulfonated graphene reinforced carbon-graphite composites
EP2431326A2 (en) Carbon material and manufacturing method therefor
US9327981B2 (en) Method for producing thin graphene nanoplatelets and precusor thereof
Song et al. Carbon/graphite seal materials prepared from mesocarbon microbeads
CN106915961A (zh) 一种石墨烯‑氧化锆复合材料及其制备方法
JP6065244B2 (ja) 一種のグラフェンの製造方法
CN105858641B (zh) 石墨烯制造方法
Lin et al. Ultra-strong nanographite bulks based on a unique carbon nanotube linked graphite onions structure
WO2018061830A1 (ja) グラファイト成形体の製造方法
Huang et al. Ni (NO3) 2-assisted catalytic synthesis and photoluminescence property of ultralong single crystal Sialon nanobelts
Liu et al. Foam-structured carbon materials and composites for electromagnetic interference shielding: Design principles and structural evolution
KR102031413B1 (ko) 그래핀 나노구체 제조방법
TWI571436B (zh) A preparation method of nanometer graphite sheet precursor
US8916126B1 (en) Method of fabricating graphite flakes
CN101619426A (zh) 碳纳米管增强铜基复合材料的制备方法
CN108975315B (zh) 三维纳米片层结构的石墨烯材料的制备方法
TW201406651A (zh) 等方向性石墨材料及其製造方法
Lu et al. A CVD method for preparing CNTs-grafted carbon fiber fabrics under quasi-vacuum at low temperature