TWI565230B - 放大發射信號的設備與方法 - Google Patents

放大發射信號的設備與方法 Download PDF

Info

Publication number
TWI565230B
TWI565230B TW104104777A TW104104777A TWI565230B TW I565230 B TWI565230 B TW I565230B TW 104104777 A TW104104777 A TW 104104777A TW 104104777 A TW104104777 A TW 104104777A TW I565230 B TWI565230 B TW I565230B
Authority
TW
Taiwan
Prior art keywords
module
signal
delay
power amplifier
path
Prior art date
Application number
TW104104777A
Other languages
English (en)
Other versions
TW201545471A (zh
Inventor
安德烈斯 藍格
岡勒 克羅特
Original Assignee
英特爾智財公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 英特爾智財公司 filed Critical 英特爾智財公司
Publication of TW201545471A publication Critical patent/TW201545471A/zh
Application granted granted Critical
Publication of TWI565230B publication Critical patent/TWI565230B/zh

Links

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03GCONTROL OF AMPLIFICATION
    • H03G3/00Gain control in amplifiers or frequency changers
    • H03G3/20Automatic control
    • H03G3/30Automatic control in amplifiers having semiconductor devices
    • H03G3/3036Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers
    • H03G3/3042Automatic control in amplifiers having semiconductor devices in high-frequency amplifiers or in frequency-changers in modulators, frequency-changers, transmitters or power amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • H03F1/0216Continuous control
    • H03F1/0222Continuous control by using a signal derived from the input signal
    • H03F1/0227Continuous control by using a signal derived from the input signal using supply converters
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/189High-frequency amplifiers, e.g. radio frequency amplifiers
    • H03F3/19High-frequency amplifiers, e.g. radio frequency amplifiers with semiconductor devices only
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0458Arrangements for matching and coupling between power amplifier and antenna or between amplifying stages
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/36Modulator circuits; Transmitter circuits
    • H04L27/366Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator
    • H04L27/367Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion
    • H04L27/368Arrangements for compensating undesirable properties of the transmission path between the modulator and the demodulator using predistortion adaptive predistortion
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2200/00Indexing scheme relating to amplifiers
    • H03F2200/102A non-specified detector of a signal envelope being used in an amplifying circuit

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

放大發射信號的設備與方法
本發明關於將予以發射的信號的放大,更明確說,關於用以放大發射信號的設備與方法。
在很多應用中,兩裝置間需要資料傳輸。此等傳輸中,發射信號經常在傳輸至接收器裝置前被放大。放大發射信號為一項具挑戰性工作。一方面,應到達想要的傳輸功率,另一方面則應有低電流消耗。一種有效的方式以在無線系統之整個輸出功率範圍中最佳化功率放大器(PA)電流消耗為使用DCDC轉換器(直流-直流轉換器),其例如提供PA電源電壓。取決於輸出功率,DCDC轉換器的輸出電壓係被調整。輸出功率愈低,則所需PA電源電壓愈低。由於電池電壓降轉至較低PA供應電壓,所以,電池電流可能降低。例如,DCDC轉換器輸出電壓可以根據在下一時間期間預期的目標功率(平均功率)加以設定。此程序可以稱為平均功率追蹤(APT)。然而,吾人想要進一步降低電流消耗。
有潛在需求,以提供改良概念的放大發射信號。
此需求可以為申請專利範圍標的所滿足。
100‧‧‧設備
102‧‧‧天線模組
110‧‧‧功率放大器模組
112‧‧‧波封追蹤路徑
114‧‧‧發射路徑
120‧‧‧電源供應模組
130‧‧‧可變延遲模組
140‧‧‧延遲控制模組
500‧‧‧設備
502‧‧‧天線模組
510‧‧‧功率放大器模組
512‧‧‧波封追蹤路徑
514‧‧‧發射路徑
520‧‧‧電源供應模組
540‧‧‧延遲決定模組
600‧‧‧方法
610‧‧‧放大
620‧‧‧改變
630‧‧‧改變
640‧‧‧提供
700‧‧‧方法
710‧‧‧放大
720‧‧‧改變
730‧‧‧決定
800‧‧‧設備
802‧‧‧天線模組
810‧‧‧功率放大器模組
812‧‧‧波封追蹤路徑
814‧‧‧發射路徑
820‧‧‧耦接器模組
830‧‧‧電源供應模組
840‧‧‧決定模組
900‧‧‧設備
902‧‧‧雙工器
904‧‧‧天線開關
906‧‧‧天線
912‧‧‧功率放大器核心
914‧‧‧阻抗匹配電路
1000‧‧‧設備
1002‧‧‧天線模組
1010‧‧‧功率放大器模組
1012‧‧‧波封追蹤路徑
1014‧‧‧發射路徑
1020‧‧‧電源供應模組
1030‧‧‧可變延遲模組
1100‧‧‧方法
1110‧‧‧放大
1120‧‧‧提供
1130‧‧‧決定
1140‧‧‧改變
1200‧‧‧方法
1210‧‧‧放大
1220‧‧‧改變
1230‧‧‧改變
150‧‧‧行動裝置
170‧‧‧基頻處理器模組
180‧‧‧電源供應單元
190‧‧‧設備
1400‧‧‧設備
1412‧‧‧波封追蹤路徑
1420‧‧‧座標轉換模組
1422‧‧‧可變延遲方塊
1424‧‧‧可變增益模組
1426‧‧‧記憶體單元
1428‧‧‧數位至類比轉換器
1430‧‧‧波封追蹤調變器
1432‧‧‧RF信號產生模組
1434‧‧‧可變增益模組
1436‧‧‧功率放大器模組
設備及/或方法的一些例子將只以例示方式參考附圖加以描述如下,其中:圖1為放大發射信號的設備之方塊圖,其具有可變延遲模組與延遲控制模組;圖2為發射頻帶分割的示意圖;圖3為發射頻帶的另一分割的示意圖;圖4為延遲值對次帶的插補的示意圖;圖5為決定延遲控制參數的設備的方塊圖;圖6顯示放大發射信號的方法之流程圖;圖7顯示決定延遲控制參數的方法之流程圖;圖8顯示具有延遲決定模組之放大發射信號的設備的方塊圖;圖9顯示放大發射信號的設備之方塊圖,該發射信號顯示順向與反射波;圖10顯示具有可變延遲模組放大發射信號的設備之方塊圖; 圖11顯示放大發射信號的方法之流程圖;圖12顯示放大發射信號的另一方法的流程圖;圖13顯示行動裝置的方塊圖;圖14顯示用以具有發射路徑與波封追縱路徑的放大發射信號的設備的方塊圖;及圖15顯示功率放大器的輸出級的示意圖。
各種例子現將參考附圖加以更完整說明,圖中顯示有部份例子。在圖中,線、層及/或區域的厚度可能為了清楚起見而放大。
因此,雖然例子能作各種修改及替代形式,但在圖式中的例示例子將於此詳細描述。然而,應了解的是,其中並不想要將例子限定至所揭露的特定形式,相反地,例子係想要涵蓋落入本案範圍內的所有修改、等效及替代。相同元件符號表示於所有圖式說明中相同或類似的元件。
將了解的是,當元件係稱為被“連接”或“耦接”另一元件,其可以直接連接或耦接至該另一元件或者可以透過互連元件。相反地,當一元件被稱為“直接連接”或“直接耦接”至另一元件,則表示其間沒有互連元件。用以描述元件間之關係的其他用語應以類似方式解釋(例如,“之間”對“直接之間”,“鄰近”對“直接鄰近”等等)。
於此所用之用語只係描述例示例子目的,並非想要限定。如於此所用,除非內文明確指出,“一”及“該”係想要包含複數形式。將了解的是,於此所用之用語“包含”,及/或“包括”指明所述特性、整數、步驟、運算、元件及/或組件的出現,而不是排除一或更多其他特性、整數、步驟、運算、元件、組件及/或群組的出現或加入。
除非特別界定,於此所用的所有用語(包含技術及科學用語)具有與熟習於本技藝者所共同了解的該等例子所屬的相同意義。更了解的是,例如在一般字典所界定的用語應被解譯為具有與相關技藝的文中意義相符的意義,並且,除非特別界定,其將不會以理想或過度正式的方式解譯。
發射信號的放大的功率消耗可以藉由使用波封追蹤法加以降低。波封追蹤為一種方法,其中供應至功率放大器的電源供應電壓係被重覆或連續地調整,使得該放大器於例如一給定瞬間輸出功率要求,操作接近尖峰效率。一波封檢測器或波封追蹤模組可以計算將要發射的信號的瞬間振幅,以及,供應調變器(例如,包含快速DCDC轉換器)可以轉換供應電壓的振幅信號給該功率放大器。至功率放大器的供應電壓可以持續追蹤發射信號的波封。以此方式,電流消耗可以被降低。
例如,所謂波封追蹤(ET)DCDC轉換器或波封追縱調變器的快速DCDC轉換器可以協助進一步降低 電池電流或電流消耗。波封追蹤(ET)的一態樣為至PA的供應電壓並不是恆定。圖14顯示使用封波追蹤法,放大發射信號的設備之方塊圖。設備1400包含波封追蹤路徑1412及發射路徑1414。發射路徑1414包含RF(射頻)信號產生模組1432,耦接至可變增益模組1434,該可變增益模組1434耦接至功率放大器模組1436。波封追蹤路徑1412包含座標轉換模組1420(例如,CORDIC座標旋轉數位電腦)耦接至可變延遲方塊1422,可變延遲方塊1422耦接至可變增益模組1424,可變增益模組1424耦接至記憶體單元1426(例如,儲存查看表(LUT)),記憶體單元1426耦接至數位至類比轉換器1428(DAC),數位至類比轉換器1428再耦接至波封追縱ET調變器1430(例如,包含DCDC轉換器),ET調變器再耦接至功率放大器模組1436。
例如,基頻發射信號(例如,同相正交信號(IQ)或極性調變信號)係被提供至發射路徑1414的RF信號產生模組1432及波封追蹤路徑1412的座標轉換模組1420(例如,如果基頻發射信號為極性調變信號,則可以被移除)。RF信號產生模組1432將該基頻發射信號轉換為高頻發射信號(例如,上轉或混合基頻發射信號與載波信號),以及,可變增益模組1434將高頻發射信號放大或衰減一可變增益因數krf。為該可變增益模組1434所輸出的發射信號以輸入功率Pin提供至功率放大器模組1436的輸入,並為功率放大器模組1436根據為波封追蹤路徑 1412的ET調變器模組1430所提供的供應電壓Vcc加以放大。座標轉換模組1420將同相正交基頻發射信號轉換為極性調變基頻發射信號。可變延遲方塊1422改變在波封追蹤路徑1412內的信號延遲。再者,可變增益模組1424藉由放大或衰減在波封追蹤路徑1412內的信號一增益因數kET(取決於該增益因數krf),而補償至少部份在該發射路徑1414內所引入的可變增益。再者,為記憶體模組1426所儲存的查看表可以提供控制信號或控制參數(例如,s=f(kET*m(I,Q)),用以取決於基頻發射信號(例如m(I,Q)=magnitude(I+jQ))的振幅或大小,而調整為ET調變器模組1430所提供的供應電壓。記憶體單元1426的輸出可以為數位至類比轉換器1428所數位至類比轉換,並且,類比信號可以提供至ET調變器模組1430。
PA供應電壓Vcc例如取決於調變基頻BB信號m(I,Q)的瞬間波封。在示意說明中,調變BB信號的波封可以利用CORDIC演算法,其後作延遲調整,以補償在主信號路徑(RF信號產生路徑或發射路徑)及波封路徑中之差延遲加以計算,並且,波封信號可以被整形(預失真)並隨後例如作數位至類比轉換。此信號可以施加至ET DCDC轉換器(例如,超快DCDC轉換器),其可以產生可變PA供應電壓。
能進行ET的DCDC轉換器(也稱為追蹤器)可以跟隨RF信號的瞬間波封,其可以移除電壓頂部空間並可以進一步增加系統效率(例如,PA及DCDC轉換器 的合成效率)。例如,能進行ET的DCDC轉換器可以降低為功率放大器所吸取的電池電流,以相對於例如簡單地跟隨平均功率的標準DCDC轉換器,在最大輸出功率時,放大LTE(長期演進)信號大約20+%。
在ET傳輸系統中,在ET路徑及RF路徑間之延遲可以調整(例如,藉由圖14中所示之可變延遲方塊)。在製造發射器或行動設備期間的校正程序(例如,使用測試發射信號)可以試著等化在兩路徑中之類比與數位延遲。
在製造期間,此校正可能已經完成一次,並且,在波封追蹤路徑內的延遲可以在正常操作時及在傳送發射信號至外部接收器時保持固定。
然而,此延遲校正可以例如在天線埠的50歐姆(例如理想狀態下)執行。天線負載失配可能對該處的最佳ET延遲有影響。雖然失配係在RF波封與PA供應(在功率放大器模組)的實際組合點之後發生,但情況就是如此。經常地,不只天線可能在PA輸出造成一些失配,同時,也會在PA後的所有元件,例如雙工器所引入失配。雙工器可能特別重要,因為其輸入阻抗(=至PA的負載)可能嚴重地改變大小與相位對頻率。此變化負載可能為造成在RF波封與調變PA供應電壓間之時序失配的主要影響,最後造成ACLR(鄰近通道洩漏功率比)劣化。
換句話說,如果功率放大器為雙工器或其他元件所加載的話,則此一影響可能發生在ET系統中,該 雙工器或其他元件將頻率相關相移加入於順向與反射波中,或者提供阻抗給該功率放大器,並例如具有快速改變相位跨越頻率。
波封追蹤的一態樣為RF波封與例如瞬間RF波封的函數的瞬間功率放大器供應電壓間的緊密時間同步化。對於LTE-20,延遲準確性可以例如約1ns。如果違反延遲準確度,則ACLR效能可能劣化及,並在發射器鏈內引入記憶體效應。
於RF波封與瞬間功率放大器供應電壓間之延遲可能取決於很多作用,例如,在RF信號路徑中之延遲、在ET信號路徑中之延遲、在ET DCDC轉換器(追蹤器)中之延遲。這些作用可能例如為考量取樣變動的工廠校正及考量延遲漂移對溫度的溫度補償所取得。
RF波封與瞬間功率放大器供應電壓間之延遲可以被稱為ET延遲。ET延遲可以與RF群組延遲有所區別,該RF群組延遲可以為在RF波封中引入偏移延遲的頻率相關相移(公式)所造成。
如果PA係為雙工器或任何其他提供輸入阻抗有快速改變相位與大小跨越頻率的元件所加載,則ET延遲可能取決於例如發射頻率。ET延遲甚至可能在調變頻寬內改變。頻率相關的ET延遲可以被稱為延遲分散。延遲分散的根本成因可能為ET系統(PA與ET DCDC轉換器)與雙工器間之有害互動,這可以在隨後詳述。
由於雙工器的延遲分散可能為ET佈署的一個 重要問題。這對於波封追蹤領域可能是功能效應。
換句話說,如果PA為雙工器(或任何在順向與反射波間加入頻率相關相移的元件)所加載,則由於例如雙工器的發射濾波器中之諧振,延遲可能取決於頻率。延遲甚至可能在調變頻寬內改變。
圖15顯示一功率放大器1500的示意圖,其具有RF輸入、具有調變波封的供應電壓Vcc2及輸出信號。如所示,調變供應電壓Vcc2係被供應至功率放大器的最後一級的集極上,該處也是輸出RF信號取出之處。就此點,為波封追蹤路徑所產生之功率放大器供應電壓可能足夠高並在時間上適當對準以發射有或沒有可忽略的失真的放大RF波封。如果負載不等於參考阻抗,則除了順向波外,在PA輸出也可能觀察到反射波。取決於複數順向波a的所得複數電壓U,複數反射波b及正實數參考阻抗可以為:
在極式表示法(大小r=| r |及相位tan φ=lm{ r }/Re{ r })中的複數反射係數r的定義可以為:
及公式1變成
反射因數的頻率相關性可以在公式2中被視為頻率f的函數: r (f)=r(f).e (f) (4)
複數轉移函數h(f)可以依據公式3及4成為:
振幅反應可以為:
再者,對於相位反應α=arg( h (f)),可以認定:
波封的延遲可以為群組延遲τgr
利用公式7,群組延遲可以為:
這可以表示只有當在頻帶上有恆定反射因數(r’=φ’=0),群組延遲可以為0。對於雙工器,並不能實現此需求,例如,對於複數反射因數顯著改變的區域,可能需要一特殊處理。依據公式9的群組延遲並不是例如由s-參數S21群組延遲所給定的群組延遲。上述之作用係由S11群組延遲所造成,表示在雙工器的輸入之反射所造成的群組延遲。通常在RF系統中不是想要的S11群組延遲可能例如造成幾個延遲問題及例如在ET系統中的後續效 能劣化。
圖1顯示設備100的方塊圖,用以依據一例子放大發射信號。設備100包含發射路徑114與波封追蹤路徑112。功率放大器模組110係被安排於發射路徑114內及可變延遲模組130與電源供應模組120係被安排於波封追蹤路徑112內。功率放大器模組110係被架構以耦接或被耦接至天線模組102。可變延遲模組130依據至少一延遲控制參數,改變在波封追蹤路徑112內的信號延遲。再者,電源供應模組120隨著為可變延遲模組130可調整之時間對準,改變功率放大器模組110的電源供應。設備100更包含一延遲控制模組,耦接或連接至可變延遲模組130。該延遲控制模組根據發射信號的現行特徵發射頻率,提供該延遲控制參數的一值。
藉由改變在波封追蹤路徑內的信號延遲,功率放大器模組的供應電壓變化與發射信號的波封變化(例如,發射信號的電流振幅)的同步化可以很準確地執行。由於所提供電源供應及功率放大器模組的想要輸出振幅的準確時間對準,已放大的發射信號的失真與/或電流消耗可以保持為低。
發射信號可以為藉由基頻發射信號(例如,同相正交相位信號或極性調變信號)的上轉換所取得之高頻發射信號。發射信號係為功率放大器模組110所放大及被放大的發射信號可以提供至天線模組102。
天線模組102可以連接至發射路徑114,或功 率放大器模組110可以為設備100的一部份。或者,天線模組102可以為可連接至設備100的外部部件。天線模組102可以包含各種元件(例如,雙工器、天線開關及/或一或更多天線)。
功率放大器模組110可以取決於為電源供應模組120所供應的電壓,而放大發射信號。功率放大器模組110可以包含一或更多放大器級(功率放大器核心)及,例如,一阻抗匹配電路。
設備100可以被實施發射器內或收發器,用以放大例如予以為發射器或收發器所發射的信號。
波封追蹤路徑112係為用以控制及/或提供功率放大器模組110的供應電壓的信號路徑。在比較時,發射路徑114係為用以傳遞予以發射至接收器的信號或資料的信號路徑。
功率放大器模組110的電源供應模組120係被安排於波封追蹤路徑112內。電源供應模組120能產生在時間上變化的功率放大器模組110的電源供應(例如,電源供應電壓或電源供應電流)。以此方式,(例如有關圖14及15所述的)波封追蹤法可以被實施,以例如降低放大發射信號時的功率消耗。
另外,可變延遲模組130係被安排於波封追蹤路徑112內,以改良電源供應變化對予以放大的信號變化的時間對準。可變延遲模組130反應於提供給可變延遲模組130的延遲控制參數,改變在波封追蹤路徑112內的 信號延遲。由於在波封追蹤路徑112內的信號延遲變化,功率放大器模組110的電源供應的時間對準可以被調整為在發射路徑114與波封追蹤路徑112間之可變信號延遲差。
可變延遲模組130可以對在發射器或收發器的正常操作期間,對在波封追蹤路徑112內改變信號延遲提供可能性。換句話說,可變延遲模組130可以在發射信號的傳輸(例如至外部接收器)期間,改變在波封追蹤路徑112內的信號延遲。發射信號可以例如包含予以由使用設備100的發射器或收發器發射至外部接收器的使用者資料。
發射信號可以包含依據予以發射的符號(例如代表予以發射的資料的符號)順序,隨時間改變的振幅及相位。發射信號可以透過一選擇發射頻帶及/或例如發射頻帶的資源方塊加以發射。用以發射該發射信號的發射頻帶及/或發射頻帶的資源方塊可以隨時間改變。
至少一延遲控制參數可以以各種方式加以界定或可以代表各種參數或係數。例如,延遲控制參數可以是予以為可變延遲模組所產生的現行想要信號延遲,或,代表現行想要信號延遲的資訊,或者,成比例於現行想要信號延遲的信號特性(例如,提供給可變延遲模組的延遲控制信號的電壓或電流)。
延遲控制模組140根據發射信號的現行特徵發射頻率,提供及/或決定控制該可變延遲模組130的延 遲控制參數。現行特徵發射頻率可以表示現行用以發射該發射信號的頻率範圍的頻率代表或特徵。用以發射一發射信號的頻率範圍可以取決於用於傳輸發射信號(例如,LTE,即長期演進、3GPP,用於世代夥伴計劃、或WLAN,無線區域網路的網路協定)的無線通訊標準或協定。換句話說,現行特徵發射頻率可以為代表現行用以發射該發射信號的頻率範圍或頻道的一頻率。現行特徵發射頻率可以依據例如用以發射該發射信號的發射頻帶、資源方塊或頻道的改變,而隨時間改變。
如所述,現行特徵發射頻率可以對於不同無線通訊協定作不同的界定。例如,對於LTE(例如,LTE20),現行特徵發射頻率可以例如取決於現行用以發射該發射信號的發射頻帶、現行用以發射該發射信號的資源方塊的數量及所使用發射頻帶內的使用資源方塊的現行位置。例如,現行特徵發射頻率可以為用以發射該發射信號(例如,用於3GPP)的現行使用發射頻帶的中心頻率,或現行用以發射該發射信號(例如,用LTE)的資源方塊的中心頻率。
換句話說,例如,對於3G,發射頻率(現行特徵發射頻率)可以等於或代表被指定RF頻寬的中心頻率。對於LTE,該被指定資源方塊的中心頻率可以代表例如發射頻率(現行特徵發射頻率)。
例如,可以加入延遲校正,該校正係取決於在LTE系統中的配置資源方塊的數量。如所述,延遲可 能甚至在調變頻帶內改變。為了獲得此效果,可以有利地對ACLR效能加入另一延遲偏移,其可以例如是整個調變頻寬的平均延遲。該加入的延遲偏移可以被認為例如用以決定現行特徵發射頻率。或者,延遲控制模組140可以例如除了現行特徵發射頻率外,也可以考量用以決定延遲控制參數的配置資源方塊的數量。
延遲控制模組140可以包含記憶體模組,其儲存有關於多數不同特徵發射頻率的至少一延遲控制參數的多數值。換句話說,延遲控制模組140儲存一查看表,其包含可以用以發射該發射信號的不同特徵發射頻率的延遲控制參數的不同值。
延遲控制參數的不同值可以在校正程序期間決定,或可以被再使用或例如由參考裝置複製。例如,在校正程序期間,最佳ET延遲或接近最佳的ET延遲可以在整個發射頻帶(或幾個發射頻帶),以小頻率步階(例如,每一百萬赫芝、每千萬赫芝、每500KHz或更少)加以量測。延遲最佳化可以(例如,在製造期間)使用被實施在發射器或收發器韌體(FW)中的校正程序。結果,用於各個支援(例如,LTE)頻帶的整個頻率的良好或最佳延遲(例如最佳延遲可以取決於被配置資源方塊的LTE頻寬個別數量)。可以找到整個發射頻帶的延遲反應的適當近似值。
例如,具有低頻邊界flj(絕對射頻通道數ARFCN值MIj)的頻帶j可以被細分為N+1次頻帶。次 頻帶N+1的數目、較低頻寬及(例如任意定位的)上次頻帶邊界△fi,j可以被儲存於表(例如延遲控制模組的查看表)。這只是一個例子,當然仍可能有其他方式來設定次頻帶與儲存它們。例如,該頻帶可以被細分為基本上等寬的次頻帶(例如,參考寬度的+-10%),因此△f i,j =(i+1)·3GPPBandwidth/(N+1)
另外圖2中,可以使△fi,j作廢,以例如節省記憶體。
在頻帶j的各個次頻帶中,在中心頻率fi,j的延遲校正可以被執行。中心頻率可以依據如下計算
換句話說,延遲控制模組140的記憶體模組可以儲存有關於特徵發射頻率的延遲控制參數的值,該等特徵發射頻率至少部份分開代表次頻帶的大致上頻、低頻及/或中心頻率以實質等寬(例如相對於參考頻寬有低於10%的偏移)或例如具有預定(不等或任意)間隔除可能的發射頻帶。
例如,雙工器S11係數可以在頻帶邊緣很強烈地改變。因此,幾個小次頻帶(例如,小於1,在頻帶中心的一些或所有頻帶)可以被引入,以取得該雙工器邊緣的良好代表。換句話說,次頻帶的邊界可以對應或可以例如對應於雙工器特徵加以分佈。
信號中心頻率f(現行特徵發射頻率)可以為例如ARFCN值所界定的信號頻率以外的其他頻率。在LTE信號的情形下,中心頻率可以例如取決於資源方塊 (RB)的位置。信號中心頻率f可以依據其頻譜內容加以調整,使得頻譜可以例如對稱地定位於f旁。
例如,延遲校正可以根據資源方塊叢集的中心頻率及由資源方塊的數量所給定的叢集大小加以完成。
在一例子中,分段為次頻帶可以取決於例如整個發射頻帶的最佳延遲。因此,頻寬與各個次頻帶的中心頻率可能一頻帶一頻帶地彼此不同。例如,3GPP頻帶1可以有不同於3GPP頻帶2的分段,因為雙工器特徵可以為不同及可以例如引入不同S11群組延遲。分段可以加以選擇,使得ACLR效能可以在整個發射頻帶為最佳。例如,頻帶2雙工器的量測延遲與相關最佳分割成次頻帶係被顯示於圖3。
在此例子中,次頻帶中心係被置放於延遲極端。在這些點處,可以發生Fi,j延遲校正。對於傳輸頻率f=Fi,j,ACLR可以為最佳,因為位於傳輸信號的中心的左與右的瞬間頻率f±△f可以例如大約相等地延遲。
換句話說,延遲控制模組140的記憶體模組可以儲存有關於特徵發射頻率的延遲控制參數的值,至少一部份代表為例如耦接至功率放大器模組的輸出的至少一元件所造成的頻率相關群組延遲的實質極端值(例如低於極端值的位置或值的10%偏移)。
這可以表示對於發射操作,延遲可以良好調整,如果信號中心頻率f(現行特徵發射頻率)係位於剛好次頻帶中心頻率Fi,j。對於信號中心頻率f≠Fi,j,其可以 線性內插於相鄰次頻帶的中心頻率間,以取得此專屬信號頻率(現行特徵發射頻率)的良好或最佳延遲。例如圖4及公式11所示,其中頻帶指數j為簡化起見已省略。
兩例外可以發生在下與上頻帶邊緣,其中例如由於欠缺進一步校正點,所以延遲可以保持恆定。例如,內插並不限於線性內插。其他方式的內插也有可能(例如,樣條(spline)內插或其他)。另外,在頻帶邊緣的外插也可以採用,以克服例如對恆定延遲的限制。
換句話說,延遲控制模組140可以根據例如有關於最接近現行特徵發射頻率的兩個特徵發射頻率相關的兩個儲存值的內插,決定並提供該延遲控制參數的內插值。
或者,延遲控制模組140可以提供有關於最接近現行特徵發射頻率的特徵發射頻率的延遲控制參數的值。換句話說,延遲控制模組140可以提供儲存用於最接近現行特徵發射頻率的特徵發射頻率的值。以此方式,延遲控制參數的值可以提供至可變延遲模組130,以例如匹配用於現行特徵發射頻率的最佳化值優於為延遲控制模組140所儲存的其他值。
另外,設備100可以包含在波封追蹤路徑112內的波封追蹤模組。該波封追蹤模組可以根據對應於予以為功率放大器模組110所放大的發射信號的基頻發射信 號,決定發射信號波封資訊。換句話說,予以為功率放大器模組110所放大的發射信號可以由基頻發射信號導出。此基頻發射信號可以(例如為基頻處理器)提供至該波封追蹤路徑112與發射路徑114。
例如,信號轉換模組可以被安排於發射路徑114內。信號轉換模組(例如,包含用以將該基頻發射信號上轉換至發射頻帶的混波器)可以例如根據基頻發射信號,產生予以為功率放大器模組110所放大的發射信號。
波封追蹤模組可以例如有關圖14所述,由該基頻發射信號導出發射信號波封資訊。例如,波封追蹤模組可以如有關圖14所述包含座標轉換模組、可變增益模組及/或查看表。
可變延遲模組130可以位於波封追蹤路徑114內,在該波封追蹤模組之前、之後或之內。例如,可變延遲方塊130可以被安排在座標轉換模組之前、在座標轉換模組與可變增益模組之間、在可變增益模組與查看表之間或在查看表與電源供應模組120之間。電源供應模組可以根據發射信號波封資訊(及延遲控制參數),改變功率放大器模組110的電源供應。
例如,可變延遲模組130可以改變基頻發射信號(例如同相正交相位信號)、用以決定發射信號波封資訊的由基頻發射信號(例如極性調變信號)導出的信號、或發射信號波封資訊的延遲。
發射信號波封資訊可以例如為電流振幅或成 比例於發射信號的電流振幅或成比例於放大現行發射信號所需要或想要的電源供應電壓的電源供應模組120的控制參數。
電源供應模組120可以包含直流(CD)-直流(CD)-轉換器模組(或同時也稱為如圖14所示之波封追蹤調變器),以提供改變供應電壓(或改變供應電流)給功率放大器模組110。換句話說,電源供應模組120可以包含電壓轉換器,架構以轉換可用實質恆定供應電壓(例如,晶片供應電壓)至現行想要供應電壓,以提供可變電壓給功率放大器模組110(例如,取決於延遲控制參數及發射信號波封資訊)。
如所述,功率放大器模組110可以連接或耦接至天線模組102。天線模組102可以包含至少一雙工器模組。例如,雙工器模組可以在發射路徑114與波封追蹤路徑112間之延遲造成較耦接至功率放大器模組110的輸出的一或更多其他模組強(例如,以延遲變化對頻率變化之比表示)的頻率相依性。換句話說,雙工器模組可能在發射路徑114與波封追蹤路徑112間造成延遲的頻率相依性的主要部份。例如,雙工器模組可以在發射路徑114與波封追蹤路徑112間造成延遲的較強(例如,以比延遲變化對頻率變化表示)頻率相依性及變化的天線負載。天線負載可能由於變化的環境條件(例如,使用提議設備的行動裝置附近的手或身體)而改變。
圖5顯示依據一例子決定延遲控制參數的值 之設備500的方塊圖。該設備包含具有功率放大器模組510的發射路徑514,與具有電源供應模組520的波封追蹤路徑512。功率放大器模組510可以耦接至天線模組502並放大發射信號。電源供應模組520係連接或耦接至功率放大器模組110並改變功率放大器模組510的電源供應。再者,設備500包含延遲決定模組540。延遲決定模組540決定多數對應於在發射路徑514與波封追蹤路徑512間之不同信號延遲,用於不同特性發射頻率的延遲控制參數的多數值。
藉由決定用於不同特性發射頻率的延遲控制參數的不同值,延遲控制參數可以用以在波封追蹤路徑512內實施可變信號延遲,以例如改良在發射路徑514與波封追蹤路徑512間之時間對準。
更多細節與態樣(例如,有關發射路徑、波封追蹤路徑、功率放大器模組、天線模組、發射信號、電源供應模組、延遲控制參數及/或特性發射頻率)係參考上述提議概念或一或更多前述例子(例如圖1-4、14與15)加以描述。
延遲決定模組540可以為實施在發射器或收發器內的一模組,該發射器或收發器包含發射路徑514與波封追蹤路徑512或延遲決定模組540可以為測試電路的一部份,其可連接至例如包含發射路徑514與波封追蹤路徑512的發射器或收發器。
在決定延遲控制參數的值時,具有預定頻率 順序的發射信號可以提供給功率放大器模組110。例如,設備500可以包含信號提供器,提供具有改變特性發射頻率的發射信號(例如,有關圖2-4所述)給功率放大器模組110。信號提供器可以為設備500的基頻處理器的一部份或為其所實施,或者例如可以為連接至設備500的測試電路的一部份。
延遲決定模組540可以決定用於特性發射率的延遲控制參數的值,其至少一部份代表將可能發射頻帶分成相等寬度的次頻帶的上頻、低頻或中心頻率(例如有關圖2-4所述)。或者,或另外,延遲決定模組540決定用於特性發射頻率的延遲控制參數,至少一部份表示為耦接至功率放大器模組510的輸出的元件所造成的頻率相關的群組延遲的最極端值(如有關於圖2至4所述)。
波封追蹤路徑512可以包含可變延遲模組,其依據該延遲控制參數改變在波封追蹤路徑512內的信號延遲。再者,電源供應模組520可以以為可變延遲模組所調整的時間對準,改變功率放大器模組510的電源供應。再者,設備500可以包含延遲控制模組,其根據發射信號的電流特性發射頻率提供延遲控制參數給該功率放大器模組510(例如,參考圖1至4所述)。
設備500可以包含對應於有關提議概念所述之一或更多態樣或一或更多前述例子的一或更多選用其他特性(例如圖1-4,14與15)。
一些例子有關於在波封追蹤系統中的動態延 遲校正,或用以決定用來控制發射信號的放大的延遲參數的設備與方法。波封追蹤方法在發射時完成了功率放大器的電流消耗的降低。提議概念可以被實施於能波封追蹤的收發器中。提議概念可以被實施在高量架構的產品(例如,收發器或發射器)中,或高量架構外的產品(例如校正系統或測試系統)中。提議概念包含可以為低量的測試系統及/或設計/除錯工具,也可以例如發射器及收發器。
依據提議概念的一態樣,延遲交越特性可以(例如,使用可以為收發器韌體所提供的特殊測試程序)藉由將發射頻帶分割為整個發射頻帶的延遲特性所決定的次頻帶並例如取決於指定資訊方塊的數量與位置,內插各個次頻帶加以決定。
藉由使用提議概念,可以例如取得在波封追蹤ET模式中的改良ACLR效能及/或在低電流消耗的較佳ACLR效能。
圖6顯示依據一例子的用以放大發射信號的方法600的流程圖。方法600包含以功率放大器放大在發射路徑內的發射信號610。再者,方法600包含依據延遲控制參數,改變在波封追蹤路徑內的信號延遲,並以該改變信號延遲可調整的時間對準,改變功率放大器模組的電源供應630。另外,方法600包含根據發射信號的電流特性發射頻率,提供延遲控制參數640。
藉由改變在波封追蹤路徑內的信號延遲,功率放大器模組的供應電壓的變化對發射信號的波封(例 如,發射信號的電流振幅)的變化的同步化可以很準確地實行。由於提供具有想要輸出振幅的準確時間對準,放大發射信號的功率放大器模組失真與/或電流消耗可以被保持很低。
更多細節與態樣(例如,有關於發射信號、功率放大器、信號延遲、類比追蹤路徑、發射路徑、延遲控制參數、電源供應及/或電流特性發射頻率)係配合所提議概念或前述之一或更例子(例如,例子1-5,14及15)加以描述。該方法600可以包含對應有關提議概念或上述一或更多例子的一或更多態樣的一或更多其他選項動作。
圖7顯示用以依據一例子決定延遲控制參數的值之方法700的流程圖。方法700包含以功率放大器放大在發射路徑內的發射信號710及透過波封追蹤路徑改變功率放大器的電源供應720。再者,方法700包含對於不同特性發射頻率,決定對應於在發射路徑與波封追蹤路徑間之不同延遲的延遲控制參數的多數值730。
藉由決定不同特性發射頻率的延遲控制參數的不同值,延遲控制參數可以用以實現在波封追蹤路徑512內的改變信號延遲,以例如改良發射路徑514與波封追蹤路徑512間之時間對準。
更多細節與態樣(例如,有關發射信號、功率放大器、信號延遲、類比追蹤路徑、發射路徑、延遲控制參數、電源供應及/或特性發射頻率)係有關於所提概 念與上述一或更多例子(例如圖1至5、14及15)加以說明。方法700可以包含一或更多其他選項動作,這些係對應於所提概念與上述一或更多例子所述的一或更多態樣。
圖8顯示用以依據一例子放大發射信號的設備800的方塊圖。設備800包含功率放大器模組810,安排於發射路徑814內。發射路徑814(也是以此方式中之功率放大器模組)可以耦接至天線模組802。功率放大器模組810放大提供給功率放大器模組810的發射信號。再者,設備800包含耦接器模組820安排於功率放大器模組810與天線模組802之間。耦接模組820提供至少一逆向回授信號。逆向回授信號係被大量產生、主要為天線模組802所反射的放大發射信號的一部份所產生或所導出。另外,設備800包含決定模組840,根據至少該逆向回授信號,決定在發射路徑814與波封追蹤路徑812間之延遲的延遲資訊。再者,設備800包含安排在波封追蹤路徑812內的電源供應模組830,其根據具有取決於該延遲資訊的時間對準的發射信號資訊,改變功率放大器模組810的電源供應。
由於回授路徑,表示發射路徑814與波封追蹤路徑812間之改變延遲的延遲資訊可以被決定。根據該所決定延遲資訊,該功率放大器模組的電源供應變化與該發射信號內的變化的時間對準可以被改良。以此方式,發射信號的失真與/或信號放大的功率消耗可以被降低。
有關功率放大器模組、發射路徑、波封追蹤路徑、天線模組、發射信號、電源供應模組及/或發射信號波封資訊的其他細節與態樣係配合所提概念及上述之一或更多例子加以描述(例如,圖1至5、14與15)。
逆向回授信號係主要為天線模組802所反射的放大發射信號的一部份所產生或造成的信號,這可以表示逆向回授信號的平均振幅或最大振幅的至少50%(或超出70%)係成比例於(或造成)反射波的振幅。
例如,一小部份的順向或逆向波可以提供以成比例於該順向或逆向波。
耦接模組820可以被以各種方式實施。耦接模組820可以由耦接元件與傳遞來自功率放大器模組的發射信號至天線模組802的信號線作電容性及/或電感性耦接所導出至少逆向回授信號。例如,耦接模組820可以包含方向性耦接器。該方向性耦接器可以在輸入埠接收來自功率放大器模組810的已放大的發射信號並可以在輸出埠提供已放大發射信號給天線模組802。方向性耦接器可以在所謂絕緣埠,提供逆向回授信號。以此方式,逆向回授信號可以實際為天線模組802所反射的已放大發射信號的一部份所產生,因為反射波係在輸出埠為該方向性耦接器所接收。
可選地,耦接模組820(例如,在方向性耦接器之所謂耦接埠)也可以提供一順向回授信號,其主要為由功率放大器模組810(透過耦接模組)傳遞至天線模組 802的放大發射信號所產生。順向回授信號可以提供至決定模組840並且決定模組840可以根據順向回授信號與逆向回授信號,選用地決定該延遲資訊。
在天線模組802的已放大發射信號的一部份之反射可以為一或更多元件(例如,雙工器及/或天線開關)及/或天線模組802的一或更多天線附近的改變環境狀態所造成。
延遲資訊可以為一值或表示一信號延遲的信號(例如絕對值)或在發射路徑814的信號延遲與波封追蹤路徑812的信號延遲間之信號延遲(例如相對值)的變化。此資訊可以根據逆向回授信號,因為逆向回授信號包含對天線模組802的元件及/或在天線模組802的附近環境狀態之影響的資訊。
決定模組840可以以各種方式根據至少逆向回授信號決定延遲資訊。例如,決定模組840可以根據順向回授信號及逆向回授信號決定天線模組的反射係數,以根據反射係數決定延遲資訊。選用地,決定模組840可以進一步決定天線模組802的反射係數的絕對值與相位,以例如決定延遲資訊。再者,決定模組840可以例如根據天線模組802的反射係數的絕對值與相位,決定頻率相關群組延遲。決定頻率相關群組延遲的詳細例子係例如參考圖9加以描述。
延遲資訊可以相關或根據發射信號的頻率加以改變。發射信號的頻率可以以各種方式(例如上述特性 發射頻率)界定並可以例如取決於選定頻道、發射頻帶、資源方塊及/或用以發射該發射信號的無線通訊協定。延遲資訊可以以為天線模組802所造成的頻率相關群組延遲所代表(例如,頻相關性可以為天線模組所造成)。
再者,設備800可以包含安排於波封追蹤路徑812內的波封追蹤模組,其根據對應於發射信號的基頻發射信號,決定發射信號波封資訊。例如,發射信號波封資訊可以根據發射信號的電流振幅或基頻發射信號的電流振幅。有關波封追蹤模組與基頻發射信號的更多態樣係有關於上述例子(例如圖1與14)加以說明。
波封追蹤模組可以包含有關於上述(例如圖1及14)一或更多例子的可變延遲模組。可變延遲模組可以根據延遲資訊改變在波封追蹤路徑812內的信號延遲,以調整功率放大器模組810的電源供應的變化與發射信號的對應變化的時間對準。可變延遲模組可以在波封追蹤模組內在不同位置加以實行。例如,可變延遲模組可以改變基頻發射信號的延遲、由基頻發射信號導出的用以決定發射信號波封資訊的信號或如上述發射信號波封資訊(例如圖1及14)。
電源供應模組820可以以各種方式實行。例如,電源供應模組可以包含DCDC轉換器模組,提供可變供應電壓(或供應電流)給功率放大器模組810。
天線模組802可以包含各種元件。例如,天線模組802可以包含雙工器模組。雙工器模組可以造成較 耦接至功率放大器模組810的輸出的其他模組為強(以延遲變化對頻率變化的比例者)的在發射路徑814與波封追蹤路徑812間之延遲的頻率相關性。再者,雙工器模組可以較前述的改變天線負載為強(以延遲變化對頻率化的比例表示)的在發射路徑與發射路徑814間之延遲的頻率相關性。
選用地,設備800可以包含在發射路徑814內的信號轉換模組,其根據基頻發射信號(例如參考圖1及14加以描述),產生予以提供給功率放大器的發射信號。
耦接器模組820可以提供高頻逆向回授信號,其包含與發射信號實質相同或類似的頻率範圍。決定模組840可以使用此高頻逆向回授信號來決定延遲資訊,或者,例如,在決定模組840可以根據所得基頻逆向回授信號決定延遲資訊之前,該高頻逆向回授信號可以被降轉(down-converted)。換句話說,設備800可以包含回授信號轉換模組,其根據為耦接器模組820所提供的逆向回授信號(選用基頻順向回授信號係根據順向回授信號),產生基頻逆向回授信號(或者也產生基頻順向回授信號)。例如,回授信號轉換模組可以包含一混波器,用以降轉為耦接器模組820(來自RF域)所提供的高頻逆向回授信號至基頻逆向回授信號(至基頻域),以予以提供給決定模組840。決定模組可以根據基頻順向回授信號與基頻逆向回授信號,決定延遲資訊。
設備800(例如,設備的可變延遲模組)可以根據在發射信號傳輸時的延遲資訊,改變在波封追蹤路徑812內的信號延遲。換句話說,在發射路徑814內的可變信號延遲可以在發射器或收發器的正常操作時,例如使用提出設備(例如有關圖1所述)加以應用。
圖9顯示依據一例子的放大一發射信號的設備的方塊圖。設備900的實作係類似於圖8所示之設備。功率放大器模組810包含功率放大器核心912及阻抗匹配電路914。功率放大器核心912的輸出係連接至阻抗匹配電路914的輸入。電源供應模組830(例如包含波封追蹤ET DCDC轉換器)係連接至功率放大器模組810並提供調變供應電壓至功率放大器模組810。功率放大器模組810的輸出係連接至耦接模組820的輸入。耦接模組820的輸出係連接至天線模組,其包含雙工器902、天線開關904、及至少一天線906。耦接模組820提供順向回授信號(順向波)及逆向回授信號(反射波)至決定模組840。決定模組840可以例如量測延遲及/或比例。耦接器模組820的輸出埠係連接至雙工器902的輸入及雙工器的天線埠係連接至天線開關904。波封延遲(在波封追蹤路徑內的延遲)係有關於用於波封追蹤ET。在功率放大器核心912與阻抗匹配電路914間之點處,可能想要在射頻RF波封(發射信號的波封)與瞬間功率放大器PA供應電壓間有緊密同步化。
例如,功率放大器810產生順向波a1。順向 波的一部份在該雙工器輸入處反射。反射波可以被稱為b1。反射波的波封可以在雙工器輸入被延遲。此延遲可以由S11群組延遲造成,該S11群組延遲被稱為在雙工器的輸入處為反射所造成的群組延遲。如果射頻RF相位快速地在頻率上變化,則會一直發生群組延遲。群組延遲可以近似為△(相位)/△(頻率)。
(在RF系統中通常沒什麼興趣的)S11群組延遲可能影響在RF波封(發射信號的波封或振幅)與瞬間功率放大器(PA)供應電壓間之波封追蹤ET延遲,例如在波封追蹤ET系統中造成效能劣化。
在雙工器輸入的RF輸出電壓可以為:(a1+b1)*
順向與反射波的疊加,以Z0表示參考阻抗,a1及b1可以為例如以其振幅與相位所描述之複數。
在真實應用中,雙工器可以在其天線埠以非50歐姆阻抗加以終止(雙工器可以具有:其中連接有功率放大器PA的發射TX埠、連接至低雜訊放大器LNA的接收RX埠、及組合RX與TX信號的天線埠)。然後,S11_loaded可以代表在雙工器的天線埠的具有非50歐姆的反射係數。由S-參數原理,以下為有效:S11_loaded=s11+s12*s21L/(1-s22L)
si,j表示雙工器的S-參數,及Γ1表示連接至雙工器天線埠的負載。
因為反射波的波封由於S11_loaded群組延遲被 延遲,所以由順向與反射波的疊加(總和)所給定的RF電壓(a1+b1)*也可以例如被延遲。總和電壓的波封的延遲可以相關於為S11_loaded所引入的群組延遲。描述順向與反射波的總和的延遲的準確等式可以更複雜。
反射群組延遲的公式例子係例如參考圖14加以描述。反射群組延遲係為描述例如為順向與反射波的疊加所產生的信號的波封的新參數。反射群組延遲可以例如為在各個波封追蹤ET系統中的優值(Figure of Merit)。
依據上式的反射群組延遲τgr可以與有關於雙工器的轉移特徵有關的轉移群組延遲(S21群組延遲)不同。
反射群組延遲τgr可以為順向與反射波的疊加所造成。(可能可以由S21相位對頻率的變化完全特徵化的)轉移群組延遲的差異可以是由S11_loaded的相位改變對頻率所造成的雙工器群組延遲τduplexer。再者,反射群組延遲可以取決於絕對相位φ。相位φ可以決定在順向與反射波間之靜態相移。取決於相移φ,雙工器群組延遲τduplexer可以改變反射群組延遲τgr。這可能例如與不取決於絕對相移的轉移群組延遲不同。再者,反射群組延遲也 可以取決於S11_loaded的振幅對頻率(dr/df)改變多快。因此,如果S11_loaded的振幅對頻率改變,則可以發生反射群組延遲。這與轉移群組延遲不同,這可以例如完全以相位對頻率的變化加以描述。
上式也可以教示例如為何雙工器可以是在波封追蹤ET系統中的重要元件。由於在發射器濾波器中的多重諧振,各個雙工器可以在發射頻帶內,顯著改變S11_loaded的相位與振幅。
反射群組延遲τgr可能造成RF波封的移位,這可能劣化RF波封與為ET調變器(電源供應模組)所提供的調變PA供應電壓間之時間同步化(例如最佳ET延遲)。上述例子係有關於在工廠中執行延遲校正,以及,如何補償在整個發射頻帶的反射群組延遲。同時,一些例子有關於靜態波封追蹤ET延遲補償,其可能不能考量例如發生在真實電話操作時發生的ET延遲改變(例如由於天線失配)。
上述(例如參考圖8與圖9)例子有關於在發射操作期間,決定並追蹤ET延遲。以此方式,當雙工器特徵被改變(例如,由於天線的失配)時,ET延遲可以被改變或最佳化。
耦接器可以加入於功率放大器輸出與雙工器輸入之間。耦接器可以取樣順向波的一部份與反射波的一部份。在順向與反射波間之延遲可以被決定(例如藉由分析在分立頻率之RF相位差,或者,藉由在降轉該信號後 在時域執行共相關)。反射與順向波的比例可以表達S11_loaded的大小。雙工器反射延遲可以依據上式加以計算。
ET相關延遲可以為例如在功率放大器輸出的延遲,例如可以將參考阻抗(通常為50歐姆)映射至想要或最佳PA負載的功率放大器匹配網路前的集極的延遲。PA匹配可以被設計以在整個發射頻帶上具有扁平相位反應(例如,微小群組延遲)。因此,其可以假設該PA匹配並未加入額外延遲或者只有可忽略的額外延遲。例如,量測值確認在想要或最佳ET延遲與反射群組延遲τgr間之良好共相關。
圖10顯示依據一例子之用以放大發射信號的設備1000的方塊圖。設備1000包含發射路徑1014及波封追蹤路徑1012。發射路徑1014包含功率放大器模組1010,被耦接至天線模組1002。功率放大器模組1010放大發射信號。波封追蹤路徑1012包含電源供應模組1020。電源供應模組1020改變功率放大器模組1010的電源供應,具有可以為可變延遲模組所調整的時間對準。可變延遲模組1030係被安排於波封追蹤路徑1012內(如圖10所示),或者,在發射路徑1014內(另一例子)。可變延遲模組1030依據於波封追蹤路徑1012與發射路徑1014間之延遲差異的發射信號頻率相關變動,改變於波封追蹤路徑1012或發射路徑1014內的信號延遲。
藉由改變在波封追蹤路徑內的信號延遲,功 率放大器模組的供應電壓變動與發射信號的波封(例如發射信號的電流振幅)的變動的同步化可以很準確地實行。由於所提供具有想要輸出振幅的電源供應的準確時間對準,放大發射信號的功率放大器模組失真及/或電流消耗可以保持為低。
有關該發射信號、發射路徑、波封追蹤路徑、功率放大器模組、天線模組、可變延遲模組、電源供應模組及/或發射信號頻率相關變動的其他細節與態樣係參考提出概念與上述的一或更多例子(例如圖1-9、14及15)加以描述。
例如,如果功率放大器模組1010的輸出係連接至參考阻抗(例如50歐姆),則發射路徑1014與波封追蹤路徑1012可以包含恆定延遲差。在使用設備1000發射器或收發器的一般操作中,在功率放大器模組1010的輸出的負載可以改變。例如,連接至發射路徑1014的天線模組1002的雙工器可能造成於發射路徑1014與波封追蹤路徑1012間之延遲差的頻率相關變動。為了降低或補償該延遲差的此一變動,可變延遲模組1030可以被安排於可變延遲模組1030或發射路徑1014內。
設備1000可以包含一或更多選用額外特性,這些係對應於有關提出概念所述之一或更多態樣或上述一或更多例子(例如圖1-9、14及15)。
例如,電源供應模組1020可以在將發射信號傳輸至外部接收器時,改變功率放大器模組1010的電源 供應,以具有可以為可變延遲模組1030所調整的時間對準。換句話說,電源供應模組1020可以在發射器或收發器正常操作時,例如,使用設備1000,以改變功率放大器模組1010的電源供應。
設備1000可以決定予以為可變延遲模組1030所即時動態(例如參考圖8與圖9)提供的要求或想要可變延遲。例如,設備1000可以包含被安排在功率放大器模組1010與予以耦接至功率放大器模組1010的天線模組1002間之耦接模組。耦接模組可以提供:一順向回授信號,其係主要為由功率放大器模組1010傳遞至天線模組1002的放大發射信號所產生;及一逆向回授信號,其係主要由為天線模組1002所反射的放大發射信號的一部份所產生。再者,設備1000可以包含決定模組,根據該順向回授信號與逆向回授信號,決定在發射路徑1014與波封追蹤路徑1012間之延遲的延遲資訊。可變延遲模組1030可以根據延遲資訊,改變波封追蹤路徑1012或發射路徑1014的信號延遲。
或者,設備1000可以包含記憶體單元,儲存用於發射信號(例如,參考圖1至5所述)的不同特性發射頻率的延遲控制參數的不同值。例如,可變延遲模組1030可以依據延遲控制參數,改變在波封追蹤路徑1012或發射路徑1014內的信號延遲。設備1000可以包含延遲控制模組,其根據發射信號的電流特性發射頻率,提供延遲控制參數。
一些例子有關於在波封追蹤系統中的延遲量測。所提出概念可以被實施為大量架構,例如無線終端(例如智慧手機)或可以被實施於大量的電腦系統架構特性及介面中。所提出概念可以包含積體架構IA、裝置(例如電晶體)及例如相關至製造MFG程序。
依據一態樣,ET延遲可以在發射操作時加以估計。此可以藉由在功率放大器輸出與雙工器輸入間加入耦接器加以完成。ET延遲(在RF波封與瞬間功率放大器供應電壓間的時間差)可以共相關至在順向及反射RF波間之延遲,其可以是例如由雙工器輸入阻抗的群組延遲與順向與反射波的大小的比例所造成。
由各個雙工器所造成的反射群組延遲可以衝擊ET系統的效能。反射群組延遲可以為上述提出概念所引入的優值,反射群組延遲可以取決於雙工器特性(見上式)。再者,其描述良好或最佳ET延遲可以如何取決於例如雙工器反射群組延遲。根據此態樣,順向與反射波可以在雙工器的輸入被分析。由於雙工器的ET延遲的改變可以藉由量測順向與反射波間之延遲、反射與順向波的比例、及檢視兩優值如何隨頻率改變加以決定。
依據提出概念,可以例如完成在ET模式的改良或優越ACLR效能及/或在低電流消耗的較佳ACLR效能。
圖11顯示依據一例子之用以放大發射信號的方法1100的流程圖。方法1100包含在發射路徑內以功率 放大器放大發射信號1110;及提供主要為耦接至功率放大器的天線模組所反射的放大發射信號的一部份所產生的逆向回授信號1120。再者,方法1100包含根據至少該逆向回授信號,決定在發射路徑與波封追蹤路徑間之延遲的延遲資訊1130;及根據具有取決於延遲資訊的時間對準的發射信號波封資訊,改變功率放大器的電源供應1140。
由於回授路徑,表示在發射路徑與波封追蹤路徑間之改變延遲的延遲資訊可以被決定。根據所決定的延遲資訊,可以改良在該功率放大器模組的電源供應的變動及在發射信號內的變動的時間對準。以此方式,可以降低發射信號的失真及/或信號放大的功率消耗。
(例如有關於發射信號、功率放大器、信號延遲、類比追蹤路徑、發射路徑、延遲控制參數、電源供應及/或電流特徵發射頻率的)其他細節與態樣係配合提出概念或上述一或更多例子(例如圖1至5、14及15)加以描述。方法1100可以包含相關於有關提出概念的一或更多態樣或上述一或更多例子的一或更多其他選用動作。
圖12顯示依據一例子之放大發射信號的方法1200的流程圖。方法1200包含以功率放大器放大在發射路徑內的發射信號1210;及改變功率放大器的電源供應1220,以具有可以為波封追蹤路徑或發射路徑內的可變信號延遲所調整的時間對準。再者,方法1200包含依據發 射信號頻率,改變在波封追蹤路徑或發射路徑內的信號延遲1230,這係依據在發射路徑與波封追蹤路徑間之延遲差的發射信號頻率相關變動。
由於回授路徑,可以決定表示在發射路徑與波封追蹤路徑間之改變延遲的延遲資訊。根據所決定的延遲資訊,可以改良在功率放大器模組的電源供應的變動與發射信號內的變動的時間對準。以此方式,可以降低發射信號的失真與/或信號放大的功率消耗。
(例如有關發射信號、功率放大器、信號延遲、類比追蹤路徑、發射路徑、延遲控制參數、電源供應及/或電流特性發射頻率的)更多細節與態樣係配合所提出概念及上述一或更多例子(例如圖1-5、14及15)加以描述。方法1200可以包含對應於有關提出概念及上述一或更多例子所述之一或更多態樣的一或更多其他選用動作。
一些例子有關於包含用以依據提出概念或一或更多上述例子的放大發射信號的設備的發射器或收發器。例如,射頻(RF)裝置(例如行動電話、基地台或另一RF通訊裝置)可以包含此一發射或收發器。所提出發射器或收發器可以用於行動通訊應用、地面廣播應用、衛星通訊應用、視線無線電應用或無線電遙控應用。
其他例子有關於包含上述發射器或收發器的行動裝置(例如行動電話、平板或膝上型)。行動裝置或行動終端可以用以在行動通訊系統中進行通訊。
圖13顯示依據一例子之行動裝置150的示意圖。行動裝置包含如上提出概念或上述一或更多例子(例如圖1、5、8、9、10及14)的放大發射信號的設備190。再者,行動裝置150包含基頻處理器模組170,其產生基頻發射信號並提供基頻發射信號給設備190。另外,行動裝置包含電源供應單元180,供應電力給設備190與基頻處理器模組170。再者,行動裝置150包含連接至設備190的天線,以發射為設備190所提供的高頻發射信號。
在一些例子中,行動電話可以包含發射器或收發器,其包含一設備,用以依據所提出概念及上述一或更多例子決定發射信號的振幅誤差的資訊。
再者,一些例子有關於行動通訊系統的基地台或轉接台,其包含一發射器或收發器,其具有一設備,用以依據所提出概念及上述一或更多例子決定發射信號的振幅誤差的資訊。
一行動通訊系統可以例如對應於第3代夥伴計劃(3GPP)所標準化的行動通訊系統之一,例如用於行動通訊的全球系統(GSM)、用於GSM演進的加強資料率(EDGE)、GSM EDGE無線電接取網路(GERAN)、高速封包存取(HSPA)、通用地面無線電接取網路(UTRAN)或演進UTRAN(E-UTRAN)、長期演進(LTE)或先進LTE(LTE-A)、或具有不同標準的行動通訊系統,例如,用於微波接取的全球互操作性 (WIMAX)IEEE802.16或無線區域網路(WLAN)IEEE802.11,通常根據分時多工(TDMA)、分頻多工(FDMA)、正交分頻多工(OFDMA)、分碼多工(CDMA)等的任何系統。
以下例子屬於其他例子。例子1為一種用以放大發射信號的設備,包含:功率放大器模組,安排於發射路徑內,將被耦接至天線模組。該功率放大器模組被架構以放大一發射信號。再者,該設備包含耦接模組,安排於該功率放大器模組與天線模組之間。該耦接模組被架構以提供主要為天線模組所反射的已放大發射信號的一部份所產生的逆向回授信號。再者,該設備包含決定模組,被架構以根據至少該逆向回授信號,決定在該發射路徑與波封追蹤路徑間之延遲的延遲資訊。另外,該設備包含安排於波封追蹤路徑內的電源供應模組,其被架構以根據具有取決於該延遲資訊的時間對準的發射信號波封資訊,改變該功率放大器模組的電源供應。
在例子2中,例子1的標的可以選用地包含安排於波封追蹤路徑內的波封追蹤模組,該波封追蹤路徑被架構以根據作為發射信號基礎的基頻發射信號,決定該發射信號波封資訊。
在例子3中,前述例子的標的可以選用地包含波封追蹤模組,其包含可變延遲模組,其被架構以根據延遲資訊,以改變在波封追蹤路徑內的信號延遲,以調整功率放大器模組的電源供應的變動對發射信號的相關變動 的時間對準。
在例子4中,先前例子之一的標的可以選用地包含可變延遲模組,其可以被架構以改變基頻發射信號的延遲、一個由基頻發射信號所導出信號,用以決定發射信號波封資訊、或發射信號波封資訊。
在例子5中,先前例子之一的標的可以選用地包含發射信號波封資訊係根據該發射信號的電流振幅。
在例子6中,先前例子之一的標的可以選用地包含該延遲資訊係根據發射信號的頻率加以改變。
在例子7中,先前例子之一的標的可以選用地包含延遲資訊,其係為天線模組所提供的頻率相關群組延遲所代表。
在例子8中,先前例子之一的標的可以選用地包含耦接模組,其係被架構以提供主要由放大發射信號所產生的逆向回授信號與順向回授信號,該放大發射信號係由功率放大器模組傳遞至天線模組。
在例子9中,先前例子之一的標的可以選用地包含決定模組,其係被架構以根據該順向回授信號與逆向回授信號,決定天線模組的反射係數,以決定延遲資訊。
在例子10中,先前例子之一的標的可以選用地包含決定模組,其係被架構以決定天線模組的反射係數的絕緣值與相位,以決定延遲資訊。
在例子11中,先前例子之一的標的可以選用 地包含決定模組,其係被架構以根據天線模組的反射係數的絕對值與相位,決定頻率相關群組延遲。
在例子12中,先前例子之一的標的可以選用地包含電源供應模組,其包含DC-DC轉換器模組,其被架構以提供可變供應電壓給該功率放大器模組。
在例子13中,先前例子之一的標的可以選用地包含天線模組,其包含雙工器模組。
在例子14中,先前例子之一的標的可以選用地包含雙工器模組,其較耦接至功率放大器模組輸出的其他模組,在發射路徑與波封追蹤路徑間之延遲提供較強的頻率相關性。
在例子15中,先前例子之一的標的可以選用地包含雙工器模組,其相較於改變天線負載,在發射路徑與波封追蹤路徑間的延遲提供較強的頻率相關性。
在例子16中,先前例子之一例子的標的可以選用地包含發射路徑的信號轉換模組,其被架構以根據基頻發射信號產生提供給功率放大器的發射信號。
在例子17中,先前例子之一例子的標的可以選用地包含回授信號轉換模組,其被架構以根據為耦接器模組所提供的順向回授信號與逆向回授信號,產生基頻順向回授信號與基頻逆向回授信號。
在例子18中,先前例子之一的標的可以選用地包含決定模組,其被架構以根據基頻順向回授信號與基頻逆向回授信號,決定延遲資訊。
在例子19中,先前例子之一的標的可以選用地被架構以根據在發射信號的傳輸期間的延遲資訊,改變在波封追蹤路徑內的信號延遲。
例子20為一種設備,用以放大發射信號,該設備包含:發射路徑,其包含功率放大器模組,予以被耦接至天線模組,其中該功率放大器模組被架構以放大發射信號;以及,波封追蹤路徑,其包含電源供應模組,其中該電源供應模組係被架構以改變功率放大器模組的電源供應,以具有可以為可變延遲模組所調整的時間對準,其中可變延遲模組係被安排於波封追蹤路徑或發射路徑內,其中可變延遲模組係被架構以依據在發射路徑與波封追蹤路徑間之延遲差的發射信號頻率相關變動,而改變在波封追蹤路徑或發射路徑內的信號延遲。
在例子21中,先前例子之一的標的可以選用地包含電源供應模組,其係被架構以在發射信號發射至外部接收器期間,改變功率放大器模組的電源供應,以具有可以為可變延遲模組所調整的時間對準。
在例子22中,先前例子之一的標的可以選用地包含耦接模組,安排於功率放大器模組與予以被耦接至功率放大器模組的天線模組之間,其中該耦接模組係被架構以提供主要為已放大發射信號所產生的順向回授信號,及主要為天線模組所反射的已放大發射信號的一部份所產生的逆向回授信號,該已放大發射信號係由功率放大器模組傳遞至天線模組。
在例子23中,先前例子之一的標的可以選用地包含決定模組,被架構以根據該順向回授信號及逆向回授信號,決定於發射路徑與波封追蹤路徑間之延遲的延遲資訊,其中該可變延遲模組係被架構以根據該延遲資訊,改變該波封追蹤路徑或發射路徑的信號延遲。
在例子24中,先前例子之一的標的可以選用地包含可變延遲模組,其係被架構以根據延遲控制參數,改變在波封追蹤路徑或發射路徑內的信號延遲。
在例子25中,先前例子之一的標的可以選用地包含延遲控制模組,其係可被架構以根據發射信號的電流特性發射信號頻率,提供延遲控制參數。
例子26為一種用以放大發射信號的設備,該設備包含:功率放大手段,安排於發射路徑內,予以耦接至天線模組,其中該功率放大手段係被架構以放大反射信號;耦接手段,被配置於該功率放大手段與天線模組之間,其中該耦接手段,被架構以提供主要為該天線模組所反射的放大發射信號的一部份所產生的逆向回授信號;決定手段,被架構以根據至少該逆向回授信號,決定在發射路徑與波封追蹤路徑間之延遲的延遲資訊;及電源供應手段,被安排在該波封追蹤路徑內,並被架構以根據具有時間對準取決於延遲資訊的發射信號波封資訊,改變功率放大手段的電源供應。
在例子27中,先前例子之一的標的可以選用地包含波封追蹤手段,被安排在波封追蹤路徑內,被架構 以根據對應於發射信號的基頻發射信號,決定該發射信號波封資訊。
例子28為一發射器或收發器,其包含如先前例子之任一的標的之設備。
例子29為一行動裝置,其包含如例子28的發射器、接收器或收發器。
例子30有關於包含如例子28的發射器、接收器或收發器的行動電話。
例子31為一種用以放大發射信號的方法,該方法包含:以功率放大器放大在發射路徑內的發射信號;提供主要為耦接至功率放大器的天線模組所反射的放大發射信號的一部份所產生的逆向回授信號;根據至少該逆向回授信號,決定於發射路徑與波封追蹤路徑間之延遲的延遲資訊;及根據具有取決於延遲資訊的時間對準的發射信號波封資訊,改變該功率放大器的電源供應。
在例子32中,先前例子之一的標的可以選用地包含根據作為發射信號的基礎的基頻發射信號,決定發射信號波封資訊。
在例子33中,先前例子之一的標的可以選用地包含根據延遲資訊改變於波封追蹤路徑內的信號延遲,以調整功率放大器模組的電源的變動對發射信號的對應變動的時間對準。
在例子34中,先前例子之一的標的可以選用地包含基頻發射信號之延遲、由基頻發射信號導出的用以 決定發射信號波封資訊的信號或發射信號波封資訊係被改變。
在例子35中,先前例子之一的標的可以選用地包含該發射信號波封資訊係根據發射信號的電流振幅。
在例子36中,先前例子之一的標的可以選用地包含延遲資訊係根據發射信號的頻率改變。
在例子37中,先前例子之一的標的可以選用地包含延遲資訊係為天線模組所提供的頻率相關群組延遲所表示。
在例子38中,先前例子之一的標的可以選用地包含提供逆向回授信號與順向回授信號,其係主要為由功率放大器傳遞至天線模組的放大發射信號所產生。
在例子39中,先前例子之一的標的可以選用地包含根據該順向回授信號與逆向回授信號,以決定該天線模組的反射係數,以決定該延遲資訊。
在例子40中,先前例子之一的標的可以選用地包含決定該天線模組的反射係數的絕對值與相位,以決定延遲資訊。
在例子41中,先前例子之一的標的可以選用地包含根據該天線模組的反射係數的絕對值與相位,決定頻率相關群組延遲。
例子42為一種放大發射信號的方法,該方法包含:以功率放大器,放大在發射路徑內的發射信號;以在波封追蹤路徑或發射路徑內的可變信號延遲可調整的時 間對準,改變功率放大器的電源供應;及依據在發射路徑與波封追蹤路徑間之延遲差的發射信號頻率相關變動,改變在波封追蹤路徑與發射路徑內的信號延遲。
在例子43中,先前例子之一的標的可以選用地包含在將發射信號傳送至外部接收器時,以為可變延遲模組所調整的時間對準,改變該功率放大器模組的電源供應。
例子44為一機器可讀取儲存媒體,其包含程式碼,當被執行時,提供以機器以執行如例子31或42之方法。
例子45為一機器可讀取儲存器,其包含機器可讀取指令,當被執行時,實行如例子1至43中任一實行的方法或實現一設備。
例子46為一電腦程式,其包含用以執行例子31或42之方法,當電腦程式係被執行於電腦或處理器時。
例子可以更提供一電腦程式,其具有用以執行以上一或更多方法的程式碼,當電腦程式被執行於電腦或處理器時。熟習於本技藝者可以迅速了解,各種上述方法的步驟可以為規劃電腦所執行。於此,一些例子也想要涵蓋程式儲存裝置,例如數位資料儲存媒體,其係機器或電腦可讀取及編碼機器可執行或電腦可執行的指令的程式,其中指令執行上述方法的一些或所有動作。程式儲存裝置可以例如為數位記憶體、例如磁碟或磁帶的磁儲存媒體 、硬碟或光學可讀取數位資料儲存媒體。例子也想要涵蓋被規劃的電腦,以執行上述方法的動作,或者(場)可規劃邏輯陣列((F)PLA)或(場)可規劃閘陣列((F)PGA)被規劃以執行上述方法的動作。
說明與圖式只例示本案的原理。因此,應了解的是,雖然並未在此明確描述或顯示,但熟習於本技藝者能推導出各種配置來實現本案的原理並想要以包含在本案的精神與範圍內。再者,於此所述之所有例子係主要想要教導目的,以協助讀者了解本案的原理與發明者所提出的概念,而不是用以限定至所述之例子與條件中。再者,本案於此所述之原理、態樣、及例子及其特定例子的所有說明係想要包圍其等效。
功能方塊表示為“用以..的手段”(執行某一功能)應被了解為包含電路的功能方塊,該電路被架構以分別執行某一功能。因此,“用以..手段”也可以被認為是“被架構以或適用以...的手段”。被架構以執行某一功能的手段並不暗示此手段必然執行該功能(在一給定時間瞬間)。
在圖式中之各種元件的功能,包含任何被標示為“手段”、“提供感應器信號的手段”、“產生發射信號的手段”等的功能方塊可以透過專屬硬體的手加以提供,例如“信號提供器”、“信號處理單元”、“處理器”、“控制器”等,及能配合適當軟體執行軟體的硬體。再者,於此描述為“手段”的任何實體可以對應或實現為“一或更多模 組”、“一或更多裝置”、“一或更多單元”等等。當為處理器所提供時,該等功能可以為單一專用處理器、單一共享處理器、或多數個別處理器(其一部份為共享)所提供。再者,用語“處理器”或“控制器”的明確使用並不應被認定為只表示硬體,其能執行軟體,而是其也可以隱函地包含而不限定於數位信號處理器(DSP)硬體、網路處理器、特定應用積體電路(ASIC)、場可規劃閘陣列(FPGA)、用以儲存軟體的唯讀記憶體(ROM)、隨機存取記憶體(RAM)、及非揮發儲存器。也可能包括其他傳統及/或客製的硬體。
可以為熟習於本技藝者所應了解的是,任何於此方塊圖,表示實現本案的原理的電路的概念圖。同樣地,應了解的是,任何流程表、流程圖、狀態轉移圖、虛擬碼等等表示實質可以被呈現在電腦可讀取媒體中的程序並為電腦或處理器所執行,而不管明確顯示此電腦或處理器與否。
再者,以下請求項係併入詳細說明中,其中各個請求項可以獨立表示為分開例子。雖然各個請求項可以獨立表示為分開例子,但應注意,雖然一附屬項可能表示在申請專利範圍中與一或更多其他請求項之特定組合,但其他例子也可以包含附屬項與其他附屬項與獨立項的組合。此等組合係在此加以提出,除非明述不限於特定組合。再者,想要包圍請求項的特性至任何其他獨立項,即使此請求項並未直接依附於該獨立項。
再者,應注意於說明書或申請專利範圍中所揭露之方法可以以具有執行這些方法的各個動作的手段之裝置實行。
再者,應了解的是於說明書或請求項中所揭露的多數動作或功能的揭示可以不以特定順序加以建構。因此,多數動作或功能的揭露並不是將之限制為特定順序,除非此等動作或功能為技術理由而不能互換之外。再者,在一些例子中,單一動作也可以包含或被分解為次動作。除非特別排除,此等次動作可以包含或為單一動作的揭露的一部份。
800‧‧‧設備
802‧‧‧天線模組
810‧‧‧功率放大器模組
812‧‧‧波封追蹤路徑
814‧‧‧發射路徑
820‧‧‧耦接器模組
830‧‧‧電源供應模組
840‧‧‧決定模組

Claims (20)

  1. 一種用以放大發射信號的設備,該設備包含:功率放大器模組,安排於耦接至天線模組的發射路徑內,其中該功率放大器模組被架構以放大發射信號;耦接模組,被配置於該功率放大器模組與該天線模組之間,其中該耦接模組係被架構以提供藉由主要為該天線模組所反射的已放大發射信號的一部份所產生的逆向回授信號;決定電路,被架構以根據至少該逆向回授信號,決定於該發射路徑與波封追蹤路徑間之延遲的延遲資訊;電源供應模組,被配置於該波封追蹤路徑內,該電源供應模組被架構以根據隨著取決於該延遲資訊的時間對準基於發射信號波封資訊,改變該功率放大器模組的電源供應;波封追蹤電路,被配置於該波封追蹤路徑內,該波封追蹤電路被架構以根據作為該發射信號的基礎的基頻發射信號,決定該發射信號波封資訊;及該波封追蹤電路包含可變延遲模組,被架構以根據該延遲資訊,改變在該波封追蹤路徑內的信號延遲,以調整該功率放大器模組的該電源供應的變動對該發射信號的對應變動的時間對準。
  2. 如申請專利範圍第1項所述之設備,其中該可變延遲模組被架構以改變該基頻發射信號的延遲、由該基頻發射信號所導出之用以決定該發射信號波封資訊的信號、 或該發射信號波封資訊。
  3. 如申請專利範圍第1項所述之設備,其中該發射信號波封資訊係根據該發射信號的現行振幅。
  4. 如申請專利範圍第1項所述之設備,其中該延遲資訊係相關於該發射信號的頻率作改變。
  5. 如申請專利範圍第1項所述之設備,其中該電源供應模組包含DC-DC轉換器模組,被架構以提供改變供應電壓至該功率放大器模組。
  6. 如申請專利範圍第1項所述之設備,其中該天線模組包含雙工器模組。
  7. 如申請專利範圍第1項所述之設備,包含回授信號轉換模組,被架構以根據為該耦接模組所提供的該順向回授信號與該逆向回授信號,產生基頻順向回授信號與基頻逆向回授信號。
  8. 如申請專利範圍第7項所述之設備,其中該決定電路被架構以根據該基頻順向回授信號與該基頻逆向回授信號,決定該延遲資訊。
  9. 如申請專利範圍第1項所述之設備,被架構以在該發射信號傳輸時,根據該延遲資訊,改變在該波封追蹤路徑內的信號延遲。
  10. 一種用以放大發射信號的設備,該設備包含:功率放大器模組,安排於耦接至天線模組的發射路徑內,其中該功率放大器模組被架構以放大發射信號;耦接模組,被配置於該功率放大器模組與該天線模組 之間,其中該耦接模組係被架構以提供藉由主要為該天線模組所反射的已放大發射信號的一部份所產生的逆向回授信號;決定模組,被架構以根據至少該逆向回授信號,決定於該發射路徑與波封追蹤路徑間之延遲的延遲資訊,其中該延遲資訊係為由該天線模組所造成的頻率相關群組延遲所表示;及電源供應模組,被配置於該波封追蹤路徑內,該電源供應模組被架構以根據隨著取決於該延遲資訊的時間對準基於發射信號波封資訊,改變該功率放大器模組的電源供應。
  11. 一種用以放大發射信號的設備,該設備包含:功率放大器模組,安排於耦接至天線模組的發射路徑內,其中該功率放大器模組被架構以放大發射信號;耦接模組,被配置於該功率放大器模組與該天線模組之間,其中該耦接模組係被架構以提供藉由主要為該天線模組所反射的已放大發射信號的一部份所產生的逆向回授信號;決定模組,被架構以根據至少該逆向回授信號,決定於該發射路徑與波封追蹤路徑間之延遲的延遲資訊;及電源供應模組,被配置於該波封追蹤路徑內,該電源供應模組被架構以根據隨著取決於該延遲資訊的時間對準基於發射信號波封資訊,改變該功率放大器模組的電源供應, 其中該耦接模組被架構以提供該逆向回授信號及一順向回授信號,該逆向回授信號與該順向回授信號係主要為由該功率放大器模組傳遞至該天線模組的該已放大發射信號所產生。
  12. 如申請專利範圍第11項所述之設備,其中該決定模組被架構以根據該順向回授信號與該逆向回授信號,決定該天線模組的反射係數,以決定該延遲資訊。
  13. 如申請專利範圍第12項所述之設備,其中該決定模組被架構以決定該天線模組的該反射係數的絕對值與相位,以決定該延遲資訊。
  14. 如申請專利範圍第13項所述之設備,其中該決定模組係被架構以根據該天線模組的該反射係數的該絕對值與該相位,決定頻率相關群組延遲。
  15. 一種放大發射信號的設備,該設備包含:發射路徑,包含予以耦接至天線模組的功率放大器模組,其中該功率放大器模組被架構以放大發射信號;及波封追蹤路徑,包含電源供應模組,其中該電源供應模組被架構以改變該功率放大器模組的電源供應,隨著可為可變延遲電路所調整的時間對準,其中該可變延遲電路係被配置於該波封追蹤路徑或該發射路徑內,其中該可變延遲電路被架構以依據該發射路徑與該波封追蹤路徑間之延遲差的發射信號頻率相關變動,改變在該波封追蹤路徑或該發射路徑內的信號延遲。
  16. 如申請專利範圍第15項所述之設備,其中該電源供應模組被架構以在該發射信號傳輸至外部接收器期間,改變該功率放大器模組的該電源供應,隨著為該可變延遲所調整的時間對準。
  17. 如申請專利範圍第15項所述之設備,包含:耦接模組,配置於該功率放大器模組與該予以耦接至該功率放大器模組的該天線模組之間,其中該耦接模組被架構以提供:主要為由該功率放大器模組傳遞至該天線模組的該已放大發射信號所產生的順向回授信號;及主要為該天線模組所反射的該已放大發射信號的一部份所產生的逆向回授信號。
  18. 如申請專利範圍第17項所述之設備,包含:決定模組,架構以根據該順向回授信號與該逆向回授信號,決定在該發射路徑與波封追蹤路徑間之延遲的延遲資訊,其中該可變延遲電路被架構以根據該延遲資訊改變該波封追蹤路徑或該發射路徑的信號延遲。
  19. 如申請專利範圍第15項所述之設備,其中該可變延遲電路被架構以依據延遲控制參數,改變該波封追蹤路徑或該發射路徑內的該信號延遲。
  20. 如申請專利範圍第19項所述之設備,包含延遲控制模組,被架構以根據該發射信號的現行特徵發射頻率,提供該延遲控制參數。
TW104104777A 2014-03-28 2015-02-12 放大發射信號的設備與方法 TWI565230B (zh)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102014104372.3A DE102014104372A1 (de) 2014-03-28 2014-03-28 Eine Vorrichtung und ein Verfahren zum Verstärken eines Sendesignals

Publications (2)

Publication Number Publication Date
TW201545471A TW201545471A (zh) 2015-12-01
TWI565230B true TWI565230B (zh) 2017-01-01

Family

ID=54066514

Family Applications (2)

Application Number Title Priority Date Filing Date
TW105134081A TWI608698B (zh) 2014-03-28 2015-02-12 放大發射信號的設備與方法
TW104104777A TWI565230B (zh) 2014-03-28 2015-02-12 放大發射信號的設備與方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
TW105134081A TWI608698B (zh) 2014-03-28 2015-02-12 放大發射信號的設備與方法

Country Status (4)

Country Link
US (1) US9450553B2 (zh)
CN (2) CN104954302B (zh)
DE (1) DE102014104372A1 (zh)
TW (2) TWI608698B (zh)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9813262B2 (en) 2012-12-03 2017-11-07 Google Technology Holdings LLC Method and apparatus for selectively transmitting data using spatial diversity
US9591508B2 (en) 2012-12-20 2017-03-07 Google Technology Holdings LLC Methods and apparatus for transmitting data between different peer-to-peer communication groups
US9979531B2 (en) 2013-01-03 2018-05-22 Google Technology Holdings LLC Method and apparatus for tuning a communication device for multi band operation
US10229697B2 (en) 2013-03-12 2019-03-12 Google Technology Holdings LLC Apparatus and method for beamforming to obtain voice and noise signals
US9549290B2 (en) 2013-12-19 2017-01-17 Google Technology Holdings LLC Method and apparatus for determining direction information for a wireless device
WO2015123668A1 (en) 2014-02-14 2015-08-20 University Of Southern California Hybrid-based cancellation in presence of antenna mismatch
US20160036482A1 (en) * 2014-07-29 2016-02-04 Google Technology Holdings LLC Apparatus and method for antenna tuning
US9866201B2 (en) 2015-09-08 2018-01-09 Abtum Inc. All-acoustic duplexers using directional couplers
US9762416B2 (en) 2015-09-08 2017-09-12 Abtum Inc. Reflection coefficient reader
US10581650B2 (en) 2015-09-08 2020-03-03 Qorvo Us, Inc. Enhancing isolation in radio frequency multiplexers
US9912326B2 (en) 2015-09-08 2018-03-06 Abtum Inc. Method for tuning feed-forward canceller
US9755668B2 (en) * 2015-09-30 2017-09-05 Abtum Inc. Radio frequency complex reflection coefficient reader
US10038458B2 (en) 2015-10-06 2018-07-31 Abtum Inc. Reflection-based radio-frequency multiplexers
CN108352915B (zh) 2015-10-12 2020-06-30 Qorvo美国公司 基于混合耦合器的射频多路复用器
CN210201797U (zh) 2016-09-21 2020-03-27 Qorvo美国公司 射频双工器和具有增强隔离的可调谐射频双工器
US11223376B2 (en) * 2017-02-27 2022-01-11 Apple Inc. Frequency dependent envelope tracking
US10236831B2 (en) * 2017-05-12 2019-03-19 Skyworks Solutions, Inc. Envelope trackers providing compensation for power amplifier output load variation
KR102577743B1 (ko) * 2018-02-02 2023-09-12 비아셋, 인크 송수신기를 위한 라디오 주파수 루프백
CN113794508B (zh) * 2021-09-13 2022-04-26 北京微纳星空科技有限公司 一种信号传输方法、系统、设备及存储介质
CN114785378B (zh) * 2022-03-09 2023-06-20 北京遥感设备研究所 一种远距离交会对接微波雷达快速同步的系统与方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223777A1 (en) * 2010-06-04 2012-09-06 Quantance, Inc. RF Power Amplifier Circuit With Mismatch Tolerance
US20130076418A1 (en) * 2011-09-27 2013-03-28 Intel Mobile Communications GmbH System and Method for Calibration of Timing Mismatch for Envelope Tracking Transmit Systems

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005513943A (ja) * 2001-12-24 2005-05-12 コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ 電力増幅器
AU2003272918A1 (en) 2002-10-03 2004-04-23 Matsushita Electric Industrial Co., Ltd. Transmitting method and transmitter apparatus
US7480344B2 (en) * 2004-09-30 2009-01-20 Broadcom Corporation Architectural techniques for envelope and phase signal alignment in RF polar transmitters using power amplifier feedback
EP1863183B1 (en) 2005-03-22 2013-07-31 Panasonic Corporation Transmitting apparatus, communication device, and mobile wireless unit
US7602155B2 (en) * 2005-07-27 2009-10-13 Artesyn Technologies, Inc. Power supply providing ultrafast modulation of output voltage
US7602244B1 (en) 2007-11-27 2009-10-13 Nortel Networks Limited Power amplifier bias synchronization
KR101481725B1 (ko) * 2008-02-26 2015-01-13 삼성전자주식회사 무선 통신시스템의 전력 송신 장치 및 방법
US7970364B2 (en) * 2008-05-30 2011-06-28 Infineon Technologies Ag Strategy for using the envelope information within a closed loop power control system
JP5112213B2 (ja) 2008-08-01 2013-01-09 パナソニック株式会社 送信回路及び送信回路を用いた通信機器
EP2432118B1 (en) * 2010-09-15 2012-12-26 Agence Spatiale Européenne Radio-frequency power amplifier with fast envelope tracking
KR101577879B1 (ko) * 2011-02-07 2015-12-15 스카이워크스 솔루션즈, 인코포레이티드 엔빌로프 트랙킹 캘리브레이션을 위한 장치 및 방법
EP2673880B1 (en) 2011-02-07 2017-09-06 Qorvo US, Inc. Group delay calibration method for power amplifier envelope tracking
EP2493060A1 (en) 2011-02-22 2012-08-29 ST-Ericsson SA Low ripple step-up/step-down converter
US8605774B2 (en) 2011-03-25 2013-12-10 National Instruments Corporation Amplitude/phase delay calibration for envelope-tracking amplifier
US8718188B2 (en) * 2011-04-25 2014-05-06 Skyworks Solutions, Inc. Apparatus and methods for envelope tracking
GB2490892A (en) * 2011-05-16 2012-11-21 Nujira Ltd Delay and amplitude matching of the main and envelope paths in an envelope-tracking RF amplifier
US9066368B2 (en) 2011-06-08 2015-06-23 Broadcom Corporation Method of calibrating the delay of an envelope tracking signal
CN104620509B (zh) * 2012-03-04 2017-05-10 匡坦斯公司 具有延迟校准的包络跟踪功率放大器系统及时间校准方法
JP6119735B2 (ja) 2012-03-12 2017-04-26 日本電気株式会社 送信装置および送信方法
GB2507052B (en) 2012-10-16 2015-04-01 Broadcom Corp Interference reduction
CN103518322B (zh) * 2013-03-26 2017-05-31 华为技术有限公司 数字包络信号放大电路、方法及包络跟踪功率放大器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120223777A1 (en) * 2010-06-04 2012-09-06 Quantance, Inc. RF Power Amplifier Circuit With Mismatch Tolerance
US20130076418A1 (en) * 2011-09-27 2013-03-28 Intel Mobile Communications GmbH System and Method for Calibration of Timing Mismatch for Envelope Tracking Transmit Systems

Also Published As

Publication number Publication date
CN107104640A (zh) 2017-08-29
TWI608698B (zh) 2017-12-11
CN104954302B (zh) 2019-07-26
CN104954302A (zh) 2015-09-30
TW201545471A (zh) 2015-12-01
US20150280675A1 (en) 2015-10-01
TW201724733A (zh) 2017-07-01
CN107104640B (zh) 2021-07-13
US9450553B2 (en) 2016-09-20
DE102014104372A1 (de) 2015-10-01

Similar Documents

Publication Publication Date Title
TWI565230B (zh) 放大發射信號的設備與方法
TWI565233B (zh) 用以放大傳輸信號或用以判定延遲控制參數之值的設備及方法
US10051578B2 (en) Apparatus and method for determining information on a power variation of a transmit signal
US10050812B2 (en) Methods and apparatuses for interference cancellation
TWI593230B (zh) 用以提供用於可變阻抗匹配電路之控制信號的裝置及其方法
KR102174242B1 (ko) 내부 전력 증폭기 특성화를 이용하는 포락선 추적 시스템
EP3070839B1 (en) Adjusting power amplifier stimuli based on output signals
US11502410B2 (en) System apparatus and method for matching antenna impedance in a wireless communication system
US9425742B2 (en) Method and apparatus for correcting inconvenient power amplifier load characteristics in an envelope tracking based system
US9520907B2 (en) Methods and apparatus for envelope tracking system
US20150236877A1 (en) Methods and apparatus for envelope tracking system
US20210083781A1 (en) Transmitter image calibration using phase shift estimation
US20170085362A1 (en) Full duplex technique
CN107863988B (zh) 计算发射路径和接收路径之间泄漏的方法和无线通信电路
EP3192194B1 (en) Method and apparatus for facilitating antenna calibration and transceiver
US20150358038A1 (en) Adaptive transmitter efficiency optimization
US9264188B2 (en) Apparatus and a method for determining information on an amplitude error of a transmit signal
US20190393908A1 (en) Device and method for compensating nonlinearity of a transmitter
EP3402098B1 (en) Transceiver for a wireless communication system, and methods for increasing transceiver loopback calibration accuracy
CN117941248A (zh) 传输设置选择
US20180269995A1 (en) Phase Alignment Among Multiple Transmitters