TWI565320B - Mixed optical device for image taking and light sensing - Google Patents
Mixed optical device for image taking and light sensing Download PDFInfo
- Publication number
- TWI565320B TWI565320B TW104129538A TW104129538A TWI565320B TW I565320 B TWI565320 B TW I565320B TW 104129538 A TW104129538 A TW 104129538A TW 104129538 A TW104129538 A TW 104129538A TW I565320 B TWI565320 B TW I565320B
- Authority
- TW
- Taiwan
- Prior art keywords
- optical lens
- optical
- opening
- lens module
- imaging
- Prior art date
Links
Landscapes
- Studio Devices (AREA)
Description
本發明係關於一種光學裝置,尤其關於一種同時具備擷取影像功能以及感應功能之攝像與感光整合型光學裝置。 The present invention relates to an optical device, and more particularly to an imaging and photosensitive integrated optical device having both an image capturing function and an inductive function.
近年來,隨著科技的進步,各種電子裝置均設計為輕薄外型而具有易於攜帶的特性,以便於使用者可隨時隨地藉由電子裝置進行行動商務或娛樂休閒等事務。以影像擷取裝置為例,影像擷取裝置近期廣泛地應用於各種領域,例如智慧型手機、平板電腦以及穿戴式裝置等可攜式電子裝置上,其具有體積小且方便攜帶之優點,使用者可以於需要時隨時進行影像擷取工作且儲存拍攝而獲得之影像。或者,可進一步地透過行動網路上傳至網際網路之中,以進行資料的傳輸。 In recent years, with the advancement of technology, various electronic devices have been designed to be lightweight and easy to carry, so that users can conduct business or entertainment activities by electronic devices anytime and anywhere. Taking image capture devices as an example, image capture devices have recently been widely used in various fields, such as portable electronic devices such as smart phones, tablet computers, and wearable devices, which have the advantages of small size and convenient portability. The image capture operation can be performed at any time as needed, and the image obtained by the shooting can be stored. Alternatively, it can be further uploaded to the Internet through a mobile network for data transmission.
另一方面,感應裝置亦早已發展,以達使用者最大便利且使系統的運作更為順暢。惟,感應裝置與影像擷取裝置之技術日趨成熟,故其整體結構複雜且體積較大。是以,如何整合 影像擷取裝置以及與感應裝置並且達成微型化已是重要的課題。 On the other hand, sensing devices have also been developed to maximize user convenience and make the system operate more smoothly. However, the technology of the sensing device and the image capturing device is becoming more and more mature, so the overall structure is complicated and the volume is large. So how to integrate The image capturing device and the miniaturization with the sensing device have become important issues.
請參閱圖1,其為習知影像擷取裝置之結構側視剖面示意圖。習知影像擷取裝置1包括光學透鏡11、光學感測元件12以及殼體13,且光學透鏡11係由一片透鏡片所構成,其可供外界光L通過而進入習知影像擷取裝置1內部。光學感測元件12對應於光學透鏡11,其可感應通過光學透鏡11之外界光L而產生相對應之影像訊號,以供連接於影像擷取裝置1之顯示器(未顯示於圖中)顯示對應於影像訊號之影像。殼體13之功能為容置光學透鏡11以及光學感測元件12,且定位之,使得光學透鏡11以及光學感測元件12得以正常運作,而殼體13具有一開孔131,其可顯露光學透鏡11於外,使外界光L通過光學透鏡11。光學透鏡11中,其具有一光軸A以及一視角θ(Field of View,FOV),其視角θ可決定影像擷取裝置1之視區(View),光學透鏡11為圓形透鏡,且其直徑為2.R。其中,光學透鏡11之尺寸越大,視角θ越大,且視區越大,而開孔131之尺寸稍大於光學透鏡11之有效光學尺寸或光學孔徑(Clear Aperature)。 Please refer to FIG. 1 , which is a side cross-sectional view showing the structure of a conventional image capturing device. The conventional image capturing device 1 includes an optical lens 11 , an optical sensing element 12 , and a housing 13 , and the optical lens 11 is composed of a single lens sheet, which can pass the external light L and enter the conventional image capturing device 1 . internal. The optical sensing component 12 corresponds to the optical lens 11 , and can sense the corresponding optical signal L through the optical lens 11 to generate a corresponding image signal for display connected to the display of the image capturing device 1 (not shown). An image of an image signal. The housing 13 functions to accommodate the optical lens 11 and the optical sensing element 12, and is positioned such that the optical lens 11 and the optical sensing element 12 operate normally, and the housing 13 has an opening 131 for revealing optical The lens 11 is outside, and the external light L is passed through the optical lens 11. The optical lens 11 has an optical axis A and a field of view (FOV), the viewing angle θ of which determines the viewing area of the image capturing device 1 , and the optical lens 11 is a circular lens, and The diameter is 2. R. Wherein, the larger the size of the optical lens 11, the larger the viewing angle θ, and the larger the viewing area, and the size of the opening 131 is slightly larger than the effective optical size or optical aperture of the optical lens 11.
當影像擷取裝置1選用像素尺寸較小的光學感測元件12時,外界光L不易入射至光學感測元件12,故需要於光學透鏡11與光學感測元件12之間設置一導光元件(未顯示於圖中),以引導外界光L入射至光學感測元件12上。一般而言,當視角θ越大,外界光L通過光學透鏡11之交會點(定義為轉折點)的所在位置會越靠近光學透鏡11,於此種情況下,影像擷取裝置1中必須設置較長的導光元件,才可確實引導外界光L入射至光學感測元件12。然而,較長的導光元件之效率較差,且成本較高,同時會 造成殼體13之長度較大。 When the image capturing device 1 selects the optical sensing component 12 having a small pixel size, the external light L is not easily incident on the optical sensing component 12, so a light guiding component needs to be disposed between the optical lens 11 and the optical sensing component 12. (not shown) to direct external light L to the optical sensing element 12. In general, when the angle of view θ is larger, the position of the intersection point (defined as a turning point) of the external light L passing through the optical lens 11 is closer to the optical lens 11. In this case, the image capturing device 1 must be set. The long light guiding element can surely guide the external light L to the optical sensing element 12. However, longer light guiding elements are less efficient and costly, and The length of the casing 13 is made large.
綜合以上可知,所需要解決的問題如下:第一,如何兼顧較大的視角以及較小的殼體長度,第二,於光學裝置尺寸最小化之前提下,如何擴展光學裝置之功能性,使之兼具影像擷取與光量感測或不同波長的監控之功效。 In summary, the problems to be solved are as follows: first, how to balance the larger viewing angle and smaller casing length, and second, how to extend the functionality of the optical device before minimizing the size of the optical device, so that It combines image capture with light sensing or monitoring of different wavelengths.
本發明之一目的在提供一種整合型光學裝置,其可同時進行不同功能,而提升光學裝置的功能性。 It is an object of the present invention to provide an integrated optical device that can perform different functions simultaneously while enhancing the functionality of the optical device.
本發明之另一目的在提供一種整合型光學裝置,其可因應不同的光學感測元件之尺寸來決定殼體之開孔的尺寸以及光學透鏡的尺寸,且可同時兼顧較大的或不同的視角需求以及較輕薄的殼體外型要求。 Another object of the present invention is to provide an integrated optical device that can determine the size of the opening of the housing and the size of the optical lens according to the size of the different optical sensing elements, and can simultaneously take into account larger or different Viewing requirements and thinner shell appearance requirements.
於一較佳實施例中,本發明提供一種攝像與感光整合型光學裝置,包括:一第一光學透鏡模組、一第二光學透鏡模組以及一殼體。該第一光學透鏡模組用以接收外界光而擷取一影像,該第二光學透鏡模組相鄰於該第一光學透鏡模組,用以感應外界光。該殼體用以承載該第一光學透鏡模組以及該第二光學透鏡模組;其中,該攝像與感光整合型光學裝置同時具有一攝像功能以及感應功能。 In a preferred embodiment, the present invention provides an imaging and photosensitive integrated optical device comprising: a first optical lens module, a second optical lens module, and a housing. The first optical lens module is configured to receive external light and capture an image, and the second optical lens module is adjacent to the first optical lens module for sensing external light. The housing is configured to carry the first optical lens module and the second optical lens module; wherein the imaging and the photosensitive integrated optical device have both an imaging function and an sensing function.
於一較佳實施例中,該殼體包括一第一開孔以及一第二開孔,該第一開孔可部份顯露該第一光學透鏡模組,而該第 二開孔可部份顯露該第二光學透鏡模組;該第一光學透鏡模組包括:一第一光學透鏡以及該第一光學感測元件。該第一光學透鏡用以供外界光通過,而該第一光學透鏡具有一第一視區。該第一光學感測元件對應於該第一光學透鏡,用以接收通過該第一光學透鏡之外界光而獲得該影像;其中,該第一開孔之尺寸係由該第一光學透鏡模組之一第一工作距離或一第一等效焦距、一第一視角以及該第一光學透鏡模組之一第一光學感測元件之尺寸而決定。 In a preferred embodiment, the housing includes a first opening and a second opening, and the first opening partially exposes the first optical lens module, and the first The second optical lens module is partially exposed by the second opening; the first optical lens module includes: a first optical lens and the first optical sensing element. The first optical lens is for external light to pass through, and the first optical lens has a first viewing zone. The first optical sensing element corresponds to the first optical lens for receiving the image obtained by the boundary light of the first optical lens; wherein the size of the first opening is determined by the first optical lens module Determining a first working distance or a first equivalent focal length, a first viewing angle, and a size of one of the first optical sensing elements of the first optical lens module.
於一較佳實施例中,當該第一光學透鏡之該第一視區係為圓形或近似為圓形,且一被拍攝物位於該第一光學透鏡模組之近處時,該第一開孔之尺寸係滿足下列關係式:
當該第一光學透鏡之該第一視區係為矩形或近似為矩形,且一被拍攝物位於該第一光學透鏡模組之近處時,該第一開孔之尺寸係滿足下列關係式:
於一較佳實施例中,該第二光學透鏡模組包括:一第二光學透鏡、該第二光學感測元件以及一導光元件。該第二光學透鏡相鄰於該第一光學透鏡,用以供外界光通過,而該第二光學透鏡具有一第二視區。該第二光學感測元件對應於該第二光學透鏡,用以感應通過該第二光學透鏡之外界光;其中,該第二光學感測元件之像素尺寸小於或遠小於該第一光學感測元件之像素尺寸。該導光元件設置於該第二光學透鏡以及該第二光學感測元件之間,用以引導通過該第二光學透鏡之外界光至該第二光學感測元件;其中,該第二開孔之尺寸係由該第二光學透鏡模組之一 第二工作距離或一第二等效焦距、一第二視角以及該導光元件之一第一表面之尺寸而決定。 In a preferred embodiment, the second optical lens module includes a second optical lens, the second optical sensing component, and a light guiding component. The second optical lens is adjacent to the first optical lens for external light to pass through, and the second optical lens has a second viewing zone. The second optical sensing element corresponds to the second optical lens for sensing the boundary light passing through the second optical lens; wherein the pixel size of the second optical sensing element is smaller or smaller than the first optical sensing The pixel size of the component. The light guiding element is disposed between the second optical lens and the second optical sensing element for guiding the light passing through the second optical lens to the second optical sensing element; wherein the second opening The size is determined by one of the second optical lens modules The second working distance or a second equivalent focal length, a second viewing angle, and a size of one of the first surfaces of the light guiding element are determined.
於一較佳實施例中,當該第二光學透鏡之該第二視區係為圓形或近似為圓形,且一被感測物位於該第二光學透鏡模組之近處時,該第二開孔之尺寸係滿足下列關係式:
於一較佳實施例中,當該第二光學透鏡之該第二視區係為矩形或近似為矩形,且一被感測物位於該第二光學透鏡模組之近處時,該第二開孔之尺寸係滿足下列關係式:
於一較佳實施例中,當該第一視角大於該第二視角時,對應於該第一視角之一第一距離小於對應於該第二視角之一第二距離;其中,該第一距離係該第一視角所在之一第一轉折點位置與該第一光學透鏡間之距離,而該第二距離係該第二視角所在之一第二轉折點位置與該第二光學透鏡間之距離。 In a preferred embodiment, when the first viewing angle is greater than the second viewing angle, the first distance corresponding to one of the first viewing angles is less than the second distance corresponding to one of the second viewing angles; wherein the first distance And a distance between the first inflection point position of the first viewing angle and the first optical lens, and the second distance is a distance between the second inflection point position of the second viewing angle and the second optical lens.
於一較佳實施例中,該導光元件之一第一表面與該導光元件之一第二表面間之角度差小於10度;其中該第一表面接近於該第二光學透鏡,而該第二表面接近於該第二光學感測元件。。 In a preferred embodiment, an angle difference between a first surface of the light guiding element and a second surface of the light guiding element is less than 10 degrees; wherein the first surface is close to the second optical lens, and the first surface is adjacent to the second optical lens The second surface is proximate to the second optical sensing element. .
於一較佳實施例中,該導光元件之一第一表面與該導光元件之一第二表面不平行,且該第一表面以及該第二表面中之任一者之一法向量係與該第二光學透鏡模組之一光軸平行;其中該第一表面接近於該第二光學透鏡,而該第二表面接近於該第二光學感測元件。 In a preferred embodiment, the first surface of one of the light guiding elements is not parallel to the second surface of the light guiding element, and one of the first surface and the second surface is a normal vector system Parallel to an optical axis of one of the second optical lens modules; wherein the first surface is proximate to the second optical lens and the second surface is proximate to the second optical sensing element.
於一較佳實施例中,該導光元件之一第一表面與該導光元件之一第二表面不平行,且該第一表面以及該第二表面中 之任一者之一法向量與該第二光學透鏡模組之一光軸間之角度小於60度;其中該第一表面接近於該第二光學透鏡,而該第二表面接近於該第二光學感測元件。 In a preferred embodiment, the first surface of one of the light guiding elements is not parallel to the second surface of the light guiding element, and the first surface and the second surface are Or an angle between one of the normal vectors and one of the optical axes of the second optical lens module is less than 60 degrees; wherein the first surface is adjacent to the second optical lens, and the second surface is adjacent to the second Optical sensing element.
於一較佳實施例中,該導光元件係實心塑膠管、中空管、具有導光指向性之微結構或具有金屬反射之表面。 In a preferred embodiment, the light guiding element is a solid plastic tube, a hollow tube, a microstructure having light directivity or a surface having metal reflection.
於一較佳實施例中,該第一光學透鏡以及該第二光學透鏡係設置於同一透鏡片上,且該透鏡片具有分別相對應之該第一視區以及該第二視區。 In a preferred embodiment, the first optical lens and the second optical lens are disposed on the same lens sheet, and the lens sheet has the first viewing zone and the second viewing zone respectively.
於一較佳實施例中,其中該第一光學透鏡係設置於一第一透鏡片上,且該第一透鏡片具有相對應之該第一視區,而該第二光學透鏡係設置於一第二透鏡片上,且該第二透鏡片具有相對應之該第二視區。 In a preferred embodiment, the first optical lens system is disposed on a first lens sheet, and the first lens sheet has a corresponding first viewing area, and the second optical lens unit is disposed on the first optical lens unit. On the two lens sheets, and the second lens sheet has the corresponding second viewing zone.
於一較佳實施例中,其中該第一光學感測元件與該第二光學感測元件係位於同一平面上,且該第一光學感測元件與該第二光學感測元件可整合於一體。 In a preferred embodiment, the first optical sensing component and the second optical sensing component are in the same plane, and the first optical sensing component and the second optical sensing component are integrated into one .
於一較佳實施例中,其中該第一光學感測元件與該第二光學感測元件係分別獨立設置且位於不同平面上。 In a preferred embodiment, the first optical sensing element and the second optical sensing element are separately disposed and located on different planes.
於一較佳實施例中,本發明攝像與感光整合型光學裝置更包括一移動機構,設置於該殼體內,用以移動該殼體以使第一光學透鏡模組進行自動對焦;其中該移動機構可藉由一電機方式、一磁力方式、一光學感應方式或一手動方式移動該殼體。 In a preferred embodiment, the imaging and photosensitive integrated optical device of the present invention further includes a moving mechanism disposed in the housing for moving the housing to perform autofocusing on the first optical lens module; wherein the moving The mechanism can move the housing by a motor, a magnetic force, an optical induction or a manual method.
簡言之,本發明攝像與感光整合型光學裝置藉由上述關係式而可因應不同的第一光學透鏡之尺寸、第二光學透鏡之尺寸、第一光學感測元件之尺寸以及導光元件之尺寸而決定相對 應的最大視角,以產生最大的視區,並因應該些光學透鏡之尺寸而決定殼體上相對應的該些開孔的尺寸。藉由上述關係式而形成之攝像與感光整合型光學裝置可兼顧不同的視角需求以及輕薄的殼體外型要求,以便於微型化,故本發明攝像與感光整合型光學裝置可應用於可攜式電子裝置,例如手機、平板電腦或其它穿戴式裝置等。 Briefly, the imaging and photosensitive integrated optical device of the present invention can respond to different sizes of the first optical lens, the size of the second optical lens, the size of the first optical sensing element, and the light guiding element by the above relationship. Size determines the relative The maximum viewing angle should be to produce the largest viewing zone, and the size of the corresponding openings on the housing is determined by the size of the optical lenses. The imaging and photosensitive integrated optical device formed by the above relationship can meet different viewing angle requirements and thin and thin housing appearance requirements for miniaturization, so the imaging and photosensitive integrated optical device of the present invention can be applied to the portable type. Electronic devices such as cell phones, tablets or other wearable devices.
1‧‧‧影像擷取裝置 1‧‧‧Image capture device
2、3‧‧‧攝像與感光整合型光學裝置 2, 3‧‧‧Photography and photosensitive integrated optical device
11‧‧‧光學透鏡 11‧‧‧ optical lens
12‧‧‧光學感測元件 12‧‧‧ Optical sensing components
13‧‧‧殼體 13‧‧‧Shell
21、31‧‧‧第一光學透鏡模組 21, 31‧‧‧ first optical lens module
22、32‧‧‧第二光學透鏡模組 22, 32‧‧‧ second optical lens module
23‧‧‧第三光學透鏡模組 23‧‧‧ Third optical lens module
24‧‧‧第四光學透鏡模組 24‧‧‧Fourth optical lens module
25‧‧‧第五光學透鏡模組 25‧‧‧Film optical lens module
26、36‧‧‧殼體 26, 36‧‧‧ shell
27、37‧‧‧移動機構 27, 37‧‧‧ mobile agencies
131‧‧‧開孔 131‧‧‧ openings
211、311‧‧‧第一光學透鏡 211, 311‧‧‧ first optical lens
212、312‧‧‧第一光學感測元件 212, 312‧‧‧ First optical sensing element
221、321‧‧‧第二光學透鏡 221, 321‧‧‧ second optical lens
222、322‧‧‧第二光學感測元件 222, 322‧‧‧ second optical sensing element
223、323‧‧‧導光元件 223, 323‧‧‧Light guiding elements
261、361‧‧‧第一開孔 261, 361‧‧‧ first opening
262、362‧‧‧第二開孔 262, 362‧‧‧ second opening
263‧‧‧第三開孔 263‧‧‧ third opening
264‧‧‧第四開孔 264‧‧‧fourth opening
265‧‧‧第五開孔 265‧‧‧5th opening
2231‧‧‧導光元件之第一表面 2231‧‧‧The first surface of the light guiding element
2232‧‧‧導光元件之第二表面 2232‧‧‧The second surface of the light guiding element
A‧‧‧光軸 A‧‧‧ optical axis
A1‧‧‧第一光軸 A1‧‧‧first optical axis
A2‧‧‧第二光軸 A2‧‧‧second optical axis
L‧‧‧外界光 L‧‧‧External light
N1‧‧‧第一法向量 N1‧‧‧ first normal vector
N2‧‧‧第二法向量 N2‧‧‧ second normal vector
P1‧‧‧第一轉折點位置 P1‧‧‧ First turning point position
P2‧‧‧第二轉折點位置 P2‧‧‧ second turning point position
V1、V3‧‧‧第一視區 V1, V3‧‧‧ first viewing zone
V2、V4‧‧‧第二視區 V2, V4‧‧‧ second viewing zone
θ‧‧‧視角 Θ‧‧‧ perspective
θM‧‧‧第一視角 θ M ‧‧‧ first perspective
θA‧‧‧第二視角 θ A ‧‧‧second perspective
θM,x‧‧‧於第一方向上之第一視角 θ M,x ‧‧‧first perspective in the first direction
θM,y‧‧‧於第二方向上之第一視角 θ M,y ‧‧‧first view in the second direction
θA,x‧‧‧於第一方向上之第二視角 θ A,x ‧‧‧second view in the first direction
θA,y‧‧‧於第二方向上之第二視角 θ A,y ‧‧‧second view in the second direction
2.R‧‧‧光學透鏡之直徑 2. R‧‧‧Diameter of optical lens
fM‧‧‧第一等效焦距 f M ‧‧‧first equivalent focal length
fA‧‧‧第二等效焦距 f A ‧‧‧second equivalent focal length
RaM‧‧‧第一光學透鏡之半徑 R aM ‧‧‧The radius of the first optical lens
RaM,x‧‧‧第一光學透鏡之第一方向長度 R aM, x ‧‧‧first optical lens length in the first direction
RaM,y‧‧‧第一光學透鏡之第二方向長度 R aM,y ‧‧‧second optical lens length in the second direction
RsM‧‧‧第一光學感測元件之半徑 R sM ‧‧‧The radius of the first optical sensing element
‧‧‧第一開孔之半徑 ‧‧‧The radius of the first opening
‧‧‧第一開孔之第一方向長度 ‧‧‧The first direction length of the first opening
‧‧‧第一開孔之第二方向長度 ‧‧‧The length of the first opening in the second direction
RaM‧‧‧第二光學透鏡之半徑 R aM ‧‧‧The radius of the second optical lens
RLA‧‧‧第一表面之半徑 R LA ‧‧‧The radius of the first surface
RLA,x‧‧‧第一表面之第一方向長度 R LA,x ‧‧‧first direction length of the first surface
RLA,y‧‧‧第一表面之第二方向長度 R LA,y ‧‧‧The second direction length of the first surface
‧‧‧第一開孔之第一方向長度 ‧‧‧The first direction length of the first opening
‧‧‧第一開孔之第二方向長度 ‧‧‧The length of the first opening in the second direction
‧‧‧第二開孔之半徑 ‧‧‧The radius of the second opening
‧‧‧第二開孔之第一方向長度 ‧‧‧The length of the first opening of the second opening
‧‧‧第二開孔之第二方向長度 ‧‧‧Second direction length of the second opening
TM1‧‧‧第一距離 T M1 ‧‧‧First distance
TM2‧‧‧第三距離 T M2 ‧‧‧ third distance
TA1‧‧‧第二距離 T A1 ‧‧‧Second distance
TA2‧‧‧第四距離 T A2 ‧‧‧fourth distance
WM‧‧‧第一工作距離 W M ‧‧‧First working distance
WA‧‧‧第二工作距離 W A ‧‧‧Second working distance
圖1:係為習知影像擷取裝置之結構側視剖面示意圖。 Figure 1 is a side cross-sectional view showing the structure of a conventional image capturing device.
圖2:係為本發明攝像與感光整合型光學裝置於第一較佳實施例之外觀結構示意圖。 2 is a schematic view showing the appearance of the imaging and photosensitive integrated optical device of the present invention in a first preferred embodiment.
圖3:係為本發明攝像與感光整合型光學裝置於第一較佳實施例沿剖面線F之局部結構側視剖面示意圖。 3 is a side cross-sectional view showing a partial structure of the imaging and photosensitive integrated optical device of the present invention along a section line F in the first preferred embodiment.
圖4:係為本發明攝像與感光整合型光學裝置於第一較佳實施例之第一視區以及第二視區之示意圖。 4 is a schematic view showing the first viewing zone and the second viewing zone of the first preferred embodiment of the imaging and photosensitive integrated optical device of the present invention.
圖5A:係為本發明攝像與感光整合型光學裝置於第二較佳實施例沿第一方向之局部結構側視剖面示意圖。 5A is a side cross-sectional view showing a partial structure of the imaging and photosensitive integrated optical device of the present invention in a first direction in a second preferred embodiment.
圖5B:係為本發明攝像與感光整合型光學裝置之第一光學透鏡模組於第二較佳實施例沿第二方向之局部結構側視剖面示意圖。 5B is a side cross-sectional view showing a partial structure of the first optical lens module of the imaging and photosensitive integrated optical device of the present invention in a second direction in the second preferred embodiment.
圖5C:係為本發明攝像與感光整合型光學裝置之第二光學透鏡模組於第二較佳實施例沿第二方向之局部結構側視剖 面示意圖。 FIG. 5C is a side elevational view of the second optical lens module of the imaging and photosensitive integrated optical device of the present invention in a second direction in a second preferred embodiment; FIG. Schematic diagram.
圖6:係為本發明攝像與感光整合型光學裝置於第二較佳實施例之第一視區以及第二視區之示意圖。 FIG. 6 is a schematic view showing the first viewing zone and the second viewing zone of the second preferred embodiment of the imaging and photosensitive integrated optical device of the present invention.
圖7A~7F:係為本發明攝像與感光整合型光學裝置之複數光學透鏡於不同較佳實施例之結構上視示意圖。 7A-7F are schematic top views showing the structure of a plurality of optical lenses of the imaging and photosensitive integrated optical device of the present invention in different preferred embodiments.
鑑於習知技術之問題,本發明提供一種可解決習知技術問題之攝像與感光整合型光學裝置。請同時參閱圖2~圖4,圖2係為本發明攝像與感光整合型光學裝置於第一較佳實施例之外觀結構示意圖,圖3係為本發明攝像與感光整合型光學裝置於第一較佳實施例沿剖面線F之局部結構側視剖面示意圖,而圖4係為本發明攝像與感光整合型光學裝置於第一較佳實施例之第一視區以及第二視區之示意圖。攝像與感光整合型光學裝置2包括第一光學透鏡模組21、第二光學透鏡模組22、第三光學透鏡模組23、第四光學透鏡模組24、第五光學透鏡模組25、殼體26以及移動機構27,且殼體26包括對應於第一光學透鏡模組21之第一開孔261、對應於第二光學透鏡模組22之第二開孔262、對應於第三光學透鏡模組23之第三開孔263、對應於第四光學透鏡模組24之第四開孔264以及對應於第五光學透鏡模組25之第五開孔265。 In view of the problems of the prior art, the present invention provides an imaging and photosensitive integrated optical device that can solve the problems of the prior art. Please refer to FIG. 2 to FIG. 4 simultaneously. FIG. 2 is a schematic diagram showing the appearance of the imaging and photosensitive integrated optical device according to the first preferred embodiment of the present invention. FIG. 3 is the first embodiment of the imaging and photosensitive integrated optical device of the present invention. BRIEF DESCRIPTION OF THE DRAWINGS FIG. 4 is a schematic cross-sectional view of a partial structure along a section line F, and FIG. 4 is a schematic view of a first viewing zone and a second viewing zone of the first preferred embodiment of the imaging and photosensitive integrated optical device of the present invention. The imaging and photosensitive integrated optical device 2 includes a first optical lens module 21, a second optical lens module 22, a third optical lens module 23, a fourth optical lens module 24, a fifth optical lens module 25, and a shell. The body 26 and the moving mechanism 27, and the housing 26 includes a first opening 261 corresponding to the first optical lens module 21, a second opening 262 corresponding to the second optical lens module 22, and a third optical lens. The third opening 263 of the module 23 corresponds to the fourth opening 264 of the fourth optical lens module 24 and the fifth opening 265 corresponding to the fifth optical lens module 25.
第一光學透鏡模組21位於殼體26之中央處,其包括第一光學透鏡211以及第一光學感測元件212,且第一光學透鏡 211具有第一光軸A1、第一視角θM以及第一視區V1。第一光學透鏡211固定於殼體26上且顯露於第一開孔261之外,其可供外界光L通過,而第一光學感測元件212對應於第一光學透鏡211,其功能為接收通過第一光學透鏡211之外界光L而獲得一影像。其中,第一視角θM係為對應於第一光學透鏡211之最大視角。 The first optical lens module 21 is located at the center of the housing 26 and includes a first optical lens 211 and a first optical sensing element 212, and the first optical lens 211 has a first optical axis A1, a first viewing angle θ M , and First viewing zone V1. The first optical lens 211 is fixed on the housing 26 and exposed outside the first opening 261 for external light L to pass therethrough, and the first optical sensing element 212 corresponds to the first optical lens 211, and functions as receiving An image is obtained by the boundary light L of the first optical lens 211. The first viewing angle θ M is a maximum viewing angle corresponding to the first optical lens 211 .
第二光學透鏡模組22位於第一光學透鏡模組21之一側,其包括第二光學透鏡221、第二光學感測元件222以及導光元件223,且第二光學透鏡221具有第二光軸A2、第二視角θA以及第二視區V2。第二光學透鏡221固定於殼體26上且顯露於第二開孔262之外,其可供外界光L通過,而第二學感測元件222對應於第二光學透鏡221,其功能為接收通過第二光學透鏡221之外界光L而可進行感測運作,例如可感測手勢等運作。導光元件223設置於第二光學透鏡221以及第二光學感測元件22之間,其功能為引導通過第二光學透鏡221之外界光L至第二光學感測元件222。其中,第二視角θA係為對應於第二光學透鏡221之最大視角。 The second optical lens module 22 is located on one side of the first optical lens module 21, and includes a second optical lens 221, a second optical sensing component 222, and a light guiding component 223, and the second optical lens 221 has a second light. The axis A2, the second viewing angle θ A, and the second viewing zone V2. The second optical lens 221 is fixed on the housing 26 and exposed outside the second opening 262 for external light L to pass, and the second sensing element 222 corresponds to the second optical lens 221, and functions as receiving The sensing operation can be performed by the boundary light L of the second optical lens 221, for example, a gesture or the like can be sensed. The light guiding element 223 is disposed between the second optical lens 221 and the second optical sensing element 22 and functions to guide the light L from the outer edge of the second optical lens 221 to the second optical sensing element 222. The second viewing angle θ A is the maximum viewing angle corresponding to the second optical lens 221 .
第三光學透鏡模組23~第五光學透鏡模組25亦位於第一光學透鏡模組21之一側,且第三光學透鏡模組23~第五光學透鏡模組25之結構以及功能係與第二光學透鏡模組22大致上相同而不再贅述,其中第二光學感測元件222以及第三光學透鏡模組23~第五光學透鏡模組25中之光學感測元件的像素尺寸小於或遠小於第一光學感測元件211之像素尺寸。於本較佳實施例中,第一光學感測元件211之像素尺寸約為百萬個,而第二光學透鏡模組22~第五光學透鏡模組25中之光學感測元件的像素尺寸約為1~2個,其僅為例示之用,而非以此為限。 The third optical lens module 23 to the fifth optical lens module 25 are also located on one side of the first optical lens module 21, and the structures and functions of the third optical lens module 23 to the fifth optical lens module 25 are The second optical lens module 22 is substantially the same and will not be described again. The pixel size of the optical sensing component in the second optical sensing component 222 and the third optical lens module 23 to the fifth optical lens module 25 is less than or It is much smaller than the pixel size of the first optical sensing element 211. In the preferred embodiment, the pixel size of the first optical sensing component 211 is about one million, and the pixel size of the optical sensing component in the second optical lens module 22 to the fifth optical lens module 25 is about It is 1~2, which is for illustrative purposes only and not limited to this.
由圖2可知,第一光學透鏡模組21係為中心光學透鏡模組,而第二光學透鏡模組22~第五光學透鏡模組25分別為圍繞於中心光學透鏡模組的周邊光學透鏡組。另一方面,圖3顯示出移動機構27設置於殼體26內,其功能為移動殼體26,以帶動第一光學透鏡211移動,使第一光學透鏡模組21進行自動對焦,其中,移動機構27可藉由電機方式、磁力方式、光學感應方式或手動方式而移動殼體26。 As shown in FIG. 2, the first optical lens module 21 is a central optical lens module, and the second optical lens module 22 to the fifth optical lens module 25 are peripheral optical lens groups surrounding the central optical lens module. . On the other hand, FIG. 3 shows that the moving mechanism 27 is disposed in the housing 26 and functions to move the housing 26 to move the first optical lens 211 to cause the first optical lens module 21 to perform auto focus, wherein The mechanism 27 can move the housing 26 by motor, magnetic, optical or manual means.
於本較佳實施例中,第一光學透鏡211、第二光學透鏡221以及第三光學透鏡模組23~第五光學透鏡模組25中之光學透鏡皆為圓形透鏡,其分別設置於獨立的透鏡片上,故所對應的第一視區V1、第二視區V2、……,亦為圓形,如圖4所示。其僅為例示之用,而不以此為限,於另一較佳實施例中,第一光學透鏡、第二光學透鏡以及第三光學透鏡模組~第五光學透鏡模組2中之光學透鏡係設置於同一透鏡片上,亦即以一體成型方式形成。第二光學感測元件222~第五光學透鏡模組25中之導光元件係為實心塑膠管,而外界光L包括具有一第一波長區間之光束、具有一第二波長區間之光束以及具有熱感應波長區間之光束。其中,具有第一波長區間之光束例如為可見光,具有第二波長區間之光束例如為不可見光,而具有熱感應波長區間之光束例如為以熱光源(Thermal Source)所輸出的光束。 In the preferred embodiment, the optical lenses of the first optical lens 211, the second optical lens 221, and the third optical lens module 23 to the fifth optical lens module 25 are all circular lenses, which are respectively disposed independently. On the lens sheet, the corresponding first viewing zone V1, second viewing zone V2, ... are also circular, as shown in FIG. It is for illustrative purposes only, and is not limited thereto. In another preferred embodiment, the opticals in the first optical lens, the second optical lens, and the third optical lens module to the fifth optical lens module 2 The lens system is disposed on the same lens sheet, that is, formed in an integrally formed manner. The light guiding elements in the second optical sensing element 222 to the fifth optical lens module 25 are solid plastic tubes, and the external light L includes a light beam having a first wavelength interval, a light beam having a second wavelength interval, and A beam that thermally senses the wavelength range. The light beam having the first wavelength interval is, for example, visible light, and the light beam having the second wavelength interval is, for example, invisible light, and the light beam having the thermally induced wavelength interval is, for example, a light beam output by a thermal source.
需特別說明的是,第一,上述任一光學透鏡可由一塑料、一玻璃或一矽基材料所製成。第二,上述導光元件223係採用實心塑膠管,但其僅為例示之用,而不以此為限,於另一較佳實施例中,導光元件223亦可選用中空管、具有導光指向性之 微結構的結構或具有金屬反射表面的結構。第三,第一光學感測元件212與第二光學感測元件222係位於同一平面上,但第一光學感測元件212與第二光學感測元件222分別獨立設置,其僅為例示之用,而不以此為限。於另一較佳實施例中,第一光學感測元件與第二光學感測元件係位於同一平面上,且可整合於一體。或者,第一光學感測元件與第二光學感測元件係分別獨立設置且位於不同平面上。 It should be particularly noted that, first, any of the above optical lenses may be made of a plastic, a glass or a bismuth based material. Secondly, the light guiding member 223 is a solid plastic tube, but it is for illustrative purposes only, and is not limited thereto. In another preferred embodiment, the light guiding member 223 may also be a hollow tube. Light directivity A microstructured structure or a structure having a metallic reflective surface. Third, the first optical sensing component 212 and the second optical sensing component 222 are on the same plane, but the first optical sensing component 212 and the second optical sensing component 222 are separately disposed, which are for illustrative purposes only. Without being limited to this. In another preferred embodiment, the first optical sensing element and the second optical sensing element are on the same plane and can be integrated. Alternatively, the first optical sensing element and the second optical sensing element are separately disposed and located on different planes.
第四,由圖3可知,導光元件223之第一表面2231與導光元件223之第二表面2232間之角度差小於10度,較佳者,其第一表面2231係與其第二表面2232平行。其中,其第一表面2231接近於第二光學透鏡221,而其第二表面2232接近於第二光學感測元件222。再者,當其第一表面2231係與其第二表面2232不平行時,攝像與感光整合型光學裝置2可採用以下兩種結構:第一,其第一表面2231之第一法向量N1以及其第二表面2232之第二法向量N2中之任一者與第二光學透鏡模組22之光軸A2平行。第二,其第一表面2231之第一法向量N1以及其第二表面2232之第二法向量N2中之任一者與第二光學透鏡模組22之光軸A2間之角度小於60度。較佳者,第一法向量N1以及第二法向量N2皆與光軸A2平行。 Fourth, as can be seen from FIG. 3, the angle difference between the first surface 2231 of the light guiding element 223 and the second surface 2232 of the light guiding element 223 is less than 10 degrees. Preferably, the first surface 2231 and the second surface 2232 thereof. parallel. Wherein, the first surface 2231 is close to the second optical lens 221, and the second surface 2232 is close to the second optical sensing element 222. Furthermore, when the first surface 2231 is not parallel to the second surface 2232 thereof, the imaging and photosensitive integrated optical device 2 can adopt the following two structures: first, the first normal vector N1 of the first surface 2231 thereof and Either of the second normal vectors N2 of the second surface 2232 is parallel to the optical axis A2 of the second optical lens module 22. Second, the angle between any of the first normal vector N1 of the first surface 2231 and the second normal vector N2 of the second surface 2232 and the optical axis A2 of the second optical lens module 22 is less than 60 degrees. Preferably, the first normal vector N1 and the second normal vector N2 are both parallel to the optical axis A2.
由圖3可知,當第一視角θM大於第二視角θA時,對應於第一視角θM之第一距離TM1小於對應於第二視角θA之第二距離TA1,其中,第一距離TM1係第一視角θM所在的第一轉折點位置P1與第一光學透鏡211間之距離,而第二距離TA1係第二視角θA所在之第二轉折點位置P2與第二光學透鏡221間之距離。 As can be seen from FIG. 3, when the first viewing angle θ M is greater than the second viewing angle θ A , the first distance T M1 corresponding to the first viewing angle θ M is smaller than the second distance T A1 corresponding to the second viewing angle θ A , wherein a distance T M1 is a distance between a first inflection point position P1 at which the first viewing angle θ M is located and the first optical lens 211, and a second distance T A1 is a second inflection point position P2 at which the second viewing angle θ A is located and the second optical The distance between the lenses 221 .
接下來說明殼體26上之第一開孔261~第五開孔265之尺寸大小的設計方式。以第一開孔261以及第二開孔262為例說明,請再次參閱圖2,第一開孔261之尺寸係由第一光學透鏡模組21之第一工作距離WM、第一視角θM以及第一光學感測元件212之尺寸而決定,或者,第一開孔261之尺寸係由第一光學透鏡模組21之第一等效焦距fM、第一視角θM以及第一光學感測元件212之尺寸而決定。當第一光學透鏡211之第一視區V1係為圓形,且被拍攝物位於第一光學透鏡模組21之近處時,第一開孔261之尺寸係滿足下列關係式:
另一方面,第二開孔262之尺寸係由第二光學透鏡模組22之第二工作距離WA、第二視角θA以及第二光學透鏡模組22之第二光學感測元件222之尺寸而決定,或者,由第二光學透鏡模組22之第二等效焦距fA、第二視角θA以及第二光學透鏡模組
22之第二光學感測元件222之尺寸而決定。當第二光學透鏡221之第二視區V2係為圓形,且被拍攝物位於第二光學透鏡模組22之近處時,第二開孔262之尺寸係滿足下列關係式:
此外,本發明更提供一與上述不同作法之第二較佳實施例。請同時參閱圖5A~5C以及圖6,圖5A~5C係為本發明攝像與感光整合型光學裝置於第二較佳實施例之局部結構側視剖面示意圖,而圖6係為本發明攝像與感光整合型光學裝置於第二較佳實施例之第一視區以及第二視區之示意圖。本發明攝像與感光整合型光學裝置3包括第一光學透鏡模組31、第二光學透鏡模組32~第五光學透鏡模組(未顯示於圖中)、殼體36以及移動機構37,且殼體36包括分別對應於上述複數光學透鏡模組31、32、……之第一開孔361、第二開孔362、……、以及第五開孔(未顯示於圖中)。攝像與感光整合型光學裝置3之結構大致上與前述第一較 佳實施例之攝像與感光整合型光學裝置2之結構相同,且相同之處則不再贅述,該兩者之不同之處在於,第一光學透鏡模組31、第二光學透鏡模組32、……、以及第五光學透鏡組之結構。 Furthermore, the present invention further provides a second preferred embodiment of the different methods described above. Please refer to FIG. 5A to FIG. 5C and FIG. 6 . FIG. 5 is a side cross-sectional view showing a partial structure of the imaging and photosensitive integrated optical device according to the second preferred embodiment of the present invention, and FIG. 6 is a camera of the present invention. A schematic diagram of the photosensitive integrated optical device in the first viewing zone and the second viewing zone of the second preferred embodiment. The imaging and photosensitive integrated optical device 3 of the present invention comprises a first optical lens module 31, a second optical lens module 32 to a fifth optical lens module (not shown), a housing 36 and a moving mechanism 37, and The housing 36 includes a first opening 361, a second opening 362, ..., and a fifth opening (not shown) corresponding to the plurality of optical lens modules 31, 32, ..., respectively. The structure of the imaging and photosensitive integrated optical device 3 is substantially the same as the first one described above. The imaging of the preferred embodiment is the same as that of the photosensitive integrated optical device 2, and the similarities are not described again. The difference between the two is that the first optical lens module 31, the second optical lens module 32, ..., and the structure of the fifth optical lens group.
圖5A顯示出第一光學透鏡模組31以及第二光學透鏡321於第一方向上之結構。第一光學透鏡模組31包括第一光學透鏡311以及第一光學感測元件312,且第一光學透鏡311具有第一光軸A1、於第一方向上之第一視角θM,x、於第二方向上之第一視角θM,y以及第一視區V3。其中,第一光學透鏡311以及第一視區V3係為矩形,如圖6所示。另一方面,第二光學透鏡模組32包括第二光學透鏡321、第二光學感測元件322以及導光元件323,且第二光學透鏡321具有第二光軸A2、於第一方向上之第二視角θA,x、於第二方向上之第二視角θA,y以及第二視區V4。其中,第二光學透鏡321以及第二視區V4亦為矩形,如圖6所示。於本較佳實施例中,導光元件323係為自由型導光元件,且其內表面具有金屬反射表面的結構,而有助於外界光L的導光。 FIG. 5A shows the structure of the first optical lens module 31 and the second optical lens 321 in the first direction. The first optical lens module 31 includes a first optical lens 311 and a first optical sensing element 312, and the first optical lens 311 has a first optical axis A1, and a first viewing angle θ M, x in a first direction. The first viewing angle θ M,y in the second direction and the first viewing zone V3. The first optical lens 311 and the first viewing zone V3 are rectangular, as shown in FIG. 6 . On the other hand, the second optical lens module 32 includes a second optical lens 321, a second optical sensing element 322, and a light guiding element 323, and the second optical lens 321 has a second optical axis A2 in the first direction. The second viewing angle θ A,x , the second viewing angle θ A,y in the second direction , and the second viewing zone V4. The second optical lens 321 and the second viewing zone V4 are also rectangular, as shown in FIG. 6. In the preferred embodiment, the light guiding element 323 is a free-type light guiding element, and the inner surface thereof has a structure of a metal reflecting surface, which contributes to the light guiding of the external light L.
接下來,第一開孔361之尺寸係由第一光學透鏡模組31之第一工作距離WM、於第一方向上之第一視角θM,x、於第二方向上之第一視角θM,y以及第一光學感測元件312之尺寸而決定,或者,第一開孔361之尺寸係由第一光學透鏡模組31之第一等效焦距fM、於第一方向上之第一視角θM,x、於第二方向上之第一視角θM,y以及第一光學感測元件312之尺寸而決定。當第一光學透鏡311之第一視區V3係為矩形,且被拍攝物位於第一光學透鏡模組31之近處時,第一開孔361之尺寸係滿足下列關係式:
另一方面,第二開孔362之尺寸係由第二光學透鏡模組32之第二工作距離WA、於第一方向上之第二視角θA,x、於第二方向上之第二視角θA,y以及第二光學透鏡模組32之第二光學感測元件322之尺寸而決定,或者,由第二光學透鏡模組32之第二等效焦距fA、於第一方向上之第二視角θA,x、於第二方向上之第二視角θA,y以及第二光學透鏡模組32之第二光學感測元件322之尺寸而決定。當第二光學透鏡321之第二視區V4係為矩形,且被拍
攝物位於第二光學透鏡模組32之近處時,第二開孔362之尺寸係滿足下列關係式:
以上說明僅為本發明的實施例,熟知本技藝人士皆可依據實際應用需求而進行任何均等的變更設計。請參閱圖7A~7F,其為本發明攝像與感光整合型光學裝置之複數光學透鏡於不同較佳實施例之結構上視示意圖。圖7A顯示出第一光學透鏡 411、第二光學透鏡412、第三光學透鏡413、第四光學透鏡414以及第五光學透鏡415係一體成型於同一透鏡片上,且第二光學透鏡412、第三光學透鏡413、第四光學透鏡414以及第五光學透鏡415環繞第一光學透鏡411。其中,對應於第一光學透鏡411之光學透鏡模組之功能為擷取影像,而對應於第二光學透鏡412、第三光學透鏡413、第四光學透鏡414以及第五光學透鏡415之該些光學透鏡模組係具有感應功能。 The above description is only an embodiment of the present invention, and any person skilled in the art can make any equal change design according to actual application requirements. Please refer to FIGS. 7A-7F, which are schematic top views of the complex optical lens of the imaging and photosensitive integrated optical device of the present invention in different preferred embodiments. Figure 7A shows the first optical lens 411. The second optical lens 412, the third optical lens 413, the fourth optical lens 414, and the fifth optical lens 415 are integrally formed on the same lens sheet, and the second optical lens 412, the third optical lens 413, and the fourth optical lens are integrally formed on the same lens sheet. 414 and fifth optical lens 415 surround first optical lens 411. The function of the optical lens module corresponding to the first optical lens 411 is to capture images, and corresponds to the second optical lens 412, the third optical lens 413, the fourth optical lens 414, and the fifth optical lens 415. The optical lens module has an inductive function.
圖7B~7F則分別顯示出不同配置的複數光學透鏡,圖7B顯示二光學透鏡合一之透鏡片,圖7C以及圖7D顯示三光學透鏡合一之透鏡片,而圖7E以及圖7F則分別顯示出不同形式之四光學透鏡合一之透鏡片。 7B to 7F respectively show a plurality of optical lenses of different configurations, FIG. 7B shows a lens sheet in which two optical lenses are combined, and FIGS. 7C and 7D show lens sheets in which three optical lenses are combined, and FIG. 7E and FIG. A lens sheet of four optical lenses in different forms is shown.
根據上述可知,本發明攝像與感光整合型光學裝置藉由上述關係式而可因應不同的第一光學透鏡之尺寸、第二光學透鏡之尺寸、第一光學感測元件之尺寸以及導光元件之尺寸而決定相對應的最大視角,以產生最大的視區,並因應該些光學透鏡之尺寸而決定殼體上相對應的該些開孔的尺寸。藉由上述關係式而形成之攝像與感光整合型光學裝置可同時兼顧較大的視角以及輕薄的殼體外型,以便於微型化,故本發明攝像與感光整合型光學裝置可應用於可攜式電子裝置,例如手機、平板電腦或其它穿戴式裝置等。 According to the above, the imaging and photosensitive integrated optical device of the present invention can be adapted to different sizes of the first optical lens, the size of the second optical lens, the size of the first optical sensing element, and the light guiding element by the above relationship. The size determines the corresponding maximum viewing angle to produce the largest viewing zone, and the size of the corresponding openings on the housing is determined by the size of the optical lenses. The imaging and photosensitive integrated optical device formed by the above relationship can simultaneously take into consideration a large viewing angle and a slim shell shape for miniaturization, so the imaging and photosensitive integrated optical device of the present invention can be applied to a portable type. Electronic devices such as cell phones, tablets or other wearable devices.
以上所述僅為本發明之較佳實施例,並非用以限定本發明之申請專利範圍,因此凡其它未脫離本發明所揭示之精神下所完成之等效改變或修飾,均應包含於本案之申請專利範圍內。 The above are only the preferred embodiments of the present invention, and are not intended to limit the scope of the present invention. Therefore, any equivalent changes or modifications made without departing from the spirit of the present invention should be included in the present invention. Within the scope of the patent application.
2‧‧‧攝像與感光整合型光學裝置 2‧‧‧Photography and photosensitive integrated optical device
21‧‧‧第一光學透鏡模組 21‧‧‧First optical lens module
22‧‧‧第二光學透鏡模組 22‧‧‧Second optical lens module
26‧‧‧殼體 26‧‧‧Shell
27‧‧‧移動機構 27‧‧‧Mobile agencies
211‧‧‧第一光學透鏡 211‧‧‧First optical lens
212‧‧‧第一光學感測元件 212‧‧‧First optical sensing element
221‧‧‧第二光學透鏡 221‧‧‧Second optical lens
222‧‧‧第二光學感測元件 222‧‧‧Second optical sensing element
223‧‧‧導光元件 223‧‧‧Light guiding elements
261‧‧‧第一開孔 261‧‧‧ first opening
262‧‧‧第二開孔 262‧‧‧Second opening
2231‧‧‧導光元件之第一表面 2231‧‧‧The first surface of the light guiding element
2232‧‧‧導光元件之第二表面 2232‧‧‧The second surface of the light guiding element
A1‧‧‧第一光軸 A1‧‧‧first optical axis
A2‧‧‧第二光軸 A2‧‧‧second optical axis
L‧‧‧外界光 L‧‧‧External light
N1‧‧‧第一法向量 N1‧‧‧ first normal vector
N2‧‧‧第二法向量 N2‧‧‧ second normal vector
P1‧‧‧第一轉折點位置 P1‧‧‧ First turning point position
P2‧‧‧第二轉折點位置 P2‧‧‧ second turning point position
θM‧‧‧第一視角 θ M ‧‧‧ first perspective
θA‧‧‧第二視角 θ A ‧‧‧second perspective
RaM‧‧‧第一光學透鏡之半徑 R aM ‧‧‧The radius of the first optical lens
RsM‧‧‧第一光學感測元件之半徑 R sM ‧‧‧The radius of the first optical sensing element
‧‧‧第一開孔之半徑 ‧‧‧The radius of the first opening
RaM‧‧‧第二光學透鏡之半徑 R aM ‧‧‧The radius of the second optical lens
RLA‧‧‧第一表面之半徑 R LA ‧‧‧The radius of the first surface
‧‧‧第二開孔之半徑 ‧‧‧The radius of the second opening
TM1‧‧‧第一距離 T M1 ‧‧‧First distance
TM2‧‧‧第三距離 T M2 ‧‧‧ third distance
TA1‧‧‧第二距離 T A1 ‧‧‧Second distance
TA2‧‧‧第四距離 T A2 ‧‧‧fourth distance
Claims (16)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104129538A TWI565320B (en) | 2015-09-07 | 2015-09-07 | Mixed optical device for image taking and light sensing |
US14/926,886 US9632278B2 (en) | 2015-09-07 | 2015-10-29 | Imaging-capturing and light-sensing optical apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW104129538A TWI565320B (en) | 2015-09-07 | 2015-09-07 | Mixed optical device for image taking and light sensing |
Publications (2)
Publication Number | Publication Date |
---|---|
TWI565320B true TWI565320B (en) | 2017-01-01 |
TW201711439A TW201711439A (en) | 2017-03-16 |
Family
ID=58408162
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
TW104129538A TWI565320B (en) | 2015-09-07 | 2015-09-07 | Mixed optical device for image taking and light sensing |
Country Status (1)
Country | Link |
---|---|
TW (1) | TWI565320B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113703160A (en) * | 2020-05-08 | 2021-11-26 | 宏碁股份有限公司 | Virtual reality positioning device, manufacturing method thereof and virtual reality positioning system |
US11846729B2 (en) | 2020-04-10 | 2023-12-19 | Acer Incorporated | Virtual reality positioning device, virtual reality positioning system, and manufacturing method of virtual reality positioning device |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201428333A (en) * | 2012-11-26 | 2014-07-16 | Digital Optics Corp Japan G K | Image pickup optical system and image pickup device using the same |
TWM495525U (en) * | 2014-10-31 | 2015-02-11 | Everready Prec Ind Corp | Combined lens module and image capturing sensing assembly |
CN204269902U (en) * | 2014-10-31 | 2015-04-15 | 高准精密工业股份有限公司 | Variable focus lens package and varifocal camera module |
US20150168676A1 (en) * | 2013-12-18 | 2015-06-18 | Genius Electronic Optical Co., Ltd. | Camera device and optical imaging lens thereof |
-
2015
- 2015-09-07 TW TW104129538A patent/TWI565320B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW201428333A (en) * | 2012-11-26 | 2014-07-16 | Digital Optics Corp Japan G K | Image pickup optical system and image pickup device using the same |
US20150168676A1 (en) * | 2013-12-18 | 2015-06-18 | Genius Electronic Optical Co., Ltd. | Camera device and optical imaging lens thereof |
TWM495525U (en) * | 2014-10-31 | 2015-02-11 | Everready Prec Ind Corp | Combined lens module and image capturing sensing assembly |
CN204269902U (en) * | 2014-10-31 | 2015-04-15 | 高准精密工业股份有限公司 | Variable focus lens package and varifocal camera module |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US11846729B2 (en) | 2020-04-10 | 2023-12-19 | Acer Incorporated | Virtual reality positioning device, virtual reality positioning system, and manufacturing method of virtual reality positioning device |
CN113703160A (en) * | 2020-05-08 | 2021-11-26 | 宏碁股份有限公司 | Virtual reality positioning device, manufacturing method thereof and virtual reality positioning system |
Also Published As
Publication number | Publication date |
---|---|
TW201711439A (en) | 2017-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2961008T3 (en) | Macro image method and terminal | |
TWI622829B (en) | Optical image capturing lens assembly, imaging apparatus and electronic device | |
WO2020125204A1 (en) | Control method, control device, electronic device and medium | |
TWI620968B (en) | Optical photographing lens system, image capturing apparatus and electronic device | |
WO2020114067A1 (en) | Imaging method, imaging device, electronic device, and medium | |
US10142539B2 (en) | Optical apparatus with wide-angle or panoramic imaging function | |
TWI703342B (en) | Imaging lens module and electronic device | |
US11378871B2 (en) | Optical system, and imaging apparatus | |
WO2020010886A1 (en) | Camera module, assembly, electronic device, mobile terminal, and photography method | |
US11785323B1 (en) | Camera module including refractive member and electronic device including refractive member | |
TWI565320B (en) | Mixed optical device for image taking and light sensing | |
TWI633358B (en) | Camera lens system with three lens components | |
US10386614B2 (en) | Optical apparatus | |
US11480852B2 (en) | Camera module and electronic apparatus | |
JP5846275B2 (en) | Optical system and imaging system | |
WO2020007085A1 (en) | Camera assembly, electronic apparatus, mobile terminal, and electronic device | |
CN214586080U (en) | Imaging lens, image capturing device and electronic device | |
TWI393991B (en) | Stereoscopic image capture device and its application of symmetrical prism array | |
CN210781025U (en) | Camera module and electronic equipment | |
CN103428414A (en) | Camera device for portable terminal | |
CN115437098A (en) | Camera module and electronic device | |
CN106501913A (en) | Shooting and photosensitive integrated Optical devices | |
US9632278B2 (en) | Imaging-capturing and light-sensing optical apparatus | |
TWI819526B (en) | Optical reflecting assembly, optical lens element module and electronic device | |
US20230152558A1 (en) | Lens assembly and electronic device including the same |