TWI570389B - Amplitude calibration circuit and signal calibration circuit using the same - Google Patents

Amplitude calibration circuit and signal calibration circuit using the same Download PDF

Info

Publication number
TWI570389B
TWI570389B TW104141143A TW104141143A TWI570389B TW I570389 B TWI570389 B TW I570389B TW 104141143 A TW104141143 A TW 104141143A TW 104141143 A TW104141143 A TW 104141143A TW I570389 B TWI570389 B TW I570389B
Authority
TW
Taiwan
Prior art keywords
phase shift
signals
circuit
input
signal
Prior art date
Application number
TW104141143A
Other languages
Chinese (zh)
Other versions
TW201721102A (en
Inventor
黃煥祺
陳建文
戴鴻名
Original Assignee
財團法人工業技術研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 財團法人工業技術研究院 filed Critical 財團法人工業技術研究院
Priority to TW104141143A priority Critical patent/TWI570389B/en
Priority to CN201510989039.5A priority patent/CN106856397B/en
Application granted granted Critical
Publication of TWI570389B publication Critical patent/TWI570389B/en
Publication of TW201721102A publication Critical patent/TW201721102A/en

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03BGENERATION OF OSCILLATIONS, DIRECTLY OR BY FREQUENCY-CHANGING, BY CIRCUITS EMPLOYING ACTIVE ELEMENTS WHICH OPERATE IN A NON-SWITCHING MANNER; GENERATION OF NOISE BY SUCH CIRCUITS
    • H03B28/00Generation of oscillations by methods not covered by groups H03B5/00 - H03B27/00, including modification of the waveform to produce sinusoidal oscillations

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Theoretical Computer Science (AREA)
  • Amplifiers (AREA)

Description

振幅校正電路及其應用的信號校正電路 Amplitude correction circuit and signal correction circuit thereof

本發明係有關於對感測裝置輸出的交流信號進行校正的電路。 The present invention relates to a circuit for correcting an alternating current signal output by a sensing device.

正交(Orthogonal)信號在許多地方被廣泛應用於感測或信號處理,包括像是全球定位系統(Global Positioning System,GPS)、分頻技術、相位感測、超音波、都卜勒量測以及定位感測等等應用。應用正交信號的感測裝置例如包括有磁性尺、光學尺、雷射干涉儀、旋轉編碼器等等,這些感測裝置可利用正交信號進行距離感測,例如利用光柵干涉產生正交信號,或者利用光學波長干涉產生正交信號,透過對正交信號的相位計算、累加或分析,可以轉換為長度的量測。對於感測裝置所輸出的交流信號進行校正,係為本領域之重要課題。 Orthogonal signals are widely used in many places for sensing or signal processing, including, for example, Global Positioning System (GPS), crossover technology, phase sensing, ultrasonic, Doppler measurement, and Positioning sensing and other applications. The sensing device to which the orthogonal signal is applied includes, for example, a magnetic ruler, an optical scale, a laser interferometer, a rotary encoder, etc., which can perform distance sensing using orthogonal signals, for example, generating orthogonal signals by grating interference. Or use optical wavelength interference to generate orthogonal signals, which can be converted into length measurements by phase calculation, accumulation or analysis of orthogonal signals. Correction of the AC signal output by the sensing device is an important issue in the art.

本發明是有關於振幅校正電路及其應用的信號校正電路。 The present invention is a signal correction circuit related to an amplitude correction circuit and its application.

根據本發明之一實施例,提出一種振幅校正電路,振幅校正電路包括相移電路、平均電路、以及放大電路。相移電路根據多個輸入信號產生多個相移輸出信號,這些相移輸出信號包括M個第一相移信號以及M個第二相移信號,M個第一相移信號之間具有相位差△φ,M個第二相移信號之間具有相位差△φ,M個第一相移信號與M個第二相移信號極性相反,其中M為正整數。平均電路用以根據這些輸入信號以及這些相移輸出信號的加權總和產生振幅增益,平均電路以單極性電源供電。放大電路根據振幅增益調整這些輸入信號的振幅,產生多個校正後信號。 According to an embodiment of the present invention, an amplitude correction circuit is provided. The amplitude correction circuit includes a phase shift circuit, an averaging circuit, and an amplifying circuit. The phase shift circuit generates a plurality of phase shift output signals according to the plurality of input signals, the phase shift output signals including M first phase shift signals and M second phase shift signals, and the phase difference between the M first phase shift signals Δφ, the M second phase shift signals have a phase difference Δφ, and the M first phase shift signals are opposite in polarity to the M second phase shift signals, wherein M is a positive integer. The averaging circuit is operative to generate an amplitude gain based on the weighted sum of the input signals and the phase shifted output signals, the averaging circuit being powered by a unipolar power supply. The amplifying circuit adjusts the amplitudes of the input signals according to the amplitude gain to generate a plurality of corrected signals.

根據本發明之另一實施例,提出一種信號校正電路,信號校正電路包括偏壓校正電路以及振幅校正電路。偏壓校正電路包括偏壓校正相移電路、偏壓校正平均電路以及減法電路。偏壓校正相移電路根據多個感測輸入信號,產生多個偏壓校正相移輸出信號,這些偏壓校正相移輸出信號包括N個第一偏壓校正相移信號,N個第一偏壓校正相移信號之間具有偏壓校正相位差△φ1,其中N為正整數。偏壓校正平均電路用以根據這些感測輸入信號以及這些偏壓校正相移輸出信號的加權總和產生平均直流偏壓。減法電路用以從這些感測輸入信號減去平均直流偏壓,以產生多個輸入信號。振幅校正電路包括相移電路、平均電路、以及放大電路。相移電路根據這些輸入信號產生多個相移輸出信號,這些相移輸出信號包括M個第一相移信號以及M個第 二相移信號,M個第一相移信號之間具有相位差△φ,M個第二相移信號之間具有相位差△φ,M個第一相移信號與M個第二相移信號極性相反,其中M為正整數。平均電路用以根據這些輸入信號以及這些相移輸出信號的加權總和產生振幅增益,平均電路以單極性電源供電。放大電路根據振幅增益調整這些輸入信號的振幅,產生多個校正後信號。 In accordance with another embodiment of the present invention, a signal correction circuit is provided that includes a bias correction circuit and an amplitude correction circuit. The bias correction circuit includes a bias correction phase shift circuit, a bias correction averaging circuit, and a subtraction circuit. The bias correction phase shift circuit generates a plurality of bias correction phase shift output signals according to the plurality of sense input signals, the bias correction phase shift output signals comprising N first bias correction phase shift signals, N first offsets The pressure correction phase shift signal has a bias correction phase difference Δφ1 between them, where N is a positive integer. A bias correction averaging circuit is operative to generate an average DC bias based on the sensed input signals and the weighted sum of the bias corrected phase shifted output signals. A subtraction circuit is used to subtract the average DC bias from the sensed input signals to produce a plurality of input signals. The amplitude correction circuit includes a phase shift circuit, an averaging circuit, and an amplifying circuit. A phase shifting circuit generates a plurality of phase shifted output signals based on the input signals, the phase shifted output signals including M first phase shifted signals and M first The two phase shift signals have a phase difference Δφ between the M first phase shift signals, and have a phase difference Δφ between the M second phase shift signals, M first phase shift signals and M second phase shift signals The opposite polarity, where M is a positive integer. The averaging circuit is operative to generate an amplitude gain based on the weighted sum of the input signals and the phase shifted output signals, the averaging circuit being powered by a unipolar power supply. The amplifying circuit adjusts the amplitudes of the input signals according to the amplitude gain to generate a plurality of corrected signals.

為了對本發明之上述及其他方面有更佳的瞭解,下文特舉多個實施例,並配合所附圖式,作詳細說明如下: In order to better understand the above and other aspects of the present invention, various embodiments are described below, and in conjunction with the drawings, the detailed description is as follows:

1‧‧‧信號校正電路 1‧‧‧Signal Correction Circuit

2‧‧‧偏壓校正電路 2‧‧‧ bias correction circuit

21‧‧‧偏壓校正相移電路 21‧‧‧ bias correction phase shift circuit

22‧‧‧偏壓校正平均電路 22‧‧‧ bias correction averaging circuit

23‧‧‧減法電路 23‧‧‧Subtraction circuit

3‧‧‧振幅校正電路 3‧‧‧Amplitude correction circuit

31‧‧‧相移電路 31‧‧‧ Phase shift circuit

32、32a、32b、32c‧‧‧平均電路 32, 32a, 32b, 32c‧‧‧ averaging circuit

33‧‧‧放大電路 33‧‧‧Amplification circuit

A‧‧‧第一輸入信號 A‧‧‧first input signal

A’‧‧‧第三輸入信號 A’‧‧‧ third input signal

B‧‧‧第二輸入信號 B‧‧‧second input signal

B’‧‧‧第四輸入信號 B’‧‧‧ fourth input signal

f1~fN‧‧‧第一偏壓校正相移信號 f 1 ~f N ‧‧‧First bias correction phase shift signal

f1_1~f1_M‧‧‧第一相移信號 f 1_1 ~f 1_M ‧‧‧First phase shift signal

f2_1~f2_M‧‧‧第二相移信號 f 2_1 ~f 2_M ‧‧‧Second phase shift signal

ps‧‧‧相移輸出信號 Ps‧‧‧ phase shift output signal

ps1‧‧‧偏壓校正相移輸出信號 Ps1‧‧‧bias corrected phase shift output signal

OP_22、OP_23、OP_32、OP_33、OP_321、OP_324‧‧‧運算放大器 OP_22, OP_23, OP_32, OP_33, OP_321, OP_324‧‧‧Operational Amplifier

Rf_22、Rf_32‧‧‧回授電阻 Rf_22, Rf_32‧‧‧ feedback resistor

Vdc‧‧‧平均直流偏壓 V dc ‧‧‧ average DC bias

Vgain‧‧‧振幅增益 V gain ‧‧‧amplitude gain

Vref1、Vref2、Vref3‧‧‧參考電壓 V ref1 , V ref2 , V ref3 ‧‧‧reference voltage

x‧‧‧感測輸入信號 x‧‧‧Sensing input signal

y‧‧‧輸入信號 y‧‧‧Input signal

z‧‧‧校正後信號 Z‧‧‧corrected signal

R1~R4、Rc1~Rc20、Rc1’~Rc20’、Rs1~Rs20、Rs1’~Rs20’‧‧‧電阻 R 1 ~ R 4 , R c1 ~ R c20 , R c1 '~ R c20 ', R s1 ~ R s20 , R s1 '~R s20 '‧‧‧ resistance

Ri、Rv1~Rv11‧‧‧輸入電阻 Ri, R v1 ~ R v11 ‧‧‧ input resistance

R1_1~R1_M‧‧‧第一輸入電阻 R 1_1 ~R 1_M ‧‧‧First input resistance

R2_1~R2_M‧‧‧第二輸入電阻 R 2_1 ~R 2_M ‧‧‧second input resistance

T1‧‧‧電晶體 T1‧‧‧O crystal

Vc1~Vc19、Vc1’~Vc19’、Vs1~Vs19、Vs1’~Vs19’‧‧‧相移信號 V c1 ~V c19 , V c1 '~V c19 ', V s1 ~V s19 , V s1 '~V s19 '‧‧‧ phase shift signal

第1圖繪示依照本發明一實施例的信號校正電路的方塊圖。 1 is a block diagram of a signal correction circuit in accordance with an embodiment of the present invention.

第2圖繪示依照本發明一實施例的偏壓校正電路的方塊圖。 2 is a block diagram of a bias correction circuit in accordance with an embodiment of the present invention.

第3圖繪示依照本發明一實施例的振幅校正電路的方塊圖。 3 is a block diagram of an amplitude correction circuit in accordance with an embodiment of the present invention.

第4A圖~第4D圖繪示多個範例的電阻鏈結構圖。 4A to 4D are diagrams showing a plurality of example resistor chain structures.

第5圖繪示依照本發明一實施例的偏壓校正平均電路的電路圖。 FIG. 5 is a circuit diagram of a bias correction averaging circuit in accordance with an embodiment of the present invention.

第6圖繪示依照本發明一實施例的減法電路的電路圖。 FIG. 6 is a circuit diagram of a subtraction circuit in accordance with an embodiment of the present invention.

第7圖繪示以單極性電源供電的一範例平均電路的執行效果示意圖。 Figure 7 is a diagram showing the execution effect of an exemplary averaging circuit powered by a unipolar power supply.

第8A圖~第8C圖繪示依照本發明多個實施例的平均電路的電路圖。 8A to 8C are circuit diagrams showing an averaging circuit in accordance with various embodiments of the present invention.

第9A圖及第9B圖繪示使用4個電阻鏈以及8個電阻鏈所對應的範例平均電路輸出結果示意圖。 9A and 9B are schematic diagrams showing an example average circuit output result corresponding to four resistor chains and eight resistor chains.

第10圖繪示依照本發明一實施例的放大電路的電路圖。 FIG. 10 is a circuit diagram of an amplifying circuit in accordance with an embodiment of the present invention.

第11圖繪示依照本發明一實施例的信號校正電路的方塊圖。 11 is a block diagram of a signal correction circuit in accordance with an embodiment of the present invention.

第12A圖~第12G圖繪示依照本發明一實施例的信號校正電路於各個節點的信號波形圖。 12A to 12G are diagrams showing signal waveforms of signal correction circuits at respective nodes in accordance with an embodiment of the present invention.

感測裝置在感測過程中,由於環境或裝置的非理想性,可能造成正交信號的誤差變化。舉例而言,由於存在著玻璃表面平整度、組裝誤差、環境污染等不可控制的因素,造成正交信號的直流偏壓(Offset)以及振幅(Amplitude)的誤差變化,這些變化可能造成工具機控制器的位移計算誤差,無法提供精確定位。為使得感測裝置(例如光學尺)輸出的正交信號可以符合工具機控制器要求的準確度範圍,本揭露提出一種信號校正電路,用以校正信號的偏壓與振幅。 During the sensing process, the sensing device may cause an error variation of the quadrature signal due to the non-ideality of the environment or device. For example, due to uncontrollable factors such as glass surface flatness, assembly error, environmental pollution, etc., the DC offset (Offset) and amplitude (Amplitude) error of the quadrature signal may be changed. These changes may cause machine tool control. The displacement calculation error of the device does not provide accurate positioning. In order to make the orthogonal signal output by the sensing device (for example, the optical scale) conform to the accuracy range required by the machine tool controller, the present disclosure proposes a signal correction circuit for correcting the bias voltage and amplitude of the signal.

第1圖繪示依照本發明一實施例的信號校正電路的方塊圖。信號校正電路1包括偏壓校正電路2以及振幅校正電路3。多個感測輸入信號x例如來自於一感測裝置,多個感測輸入信號x經過偏壓校正電路2之後可以消除直流偏壓,而產生多個輸入信號y,多個輸入信號y的平均直流偏壓值例如為0V。接著,振幅校正電路3校正多個輸入信號y的振幅,以產生多個校正後信號z,多個校正後信號z的振幅例如可維持固定值。 1 is a block diagram of a signal correction circuit in accordance with an embodiment of the present invention. The signal correction circuit 1 includes a bias correction circuit 2 and an amplitude correction circuit 3. The plurality of sensing input signals x are derived, for example, from a sensing device. After the plurality of sensing input signals x pass through the bias correction circuit 2, the DC bias voltage can be eliminated to generate a plurality of input signals y, and the average of the plurality of input signals y. The DC bias value is, for example, 0V. Next, the amplitude correction circuit 3 corrects the amplitudes of the plurality of input signals y to generate a plurality of corrected signals z, and the amplitudes of the plurality of corrected signals z can be maintained at a fixed value, for example.

第2圖繪示依照本發明一實施例的偏壓校正電路的方塊圖。偏壓校正電路2包括偏壓校正相移電路21、偏壓校正平 均電路22、以及減法電路23。偏壓校正相移電路21根據多個感測輸入信號x,產生多個偏壓校正相移輸出信號ps1,偏壓校正相移輸出信號ps1包括N個第一偏壓校正相移信號f1~fN,N個第一偏壓校正相移信號f1~fN之間具有一偏壓校正相位差△φ1,其中N為正整數。偏壓校正平均電路22根據多個感測輸入信號x以及多個偏壓校正相移輸出信號ps1的加權總和產生平均直流偏壓Vdc,偏壓校正平均電路22以雙極性電源供電。減法電路23從多個感測輸入信號x減去平均直流偏壓Vdc以產生多個輸入信號y。其中45°(N+1)×(△φ1)135°,在一實施例中,(N+1)×(△φ1)=90°。 2 is a block diagram of a bias correction circuit in accordance with an embodiment of the present invention. The bias correction circuit 2 includes a bias correction phase shift circuit 21, a bias correction averaging circuit 22, and a subtraction circuit 23. The bias correction phase shift circuit 21 generates a plurality of bias correction phase shift output signals ps1 based on the plurality of sense input signals x, and the bias correction phase shift output signal ps1 includes N first bias correction phase shift signals f 1 ~ f N , N first bias correction phase shift signals f 1 ~ f N have a bias correction phase difference Δφ1, where N is a positive integer. The average bias correction circuit 22 a weighted sum of the phase shifted output signal ps1 is generated in accordance with the average DC bias voltage V dc sensing a plurality of input signals x and a plurality of bias correction, the correction of the averaging circuit 22 to bias bipolar supply. The subtraction circuit 23 subtracts the average DC bias voltage V dc input signals from a plurality of sensing to produce a plurality of input signals x y. Of which 45° (N+1)×(△φ1) 135°, in one embodiment, (N+1)×(Δφ1)=90°.

第3圖繪示依照本發明一實施例的振幅校正電路的方塊圖。振幅校正電路3包括相移電路31、平均電路32、以及放大電路33。相移電路31根據多個輸入信號y,產生多個相移輸出信號ps,這些相移輸出信號ps包括M個第一相移信號f1_1~f1_M以及M個第二相移信號f2_1~f2_M,M個第一相移信號f1_1~f1_M之間具有相位差△φ,M個第二相移信號f2_1~f2_M之間具有相位差△φ,M個第一相移信號f1_1~f1_M與M個第二相移信號f2_1~f2_M極性相反,其中M為正整數。平均電路32根據多個輸入信號y以及多個相移輸出信號ps的加權總和產生振幅增益Vgain,平均電路32以單極性電源供電。放大電路33根據振幅增益Vgain調整多個輸入信號y的振幅,以產生多個校正後信號z。其中45°(M+1)×(△φ)135°,在一實施例中,(M+1)×(△φ)=90°。 3 is a block diagram of an amplitude correction circuit in accordance with an embodiment of the present invention. The amplitude correction circuit 3 includes a phase shift circuit 31, an averaging circuit 32, and an amplification circuit 33. The phase shift circuit 31 generates a plurality of phase shift output signals ps according to the plurality of input signals y, and the phase shift output signals ps include M first phase shift signals f 1_1 ~ f 1_M and M second phase shift signals f 2_1 ~ f 2_M , M first phase shift signals f 1_1 ~ f 1_M have a phase difference Δφ, and M second phase shift signals f 2_1 ~ f 2_M have a phase difference Δφ, M first phase shift signals f 1_1 ~f 1_M is opposite in polarity to the M second phase shift signals f 2_1 ~f 2_M , where M is a positive integer. The averaging circuit 32 generates a plurality of amplitude gain V gain according to a plurality of input signals and a weighted sum of y phase shifted output signal ps, the averaging circuit 32 is unipolar power supply. The amplifying circuit 33 adjusts the amplitudes of the plurality of input signals y according to the amplitude gain V gain to generate a plurality of corrected signals z. Of which 45° (M+1)×(△φ) 135°, in one embodiment, (M+1) × (Δφ) = 90°.

本發明並不限定信號校正電路1所接收的信號,例如可以是由感測裝置所輸出的2個正交信號或是4個正交信號。為方便說明起見,本揭露以下的實施例以4個正交信號作為例子說明,4個正交信號分別是第一輸入信號A、第二輸入信號B、第三輸入信號A’、以及第四輸入信號B’,並使用不同的小寫字母代表不同信號的4個正交信號成份。舉例而言,感測輸入信號x包括第一輸入信號Ax、第二輸入信號Bx、第三輸入信號Ax’、以及第四輸入信號Bx’,第一至第四輸入信號之間依序具有一信號相位差α,其中45°α135°,(N+1)×(△φ1)=α,(M+1)×(△φ)=α。以下的實施例說明,以信號相位差α為90°作為例子,然而此僅為示例性說明,本發明並不限定於信號相位差等於90°。當α=90°,將輸入信號以弦波表示,第一至第四輸入信號可依序表示為:Ax=V dc1+V ac1 sin θ、Bx=V dc2+V ac2 sin(θ+90°)、Ax'=V dc3+V ac3 sin(θ+180°)、Bx'=V dc4+V ac4 sin(θ+270°)。其中Vdc1~Vdc4分別為第一至第四輸入信號的直流偏壓,Vac1~Vac4分別為第一至第四輸入信號的振幅,在理想狀況下,直流偏壓皆相同Vdc1=Vdc2=Vdc3=Vdc4,且振幅相同Vac1=Vac2=Vac3=Vac4。以業界使用的儀器作為範例,直流偏壓可以是Vdc1=Vdc2=Vdc3=Vdc4=2.5V,而第一輸入信號Ax的交流成分(sin θ)與第三輸入信號Ax’的交流成分(sin(θ+180°)=-sin θ)極性相反,第二輸入信號Bx的交流成分(sin(θ+90°)=cos θ)與第四輸入信號Bx’的交流成分(sin(θ+270°)=-cos θ)極性相反。實際情況中,第一至第四輸入信號的直流偏壓可能不相同且振幅可能不相 同,因此可使用本揭露的信號校正電路1以對於第一至第四輸入信號Ax、Bx、Ax’、Bx’進行校正,以下詳細說明偏壓校正電路2以及振幅校正電路3。 The present invention does not limit the signal received by the signal correction circuit 1, and may be, for example, two orthogonal signals or four orthogonal signals output by the sensing device. For convenience of description, the following embodiments illustrate four orthogonal signals, which are a first input signal A, a second input signal B, a third input signal A', and a fourth embodiment. Four input signals B', and use different lowercase letters to represent the four orthogonal signal components of the different signals. For example, the sensing input signal x includes a first input signal Ax, a second input signal Bx, a third input signal Ax', and a fourth input signal Bx', and the first to fourth input signals sequentially have one Signal phase difference α, of which 45° α 135°, (N+1)×(Δφ1)=α, (M+1)×(Δφ)=α. The following embodiment illustrates that the signal phase difference α is 90° as an example, but this is merely illustrative, and the present invention is not limited to the signal phase difference being equal to 90°. When α = 90°, the input signal is represented by a sine wave, and the first to fourth input signals can be expressed as: Ax = V dc 1 + V ac 1 sin θ, Bx = V dc 2 + V ac 2 sin( θ+90°), Ax '= V dc 3 + V ac 3 sin(θ+180°), Bx '= V dc 4 + V ac 4 sin(θ+270°). V dc1 ~V dc4 are the DC bias voltages of the first to fourth input signals, respectively, and V ac1 ~V ac4 are the amplitudes of the first to fourth input signals respectively. Under ideal conditions, the DC bias voltages are all the same V dc1 = V dc2 =V dc3 =V dc4 and the amplitude is the same V ac1 =V ac2 =V ac3 =V ac4 . Taking an instrument used in the industry as an example, the DC bias voltage may be V dc1 = V dc2 = V dc3 = V dc4 = 2.5V, and the alternating current component (sin θ) of the first input signal Ax is communicated with the third input signal Ax'. The composition (sin(θ+180°)=-sin θ) has opposite polarities, and the alternating component of the second input signal Bx (sin(θ+90°)=cos θ) and the alternating component of the fourth input signal Bx' (sin( θ+270°)=-cos θ) The opposite polarity. In actual situations, the DC bias voltages of the first to fourth input signals may be different and the amplitudes may be different, so the signal correction circuit 1 of the present disclosure may be used for the first to fourth input signals Ax, Bx, Ax', Bx' is corrected, and the bias correction circuit 2 and the amplitude correction circuit 3 will be described in detail below.

在實際應用中,某些工具機控制器在供給感測裝置電源之後,立即偵測感測裝置輸出的正交信號,以判定感測裝置是否正常工作。若正交信號超出工具機控制器可接受範圍,則認定感測裝置可能造成工具機控制系統存在風險,立即進入異常跳脫狀態,以維護工具機安全。 In practical applications, some power tool controllers detect the orthogonal signals output by the sensing device immediately after supplying power to the sensing device to determine whether the sensing device is working normally. If the orthogonal signal exceeds the acceptable range of the machine tool controller, it is determined that the sensing device may cause a risk to the machine tool control system, and immediately enters an abnormal trip state to maintain the safety of the machine tool.

在此情況下,正交信號校正電路並無法藉由累積數個週期的輸入信號資訊,進行輸入信號的偏壓與振幅校正,必需在接收第一~第四輸入信號Ax、Bx、Ax’、Bx’時,立刻求得輸入信號的偏壓與振幅資訊,作為修正的依據。 In this case, the quadrature signal correction circuit cannot perform the bias and amplitude correction of the input signal by accumulating the input signal information of several cycles, and must receive the first to fourth input signals Ax, Bx, Ax', At Bx', the bias and amplitude information of the input signal is immediately obtained as a basis for correction.

然而,第一~第四輸入信號Ax、Bx、Ax’、Bx’電壓訊號包含了相位(θ)、直流偏壓(Vdc)、交流振幅(Vac)三個影響因子,在感測裝置送電之後一小段時間(假設θ並無變化),從第一~第四輸入信號Ax、Bx、Ax’、Bx’電壓訊號並無法推估正確的直流偏壓與振幅資訊,對輸入信號進行偏壓與振幅校正,以獲得較正確的相位(θ)。但是若能去除相位(θ)的影響,就能從單一Ax、Bx、Ax’、Bx’電壓訊號獲得正確的直流偏壓與振幅資訊。 However, the first to fourth input signals Ax, Bx, Ax', Bx' voltage signals include three influence factors: phase (θ), DC bias voltage (V dc ), and AC amplitude (V ac ), in the sensing device. After a short period of time after power transmission (assuming θ does not change), the voltage signals from the first to fourth input signals Ax, Bx, Ax', Bx' cannot estimate the correct DC bias and amplitude information, and the input signal is biased. Pressure and amplitude correction to obtain a more correct phase (θ). However, if the effect of phase (θ) can be removed, the correct DC bias and amplitude information can be obtained from a single Ax, Bx, Ax', Bx' voltage signal.

以第一輸入信號Ax與第二輸入信號Bx為例,因為Ax與Bx之間存在一固定相位(例如90°),如果可以根據相移方法產生一系列介於Ax與Bx相位之間的電壓訊號,且該系列電壓訊 號的直流偏壓與振幅均與Ax與Bx電壓訊號有關,就能夠去除相位(θ)的影響,獲得正確的直流偏壓與振幅資訊,對輸入信號進行偏壓與振幅校正。 Taking the first input signal Ax and the second input signal Bx as an example, since there is a fixed phase (for example, 90°) between Ax and Bx, if a series of voltages between the Ax and Bx phases can be generated according to the phase shift method Signal, and the series of voltage The DC bias and amplitude are related to the Ax and Bx voltage signals, which can remove the influence of phase (θ), obtain correct DC bias and amplitude information, and perform bias and amplitude correction on the input signal.

偏壓校正相移電路21可以有多種實作方式,其中一實施例為使用電阻鏈,即多個串聯的電阻,而各個電阻的連接處可輸出偏壓校正相移輸出信號ps1。第4A圖~第4D圖繪示多個範例的電阻鏈結構圖,在這些電阻鏈例子中,電阻鏈兩端的信號具有相位差90°,而每個電阻鏈有10個串聯的電阻,以輸出9個相移信號,亦即在電阻鏈兩端信號的相位差被分成10等分,所輸出的每一個相移信號之間具有相位差=90°/10=9°。當然電阻鏈所使用的電阻數目並不限於此,例如亦可以使用6個電阻,使得每一個相移信號之間具有相位差=90°/6=15°,可視實際操作環境與設計需求決定使用的電阻數量。 The bias correction phase shift circuit 21 can be implemented in various ways. One embodiment uses a resistor chain, that is, a plurality of resistors connected in series, and the junction of the resistors can output a bias correction phase shift output signal ps1. 4A to 4D are diagrams showing a plurality of example resistor chain structures. In these resistor chain examples, the signals at both ends of the resistor chain have a phase difference of 90°, and each resistor chain has 10 series resistors for output. The nine phase-shifted signals, that is, the phase difference of the signals across the resistance chain are divided into 10 equal parts, and each of the phase-shifted signals output has a phase difference = 90°/10 = 9°. Of course, the number of resistors used in the resistor chain is not limited thereto. For example, six resistors may be used, so that each phase shift signal has a phase difference=90°/6=15°, which can be determined according to the actual operating environment and design requirements. The number of resistors.

以第4A圖作為例子說明,電阻鏈Chain1的左端耦接第一輸入信號Ax,右端耦接第二輸入信號Bx,為了簡化以下的計算說明,在不失一般性的情形下,此例中可假設第一輸入信號Ax與第二輸入信號Bx的振幅皆等於1,且直流偏壓為0V,即Ax=sin θ,Bx=cos θ。電阻鏈Chain1包括十個電阻Rs1~Rs10,輸出9個相移信號Vs1~Vs9。根據電阻分壓定理,可計算出第k個相移信號的電壓Vsk 其中R s =R s1+R s2+…+R s10R s,k =R s1+R s2+…+R sk k=1~9。接著可由三角函數計算公式,並代入對應的相位差△φ×k,計算出A sk 的值 進而可以求出Rs,k的值 Taking the example of FIG. 4A as an example, the left end of the resistance chain Chain1 is coupled to the first input signal Ax, and the right end is coupled to the second input signal Bx. In order to simplify the following calculations, in the case of no loss of generality, in this case, It is assumed that the amplitudes of the first input signal Ax and the second input signal Bx are both equal to 1, and the DC bias voltage is 0V, that is, Ax=sin θ, Bx=cos θ. The resistor chain Chain1 includes ten resistors R s1 ~ R s10 and outputs nine phase shift signals V s1 ~ V s9 . According to the resistance partial pressure theorem, the voltage V sk of the kth phase shift signal can be calculated as Where R s = R s 1 + R s 2 +...+ R s 10 , R s,k = R s 1 + R s 2 +...+ R sk , k =1~9. Then, the formula can be calculated by a trigonometric function, and the corresponding phase difference Δφ×k is substituted to calculate the value of A sk . Further , the value of R s,k can be obtained.

以下表一列出當△φ=9°時,各個電阻Rsk的比例關係,可依據此比例關係調整各個電阻值。 Table 1 below lists the proportional relationship of the respective resistors R sk when Δφ = 9°, and the respective resistance values can be adjusted according to the proportional relationship.

第4A圖當中的另一範例電阻鏈Chain5則是左端耦接第二輸入信號Bx=cos θ,右端耦接第三輸入信號Ax’=-sin θ,計算方式類似於上述的電阻鏈Chain1,電阻鏈Chain5包括十個電阻Rc1~Rc10,輸出9個相移信號Vc1~Vc9。根據電阻分壓定理,可計算出第k個相移信號的電壓V ck 其中R c =R c1+R c2+…+R c10R c,k =R c1+R c2+…+R ck k=1~9。接著可由三角函數計算公式,並代入對應的相位差△φ×k,計算出Ack的值 進而可以求出Rc,k的值 Another example of the resistor chain Chain5 in FIG. 4A is that the left end is coupled to the second input signal Bx=cos θ, and the right end is coupled to the third input signal Ax′=−sin θ, and the calculation manner is similar to the above-mentioned resistance chain Chain1, and the resistance is similar. Chain Chain 5 includes ten resistors R c1 ~ R c10 and outputs nine phase shift signals V c1 ~ V c9 . According to the resistance partial pressure theorem, the voltage V ck of the kth phase shift signal can be calculated as Where R c = R c 1 + R c 2 +...+ R c 10 , R c,k = R c 1 + R c 2 +...+ R ck , k =1~9. Then, the formula can be calculated by a trigonometric function and substituted into the corresponding phase difference Δφ×k to calculate the value of A ck . Further , the value of R c,k can be obtained.

第4B圖的電阻鏈Chain2是左端耦接第三輸入信號Ax’,右端耦接第四輸入信號Bx’,而電阻鏈Chain6是左端耦接第四輸入信號Bx’,右端耦接第一輸入信號Ax。亦即在理想情況下,電阻鏈Chain1輸出的相移信號與電阻鏈Chain2輸出的相移信號應是數值相同而極性相反,電阻鏈Chain5輸出的相移信號與電阻鏈Chain6輸出的相移信號亦應是數值相同而極性相反。然而,導因於感測裝置以及受測環境的真實不可控制因素影響,實際上感測裝置輸出的四個信號並非理想,因此電阻鏈Chain1與電阻鏈Chain2輸出的相移信號近似於極性相反,然而數值不完全相同,類似地,電阻鏈Chain5與電阻鏈Chain6輸出的相移信號亦近似於極性相反,數值不完全相同。 The resistor chain Chain2 of FIG. 4B is coupled to the third input signal Ax' at the left end, and coupled to the fourth input signal Bx' at the right end, and the fourth input signal Bx' is coupled to the left end of the resistor chain Chain6, and the first input signal is coupled to the right end of the resistor chain Chain6. Ax. That is to say, in an ideal situation, the phase shift signal outputted by the resistor chain Chain1 and the phase shift signal output by the resistor chain Chain2 should be of the same value and opposite in polarity, and the phase shift signal outputted by the resistor chain Chain5 and the phase shift signal output by the resistor chain Chain6 are also It should be the same value and the opposite polarity. However, due to the influence of the sensing device and the real uncontrollable factors of the measured environment, the four signals output by the sensing device are not ideal. Therefore, the phase shift signals output by the resistance chain Chain1 and the resistance chain Chain2 are approximately opposite in polarity. However, the values are not exactly the same. Similarly, the phase shift signals output by the resistor chain Chain5 and the resistor chain Chain6 are similar to the opposite polarity, and the values are not completely the same.

在一實施例中,偏壓校正相移電路21可以使用如第4A圖以及第4B圖所繪示的電阻鏈Chain1、Chain2、Chain5、Chain6共四個電阻鏈,因此偏壓校正相移電路21可以產生總共9×4=36個偏壓校正相移輸出信號ps1,加上原始的第一至第四輸入信號Ax、Bx、Ax’、Bx’,偏壓校正平均電路22可計算這40個信號的平均值,以求得第一至第四輸入信號Ax、Bx、Ax’、Bx’所對應弦波的平均直流偏壓。值得注意的是,依據式子(2)各個相移信號Vsk的振幅Ask並不相同,因此此處所指的計算這40個信號的平 均值,實則為40個信號的加權總和。亦即,需先將各個相移信號Vsk的振幅Ask藉由適當的權重係數調整為相等,接著計算加權總和。 In an embodiment, the bias correction phase shift circuit 21 can use four resistor chains of the resistor chains Chain1, Chain2, Chain5, and Chain6 as shown in FIGS. 4A and 4B, and thus the bias correction phase shift circuit 21 A total of 9 × 4 = 36 bias correction phase shift output signals ps1 can be generated, plus the original first to fourth input signals Ax, Bx, Ax', Bx', and the bias correction averaging circuit 22 can calculate these 40 The average of the signals is used to determine the average DC bias of the sine waves corresponding to the first to fourth input signals Ax, Bx, Ax', Bx'. It is worth noting that the amplitudes A sk of the respective phase shift signals V sk according to the equation (2) are not the same, so the average value of the 40 signals calculated here is actually the weighted sum of 40 signals. That is, the amplitude A sk of each phase shift signal V sk needs to be first adjusted by an appropriate weight coefficient, and then the weighted sum is calculated.

一種可計算加權總和的電路實現方式可見第5圖。其繪示依照本發明一實施例的偏壓校正平均電路的電路圖。偏壓校正平均電路22可計算40個信號的加權總和,而為了簡化圖示及方便說明起見,第5圖繪示的範例偏壓校正平均電路22係針對電阻鏈Chain1輸出的9個相移信號以及電阻鏈Chain1兩端的第一輸入信號Ax與第二輸入信號Bx,計算11個信號的加權總和。 A circuit implementation that calculates the weighted sum can be seen in Figure 5. A circuit diagram of a bias correction averaging circuit in accordance with an embodiment of the present invention is shown. The bias correction averaging circuit 22 can calculate the weighted sum of 40 signals, and for simplicity of illustration and convenience of explanation, the example bias correction averaging circuit 22 shown in FIG. 5 is for the phase shift of the resistance chain Chain1 output. The signal and the first input signal Ax and the second input signal Bx across the resistance chain Chain1 calculate a weighted sum of the 11 signals.

偏壓校正平均電路22包括運算放大器OP_22、回授電阻Rf_22、輸入電阻Rv1~Rv11。運算放大器OP_22的非反向輸入端耦接地電位GND,運算放大器OP_22以雙極性電源供電,即運算放大器OP_22的正供應電源接到+VDD、負供應電源接到-VDD。回授電阻Rf_22耦接運算放大器OP_22的輸出端及反向輸入端之間。輸入電阻Rv1~Rv11耦接運算放大器OP_22的反向輸入端,其中輸入電阻Rv1耦接第一輸入信號Ax、輸入電阻Rv11耦接第二輸入信號Bx、輸入電阻Rv2~Rv10耦接由電阻鏈Chain1輸出的9個相移信號Vs1~Vs9。如前所述,各個相移信號Vsk的振幅Ask並不相同,因此可依據振幅Ask的比例關係,調整輸入電阻Rv2~Rv10的電阻值比例關係。將此偏壓校正平均電路22接收的輸入電壓依序表示為V1~V11(V1=Ax,V2=Vs1,V3=Vs2,…, V10=Vs9,V11=Bx),則偏壓校正平均電路22產生的平均直流偏壓Vdc可表示為以下表二繪示當△φ=9°時,各個輸入電阻Rvk與回授電阻Rf_22的比例關係。 The bias correction averaging circuit 22 includes an operational amplifier OP_22, a feedback resistor Rf_22, and input resistors R v1 to R v11 . The non-inverting input of the operational amplifier OP_22 is coupled to the ground potential GND, and the operational amplifier OP_22 is powered by a bipolar power supply, that is, the positive supply of the operational amplifier OP_22 is connected to +V DD and the negative supply is connected to -V DD . The feedback resistor Rf_22 is coupled between the output terminal of the operational amplifier OP_22 and the inverting input terminal. The input resistor R v1 ~ R v11 is coupled to the inverting input terminal of the operational amplifier OP_22, wherein the input resistor R v1 is coupled to the first input signal Ax, the input resistor R v11 is coupled to the second input signal Bx, and the input resistor R v2 ~ R v10 The nine phase shift signals V s1 ~V s9 output by the resistor chain Chain1 are coupled. As described above, the amplitudes A sk of the respective phase shift signals V sk are not the same, and therefore the proportional relationship of the resistance values of the input resistors R v2 to R v10 can be adjusted in accordance with the proportional relationship of the amplitudes A sk . The input voltage received by the bias correction averaging circuit 22 is sequentially expressed as V 1 ~V 11 (V 1 =Ax, V 2 =V s1 , V 3 =V s2 ,..., V 10 =V s9 , V 11 = Bx), the average DC bias voltage V dc generated by the bias correction averaging circuit 22 can be expressed as Table 2 below shows the proportional relationship between the input resistance R vk and the feedback resistor Rf_22 when Δφ = 9°.

第5圖所繪示的僅是一種偏壓校正平均電路22的範例,當然本發明並不限於此,實際使用的電阻數量以及電阻值比例,可以對應於前一級的偏壓校正相移電路21所使用的電阻鏈而對應調整,而偏壓校正平均電路22也可以不使用運算放大器,只要是能夠執行計算加權總和的電路即可,例如亦可以透過數位電路的加法器以及運算邏輯電路實現。此外,在前述的實施例中,偏壓校正平均電路22是以雙極性電源供電,於電路實作中,偏壓校正平均電路22也可以採用單極性電源供電,例如可以對於偏壓校正相移輸出信號ps1施加一個額外的直流偏壓,使得偏壓校正相移輸出信號ps1的電壓振幅範圍完整落在單極性電源供電的電壓範圍內。 FIG. 5 is only an example of a bias correction averaging circuit 22. Of course, the present invention is not limited thereto, and the actual number of resistors and the ratio of resistance values may correspond to the bias correction phase shift circuit 21 of the previous stage. The resistor chain to be used is adjusted correspondingly, and the bias correction averaging circuit 22 may not use an operational amplifier, and may be a circuit capable of performing a calculation of a weighted sum. For example, it may be implemented by an adder of a digital circuit and an arithmetic logic circuit. In addition, in the foregoing embodiment, the bias correction averaging circuit 22 is powered by a bipolar power supply. In the circuit implementation, the bias correction averaging circuit 22 can also be powered by a unipolar power supply, for example, phase shift can be corrected for bias voltage. The output signal ps1 applies an additional DC bias such that the voltage amplitude range of the bias corrected phase shifted output signal ps1 falls entirely within the voltage range of the unipolar power supply.

在上述的實施例中,偏壓校正相移電路21包括數個 電阻鏈。在另一種實施例中,偏壓校正相移電路21亦可以不包括任何電阻鏈,亦即,偏壓校正相移電路21可以將感測輸入信號x直接輸出,接著由偏壓校正平均電路22計算第一至第四輸入信號Ax、Bx、Ax’、Bx’的加權總和,以此電路實作方式亦可以求得平均直流偏壓VdcIn the above embodiment, the bias correction phase shift circuit 21 includes a plurality of resistor chains. In another embodiment, the bias correction phase shift circuit 21 may not include any resistance chain, that is, the bias correction phase shift circuit 21 may directly output the sensing input signal x, and then the bias correction averaging circuit 22 The weighted sum of the first to fourth input signals Ax, Bx, Ax', Bx' is calculated, and the average DC bias voltage V dc can also be obtained in this circuit implementation.

偏壓校正平均電路22計算出平均直流偏壓Vdc,接著可透過減法電路23,將感測輸入信號x減去平均直流偏壓Vdc,以得到輸入信號y,輸入信號y即為已消除偏壓誤差的信號。第6圖繪示依照本發明一實施例的減法電路的電路圖。為簡化圖示,於第6圖當中的減法電路23僅繪示對於其中一個輸入信號成份執行減法運算,此電路例如可藉由複製相同的電路修改為對於四個輸入信號執行減法運算的電路。減法電路23包括運算放大器OP_23以及電阻R1~R4,運算放大器OP_23可由雙極性電源供電,減法電路23接收的電壓信號分別為V11及V12,輸出的信號VOut可表示為,藉由設定適當的電阻R1~R4,V11耦接平均直流偏壓Vdc,V12耦接第一輸入信號Ax,即可以得到輸出信號VOut=Ax-Vdc。在另一實施例中,減法電路23可以將感測輸入信號x的四個成份Ax、Bx、Ax’、Bx’.分別減去平均直流偏壓Vdc,以得到輸入信號y。減法電路23亦可透過其他的類比電路元件以其他組合方式實現,或是亦可透過數位電路的加法器或減法器實現。 The bias correction averaging circuit 22 calculates the average DC bias voltage V dc , and then subtracts the average DC bias voltage V dc from the sensed input signal x through the subtraction circuit 23 to obtain the input signal y, and the input signal y is eliminated. The signal of the bias error. FIG. 6 is a circuit diagram of a subtraction circuit in accordance with an embodiment of the present invention. To simplify the illustration, the subtraction circuit 23 in Fig. 6 only shows a subtraction operation for one of the input signal components, and the circuit can be modified, for example, by copying the same circuit to perform a subtraction operation on the four input signals. The subtraction circuit 23 includes an operational amplifier OP_23 and resistors R 1 to R 4 . The operational amplifier OP_23 can be powered by a bipolar power supply. The voltage signals received by the subtraction circuit 23 are V 11 and V 12 , respectively, and the output signal V Out can be expressed as By setting the appropriate resistors R 1 to R 4 , V 11 is coupled to the average DC bias voltage V dc , and V 12 is coupled to the first input signal Ax to obtain an output signal V Out =Ax-V dc . In another embodiment, the subtraction circuit 23 can sense the four components Ax, Bx, Ax', Bx' of the input signal x. The average DC bias voltage V dc is subtracted to obtain the input signal y. The subtraction circuit 23 can also be implemented in other combinations by other analog circuit elements, or can also be implemented by an adder or a subtractor of the digital circuit.

在經過偏壓校正電路2處理之後,輸入信號y已消除直流偏壓,接著以振幅校正電路3校正輸入信號y的振幅。承接上述實施例,輸入信號y包括:第一輸入信號Ay、第二輸入信號By、第三輸入信號Ay’、以及第四輸入信號By’,而這些輸入信號Ay、By、Ay’、By’已消除直流偏壓。以下說明振幅校正電路3的組成元件以及操作方式。 After being processed by the bias correction circuit 2, the input signal y has eliminated the DC bias, and then the amplitude correction circuit 3 corrects the amplitude of the input signal y. In accordance with the above embodiment, the input signal y includes: a first input signal Ay, a second input signal By, a third input signal Ay', and a fourth input signal By', and these input signals Ay, By, Ay', By' The DC bias has been eliminated. The constituent elements and operation modes of the amplitude correction circuit 3 will be described below.

振幅校正電路3包括相移電路31、平均電路32、以及放大電路33。偏壓校正電路2當中的偏壓校正相移電路21以及振幅校正電路3當中的相移電路31可以使用相同或類似的電路結構,兩者的操作原理類似,相移電路31亦可以使用電阻鏈以產生多個相移輸出信號ps。 The amplitude correction circuit 3 includes a phase shift circuit 31, an averaging circuit 32, and an amplification circuit 33. The phase correction circuit 21 among the bias correction phase shift circuit 21 and the amplitude correction circuit 3 in the bias correction circuit 2 can use the same or similar circuit structure, and the operation principle of the two is similar, and the phase shift circuit 31 can also use the resistance chain. To generate a plurality of phase shifted output signals ps.

而對於振幅校正電路3當中的平均電路32,其目的是要計算出多個信號的瞬間平均振幅,以對信號進行校正,若是使用如同偏壓校正電路2當中的偏壓校正平均電路22,則會由於第一至第四輸入信號Ay、By、Ay’、By’已消除直流偏壓,而使得計算出來的平均值為0V。因此,在一實施例中,平均電路32是以單極性電源供電,以針對信號的正電壓部分計算平均值,以求得平均的振幅。 For the averaging circuit 32 in the amplitude correction circuit 3, the purpose is to calculate the instantaneous average amplitude of a plurality of signals to correct the signal. If the bias correction averaging circuit 22 is used as in the bias correction circuit 2, Since the first to fourth input signals Ay, By, Ay', and By' have eliminated the DC bias, the calculated average value is 0V. Thus, in one embodiment, the averaging circuit 32 is powered by a unipolar power supply to calculate an average value for the positive voltage portion of the signal to obtain an average amplitude.

第7圖繪示以單極性電源供電的一範例平均電路的執行效果示意圖。第7圖左上的波形圖顯示一弦波信號Y1(t),右上的Y1’(t)波形圖顯示以單極性電源供電的平均電路對此弦波信號Y1(t)的執行效果,由於此實施例中的平均電路32採用反向放 大電路,右上的波形圖(輸出信號Y1’(t))會與左上的波形圖(輸入信號Y1(t))極性相反。平均電路32會將右上的波形圖中弦波信號Y1’(t)電壓小於0的部分忽略,所計算得到的是弦波信號Y1’(t)在正電壓部分的平均值。然而,以此方式計算,可以發現原弦波信號Y1(t)有一半時間的資訊消失,因此計算出來的平均值可能不夠精確。 Figure 7 is a diagram showing the execution effect of an exemplary averaging circuit powered by a unipolar power supply. The waveform on the upper left of Figure 7 shows a sine wave signal Y 1 (t), and the upper right Y 1 '(t) waveform shows the effect of the sine wave signal Y 1 (t) on the averaging circuit powered by a unipolar power supply. Since the averaging circuit 32 in this embodiment employs an inverse amplifying circuit, the upper right waveform (output signal Y 1 '(t)) will be opposite in polarity to the upper left waveform (input signal Y 1 (t)). The averaging circuit 32 ignores the portion of the upper right waveform waveform in which the sine wave signal Y 1 '(t) voltage is less than 0, and calculates the average value of the sine wave signal Y 1 '(t) at the positive voltage portion. However, in this way, it can be found that half of the information of the original sine wave signal Y 1 (t) disappears, so the calculated average value may not be accurate enough.

第7圖左下的波形圖顯示兩個弦波信號Y1(t)及Y2(t),其中Y2(t)與Y1(t)極性相反,亦即當Y1(t)小於0V的時候,Y2(t)大於0V。第7圖右下的波形圖顯示以單極性電源供電的平均電路對這兩個弦波信號Y1(t)及Y2(t)的執行效果,由於此實施例中的平均電路32採用反向放大電路,右下的波形圖(輸出信號Y1’(t)及Y2’(t))會與左下的波形圖(輸入信號Y1(t)及Y2(t))極性相反。在右下的波形圖當中,由於當Y1’(t)小於0V時候,相關於弦波信號Y1’(t)的資訊可以從另一弦波信號Y2’(t)獲得,因此能夠保有弦波信號Y1(t)於全部時間的資訊,如此計算得到的平均值可以更加精確。 The waveform diagram at the bottom left of Figure 7 shows two sine wave signals Y 1 (t) and Y 2 (t), where Y 2 (t) is opposite in polarity to Y 1 (t), that is, when Y 1 (t) is less than 0V When Y 2 (t) is greater than 0V. The waveform diagram at the bottom right of Fig. 7 shows the effect of the averaging circuit powered by the unipolar power supply on the two sine wave signals Y 1 (t) and Y 2 (t), since the averaging circuit 32 in this embodiment uses the inverse To the amplifier circuit, the lower right waveform (output signals Y 1 '(t) and Y 2 '(t)) will be opposite in polarity to the lower left waveform (input signals Y 1 (t) and Y 2 (t)). In the lower right waveform diagram, since Y 1 '(t) is less than 0V, information related to the sine wave signal Y 1 '(t) can be obtained from another sine wave signal Y 2 '(t), The information of the sine wave signal Y 1 (t) is preserved at all times, and the average value thus calculated can be more accurate.

基於以上所述,在一實施例中,平均電路32以單極性電源供電,相移電路31所輸出的相移輸出信號ps可包括M個第一相移信號f1_1~f1_M以及M個第二相移信號f2_1~f2_M,且M個第一相移信號f1_1~f1_M與M個第二相移信號f2_1~f2_M極性相反,如此可以使得平均電路32所計算得到的振幅增益Vgain較為精確。M的數量可以視設計需求決定,以下敘述以M=9作為例子。 Based on the above, in an embodiment, the averaging circuit 32 is powered by a unipolar power supply, and the phase shift output signal ps output by the phase shift circuit 31 may include M first phase shift signals f 1_1 ~f 1_M and M The two phase shift signals f 2_1 ~f 2_M , and the M first phase shift signals f 1_1 ~f 1_M are opposite in polarity to the M second phase shift signals f 2_1 ~f 2_M , so that the amplitude calculated by the averaging circuit 32 can be made The gain V gain is more accurate. The number of M can be determined according to design requirements. The following description uses M=9 as an example.

當M=9時,相移電路31的實現方式可以參考第4A圖~第4D圖所繪示的電阻鏈Chain1~Chain8以及相關描述。舉例而言,相移電路31可以包括第4A圖的電阻鏈Chain1以及第4B圖的電阻鏈Chain2。電阻鏈Chain1包括10個串聯的電阻,左端耦接第一輸入信號Ay、右端耦接第二輸入信號By。電阻鏈Chain2包括10個串聯的電阻,左端耦接第三輸入信號Ay’、右端耦接第四輸入信號By’。由於第一輸入信號Ay與第三輸入信號Ay’極性相反,第二輸入信號By與第四輸入信號By’極性相反,因此由電阻鏈Chain1輸出的9個第一相移信號f1_1~f1_9與電阻鏈Chain2輸出的9個第二相移信號f2_1~f2_9極性相反。關於以電阻鏈產生具有相位差△φ=9°(90°/10)的相移信號,其相關計算在此不再重複贅述。 When M=9, the implementation of the phase shift circuit 31 can refer to the resistance chains Chain1~Chain8 and related descriptions shown in FIG. 4A to FIG. 4D. For example, the phase shift circuit 31 may include the resistance chain Chain1 of FIG. 4A and the resistance chain Chain2 of FIG. 4B. The resistor chain Chain1 includes 10 resistors connected in series, the left end is coupled to the first input signal Ay, and the right end is coupled to the second input signal By. The resistor chain Chain2 includes 10 resistors connected in series, the left end is coupled to the third input signal Ay', and the right end is coupled to the fourth input signal By'. Since the first input signal Ay is opposite in polarity to the third input signal Ay', the second input signal By is opposite in polarity to the fourth input signal By', so the nine first phase shift signals f 1_1 ~ f 1_9 output by the resistance chain Chain1 The nine second phase shift signals f 2_1 ~f 2_9 outputted by the resistor chain Chain2 are opposite in polarity. Regarding the phase shift signal having the phase difference Δφ=9° (90°/10) generated by the resistance chain, the correlation calculation will not be repeated here.

相移電路31可以有多種實施方式,只要能夠輸出包括極性相反的相移信號即可。除了前述使用電阻鏈Chain1及Chain2的實施例,在另一實施例中,相移電路31亦可以是包括第4A圖的電阻鏈Chain5以及第4B圖的電阻鏈Chain6,電阻鏈Chain5的兩端分別耦接第二輸入信號By以及第三輸入信號Ay’,電阻鏈Chain6的兩端分別耦接第四輸入信號By’以及第一輸入信號Ay,因此由電阻鏈Chain5輸出的相移信號與電阻鏈Chain6輸出的相移信號極性相反。在又另一實施例中,相移電路31更可以同時包括四個電阻鏈Chain1、Chain2、Chain5、Chain6,以利於求得更精確的平均振幅值。 The phase shift circuit 31 can have various embodiments as long as it can output a phase shift signal including opposite polarities. In addition to the foregoing embodiments using the resistor chains Chain1 and Chain2, in another embodiment, the phase shift circuit 31 may also be a resistor chain Chain5 including FIG. 4A and a resistor chain Chain6 of FIG. 4B. The second input signal By and the third input signal Ay' are coupled, and the two ends of the resistor chain Chain6 are respectively coupled to the fourth input signal By' and the first input signal Ay, so the phase shift signal and the resistor chain output by the resistor chain Chain5 The phase shift signal output from Chain6 is reversed in polarity. In still another embodiment, the phase shift circuit 31 can further include four resistance chains, Chain1, Chain2, Chain5, and Chain6, to facilitate obtaining a more accurate average amplitude value.

而在一實施例中,相移電路31更可以包括第4C圖所示的電阻鏈Chain3,例如相移電路31包括電阻鏈Chain1、Chain2以及Chain3。在前述的電阻鏈Chain1、Chain2、Chain5、Chain6,皆是產生具有相位差△φ=9°的相移信號,然而,為更進一步增加平均電路32所求得振幅增益Vgain的精確度,可以使用電阻鏈Chain3產生具有另一相位差△φ’的第三相移信號f3_1~f3_9,△φ’不等於△φ。在此實施例中,相移輸出信號ps包括第一相移信號f1_1~f1_9、第二相移信號f2_1~f2_9以及第三相移信號f3_1~f3_9。舉例而言,△φ’=9.5°,如此除了原有相位差△φ=9°的相移信號,更可以得知另一相位差△φ’=9.5°的相移信號,獲得了弦波信號在更多不同相位時的信號值,即相當於提高了對弦波信號取樣的解析度,可使得平均電路32所計算的結果更加準確。 In an embodiment, the phase shift circuit 31 may further include the resistor chain Chain3 shown in FIG. 4C. For example, the phase shift circuit 31 includes the resistor chains Chain1, Chain2, and Chain3. In the foregoing resistance chains Chain1, Chain2, Chain5, and Chain6, a phase shift signal having a phase difference Δφ=9° is generated. However, in order to further increase the accuracy of the amplitude gain V gain obtained by the averaging circuit 32, The third phase shift signal f 3_1 ~f 3_9 having another phase difference Δφ' is generated using the resistance chain Chain3, and Δφ' is not equal to Δφ. In this embodiment, the phase shift output signal ps includes first phase shift signals f 1_1 ~f 1_9 , second phase shift signals f 2_1 ~f 2_9 , and third phase shift signals f 3_1 ~f 3_9 . For example, △φ'=9.5°, so that in addition to the phase shift signal of the original phase difference Δφ=9°, the phase shift signal of another phase difference Δφ′=9.5° can be known, and the sine wave is obtained. The signal value of the signal at more different phases, which is equivalent to increasing the resolution of the sampling of the sinusoidal signal, makes the result calculated by the averaging circuit 32 more accurate.

電阻鏈Chain3的兩端所接收信號與電阻鏈Chain1相同,即分別是耦接第一輸入信號Ay以及第二輸入信號By,然而由於電阻鏈Chain3與電阻鏈Chain1具有不同的電阻值,而能夠使得電阻鏈Chain3產生的第三相移信號f3_1~f3_9具有另一相位差△φ’。關於相位差以及電阻值的計算可以參考式子(1)及式子(2),以下表三列出當△φ’=9.5°時,各個電阻Rsk’的比例關係,可依據此比例關係調整各個電阻值,表三的電阻值與表一的電阻值不相同。 The signal received at both ends of the resistor chain Chain3 is the same as that of the resistor chain Chain1, that is, the first input signal Ay and the second input signal By are coupled respectively. However, since the resistor chain Chain3 and the resistor chain Chain1 have different resistance values, the resistor chain can be made. resistive chain third phase-shifted signal generated Chain3 f 3_1 ~ f 3_9 having other phase difference △ φ '. For the calculation of the phase difference and the resistance value, reference can be made to equations (1) and (2). Table 3 below lists the proportional relationship of the resistors R sk ' when Δφ' = 9.5°, which can be based on this proportional relationship. Adjust the resistance values. The resistance values in Table 3 are different from the resistance values in Table 1.

表三 Table 3

如上所述,電阻鏈Chain3係對應於電阻鏈Chain1設置,此處的「對應」所指的是:接收相同的輸入,而以不同的電阻值產生具有不同相位差的相移信號。類似地,第4C圖的電阻鏈Chain7可對應於電阻鏈Chain5,第4D圖的電阻鏈Chain4可對應於電阻鏈Chain2、電阻鏈Chain8可對應於電阻鏈Chain6。在一實施例中,相移電路31可包括電阻鏈Chain1、Chain2、Chain3、Chain4,如此既能產生具有極性相反性質的相移信號,亦能產生具有不同相位差的相移信號。在另一實施例中,相移電路31可包括第4A圖~第4D圖所繪示的全部8個電阻鏈Chain1~Chain8。 As described above, the resistor chain Chain3 corresponds to the resistor chain Chain1, where "correspondence" refers to receiving the same input and generating phase shift signals having different phase differences with different resistance values. Similarly, the resistor chain Chain7 of FIG. 4C may correspond to the resistor chain Chain5, and the resistor chain Chain4 of FIG. 4D may correspond to the resistor chain Chain2 and the resistor chain Chain8 may correspond to the resistor chain Chain6. In an embodiment, the phase shift circuit 31 may include a resistor chain Chain1, Chain2, Chain3, and Chain4, which can generate phase shift signals having opposite polarity characteristics and phase shift signals having different phase differences. In another embodiment, the phase shift circuit 31 can include all eight resistor chains Chain1~Chain8 illustrated in FIGS. 4A-4D.

檢視並比較偏壓校正電路2以及振幅校正電路3,其中的偏壓校正相移電路21與相移電路31操作類似,然而在振幅校正電路3中為求得正電壓部分的平均值,相移電路31可產生極性相反的相移信號,且在一實施例中,相移電路31可以採用更多的電阻鏈以產生具有不同相位差的相移信號,而能夠達到更準確的計算結果。 The bias correction circuit 2 and the amplitude correction circuit 3 are inspected and compared, wherein the bias correction phase shift circuit 21 operates similarly to the phase shift circuit 31, whereas in the amplitude correction circuit 3, the average value of the positive voltage portion is obtained, and the phase shift is performed. Circuit 31 can generate phase shifted signals of opposite polarity, and in one embodiment, phase shifting circuit 31 can employ more resistor chains to produce phase shifted signals having different phase differences, enabling more accurate calculations.

在一實施例中,偏壓校正相移電路21與相移電路 31可以各自獨立,即兩者所使用的電阻鏈之間可以沒有關係。舉例而言,偏壓校正相移電路21所輸出的偏壓校正相移輸出信號ps1可包括N個第一偏壓校正相移信號,N個第一偏壓校正相移信號之間具有偏壓校正相位差△φ1,且(N+1)×(△φ1)=90°。而相移電路31所輸出的相移輸出信號ps可包括M個第一相移信號以及M個第二相移信號,N值與M值可以各自決定,偏壓校正相移電路21與相移電路31所使用的電阻鏈數目以及電阻鏈當中所使用的電阻值,亦可以各自決定。 In an embodiment, the bias correction phase shift circuit 21 and the phase shift circuit 31 can be independent, that is, there is no relationship between the resistor chains used by the two. For example, the bias correction phase shift output signal ps1 output by the bias correction phase shift circuit 21 may include N first bias correction phase shift signals, and the N first bias correction phase shift signals have a bias between The phase difference Δφ1 is corrected, and (N+1) × (Δφ1) = 90°. The phase shift output signal ps outputted by the phase shift circuit 31 may include M first phase shift signals and M second phase shift signals, and the N value and the M value may be respectively determined, and the bias correction phase shift circuit 21 and the phase shift The number of resistor chains used in the circuit 31 and the resistance values used in the resistor chain can also be determined individually.

在一實施例中,偏壓校正相移電路21可以相關於相移電路31,例如偏壓校正相移電路21包括P個偏壓校正電阻鏈,而相移電路31包括2P個振幅校正電阻鏈,P為正整數。舉例而言,當P=4,偏壓校正相移電路21可包括如第4A圖~第4D圖所示的四個電阻鏈Chain1、Chain2、Chain5、Chain6。而相移電路31則可包括如第4A圖~第4D圖所示的八個電阻鏈Chain1~Chain8,亦即,相移電路31的八個電阻鏈中有四個電阻鏈(Chain1、Chain2、Chain5、Chain6)與偏壓校正相移電路21所使用的電阻鏈電阻值可以相同,另有四個電阻鏈(Chain3、Chain4、Chain7、Chain8)則與偏壓校正相移電路21所使用的電阻鏈可以具有不同的電阻值。 In an embodiment, the bias correction phase shift circuit 21 may be associated with a phase shift circuit 31, for example, the bias correction phase shift circuit 21 includes P bias correction resistor chains, and the phase shift circuit 31 includes 2P amplitude correction resistor chains. , P is a positive integer. For example, when P=4, the bias correction phase shift circuit 21 may include four resistance chains Chain1, Chain2, Chain5, and Chain6 as shown in FIGS. 4A-4D. The phase shift circuit 31 may include eight resistor chains Chain1 to Chain8 as shown in FIGS. 4A to 4D, that is, four resistor chains of the phase shift circuit 31 have four resistor chains (Chain1, Chain2, Chain5, Chain6) and the bias correction phase shift circuit 21 can use the same resistance chain resistance value, and another four resistor chains (Chain3, Chain4, Chain7, Chain8) and the resistor used in the bias correction phase shift circuit 21 Chains can have different resistance values.

偏壓校正平均電路22與平均電路32的操作原理亦類似,然而偏壓校正平均電路22是以雙極性電源供電,以求得平均直流偏壓值。平均電路32則是以單極性電源供電,以求得 正電壓部分的平均振幅值,以產生振幅增益Vgain。假設M=9,平均而言,相移電路31每增加一個電阻鏈,相移輸出信號ps的數量即增加10個。當相移電路31使用4個電阻鏈時,則平均電路32計算40個相移輸出信號ps的加權總和,類似地,當相移電路31使用8個電阻鏈時,則平均電路32計算80個相移輸出信號ps的加權總和。 The bias correction averaging circuit 22 is similar to the averaging circuit 32, however, the bias correction averaging circuit 22 is powered by a bipolar power supply to obtain an average DC bias value. The averaging circuit 32 is powered by a unipolar power supply to obtain an average amplitude value of the positive voltage portion to produce an amplitude gain Vgain . Assuming that M = 9, on average, the number of phase shift output signals ps is increased by 10 each time a phase shift circuit 31 is added. When the phase shift circuit 31 uses four resistor chains, the averaging circuit 32 calculates the weighted sum of the 40 phase shift output signals ps. Similarly, when the phase shift circuit 31 uses eight resistor chains, the averaging circuit 32 calculates 80. The weighted sum of the phase shifted output signals ps.

第8A圖~第8C圖繪示依照本發明多個實施例的平均電路的電路圖。如第8A圖所繪示的實施例,平均電路32a包括運算放大器OP_32、回授電阻Rf_32、M個第一輸入電阻R1_1~R1_M以及M個第二輸入電阻R2_1~R2_M。運算放大器OP_32的非反向輸入端耦接地電位GND,運算放大器OP_32以單極性電源供電,即運算放大器OP_32的正供應電源接到+VDD、負供應電源接到地電位GND。回授電阻Rf_32耦接運算放大器OP_32的輸出端及反向輸入端之間。M個第一輸入電阻R1_1~R1_M的一端耦接運算放大器OP_32的反向輸入端,另一端分別耦接M個第一相移信號f1_1~f1_M,M個第一輸入電阻的電阻值依據相位差△φ決定。M個第二輸入電阻R2_1~R2_M的一端耦接運算放大器OP_32的反向輸入端,另一端分別耦接M個第二相移信號f2_1~f2_M,M個第二輸入電阻的電阻值依據相位差△φ決定。平均電路32亦可包括其他輸入電阻分別耦接至第一至第四輸入信號Ay、By、Ay’、By’。平均電路32的計算公式以及電阻值可以參考式子(7)以及表二,不同之處在於,當式子(7)計算出的結果為負 的時候,由於平均電路32是以單極性電源供電,因此運算放大器OP_32實際的輸出會是0V。 8A to 8C are circuit diagrams showing an averaging circuit in accordance with various embodiments of the present invention. As shown in FIG. 8A, the averaging circuit 32a includes an operational amplifier OP_32, a feedback resistor Rf_32, M first input resistors R 1_1 ~ R 1_M, and M second input resistors R 2_1 ~ R 2_M . The non-inverting input of the operational amplifier OP_32 is coupled to the ground potential GND, and the operational amplifier OP_32 is powered by a unipolar power supply, that is, the positive supply of the operational amplifier OP_32 is connected to +V DD and the negative supply is connected to the ground potential GND. The feedback resistor Rf_32 is coupled between the output terminal of the operational amplifier OP_32 and the inverting input terminal. One end of the M first input resistors R 1_1 ~ R 1_M is coupled to the inverting input terminal of the operational amplifier OP_32, and the other end is coupled to the M first phase shift signals f 1_1 ~ f 1_M , respectively , and the resistances of the M first input resistors The value is determined by the phase difference Δφ. One end of the M second input resistors R 2_1 ~ R 2_M is coupled to the inverting input terminal of the operational amplifier OP_32, and the other end is coupled to the M second phase shift signals f 2_1 ~ f 2_M , and the resistances of the M second input resistors The value is determined by the phase difference Δφ. The averaging circuit 32 can also include other input resistors coupled to the first through fourth input signals Ay, By, Ay', By', respectively. The calculation formula of the averaging circuit 32 and the resistance value can be referred to the equation (7) and the second table, except that when the result calculated by the equation (7) is negative, since the averaging circuit 32 is powered by the unipolar power supply Therefore, the actual output of the op amp OP_32 will be 0V.

第8B圖繪示依照本發明一實施例的平均電路32b的電路圖,運算放大器OP_32的非反向輸入端可以經由電阻耦接至參考電壓Vref1,對於無法工作於0V附近的運算放大器,可以採用第8B圖所示的平均電路32b。如上述第8A圖以及第8B圖所繪示的實施例中,平均電路32是採用運算放大器之反向放大電路,然而本發明不限於此,平均電路亦可以採用運算放大器之非反向放大電路實現。 FIG. 8B is a circuit diagram of an averaging circuit 32b according to an embodiment of the present invention. The non-inverting input terminal of the operational amplifier OP_32 can be coupled to the reference voltage V ref1 via a resistor, and can be used for an operational amplifier that cannot operate near 0V. The averaging circuit 32b shown in Fig. 8B. In the embodiment illustrated in FIG. 8A and FIG. 8B, the averaging circuit 32 is an inverse amplifying circuit using an operational amplifier, but the present invention is not limited thereto, and the averaging circuit may also adopt a non-inverting amplifying circuit of the operational amplifier. achieve.

平均電路32係對應於相移電路31設計,上述例子中平均電路32使用2組輸入電阻,係對應於相移電路31使用2個電阻鏈的情形。當相移電路31使用8個電阻鏈時,平均電路32即會使用共8組的M個輸入電阻,且每一組輸入電阻的電阻值會依據相移電路31當中對應的電阻鏈所產生的相位差而決定。而對於使用多組輸入電阻的平均電路,除了可使用如第8A圖以及第8B圖所示的平均電路之外,另一種可使用的實現方式可參考第8C圖所示,第8C圖繪示依照本發明一實施例的平均電路32c的電路圖,此實施例中的平均電路32c可以由多個運算放大器組合而成。 The averaging circuit 32 corresponds to the design of the phase shift circuit 31. In the above example, the averaging circuit 32 uses two sets of input resistors, corresponding to the case where the phase shift circuit 31 uses two resistor chains. When the phase shift circuit 31 uses eight resistor chains, the averaging circuit 32 uses a total of eight sets of M input resistors, and the resistance values of each group of input resistors are generated according to the corresponding resistor chains in the phase shift circuit 31. Determined by the phase difference. For an averaging circuit using a plurality of sets of input resistors, in addition to the averaging circuits as shown in FIGS. 8A and 8B, another usable implementation can be referred to FIG. 8C, which is illustrated in FIG. 8C. According to a circuit diagram of the averaging circuit 32c according to an embodiment of the present invention, the averaging circuit 32c in this embodiment may be composed of a plurality of operational amplifiers.

第9A圖及第9B圖繪示使用4個電阻鏈以及8個電阻鏈所對應的範例平均電路輸出結果示意圖。如前所述,於一實施例中,相移電路31可括4個電阻鏈Chain1、Chain2、Chain5、 Chain6,(沒有另一相位差△φ’的資訊)。於另一實施例中,相移電路31包括8個電阻鏈Chain1~Chain8。第9A圖繪示使用4個電阻鏈Chain1、Chain2、Chain5、Chain6的相移電路31,對應的平均電路32輸出的結果,而第9B圖繪示使用8個電阻鏈Chain1~Chain8的相移電路31,對應的平均電路32輸出的結果。可以看出由於使用8個電阻鏈有較高的相位解析度,因此相較於第9A圖,在第9B圖能夠得到更佳平滑連續的振幅增益Vgain,而能夠達到更精準的振幅校正效果。 9A and 9B are schematic diagrams showing an example average circuit output result corresponding to four resistor chains and eight resistor chains. As described above, in one embodiment, the phase shift circuit 31 can include four resistor chains, Chain1, Chain2, Chain5, and Chain6, (without another phase difference Δφ' information). In another embodiment, the phase shift circuit 31 includes eight resistor chains Chain1~Chain8. Figure 9A shows the result of the output of the corresponding averaging circuit 32 using the phase shift circuit 31 of the four resistor chains Chain1, Chain2, Chain5, and Chain6, and Figure 9B shows the phase shift circuit using the eight resistor chains Chain1~Chain8. 31, the result of the corresponding average circuit 32 output. It can be seen that since 8 resistor chains have a higher phase resolution, a smoother and continuous amplitude gain V gain can be obtained in FIG. 9B compared to FIG. 9A, and a more accurate amplitude correction effect can be achieved. .

平均電路32求得振幅增益Vgain之後,放大電路33根據振幅增益Vgain調整輸入信號y的振幅,產生校正後信號z,例如是將輸入信號y當中的第一至第四輸入信號Ay、By、Ay’、By’,分別除以或乘以振幅增益Vgain,以得到校正後信號z的各個成份Az、Bz、Az’、Bz’,經振幅校正電路3所產生的校正後信號z,其中的各個成份Az、Bz、Az’、Bz’的振幅維持相同。 After the averaging circuit 32 obtains the amplitude gain V gain , the amplifying circuit 33 adjusts the amplitude of the input signal y according to the amplitude gain V gain to generate the corrected signal z, for example, the first to fourth input signals Ay, By among the input signals y. , Ay', By', respectively, or multiplied by the amplitude gain V gain to obtain the respective components Az, Bz, Az', Bz' of the corrected signal z, the corrected signal z generated by the amplitude correcting circuit 3, The amplitudes of the respective components Az, Bz, Az', and Bz' remain the same.

放大電路33可包括輸出級放大單元(例如是運算放大器)以及電晶體,輸出級放大單元具有調整訊號振幅能力,電晶體的控制端可耦接振幅增益Vgain,用於調整輸出級放大單元之振幅放大倍率。第10圖繪示依照本發明一實施例的放大電路的電路圖。放大電路33包括輸出級運算放大器OP_33、電晶體T1、以及輸入電阻Ri。輸出級運算放大器OP_33的非反向輸入端耦接參考電壓信號Vref3。電晶體T1例如是金屬氧化物半導體場效電晶體(Metal-Oxide-Semiconductor Field-Effect Transistor, MOSFET)或接面場效電晶體(Junction Field-Effect Transistor,JFET),電晶體T1的控制端(例如電晶體的閘極)耦接振幅增益Vgain,電晶體T1操作在歐姆區(Ohmic Region)時,電晶體T1可作為一個受控於振幅增益Vgain的可變電阻。輸入電阻Ri耦接於第一至第四輸入信號Ay、By、Ay’、By’其中之一與輸出級運算放大器OP_33的反向輸入端之間。若將電晶體T1的導通電阻以Rfet表示,則放大電路33的放大倍率為Rfet/Ri。振幅增益Vgain與導通電阻Rfet關係,與電晶體T1的種類以及通道成分有關。於第10圖當中的放大電路33僅繪示對於其中一個輸入信號成份放大,此電路例如可藉由複製相同的電路而修改為對於第一至第四輸入信號Ay、By、Ay’、By’執行放大的電路,而調整第一至第四輸入信號Ay、By、Ay’、By’的振幅。根據耦接於輸出級運算放大器OP_33非反向輸入端的參考電壓信號Vref3,可以調整校正後信號z的直流位準。 The amplifying circuit 33 may include an output stage amplifying unit (for example, an operational amplifier) and a transistor. The output stage amplifying unit has an ability to adjust the signal amplitude. The control end of the transistor may be coupled to the amplitude gain V gain for adjusting the output stage amplifying unit. Amplitude magnification. FIG. 10 is a circuit diagram of an amplifying circuit in accordance with an embodiment of the present invention. The amplifying circuit 33 includes an output stage operational amplifier OP_33, a transistor T1, and an input resistor Ri. The non-inverting input of the output stage operational amplifier OP_33 is coupled to the reference voltage signal V ref3 . The transistor T1 is, for example, a Metal-Oxide-Semiconductor Field-Effect Transistor (MOSFET) or a Junction Field-Effect Transistor (JFET), and a control terminal of the transistor T1 ( For example, the gate of the transistor is coupled to the amplitude gain V gain , and when the transistor T1 is operated in the Ohmic Region, the transistor T1 can be used as a variable resistor controlled by the amplitude gain V gain . The input resistor Ri is coupled between one of the first to fourth input signals Ay, By, Ay', By' and the inverting input of the output stage operational amplifier OP_33. When the on-resistance of the transistor T1 is represented by R fet , the amplification factor of the amplifier circuit 33 is R fet /Ri. The amplitude gain V gain is related to the on-resistance R fet , and is related to the type of the transistor T1 and the channel component. The amplifying circuit 33 in FIG. 10 only shows amplification of one of the input signal components, and the circuit can be modified, for example, by copying the same circuit for the first to fourth input signals Ay, By, Ay', By' The amplified circuit is performed to adjust the amplitudes of the first to fourth input signals Ay, By, Ay', By'. The signal is coupled to a reference voltage V ref3 OP_33 output stage of the operational amplifier non-inverting input, it is possible to adjust the DC level of the corrected signal z.

第11圖繪示依照本發明一實施例的信號校正電路的方塊圖。關於偏壓校正電路2以及振幅校正電路3的各個組成方塊皆已詳述如前,以下配合信號波形以說明各個組成方塊的操作結果。第12A圖~第12G圖繪示依照本發明一實施例的信號校正電路於各個節點的信號波形圖。 11 is a block diagram of a signal correction circuit in accordance with an embodiment of the present invention. The respective constituent blocks of the bias correction circuit 2 and the amplitude correction circuit 3 have been described in detail as before, and the following signal waveforms are used to explain the operation results of the respective constituent blocks. 12A to 12G are diagrams showing signal waveforms of signal correction circuits at respective nodes in accordance with an embodiment of the present invention.

第12圖為感測輸入信號x的波形,包括第一至第四輸入信號Ax、Bx、Ax’、Bx’,可以看出感測輸入信號x的直流平均電壓不等於0V,且各個輸入信號Ax、Bx、Ax’、Bx’的振幅 亦不相同。經過偏壓校正相移電路21(例如4個電阻鏈),產生多個偏壓校正相移輸出信號ps1(例如40個),波形可見第12B圖。偏壓校正平均電路22計算多個偏壓校正相移輸出信號ps1的加權總和,得到平均直流偏壓Vdc,波形可見第12C圖。減法電路23將第一至第四輸入信號Ax、Bx、Ax’、Bx’減去平均直流偏壓Vdc而得到輸入信號y,波形可見第12D圖。可看到經由偏壓校正電路2產生的輸入信號y,已經消除直流偏壓誤差,輸入信號y包括第一至第四輸入信號Ay、By、Ay’、By’,每一個輸入信號Ay、By、Ay’、By’的直流平均值皆是0V,然而每一個輸入信號Ay、By、Ay’、By’的振幅仍然隨著時間改變。 Figure 12 is a waveform of the sensing input signal x, including the first to fourth input signals Ax, Bx, Ax', Bx', it can be seen that the DC average voltage of the sensing input signal x is not equal to 0V, and each input signal The amplitudes of Ax, Bx, Ax', and Bx' are also different. A plurality of bias correction phase shift output signals ps1 (e.g., 40) are generated by bias correction phase shift circuit 21 (e.g., four resistor chains), and the waveform is seen in Fig. 12B. The average bias correction circuit 22 calculates a plurality of corrected phase shift biasing signal ps1 output weighted sum to obtain the average DC bias voltage V dc, the first waveform can be seen in FIG. 12C. The subtraction circuit 23 subtracts the average DC bias voltage V dc from the first to fourth input signals Ax, Bx, Ax', Bx' to obtain an input signal y, and the waveform can be seen in Fig. 12D. It can be seen that the input signal y generated via the bias correction circuit 2 has eliminated the DC bias error, and the input signal y includes the first to fourth input signals Ay, By, Ay', By', each of the input signals Ay, By The dc averages of Ay' and By' are all 0V, but the amplitude of each input signal Ay, By, Ay', By' still changes with time.

接著以振幅校正電路3對輸入信號y進行校正,輸入信號y經過相移電路31(例如8個電阻鏈),產生多個相移輸出信號ps(例如80個),波形可見第12E圖。平均電路32計算多個相移輸出信號ps的加權總和,得到振幅增益Vgain,波形可見第12F圖,相當於在每一個時間點的平均振幅。放大電路33將第一至第四輸入信號Ay、By、Ay’、By’除以振幅增益Vgain而得到校正後信號z,波形可見第12G圖。藉由設定第10圖當中的參考電壓信號Vref3,可將校正後信號z的直流位準設定為2.5V,可看到經由信號校正電路1產生的校正後信號z,不僅直流平均值是2.5V,且振幅亦維持固定,校正後信號z可符合業界實際應用2.5V±0.5V的需求。如此可將感測裝置輸出的感測輸入信號x,校正為校正後信號z,而有效的消除偏壓誤差以及振幅誤差,使 得感測裝置可連接工具機控制器使用。 Next, the input signal y is corrected by the amplitude correcting circuit 3, and the input signal y is passed through a phase shift circuit 31 (for example, eight resistor chains) to generate a plurality of phase shift output signals ps (for example, 80), and the waveform is seen in Fig. 12E. The averaging circuit 32 calculates the weighted sum of the plurality of phase-shifted output signals ps to obtain an amplitude gain Vgain which is visible in the 12th FF, corresponding to the average amplitude at each time point. The amplifying circuit 33 obtains the corrected signal z by dividing the first to fourth input signals Ay, By, Ay', and By' by the amplitude gain Vgain , and the waveform is shown in Fig. 12G. By setting the reference voltage signal V ref3 in FIG. 10 , the DC level of the corrected signal z can be set to 2.5 V, and the corrected signal z generated via the signal correction circuit 1 can be seen, not only the DC average value is 2.5. V, and the amplitude is also fixed, the corrected signal z can meet the needs of the industry's actual application of 2.5V ± 0.5V. In this way, the sensing input signal x outputted by the sensing device can be corrected to the corrected signal z, and the biasing error and the amplitude error can be effectively eliminated, so that the sensing device can be connected to the machine tool controller for use.

以上如第5圖、第6圖、第8A~8C圖、及第10圖所示的實施例中,雖是以運算放大器之反向放大電路作為說明實施例,然而本發明並不限於此,於實作這些電路時,亦可以使用運算放大器之非反向放大電路。舉例而言,第5圖當中的偏壓校正平均電路22,輸入電阻Rv1~Rv11可以耦接於運算放大器OP_22的非反向輸入端,式子(7)的計算結果則沒有負號。其餘如第6圖、第8A~8C圖、及第10圖亦可以類似方法改變電路連接組態,於此不再贅述。電路實作中,採用反向放大電路或非反向放大電路,可視後級電路與元件(例如FET種類與特性)而決定。 In the embodiments shown in FIGS. 5, 6, 8A to 8C, and 10, the inverse amplifier circuit of the operational amplifier is taken as an illustrative embodiment, but the present invention is not limited thereto. When implementing these circuits, a non-inverting amplifying circuit of an operational amplifier can also be used. For example, in the bias correction averaging circuit 22 in FIG. 5, the input resistors R v1 to R v11 may be coupled to the non-inverting input terminal of the operational amplifier OP_22, and the calculation result of the equation (7) has no negative sign. The rest of the circuit diagram configuration can be changed in a similar manner as in FIG. 6, FIG. 8A to FIG. 8C, and FIG. 10, and details are not described herein again. In the implementation of the circuit, an inverse amplification circuit or a non-inverting amplification circuit is used, which can be determined by visualizing the subsequent circuit and components (such as the type and characteristics of the FET).

以上實施例所述的各個電路方塊,例如包括偏壓校正相移電路21、偏壓校正平均電路22、減法電路23、相移電路31、平均電路32、放大電路33,除了可使用類比電路實現之外,亦可以透過類比數位轉換器(Analog to Digital Converter,ADC)搭配數位電路實現。舉例而言,在前述實施例相移電路31係透過電阻鏈實現,而根據式子(1)-(4),相移電路31所輸出的電壓係為輸入電壓的多種線性組合,因此亦可以透過數位電路的乘法器、加法器、查找表等等基本組成方塊而實現式子(1)-(4)。 The respective circuit blocks described in the above embodiments include, for example, a bias correction phase shift circuit 21, a bias correction averaging circuit 22, a subtraction circuit 23, a phase shift circuit 31, an averaging circuit 32, and an amplifying circuit 33, except that analog circuits can be used. In addition, it can also be realized by an analog to digital converter (ADC) with a digital circuit. For example, in the foregoing embodiment, the phase shift circuit 31 is implemented by a resistor chain, and according to the equations (1)-(4), the voltage output by the phase shift circuit 31 is a plurality of linear combinations of input voltages, and thus The equations (1)-(4) are implemented by the basic components of the multiplier, the adder, the lookup table, and the like of the digital circuit.

根據本揭露所提出的振幅校正電路,由於相移電路產生具有相反極性的相移信號,且平均電路以單極性電源供電,因此能夠避免使用全波整流器(Rectifier),而達到全波整流的效果,可以有效節省電路面積。而本揭露當中的偏壓校正電路以及 振幅校正電路,主要係藉由相位移產生多組信號,及多組信號的運算來修正這些誤差,不需要完整週期的取樣來計算,可以非常快速地計算修正。對於電源啟動瞬間、停止狀態、一個周期內的運動、快速運動,都可以進行信號修正。 According to the amplitude correction circuit proposed by the present disclosure, since the phase shift circuit generates a phase shift signal having an opposite polarity and the averaging circuit is powered by the unipolar power source, the use of a full-wave rectifier (Rectifier) can be avoided to achieve full-wave rectification. Can effectively save circuit area. The bias correction circuit of the present disclosure and The amplitude correction circuit mainly corrects these errors by generating multiple sets of signals by phase shift and operations of multiple sets of signals, and does not require full cycle sampling to calculate, and the correction can be calculated very quickly. Signal correction can be performed for the power-on instant, the stop state, the motion in one cycle, and the fast motion.

此外,由於相移電路可使用電阻鏈而產生相移輸出信號,以如此類比電路的實現方式,可以在接收到信號的瞬間很快產生多個相移信號,而立刻求得平均振幅值,相較於數位電路實現方式(例如以ADC搭配微處理器或是數位信號處理器),可具有更短的延遲時間,而能達到更高的頻寬,特別是在感測裝置有高頻寬需求時具有更廣的應用空間。 In addition, since the phase shift circuit can use the resistor chain to generate a phase-shifted output signal, in such an analog circuit implementation, a plurality of phase-shifted signals can be quickly generated at the instant of receiving the signal, and the average amplitude value is immediately obtained. Compared with digital circuit implementations (for example, with an ADC with a microprocessor or a digital signal processor), it can have a shorter delay time and achieve a higher bandwidth, especially when the sensing device has a high bandwidth requirement. A wider application space.

本揭露的信號校正電路能夠有效降低光學尺或編碼器弦波類比訊號的偏壓及振幅誤差,並且運用結構簡單的類比電路取代數位運算器,執行信號處理所需之數學運算,未來於讀頭積體電路化階段,可節省電子設計自動化(Electronic Design Automation,EDA)工具與矽智財(Intellectual Property,IP)費用。 The signal correction circuit disclosed in the present invention can effectively reduce the bias and amplitude errors of the optical scale or encoder sine wave analog signal, and replace the digital operator with a simple analog circuit to perform the mathematical operations required for signal processing, and the future read head In the integrated circuitization phase, electronic design automation (EDA) tools and intellectual property (IP) costs can be saved.

綜上所述,雖然本發明已以多個實施例揭露如上,然其並非用以限定本發明。本發明所屬技術領域中具有通常知識者,在不脫離本發明之精神和範圍內,當可作各種之更動與潤飾。因此,本發明之保護範圍當視後附之申請專利範圍所界定者為準。 In the above, the present invention has been disclosed in the above embodiments, but it is not intended to limit the present invention. A person skilled in the art can make various changes and modifications without departing from the spirit and scope of the invention. Therefore, the scope of the invention is defined by the scope of the appended claims.

3‧‧‧振幅校正電路 3‧‧‧Amplitude correction circuit

31‧‧‧相移電路 31‧‧‧ Phase shift circuit

32‧‧‧平均電路 32‧‧‧Average circuit

33‧‧‧放大電路 33‧‧‧Amplification circuit

f1_1~f1_M‧‧‧第一相移信號 f 1_1 ~f 1_M ‧‧‧First phase shift signal

f2_1~f2_M‧‧‧第二相移信號 f 2_1 ~f 2_M ‧‧‧Second phase shift signal

ps‧‧‧相移輸出信號 Ps‧‧‧ phase shift output signal

Vgain‧‧‧振幅增益 V gain ‧‧‧amplitude gain

y‧‧‧輸入信號 y‧‧‧Input signal

z‧‧‧校正後信號 Z‧‧‧corrected signal

Claims (21)

一種振幅校正電路包括:一相移電路,根據複數個輸入信號,產生複數個相移輸出信號,該些相移輸出信號包括M個第一相移信號以及M個第二相移信號,該M個第一相移信號之間具有一相位差△φ,該M個第二相移信號之間具有該相位差△φ,該M個第一相移信號與該M個第二相移信號極性相反,其中M為正整數;一平均電路,用以根據該些輸入信號以及該些相移輸出信號的加權總和產生一振幅增益,該平均電路以一單極性電源供電;以及一放大電路,根據該振幅增益調整該些輸入信號的振幅,產生複數個校正後信號。 An amplitude correction circuit includes: a phase shift circuit for generating a plurality of phase shift output signals according to a plurality of input signals, the phase shift output signals comprising M first phase shift signals and M second phase shift signals, the M a phase difference Δφ between the first phase shift signals, the M phase shift signals having the phase difference Δφ, the M first phase shift signals and the M second phase shift signal polarities Rather, where M is a positive integer; an averaging circuit for generating an amplitude gain based on the weighted sum of the input signals and the phase shifted output signals, the averaging circuit being powered by a unipolar power supply; and an amplifying circuit, The amplitude gain adjusts the amplitudes of the input signals to produce a plurality of corrected signals. 如申請專利範圍第1項所述之振幅校正電路,其中該些輸入信號包括一第一輸入信號、一第二輸入信號、一第三輸入信號、以及一第四輸入信號,該第一至第四輸入信號之間依序具有一信號相位差α,其中(M+1)×(△φ)=α,45°α135°。 The amplitude correction circuit of claim 1, wherein the input signals comprise a first input signal, a second input signal, a third input signal, and a fourth input signal, the first to the first The four input signals sequentially have a signal phase difference α, where (M+1) × (Δφ) = α, 45° α 135°. 如申請專利範圍第2項所述之振幅校正電路,其中該相移電路包括:一第一電阻鏈,包括(M+1)個串聯的第一電阻,該第一電阻鏈的兩端分別耦接該第一輸入信號以及該第二輸入信號,該(M+1) 個第一電阻的連接處分別輸出該M個第一相移信號;以及一第二電阻鏈,包括(M+1)個串聯的第二電阻,該第二電阻鏈的兩端分別耦接該第三輸入信號以及該第四輸入信號,該(M+1)個第二電阻的連接處分別輸出該M個第二相移信號。 The amplitude correction circuit of claim 2, wherein the phase shift circuit comprises: a first resistance chain comprising (M+1) first resistors connected in series, the two ends of the first resistor chain are respectively coupled Connecting the first input signal and the second input signal, the (M+1) The first resistors are respectively connected to the M first phase shift signals; and a second resistor chain includes (M+1) second resistors connected in series, and the two ends of the second resistor chain are respectively coupled to the The third input signal and the fourth input signal, the connection of the (M+1) second resistors respectively output the M second phase shift signals. 如申請專利範圍第3項所述之振幅校正電路,其中該平均電路包括:一運算放大器,具有一輸入端及一輸出端,該運算放大器以該單極性電源供電,該運算放大器的該輸出端輸出該加權總和;M個第一輸入電阻,該M個第一輸入電阻的一端耦接該運算放大器的該輸入端,該M個第一輸入電阻的另一端分別耦接該M個第一相移信號,該M個第一輸入電阻的電阻值係依據該相位差△φ決定;以及M個第二輸入電阻,該M個第二輸入電阻的一端耦接該運算放大器的該輸入端,該M個第二輸入電阻的另一端分別耦接該M個第二相移信號,該M個第二輸入電阻的電阻值依據該相位差△φ決定。 The amplitude correction circuit of claim 3, wherein the averaging circuit comprises: an operational amplifier having an input end and an output terminal, the operational amplifier being powered by the unipolar power supply, the output end of the operational amplifier Outputting the weighted sum; M first input resistors, one end of the M first input resistors being coupled to the input end of the operational amplifier, and the other ends of the M first input resistors respectively coupled to the M first phases Shifting signals, the resistance values of the M first input resistors are determined according to the phase difference Δφ; and M second input resistors, one end of the M second input resistors being coupled to the input end of the operational amplifier, The other ends of the M second input resistors are respectively coupled to the M second phase shift signals, and the resistance values of the M second input resistors are determined according to the phase difference Δφ. 如申請專利範圍第3項所述之振幅校正電路,其中該些相移輸出信號更包括M個第三相移信號,該相移電路更包括:一第三電阻鏈,包括(M+1)個串聯的第三電阻,該第三電阻鏈的兩端分別耦接該第一輸入信號以及該第二輸入信號,該(M+1)個第三電阻的連接處分別輸出該M個第三相移信號,該M個第 三相移信號之間具有另一相位差△φ’,其中△φ’不等於△φ。 The amplitude correction circuit of claim 3, wherein the phase shift output signals further comprise M third phase shift signals, the phase shift circuit further comprising: a third resistor chain, including (M+1) a third resistor connected in series, the two ends of the third resistor chain are respectively coupled to the first input signal and the second input signal, and the connection of the (M+1) third resistors respectively outputs the M third Phase shift signal, the M number There is another phase difference Δφ' between the three-phase shift signals, where Δφ' is not equal to Δφ. 如申請專利範圍第5項所述之振幅校正電路,其中該些相移輸出信號更包括M個第四相移信號,該相移電路更包括:一第四電阻鏈,包括(M+1)個串聯的第四電阻,該第四電阻鏈的兩端分別耦接該第三輸入信號以及該第四輸入信號,該(M+1)個第四電阻的連接處分別輸出該M個第四相移信號,該M個第四相移信號之間具有該另一相位差△φ’。 The amplitude correction circuit of claim 5, wherein the phase shift output signals further comprise M fourth phase shift signals, the phase shift circuit further comprising: a fourth resistor chain, including (M+1) a fourth resistor connected in series, the two ends of the fourth resistor chain are respectively coupled to the third input signal and the fourth input signal, and the connection of the (M+1) fourth resistors respectively outputs the M fourth The phase shift signal has the other phase difference Δφ' between the M fourth phase shift signals. 如申請專利範圍第6項所述之振幅校正電路,其中該些相移輸出信號更包括M個第五相移信號及M個第六相移信號,該相移電路更包括:一第五電阻鏈,包括(M+1)個串聯的第五電阻,該第五電阻鏈的兩端分別耦接該第二輸入信號以及該第三輸入信號,該(M+1)個第五電阻的連接處分別輸出該M個第五相移信號,該M個第五相移信號之間具有該相位差△φ;以及一第六電阻鏈,包括(M+1)個串聯的第六電阻,該第六電阻鏈的兩端分別耦接該第四輸入信號以及該第一輸入信號,該(M+1)個第六電阻的連接處分別輸出該M個第六相移信號,該M個第五相移信號之間具有該相位差△φ。 The amplitude correction circuit of claim 6, wherein the phase shift output signals further comprise M fifth phase shift signals and M sixth phase shift signals, the phase shift circuit further comprising: a fifth resistor The chain includes (M+1) fifth resistors connected in series, and the two ends of the fifth resistor chain are respectively coupled to the second input signal and the third input signal, and the (M+1) fifth resistors are connected And outputting the M fifth phase shift signals respectively, wherein the M fifth phase shift signals have the phase difference Δφ; and a sixth resistor chain including (M+1) sixth resistors connected in series, The two ends of the sixth resistance chain are respectively coupled to the fourth input signal and the first input signal, and the connection of the (M+1) sixth resistors respectively outputs the M sixth phase shift signals, the M first The phase difference Δφ is present between the five phase shift signals. 如申請專利範圍第7項所述之振幅校正電路,其中該些相 移輸出信號更包括M個第七相移信號及M個第八相移信號,該相移電路更包括:一第七電阻鏈,包括(M+1)個串聯的第七電阻,該第七電阻鏈的兩端分別耦接該第二輸入信號以及該第三輸入信號,該(M+1)個第七電阻的連接處分別輸出該M個第七相移信號,該M個第七相移信號之間具有該另一相位差△φ’;以及一第八電阻鏈,包括(M+1)個串聯的第八電阻,該第八電阻鏈的兩端分別耦接該第四輸入信號以及該第一輸入信號,該(M+1)個第八電阻的連接處分別輸出該M個第八相移信號,該M個第八相移信號之間具有該另一相位差△φ’。 The amplitude correction circuit of claim 7, wherein the phases are The shift output signal further includes M seventh phase shift signals and M eighth phase shift signals, and the phase shift circuit further includes: a seventh resistor chain including (M+1) seventh resistors connected in series, the seventh The two ends of the resistance chain are respectively coupled to the second input signal and the third input signal, and the connection of the (M+1) seventh resistors respectively outputs the M seventh phase shift signals, the M seventh phases The shifting signal has the other phase difference Δφ′; and an eighth resistor chain comprising (M+1) eighth resistors connected in series, and the two ends of the eighth resistor chain are respectively coupled to the fourth input signal And the first input signal, where the (M+1) eighth resistors respectively output the M eighth phase shift signals, and the M eighth phase shift signals have the other phase difference Δφ' . 如申請專利範圍第1項所述之振幅校正電路,其中該放大電路包括:一輸出級放大單元,具有調整訊號振幅能力;一電晶體,具有一控制端,該控制端耦接該振幅增益,用於調整該輸出級放大單元之振幅放大倍率。 The amplitude correction circuit of claim 1, wherein the amplifying circuit comprises: an output stage amplifying unit having an ability to adjust signal amplitude; a transistor having a control end coupled to the amplitude gain, It is used to adjust the amplitude magnification of the output stage amplification unit. 一種信號校正電路,包括:一偏壓校正電路,包括:一偏壓校正相移電路,根據複數個感測輸入信號,產生複數個偏壓校正相移輸出信號,該些偏壓校正相移輸出信號包括N個第一偏壓校正相移信號,該N個第一偏壓校正相移信號之間 具有一偏壓校正相位差△φ1,其中N為正整數;一偏壓校正平均電路,用以根據該些感測輸入信號以及該些偏壓校正相移輸出信號的加權總和產生一平均直流偏壓;以及一減法電路,用以從該些感測輸入信號減去該平均直流偏壓,以產生複數個輸入信號;以及一振幅校正電路,包括;一相移電路,根據該些輸入信號,產生複數個相移輸出信號,該些相移輸出信號包括M個第一相移信號以及M個第二相移信號,該M個第一相移信號之間具有一相位差△φ,該M個第二相移信號之間具有該相位差△φ,該M個第一相移信號與該M個第二相移信號極性相反,其中M為正整數;一平均電路,用以根據該些輸入信號以及該些相移輸出信號的加權總和產生一振幅增益,該平均電路以一單極性電源供電;以及一放大電路,根據該振幅增益調整該些輸入信號的振幅,產生複數個校正後信號。 A signal correction circuit includes: a bias correction circuit comprising: a bias correction phase shift circuit for generating a plurality of bias correction phase shift output signals based on the plurality of sense input signals, the bias correction phase shift outputs The signal includes N first bias correction phase shift signals between the N first bias correction phase shift signals Having a bias correction phase difference Δφ1, where N is a positive integer; a bias correction averaging circuit for generating an average DC offset based on the weighted sum of the sense input signals and the bias corrected phase shift output signals And a subtraction circuit for subtracting the average DC bias from the sensed input signals to generate a plurality of input signals; and an amplitude correction circuit comprising: a phase shift circuit, according to the input signals, Generating a plurality of phase shift output signals, the phase shift output signals comprising M first phase shift signals and M second phase shift signals, wherein the M first phase shift signals have a phase difference Δφ between the M Between the second phase shift signals having the phase difference Δφ, the M first phase shift signals are opposite in polarity to the M second phase shift signals, wherein M is a positive integer; an averaging circuit is used according to the The input signal and the weighted sum of the phase shifted output signals produce an amplitude gain, the averaging circuit is powered by a unipolar power supply; and an amplifying circuit that adjusts the amplitudes of the input signals according to the amplitude gain to generate a plurality of After a positive signal. 如申請專利範圍第10項所述之信號校正電路,其中該些輸入信號包括一第一輸入信號、一第二輸入信號、一第三輸入信號、以及一第四輸入信號,該第一至第四輸入信號之間依序具有一信號相位差α,其中(M+1)×(△φ)=α,45°α135°。 The signal correction circuit of claim 10, wherein the input signals comprise a first input signal, a second input signal, a third input signal, and a fourth input signal, the first to the first The four input signals sequentially have a signal phase difference α, where (M+1) × (Δφ) = α, 45° α 135°. 如申請專利範圍第11項所述之信號校正電路,其中該相移電路包括:一第一電阻鏈,包括(M+1)個串聯的第一電阻,該第一電阻鏈的兩端分別耦接該第一輸入信號以及該第二輸入信號,該(M+1)個第一電阻的連接處分別輸出該M個第一相移信號;以及一第二電阻鏈,包括(M+1)個串聯的第二電阻,該第二電阻鏈的兩端分別耦接該第三輸入信號以及該第四輸入信號,該(M+1)個第二電阻的連接處分別輸出該M個第二相移信號。 The signal correction circuit of claim 11, wherein the phase shift circuit comprises: a first resistance chain comprising (M+1) first resistors connected in series, the two ends of the first resistor chain are respectively coupled Connecting the first input signal and the second input signal, the connection of the (M+1) first resistors respectively output the M first phase shift signals; and a second resistance chain, including (M+1) a second resistor connected in series, the two ends of the second resistor chain are respectively coupled to the third input signal and the fourth input signal, and the connection of the (M+1) second resistors respectively outputs the M second Phase shift signal. 如申請專利範圍第12項所述之信號校正電路,其中該平均電路包括:一運算放大器,具有一輸入端及一輸出端,該運算放大器以該單極性電源供電,該運算放大器的該輸出端輸出該加權總和;M個第一輸入電阻,該M個第一輸入電阻的一端耦接該運算放大器的該輸入端,該M個第一輸入電阻的另一端分別耦接該M個第一相移信號,該M個第一輸入電阻的電阻值係依據該相位差△φ決定;以及M個第二輸入電阻,該M個第二輸入電阻的一端耦接該運算放大器的該輸入端,該M個第二輸入電阻的另一端分別耦接該M個第二相移信號,該M個第二輸入電阻的電阻值依據該相位差△φ決定。 The signal correction circuit of claim 12, wherein the averaging circuit comprises: an operational amplifier having an input and an output, the operational amplifier being powered by the unipolar power supply, the output of the operational amplifier Outputting the weighted sum; M first input resistors, one end of the M first input resistors being coupled to the input end of the operational amplifier, and the other ends of the M first input resistors respectively coupled to the M first phases Shifting signals, the resistance values of the M first input resistors are determined according to the phase difference Δφ; and M second input resistors, one end of the M second input resistors being coupled to the input end of the operational amplifier, The other ends of the M second input resistors are respectively coupled to the M second phase shift signals, and the resistance values of the M second input resistors are determined according to the phase difference Δφ. 如申請專利範圍第12項所述之信號校正電路,其中該些相移輸出信號更包括M個第三相移信號,該相移電路更包括:一第三電阻鏈,包括(M+1)個串聯的第三電阻,該第三電阻鏈的兩端分別耦接該第一輸入信號以及該第二輸入信號,該(M+1)個第三電阻的連接處分別輸出該M個第三相移信號,該M個第三相移信號之間具有另一相位差△φ’,其中△φ’不等於△φ。 The signal correction circuit of claim 12, wherein the phase shift output signals further comprise M third phase shift signals, the phase shift circuit further comprising: a third resistor chain, including (M+1) a third resistor connected in series, the two ends of the third resistor chain are respectively coupled to the first input signal and the second input signal, and the connection of the (M+1) third resistors respectively outputs the M third The phase shift signal has another phase difference Δφ' between the M third phase shift signals, wherein Δφ' is not equal to Δφ. 如申請專利範圍第14項所述之信號校正電路,其中該些相移輸出信號更包括M個第四相移信號,該相移電路更包括:一第四電阻鏈,包括(M+1)個串聯的第四電阻,該第四電阻鏈的兩端分別耦接該第三輸入信號以及該第四輸入信號,該(M+1)個第四電阻的連接處分別輸出該M個第四相移信號,該M個第四相移信號之間具有該另一相位差△φ’。 The signal correction circuit of claim 14, wherein the phase shift output signals further comprise M fourth phase shift signals, the phase shift circuit further comprising: a fourth resistor chain, including (M+1) a fourth resistor connected in series, the two ends of the fourth resistor chain are respectively coupled to the third input signal and the fourth input signal, and the connection of the (M+1) fourth resistors respectively outputs the M fourth The phase shift signal has the other phase difference Δφ' between the M fourth phase shift signals. 如申請專利範圍第15項所述之信號校正電路,其中該些相移輸出信號更包括M個第五相移信號及M個第六相移信號,該相移電路更包括:一第五電阻鏈,包括(M+1)個串聯的第五電阻,該第五電阻鏈的兩端分別耦接該第二輸入信號以及該第三輸入信號,該(M+1)個第五電阻的連接處分別輸出該M個第五相移信號,該M個第五相移信號之間具有該相位差△φ;以及 一第六電阻鏈,包括(M+1)個串聯的第六電阻,該第六電阻鏈的兩端分別耦接該第四輸入信號以及該第一輸入信號,該(M+1)個第六電阻的連接處分別輸出該M個第六相移信號,該M個第五相移信號之間具有該相位差△φ。 The signal correction circuit of claim 15, wherein the phase shift output signals further comprise M fifth phase shift signals and M sixth phase shift signals, the phase shift circuit further comprising: a fifth resistor The chain includes (M+1) fifth resistors connected in series, and the two ends of the fifth resistor chain are respectively coupled to the second input signal and the third input signal, and the (M+1) fifth resistors are connected And outputting the M fifth phase shift signals respectively, wherein the M fifth phase shift signals have the phase difference Δφ between; a sixth resistor chain includes (M+1) sixth resistors connected in series, and the two ends of the sixth resistor chain are respectively coupled to the fourth input signal and the first input signal, and the (M+1)th The M sixth phase shift signals are respectively outputted at the junction of the six resistors, and the phase difference Δφ is between the M fifth phase shift signals. 如申請專利範圍第16項所述之信號校正電路,其中該些相移輸出信號更包括M個第七相移信號及M個第八相移信號,該相移電路更包括:一第七電阻鏈,包括(M+1)個串聯的第七電阻,該第七電阻鏈的兩端分別耦接該第二輸入信號以及該第三輸入信號,該(M+1)個第七電阻的連接處分別輸出該M個第七相移信號,該M個第七相移信號之間具有該另一相位差△φ’;以及一第八電阻鏈,包括(M+1)個串聯的第八電阻,該第八電阻鏈的兩端分別耦接該第四輸入信號以及該第一輸入信號,該(M+1)個第八電阻的連接處分別輸出該M個第八相移信號,該M個第八相移信號之間具有該另一相位差△φ’。 The signal correction circuit of claim 16, wherein the phase shift output signals further comprise M seventh phase shift signals and M eighth phase shift signals, the phase shift circuit further comprising: a seventh resistor The chain includes (M+1) seventh resistors connected in series, and the two ends of the seventh resistor chain are respectively coupled to the second input signal and the third input signal, and the (M+1) seventh resistors are connected And outputting the M seventh phase shift signals respectively, the M seventh phase shift signals having the another phase difference Δφ′; and an eighth resistor chain including (M+1) series connected eighth a resistor, the two ends of the eighth resistor chain are respectively coupled to the fourth input signal and the first input signal, and the connection of the (M+1) eighth resistors respectively outputs the M eighth phase shift signals, where The other phase difference Δφ' is between the M eighth phase shift signals. 如申請專利範圍第10項所述之信號校正電路,其中該放大電路包括:一輸出級放大單元,具有調整訊號振幅能力;一電晶體,具有一控制端,該控制端耦接該振幅增益,用於調整該輸出級放大單元之振幅放大倍率。 The signal correction circuit of claim 10, wherein the amplifying circuit comprises: an output stage amplifying unit having an ability to adjust signal amplitude; a transistor having a control end coupled to the amplitude gain, It is used to adjust the amplitude magnification of the output stage amplification unit. 如申請專利範圍第10項所述之信號校正電路,其中該偏壓校正電路的該偏壓校正相移電路包括P個偏壓校正電阻鏈,該振幅校正電路的該相移電路包括2P個振幅校正電阻鏈,P為正整數。 The signal correction circuit of claim 10, wherein the bias correction phase shift circuit of the bias correction circuit comprises P bias correction resistor chains, the phase shift circuit of the amplitude correction circuit comprising 2P amplitudes Correct the resistance chain, P is a positive integer. 如申請專利範圍第19項所述之信號校正電路,其中該第1個~第P個振幅校正電阻鏈的電阻值與該P個偏壓校正電阻鏈的電阻值相同,該第P+1個~第2P個振幅校正電阻鏈與該P個偏壓校正電阻鏈的電阻值不相同。 The signal correction circuit of claim 19, wherein the resistance values of the first to the Pth amplitude correction resistor chains are the same as the resistance values of the P bias correction resistor chains, and the P+1th ~ The 2P amplitude correction resistor chains are different from the resistance values of the P bias correction resistor chains. 如申請專利範圍第10項所述之信號校正電路,其中該偏壓校正平均電路係以一雙極性電源供電。 The signal correction circuit of claim 10, wherein the bias correction averaging circuit is powered by a bipolar power source.
TW104141143A 2015-12-08 2015-12-08 Amplitude calibration circuit and signal calibration circuit using the same TWI570389B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
TW104141143A TWI570389B (en) 2015-12-08 2015-12-08 Amplitude calibration circuit and signal calibration circuit using the same
CN201510989039.5A CN106856397B (en) 2015-12-08 2015-12-24 Amplitude correction circuit and signal correction circuit applied by same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104141143A TWI570389B (en) 2015-12-08 2015-12-08 Amplitude calibration circuit and signal calibration circuit using the same

Publications (2)

Publication Number Publication Date
TWI570389B true TWI570389B (en) 2017-02-11
TW201721102A TW201721102A (en) 2017-06-16

Family

ID=58608536

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104141143A TWI570389B (en) 2015-12-08 2015-12-08 Amplitude calibration circuit and signal calibration circuit using the same

Country Status (2)

Country Link
CN (1) CN106856397B (en)
TW (1) TWI570389B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730523B (en) * 2019-12-03 2021-06-11 智成電子股份有限公司 Self-calibration system single chip

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI685208B (en) * 2018-12-07 2020-02-11 財團法人工業技術研究院 Position encoding device and method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602515A (en) * 1984-12-03 1986-07-29 Simmonds Precision Products, Inc. Torque measurement apparatus containing embedded data structure and related method
TW475053B (en) * 2001-07-23 2002-02-01 Chih-Kung Lee Diffractive type laser ruler having high tolerance of grating rule phase shift and alignment error
TW200426346A (en) * 2003-05-29 2004-12-01 Nat Huwei Inst Of Technology A 3D measuring system using diffraction grating interferometry technique
TW201512629A (en) * 2013-09-25 2015-04-01 Ind Tech Res Inst A phase detection module of interference light suitable for linear scales and phase detecting system of grating interference using the same
US20150233692A1 (en) * 2014-02-19 2015-08-20 Mitutoyo Corporation Shape measuring apparatus and shape measurement error correction method
US20150323352A1 (en) * 2014-05-12 2015-11-12 Canon Kabushiki Kaisha Encoder and apparatus including the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS587943A (en) * 1981-07-07 1983-01-17 Sony Corp Am stereo system
US6434096B1 (en) * 1999-02-26 2002-08-13 Matsushita Electric Industrial Co., Ltd. Optical information recording/reproducing device
JP3636652B2 (en) * 2000-11-10 2005-04-06 Necマイクロシステム株式会社 Distortion correction circuit and display device
JP2005303939A (en) * 2004-04-16 2005-10-27 Matsushita Electric Ind Co Ltd Amplitude detecting method, gain control method for agc circuit, amplitude detecting apparatus and agc amplifier circuit
EP2326002B1 (en) * 2008-08-18 2015-07-29 Nippon Telegraph And Telephone Corporation Vector synthesis type phase shifter, optical transceiver, and control circuit
US8742843B2 (en) * 2011-12-19 2014-06-03 Intel Corporation Power management in transceivers

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4602515A (en) * 1984-12-03 1986-07-29 Simmonds Precision Products, Inc. Torque measurement apparatus containing embedded data structure and related method
TW475053B (en) * 2001-07-23 2002-02-01 Chih-Kung Lee Diffractive type laser ruler having high tolerance of grating rule phase shift and alignment error
TW200426346A (en) * 2003-05-29 2004-12-01 Nat Huwei Inst Of Technology A 3D measuring system using diffraction grating interferometry technique
TW201512629A (en) * 2013-09-25 2015-04-01 Ind Tech Res Inst A phase detection module of interference light suitable for linear scales and phase detecting system of grating interference using the same
US20150233692A1 (en) * 2014-02-19 2015-08-20 Mitutoyo Corporation Shape measuring apparatus and shape measurement error correction method
US20150323352A1 (en) * 2014-05-12 2015-11-12 Canon Kabushiki Kaisha Encoder and apparatus including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI730523B (en) * 2019-12-03 2021-06-11 智成電子股份有限公司 Self-calibration system single chip

Also Published As

Publication number Publication date
CN106856397B (en) 2020-06-12
TW201721102A (en) 2017-06-16
CN106856397A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
JP5385490B1 (en) Hall electromotive force signal detection circuit and current sensor thereof
KR100882400B1 (en) Phase correction circuit of encoder signal
KR20150142322A (en) Apparatus and method for compensating for position error of resolver
US20070024310A1 (en) Open offset canceling method and an impedance measuring apparatus using the method
TWI570389B (en) Amplitude calibration circuit and signal calibration circuit using the same
US20220163605A1 (en) Electronic circuit for measuring an angle and an intensity of an external magnetic field
JP2007171081A (en) Position detection method
JP2015078949A (en) Hall electromotive force signal detection circuit
US20160047849A1 (en) Power meter with two detector elements for a power measurement even of extremely low frequencies
KR101012740B1 (en) Resolver digital converter and position detecting apparatus
JPH08101045A (en) Position detector
JP2009139213A (en) Magnetometric sensor device and its control method
CN107702733B (en) Electromagnetic induction type position detector
JP2015105928A (en) Impedance measuring device and impedance measuring method
JP5162739B2 (en) Encoder signal processing method, encoder device, and servo motor
JP2006090741A (en) Output signal correction apparatus and method of encoder
Idzkowski et al. Metrological properties of a two-output transducer for measuring sum and difference of small resistances
US7777661B2 (en) Interpolation method and a circuit for carrying out said method used in a high-resolution encoder
JP2002228488A (en) Apparatus and method for automatically adjusting output signal from encoder
Benammar et al. Amplitude to phase conversion based on analog arcsine synthesis for sine-cosine position sensors
US20170146370A1 (en) Method for determining an orthogonality error between two sensor signals
JP7016159B2 (en) Sensor device
JP2005003541A (en) Sensor circuit, magnetic sensor circuit, current sensor circuit, and method for detecting level of magnetism or current
Ben-Brahim et al. A new angle determination method for resolvers
KR101889158B1 (en) Power measuring instrument and phase calibration method for the power measuring instrument