TWI564640B - Transflective liquid crystal panel - Google Patents

Transflective liquid crystal panel Download PDF

Info

Publication number
TWI564640B
TWI564640B TW103140384A TW103140384A TWI564640B TW I564640 B TWI564640 B TW I564640B TW 103140384 A TW103140384 A TW 103140384A TW 103140384 A TW103140384 A TW 103140384A TW I564640 B TWI564640 B TW I564640B
Authority
TW
Taiwan
Prior art keywords
sub
pixel
pixels
wire
row
Prior art date
Application number
TW103140384A
Other languages
Chinese (zh)
Other versions
TW201612607A (en
Inventor
岩津明宏
吳政珉
黃聖峰
林政校
Original Assignee
群創光電股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 群創光電股份有限公司 filed Critical 群創光電股份有限公司
Priority to US14/848,617 priority Critical patent/US9766495B2/en
Priority to JP2015184531A priority patent/JP6632119B2/en
Publication of TW201612607A publication Critical patent/TW201612607A/en
Application granted granted Critical
Publication of TWI564640B publication Critical patent/TWI564640B/en

Links

Landscapes

  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)

Description

半穿透半反射式液晶面板 Semi-transflective liquid crystal panel

本發明係有關於一種半穿透半反射式液晶面板,且特別有關於能夠減低驅動複雜度的半穿透半反射式液晶面板。 The present invention relates to a transflective liquid crystal panel, and more particularly to a transflective liquid crystal panel capable of reducing driving complexity.

傳統的液晶面板包括穿透式、反射式及半穿透半反射式面板。穿透式面板具有高顯示品質,但不適合使用於高外界光的環境;反射式面板則可反射外界光來顯示畫面,因為不需要背光源而有省電的優點,但無法應用於昏暗的環境,且因亮度與色彩飽和度的不足,一般用以顯示低品質影像。而半穿透半反射式面板整合了兩模式的優點,以驅動穿透子畫素及反射子畫素來因應各種顯示需求。 Conventional liquid crystal panels include transmissive, reflective, and transflective panels. Transmissive panels have high display quality, but are not suitable for use in high ambient light environments; reflective panels reflect external light to display images, because they do not require a backlight and have the advantage of power saving, but they cannot be used in dimly lit environments. And because of the lack of brightness and color saturation, it is generally used to display low-quality images. The transflective panel combines the advantages of both modes to drive through the sub-pixels and reflector sub-pixels to accommodate a variety of display needs.

然而,現有的半穿透半反射式面板架構呈現驅動複雜的問題。第1圖係顯示傳統的半穿透半反射式面板的子畫素陣列的構造。第1圖中T表示穿透子畫素;R表示反射子畫素;Col[n]、Col[n+1]、Col[n+2]、Col[n+3]、Col[n+4]、Col[n+5]表示行方向上的資料線;Row[m]、Row[m+1]、Row[m+2]、Row[m+3]、Row[m+4]、Row[m+5]表示列方向上的閘極線。從第1圖中可見穿透子畫素T與反射子畫素R在列方向上及行方向上交替排列,穿透子畫素T與反射子畫素R循序地驅動。 However, the existing transflective panel architecture presents a problem of driving complexity. Figure 1 is a diagram showing the construction of a sub-pixel array of a conventional transflective panel. In Fig. 1, T represents a penetrating sub-pixel; R represents a reflecting sub-pixel; Col[n], Col[n+1], Col[n+2], Col[n+3], Col[n+4 ], Col[n+5] represents the data line in the row direction; Row[m], Row[m+1], Row[m+2], Row[m+3], Row[m+4], Row[ m+5] represents the gate line in the column direction. It can be seen from Fig. 1 that the penetrating sub-pixel T and the reflecting sub-pixel R are alternately arranged in the column direction and the row direction, and the penetrating sub-pixel T and the reflecting sub-pixel R are sequentially driven.

然而,如果驅動IC依據相同的伽瑪曲線(灰階對亮 度曲線)提供驅動電壓給穿透子畫素T與反射子畫素R,則因為兩者的電壓-亮度曲線不匹配,導致顯示品質不佳,同時因穿透子畫素T與反射子畫素R的電荷殘留現象不同,會發生閃爍或影像暫留等問題。另一方面,如果驅動IC依據個別的伽瑪曲線來驅動穿透子畫素T與反射子畫素R,就單一資料線而言,必須當閘極線每掃描完一列就必須切換至另一伽瑪曲線所對應的電壓來驅動穿透子畫素T或反射子畫素R;就全部資料線而言,當閘極線每掃描一列,源極驅動器必須同時輸出穿透區伽瑪曲線所對應的電壓以及反射區伽瑪曲線所對應的電壓至各條資料線。因此,習知的半穿透半反射式面板需要複雜的資料處理,驅動IC需要較高的運算能力,驅動IC的能耗也較高。 However, if the driver IC is based on the same gamma curve (gray scale is bright The degree curve) provides the driving voltage to the penetrating sub-pixel T and the reflecting sub-pixel R, because the voltage-luminance curves of the two do not match, resulting in poor display quality, and because of the penetrating sub-pixel T and the reflection sub-picture The charge residual phenomenon of the element R is different, and problems such as flicker or image persistence may occur. On the other hand, if the driver IC drives the penetrating sub-pixel T and the reflecting sub-pixel R according to an individual gamma curve, for a single data line, it must be switched to another gate every time the gate line is scanned. The voltage corresponding to the gamma curve drives the penetrating sub-pixel T or the reflecting sub-pixel R; for all data lines, when the gate line scans one column, the source driver must simultaneously output the penetrating region gamma curve Corresponding voltage and voltage corresponding to the gamma curve of the reflection area to each data line. Therefore, the conventional transflective panel requires complicated data processing, the driver IC requires high computing power, and the power consumption of the driver IC is also high.

有鑑於上述問題,本發明的目的是提供一種半穿透半反射式液晶面板,能夠藉由新的布局方式來減低驅動複雜度,提高驅動效率,並嘗試減低耗電。 In view of the above problems, an object of the present invention is to provide a transflective liquid crystal panel capable of reducing driving complexity, improving driving efficiency, and attempting to reduce power consumption by a new layout method.

根據本發明提供一種半穿透半反射式液晶面板,包括:複數子畫素,排列於行方向及列方向而構成一子畫素陣列;複數第一導線,延伸於列方向或行方向;以及複數第二導線,平行於該第一導線,其中該複數子畫素包括穿透子畫素及反射子畫素,且該子畫素陣列的每一列及每一行均同時具有該些穿透子畫素及該些反射子畫素,該些穿透子畫素連接該第一導線並由該第一導線驅動,該些反射子畫素連接該第二導線並由該第二導線驅動。 According to the present invention, there is provided a transflective liquid crystal panel comprising: a plurality of sub-pixels arranged in a row direction and a column direction to form a sub-pixel array; a plurality of first wires extending in a column direction or a row direction; a plurality of second wires parallel to the first wire, wherein the plurality of sub-pixels include a penetrating sub-pixel and a reflection sub-pixel, and each column and each row of the sub-pixel array have the penetrator The pixels and the reflection sub-pixels are connected to the first wire and driven by the first wire, and the reflection sub-pixels are connected to the second wire and driven by the second wire.

在本發明一個實施例的半穿透半反射式液晶面板 中,該第一導線及該第二導線為延伸於列方向的閘極線,該第一導線及該第二導線在行方向上交替排列。 Transflective liquid crystal panel in one embodiment of the present invention The first wire and the second wire are gate lines extending in a column direction, and the first wire and the second wire are alternately arranged in a row direction.

在本發明另一個實施例的半穿透半反射式液晶面板中,該第一導線及該第二導線為延伸於列方向的閘極線,該第一導線及該第二導線配置於每一對相鄰的該些子畫素列之間。該第一導線包括一第一電極層及一第二電極層。 In a transflective liquid crystal panel according to another embodiment of the present invention, the first wire and the second wire are gate lines extending in a column direction, and the first wire and the second wire are disposed in each Between the adjacent sub-pixels. The first wire includes a first electrode layer and a second electrode layer.

上述的兩個實施例中,在列方向及行方向上一個該穿透子畫素及一個該反射子畫素交替排列。或者是,在行方向上一個該穿透子畫素及一個該反射子畫素交替排列,在列方向上三個該些穿透子畫素及三個該些反射子畫素交替排列。 In the above two embodiments, one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the column direction and the row direction. Alternatively, one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the row direction, and three of the penetrating sub-pixels and three of the reflecting sub-pixels are alternately arranged in the column direction.

在本發明一個實施例的半穿透半反射式液晶面板中,該第一導線及該第二導線為延伸於行方向的資料線,該第一導線及該第二導線在列方向上交替排列。 In a transflective liquid crystal panel according to an embodiment of the present invention, the first wire and the second wire are data lines extending in a row direction, and the first wire and the second wire are alternately arranged in a column direction. .

在本發明另一個實施例的半穿透半反射式液晶面板中,該第一導線及該第二導線為延伸於行方向的資料線,該第一導線及該第二導線配置於每一對相鄰的該些子畫素行之間。該第一導線包括一第一電極層及一第二電極層。 In a transflective liquid crystal panel according to another embodiment of the present invention, the first wire and the second wire are data lines extending in a row direction, and the first wire and the second wire are disposed in each pair Between adjacent sub-pixel rows. The first wire includes a first electrode layer and a second electrode layer.

上述的兩個實施例中,在列方向及行方向上一個該穿透子畫素及一個該反射子畫素交替排列。在列方向上一個該穿透子畫素及一個該反射子畫素交替排列,在行方向上三個該些穿透子畫素及三個該些反射子畫素交替排列。 In the above two embodiments, one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the column direction and the row direction. In the column direction, one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged, and three of the penetrating sub-pixels and three of the reflecting sub-pixels are alternately arranged in the row direction.

又根據本發明另一實施例,本發明的半穿透半反射式液晶面板,更包括:複數第三導線及複數第四導線,係延伸於行方向的資料線,其中該些穿透子畫素連接該第三導線並由該第 三導線驅動,該些反射子畫素連接該第四導線並由該第四導線驅動,該第三導線及該第四導線在列方向上交替排列。 According to another embodiment of the present invention, the transflective liquid crystal panel of the present invention further includes: a plurality of third wires and a plurality of fourth wires, wherein the data lines extend in a row direction, wherein the penetrating sub-pictures Connecting the third wire and by the first The three-wire driving, the reflective sub-pixels are connected to and driven by the fourth wire, and the third wire and the fourth wire are alternately arranged in the column direction.

根據上述各實施例,本發明能夠藉由新的布局方式或新的驅動方式來減低驅動複雜度,提高驅動效率,並嘗試減低耗電。 According to the above embodiments, the present invention can reduce the driving complexity, improve the driving efficiency, and try to reduce the power consumption by a new layout method or a new driving method.

T‧‧‧穿透子畫素 T‧‧‧ penetrating sub-pixel

R‧‧‧反射子畫素 R‧‧‧reflector

Col‧‧‧資料線 Col‧‧‧ data line

CKH‧‧‧訊號 CKH‧‧‧ signal

G‧‧‧資料內容 G‧‧‧Information content

GAMMA‧‧‧伽瑪曲線電壓對應單元 GAMMA‧‧‧gamma curve voltage corresponding unit

POL‧‧‧極性對應單元 POL‧‧‧polar counterpart

Tgamma‧‧‧穿透伽瑪曲線電壓對應元件 Tgamma‧‧·penetrating gamma curve voltage corresponding components

Rgamma‧‧‧反射伽瑪曲線電壓對應元件 Rgamma‧‧·Reflex gamma curve voltage corresponding component

S‧‧‧資料輸出端 S‧‧‧ data output

SW‧‧‧開關單元 SW‧‧‧Switch unit

Row‧‧‧閘極線 Row‧‧‧ gate line

RED‧‧‧彩色濾光片的紅色區 Red zone of RED‧‧ color filters

GREEN‧‧‧彩色濾光片的綠色區 GREEN‧‧‧Color filter green area

BLUE‧‧‧彩色濾光片的藍色區 Blue area of BLUE‧‧ color filters

第1圖係顯示傳統的半穿透半反射式面板的子畫素陣列的構造。 Figure 1 is a diagram showing the construction of a sub-pixel array of a conventional transflective panel.

第2圖係顯示本發明實施例1的半穿透半反射式面板的子畫素陣列的構造。 Fig. 2 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 1 of the present invention.

第3圖係顯示第1圖的畫素陣列搭配彩色濾光片的例子。 Fig. 3 is a view showing an example of the pixel array of Fig. 1 with a color filter.

第4圖係顯示第1圖的畫素陣列搭配彩色濾光片的例子。 Fig. 4 is a view showing an example of the pixel array of Fig. 1 with a color filter.

第5圖係顯示第1圖的畫素陣列搭配彩色濾光片的例子。 Fig. 5 is a view showing an example of the pixel array of Fig. 1 with a color filter.

第6圖係顯示第1圖的畫素陣列搭配彩色濾光片的例子。 Fig. 6 is a view showing an example of the pixel array of Fig. 1 with a color filter.

第7a圖係顯示本發明實施例2的半穿透半反射式面板的子畫素陣列的構造。 Fig. 7a is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 2 of the present invention.

第7b圖係顯示閘極線架橋跨過另一閘極線的剖面示意圖。 Figure 7b shows a schematic cross-sectional view of the gate line bridge across another gate line.

第8圖係顯示本發明實施例3的半穿透半反射式面板的子畫素陣列的構造。 Fig. 8 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 3 of the present invention.

第9圖係顯示本發明實施例4的半穿透半反射式面板的子畫素陣列的構造。 Fig. 9 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 4 of the present invention.

第10圖係顯示本發明實施例5的半穿透半反射式面板的子畫素陣列的構造。 Fig. 10 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 5 of the present invention.

第11圖係顯示本發明實施例6的半穿透半反射式面板的子畫素陣列的構造。 Fig. 11 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 6 of the present invention.

第12圖係顯示本發明實施例7的半穿透半反射式面板的子畫素陣列的構造。 Fig. 12 is a view showing the construction of a sub-pixel array of a transflective panel of Embodiment 7 of the present invention.

第13圖係顯示本發明實施例8的半穿透半反射式面板的子畫素陣列的構造。 Figure 13 is a view showing the construction of a sub-pixel array of a transflective panel of Embodiment 8 of the present invention.

第14a圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列的構造。 Fig. 14a is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 9 of the present invention.

第14b圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列資料極性的佈局。 Figure 14b is a diagram showing the layout of the sub-pixel array data polarity of the transflective panel of Embodiment 9 of the present invention.

第14c圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列資料極性的另一佈局。 Fig. 14c is another layout showing the polarity of the sub-pixel array data of the transflective panel of the ninth embodiment of the present invention.

第15圖係本發明實施例1的半穿透半反射式面板的驅動實施方式說明圖。 Fig. 15 is an explanatory view showing a driving embodiment of the transflective panel of the first embodiment of the present invention.

第16圖係本發明實施例1的半穿透半反射式面板的驅動實施方式說明圖。 Fig. 16 is an explanatory view showing a driving embodiment of the transflective panel of the first embodiment of the present invention.

以下透過各圖式來說明本發明的實施例。第2圖係顯示本發明實施例1的半穿透半反射式面板的子畫素陣列的構造。 Embodiments of the present invention will be described below with reference to the drawings. Fig. 2 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 1 of the present invention.

從第2圖中可見,穿透子畫素T與反射子畫素R與習知技術同樣地,為在列方向上與行方向上交替排列的西洋棋盤構造(chess pattern)。然而僅第一列的反射子畫素R連接至第一條閘極線Row[m],第一列的穿透子畫素T則不連接至第一條閘極線Row[m]而是連接至第二條閘極線Row[m+1]。第二列穿透子畫素T也連接至第二條閘極線Row[m+1],第二列反射子畫素R則連接至第三條閘極線Row[m+2]。以下各列依此類推,相鄰的兩列的反射子畫素R共用一條閘極線,相鄰的兩列的穿透子畫素T共用一條閘極線,直到最後一列(第2圖中為第6列)的反射子畫素R連接至第七條閘極線Row[m+6]。另外,資料線則採用一般的配置方式,每一行的資料線皆連接該行包括穿透子畫素T及反射子畫素R的所有的子畫素,並且穿透子畫素T及反射子畫素R沿行方向交替排列。子畫素陣列的穿透子畫素T與反射子畫素R的個數皆為偶數,例如於full HD解析度條件下,穿透子畫素T的個數為3,110,400(1920*3*1080/2),而反射子畫素R的個數亦為3,110,400(1920*3*1080/2),於第2圖僅取其中一6*6子畫素矩陣作說明。 As can be seen from Fig. 2, the penetrating sub-pixel T and the reflecting sub-pixel R are, in the same manner as the conventional technique, a chess pattern in which the row direction is alternately arranged in the row direction. However, only the reflective sub-pixel R of the first column is connected to the first gate line Row[m], and the penetrating sub-pixel T of the first column is not connected to the first gate line Row[m]. Connect to the second gate line Row[m+1]. The second column of sub-pixels T is also connected to the second gate line Row[m+1], and the second column of reflection sub-pixels R is connected to the third gate line Row[m+2]. The following columns and so on, the adjacent two columns of reflective sub-pixels R share a gate line, the adjacent two columns of penetrating sub-pixels T share a gate line, until the last column (Figure 2 The reflection sub-pixel R of the sixth column is connected to the seventh gate line Row[m+6]. In addition, the data line adopts a general configuration mode, and each line of data lines is connected to the line including all sub-pixels of the sub-pixel T and the reflection sub-pixel R, and penetrates the sub-pixel T and the reflector. The pixels R are alternately arranged in the row direction. The number of penetrating sub-pixels T and the reflecting sub-pixels R of the sub-pixel array are even numbers. For example, under the condition of full HD resolution, the number of penetrating sub-pixels T is 3,110,400 (1920*3*1080). /2), and the number of reflection sub-pixels R is also 3,110,400 (1920*3*1080/2). In Figure 2, only one of the 6*6 sub-pixel matrices is taken as an illustration.

實施例1的子畫素陣列中的除了第一條及最後一條以外的每一條閘極線在列方向上依序連接上方及下方的子畫素,為方便說明,本發明將這種導線的配置方式稱為「翻轉配置(flip arrangement)」。因此,實施例1的構造,簡單來說可用「閘極線翻轉配置,資料線一般配置」來稱之。 Each of the gate lines except the first and last strips in the sub-pixel array of Embodiment 1 sequentially connects the upper and lower sub-pixels in the column direction. For convenience of description, the present invention The configuration method is called "flip arrangement". Therefore, the configuration of the first embodiment can be simply referred to as "gate line flip configuration, general configuration of data lines".

在實施例1中,穿透子畫素T與反射子畫素R各自連接至不同的閘極線,換言之,每一閘極線只用來驅動穿透子畫素T與反射子畫素R中的一者。與習知技術相比,雖然需要多出一條 閘極線Row[m+6],但面板驅動時每掃描一列,源極驅動器不需要經常性讀取穿透區伽瑪曲線所對應的電壓以及反射區伽瑪曲線所對應的電壓並輸出至全部的資料線,而只要讀取一種伽瑪曲線所對應的電壓並輸出至所有資料線即可,甚至可將對應穿透子畫素T的閘極線群與對應反射子畫素R的閘極線群分別掃描,源極驅動器於對應穿透子畫素T的閘極線群掃描時,僅需讀取對應穿透區的伽瑪曲線灰階電壓並輸出至所有資料線即可,反之對應反射子畫素R的閘極線群掃描時亦然,因此能大幅減低驅動複雜度。穿透子畫素T與反射子畫素R各自連接至不同的閘極線亦可依據所在情境,單獨掃描對應穿透子畫素T之閘極線(例如室內或暗處的穿透模式),或是單獨掃描對應反射子畫素R之閘極線(例如室外或省電的反射模式),對手持式裝置的省電及顯示需求皆有所助益。 In Embodiment 1, the penetrating sub-pixel T and the reflecting sub-pixel R are each connected to different gate lines. In other words, each gate line is only used to drive the penetrating sub-pixel T and the reflecting sub-pixel R. One of them. Compared with the prior art, although one more need is needed The gate line Row[m+6], but for each column scanned during the panel driving, the source driver does not need to frequently read the voltage corresponding to the gamma curve of the penetration region and the voltage corresponding to the gamma curve of the reflection region and output to All the data lines, as long as the voltage corresponding to a gamma curve is read and output to all data lines, and even the gate line group corresponding to the sub-pixel T and the corresponding reflector sub-pixel R can be connected. The polar line group scans separately, and the source driver only needs to read the gamma curve gray scale voltage of the corresponding penetration area and output to all data lines when scanning the gate line group corresponding to the penetration sub-pixel T, and vice versa. The same applies to the scanning of the gate line group corresponding to the reflective sub-pixel R, so that the driving complexity can be greatly reduced. The penetrating sub-pixel T and the reflective sub-pixel R are respectively connected to different gate lines, and the gate line corresponding to the penetrating sub-pixel T (for example, the penetration mode in indoor or dark places) may be separately scanned according to the situation. Alternatively, or separately scanning the gate line of the corresponding reflective sub-pixel R (for example, outdoor or power-saving reflective mode), it is helpful to save power and display requirements of the handheld device.

第15圖及第16圖為一驅動實施方式的示意圖。第15圖表示一子畫素陣列,穿透子畫素T與反射子畫素R所形成的總行數為n而總列數為m,閘極線數為2m+1,資料線數為n,穿透子畫素T與反射子畫素R分別以翻轉配置方式連接各閘極線,其中反射子畫素R連接奇數列閘極線,穿透子畫素T連接偶數列閘極線,資料線同時連接穿透子畫素T及反射子畫素R。第16圖表示一源極驅動器(source driver IC)電路元件連接方式及其輸出資料內容,包括一伽瑪曲線電壓對應單元GAMMA,其具有穿透伽瑪曲線電壓對應元件Tgamma及反射伽瑪曲線電壓對應元件Rgamma;極性對應單元POL,分別連接開關單元SW及伽瑪曲線電壓對應單元GAMMA;開關單元SW,連接資料輸出端S,複數個一對六(亦可為一對三、一對九、一對四或一對八...等一對多)的解多工器 (DEMUX)連接資料輸出端S,接收資料訊號,並由訊號CKH[1]~CKH[6]控制其資料訊號G排序及定址方式。 15 and 16 are schematic views of a driving embodiment. Figure 15 shows a sub-pixel array. The total number of rows formed by the penetrating sub-pixel T and the reflecting sub-pixel R is n and the total number of columns is m, the number of gate lines is 2m+1, and the number of data lines is n. The penetrating sub-pixel T and the reflecting sub-pixel R are respectively connected to each gate line in a flipping configuration, wherein the reflective sub-pixel R is connected to the odd-numbered column gate line, and the penetrating sub-pixel T is connected to the even-numbered column gate line. The data line is connected to both the penetrating sub-pixel T and the reflecting sub-pixel R. Figure 16 shows a source driver (IC driver) circuit component connection mode and its output data content, including a gamma curve voltage corresponding unit GAMMA, which has a gamma curve voltage corresponding component Tgamma and a reflected gamma curve voltage Corresponding component Rgamma; polarity corresponding unit POL, respectively connected to the switch unit SW and the gamma curve voltage corresponding unit GAMMA; the switch unit SW, connected to the data output terminal S, a plurality of pairs of six (may also be a pair of three, a pair of nine, One-to-four or one-to-eight...etc. one-to-many solution multiplexer (DEMUX) connects the data output terminal S, receives the data signal, and controls the data signal G sorting and addressing mode by the signals CKH[1]~CKH[6].

如第15、16圖所示,偶數列閘極線Row[2]~Row[m]數量為L,對應偶數列閘極線Row[2]~Row[m]的為穿透子畫素T,對應閘極線Row[2]的資料內容G[1]為R1_1、G1_1、B1_1、R1_2、G1_2_B1_2...R1_(n/3)、G1_(n/3)及B1_(n/3),其餘資料內容G[2]~G[L]依此類推。奇數列閘極線Row[1]~Row[m+1]數量為L+1,對應奇數列閘極線Row[1]~Row[m+1]的為反射子畫素R,對應奇數列閘極線Row[1]的資料內容G[L+1]為r1_1、b1_1、g1_2、...、g1_(n/3),其餘資料內容G[L+2]~G[2L+1]依此類推。其中,由於Col[2]、Col[4]...等偶數行並未有對應之反射子畫素R與閘極線Row[1]連接,因此資料內容G[L+1]於Col[2]、Col[4]...等偶數行並未有資料內容,同理,由於Col[1]、Col[3]...等奇數行並未有對應之反射子畫素R與閘極線Row[m+1]連接,因此資料內容G[2L+1]於Col[1]、Col[3]...等奇數行並未有資料內容。 As shown in Figures 15 and 16, the number of even-numbered gate lines Row[2]~Row[m] is L, and the even-numbered column gate lines Row[2]~Row[m] are penetrating sub-pixels T. The data content G[1] of the corresponding gate line Row[2] is R1_1, G1_1, B1_1, R1_2, G1_2_B1_2...R1_(n/3), G1_(n/3), and B1_(n/3), The rest of the data content G[2]~G[L] and so on. The odd column gate line Row[1]~Row[m+1] is L+1, and the odd column gate line Row[1]~Row[m+1] is the reflection subpixel R, corresponding to the odd column. The data content G[L+1] of the gate line Row[1] is r1_1, b1_1, g1_2, ..., g1_(n/3), and the rest of the data content G[L+2]~G[2L+1] So on and so forth. Among them, since even rows such as Col[2], Col[4], etc. do not have corresponding reflector sub-pixels R connected to the gate line Row[1], the data content G[L+1] is in Col[ 2], Col[4]... and other even lines do not have data content. Similarly, because the odd lines such as Col[1], Col[3], etc. do not have corresponding reflector sub-pixels R and gates. The polar line Row[m+1] is connected, so the data content G[2L+1] has no data content in odd lines such as Col[1], Col[3].

由於穿透子畫素T與反射子畫素R分別連接至不同的閘極線,因此可以透過控制閘極線的掃描時序、閘極線的掃描頻率、或是資料線所輸出的資料型式,來達成省電、光學伽瑪曲線匹配、達成反轉效果(inversion)或降低閃爍(flicker)等。如第15、16圖所示,於一混合模式(mix mode)下,對應穿透子畫素T之偶數列閘極線Row[2]~Row[m]先行循序掃描,待完成掃描後,對應反射子畫素R之奇數列閘極線Row[1]~Row[m+1]接續循序掃描。於一穿透模式(T-mode)下,對應穿透子畫素T之偶數列閘極線Row[2]~G[m]循序掃描,待完成掃描後,以較低的頻率(例如正常 掃描頻率的1/6)掃描對應反射子畫素R之奇數列閘極線Row[1]~Row[m+1],並且給予反射子畫素R的資料內容G[L+1]~G[2L+1]為低灰階或0灰階(黑),源極驅動器的Rgamma可獲得較長的休止期(idle time)如此將可達成室內使用之省電效果。於一反射模式(R-mode)下,對應反射子畫素R之奇數列閘極線Row[1]~G[m+1]循序掃描,待完成掃描後,以較低的頻率(例如正常掃描頻率的1/6)掃描對應穿透子畫素T之偶數列閘極線Row[2]~Row[m],並且給予穿透子畫素T的資料內容G[1]~G[L]為低灰階或0灰階(黑),源極驅動器的Tgamma可獲得較長的休止期(idle time),如此將可達成室外使用之省電效果。 Since the penetrating sub-pixel T and the reflective sub-pixel R are respectively connected to different gate lines, the scanning timing of the gate line, the scanning frequency of the gate line, or the data type output by the data line can be controlled. To achieve power saving, optical gamma curve matching, inversion or flicker reduction. As shown in Figures 15 and 16, in a mix mode, the even-numbered column gate lines Row[2]~Row[m] corresponding to the penetrating sub-pixel T are scanned sequentially, after the scan is completed. The odd-numbered column gate lines Row[1]~Row[m+1] corresponding to the reflection sub-pixel R are successively scanned. In a through mode (T-mode), the even-numbered column gate lines Row[2]~G[m] corresponding to the penetrating sub-pixel T are sequentially scanned, and after the scanning is completed, at a lower frequency (for example, normal) 1/6 of the scanning frequency scans the odd-numbered column gate lines Row[1]~Row[m+1] corresponding to the reflection sub-pixel R, and gives the data content G[L+1]~G of the reflection sub-pixel R [2L+1] is a low gray level or a 0 gray level (black), and the Rgamma of the source driver can obtain a longer idle time so that the power saving effect for indoor use can be achieved. In a reflection mode (R-mode), the odd-numbered column gate lines Row[1]~G[m+1] corresponding to the reflection sub-pixel R are sequentially scanned, and after the scanning is completed, at a lower frequency (for example, normal) 1/6 of the scanning frequency is scanned corresponding to the even-numbered column gate lines Row[2]~Row[m] of the penetrating sub-pixel T, and the data content of the penetrating sub-pixel T is given to G[1]~G[L ] For low gray scale or 0 gray scale (black), the source driver Tgamma can obtain a longer idle time, which will achieve the power saving effect for outdoor use.

第3至6圖係顯示第1圖的畫素陣列搭配彩色濾光片的例子。與實施例1的半穿透半反射式面板的子畫素陣列搭配的彩色濾光片也可以採用如第3圖所示的紅(RED)、綠(GREEN)、藍(BLUE)三色依序覆蓋一子畫素行的縱向條紋式的彩色濾光片,鄰近之三色穿透或反射子畫素(sub-pixel)即形成一可顯示白色之完整畫素(pixel)。另外,即使是縱向條紋式的彩色濾光片,也可以如第4圖所示,挖除反射子畫素R的正上方的彩色濾光片,使反射子畫素R僅顯示灰階(即白、灰、黑),用來在省電模式(關閉背光源)或戶外顯示時,顯示不需高品質的簡單資訊,例如時間或警示圖案等。相對於縱向條紋式的彩色濾光片,彩色濾光片也可以採取如第5圖所示的紅(RED)、綠(GREEN)、藍(BLUE)三色依序覆蓋一子畫素列的橫向條紋式的彩色濾光片,鄰近之三色穿透或反射子畫素(sub-pixel)即形成一可顯示白色之完整畫素(pixel)。同樣地,橫向條紋式的彩色濾光片也可以如第6圖所示, 挖除反射子畫素R的正上方的彩色濾光片,使反射子畫素R僅顯示灰階。彩色濾光片也可以採取紅(RED)、綠(GREEN)、藍(BLUE)三色斜向條紋式方式排列,或是以島狀方式任意排列呈現均勻馬賽克圖案。 Figures 3 through 6 show examples of pixel arrays with color filters in Figure 1. The color filter matched with the sub-pixel array of the transflective panel of Embodiment 1 can also adopt the three colors of red (RED), green (GREEN), and blue (BLUE) as shown in FIG. The vertical stripe color filter covering a sub-pixel row, the adjacent three-color penetrating or reflecting sub-pixel forms a complete pixel that can display white. Further, even in the case of the vertical stripe color filter, as shown in FIG. 4, the color filter directly above the reflection sub-pixel R can be excavated so that the reflection sub-pixel R displays only the gray scale (ie, White, gray, black), used to display high-quality simple information, such as time or warning patterns, in power-saving mode (turning off the backlight) or outdoor display. Compared with the vertical stripe type color filter, the color filter may also adopt a red (RED), green (GREEN), and blue (BLUE) color as shown in FIG. 5 to sequentially cover a sub-pixel array. The horizontally striped color filter, adjacent to the three-color penetrating or reflecting sub-pixel, forms a complete pixel that can display white. Similarly, the horizontal stripe color filter can also be as shown in Fig. 6, The color filter directly above the reflection sub-pixel R is excavated so that the reflection sub-pixel R displays only the gray scale. The color filter may also be arranged in a red (RED), green (GREEN), or blue (BLUE) three-color oblique stripe manner, or may be arranged in an island-like manner to present a uniform mosaic pattern.

以上說明了幾種實施例1的半穿透半反射式面板的子畫素陣列可搭配的彩色綠光片的例子,但本發明並不限定於此,彩色濾光片組合不一定只有紅(RED)、綠(GREEN)、藍(BLUE)三色,也可以包括紅(RED)、綠(GREEN)、藍(BLUE)、白(WHITE)四色,或是紅(RED)、綠(GREEN)、藍(BLUE)及黃色(YELLOW)四色,甚至是其他顏色。同理,鄰近之四色穿透或反射子畫素(sub-pixel)即形成一可顯示白色之完整畫素(pixel)。 The above describes an example of a color green light sheet in which the sub-pixel array of the transflective panel of the first embodiment can be matched, but the present invention is not limited thereto, and the color filter combination is not necessarily only red ( RED), GREEN, BLUE, or red (RED), green (GREEN), blue (BLUE), white (WHITE), or red (RED), green (GREEN) ), blue (BLUE) and yellow (YELLOW) four colors, and even other colors. Similarly, the adjacent four-color penetrating or reflecting sub-pixel forms a complete pixel that can display white.

第7a圖係顯示本發明實施例2的半穿透半反射式面板的子畫素陣列的構造。如第7a圖所示,閘極線Row[m]及Row[m+1]配置在第一列子畫素與第二列子畫素之間;閘極線Row[m+2]及Row[m+3]配置在第三列子畫素與第四列子畫素之間;閘極線Row[m+4]及Row[m+5]配置在第五列子畫素與第六列子畫素之間。閘極線Row[m]連接第一列及第二列全部的反射子畫素R,閘極線Row[m+1]連接第一列及第二列全部的穿透子畫素T。同理,閘極線Row[m+2]連接第三列及第四列全部的反射子畫素R,閘極線Row[m+3]連接第三列及第四列全部的穿透子畫素T。閘極線Row[m+4]連接第五列及第六列全部的反射子畫素R,閘極線Row[m+5]連接第五列及第六列全部的穿透子畫素T。 Fig. 7a is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 2 of the present invention. As shown in Fig. 7a, the gate lines Row[m] and Row[m+1] are arranged between the first column of sub-pixels and the second column of sub-pixels; the gate lines Row[m+2] and Row[m] +3] is arranged between the third column sub-pixel and the fourth column sub-pixel; the gate lines Row[m+4] and Row[m+5] are arranged between the fifth column sub-pixel and the sixth column sub-pixel . The gate line Row[m] connects all of the reflective sub-pixels R of the first column and the second column, and the gate line Row[m+1] connects all of the penetrating sub-pixels T of the first column and the second column. Similarly, the gate line Row[m+2] connects all the reflector sub-pixels R in the third column and the fourth column, and the gate line Row[m+3] connects all the penetrators in the third column and the fourth column. Picture T. The gate line Row[m+4] connects all the reflective sub-pixels R in the fifth column and the sixth column, and the gate line Row[m+5] connects all the penetrating sub-pixels T in the fifth column and the sixth column. .

實施例2與實施例1同樣地,每一閘極線只用來驅動 穿透子畫素T與反射子畫素R中的一者,因此可以達成與實施例1相同的效果。然而,實施例2的構造是兩條閘極線配置於每一對相鄰的子畫素列之間,由於一條閘極線在列方向上必須交替地連接上一列的子畫素與下一列的子畫素,如第7b圖,其中一閘極線(例如Row[m+1])會採用架橋的方式跨過另一閘極線(例如Row[m]),改變兩條閘極線在行方向上的相對位置,如此將於原有做為閘極線的第一電極層M1上,增加至少一做為橋接部分的第二電極層M2及一絕緣層I,並將絕緣層I開孔(via)以電性連結橋接部分的第二電極層M2與第一電極層M1。資料線則採用一般的配置方式,每一行的資料線皆連接該行包括穿透子畫素T及反射子畫素R的所有的子畫素。 Embodiment 2 is the same as Embodiment 1, each gate line is only used to drive One of the sub-pixel T and the reflection sub-pixel R is penetrated, so that the same effect as in Embodiment 1 can be achieved. However, the configuration of Embodiment 2 is such that two gate lines are disposed between each pair of adjacent sub-pixel columns, since one gate line must alternately connect the sub-pixels of the previous column with the next column in the column direction. The sub-pixel, as shown in Figure 7b, in which a gate line (such as Row[m+1]) will bridge across another gate line (such as Row[m]), changing the two gate lines. In the relative position in the row direction, the second electrode layer M2 and the insulating layer I which are the bridge portions are added to the first electrode layer M1 which is the gate line, and the insulating layer I is opened. A via electrically connects the second electrode layer M2 of the bridge portion with the first electrode layer M1. The data lines are generally configured. Each line of data lines is connected to the line including all sub-pixels that penetrate the sub-pixel T and the reflection sub-pixel R.

實施例2的子畫素陣列的構造由於兩條相鄰的閘極線會彼此交錯,因此,為方便說明,本發明將這種導線的配置方式稱為「交錯配置」。如此一來,實施例2的構造可用「閘極線交錯配置,資料線一般配置」來稱之。實施例2除了可達成實施例1的效果外,閘極線的數目與列的總數相同,不需要另外增加一條。 The configuration of the sub-pixel array of the second embodiment is because the two adjacent gate lines are interlaced with each other. Therefore, for convenience of description, the present invention refers to the arrangement of such wires as "staggered configuration". In this way, the structure of the second embodiment can be referred to as "gate line staggered configuration, data line general configuration". Embodiment 2 In addition to the effect of Embodiment 1, the number of gate lines is the same as the total number of columns, and no additional one is required.

第8圖係顯示本發明實施例3的半穿透半反射式面板的子畫素陣列的構造。如第8圖所示,閘極線採用一般的配置方式,每一列的閘極線皆連接該列包括穿透子畫素T及反射子畫素R的所有的子畫素。然而,僅第一行的反射子畫素R連接至第一條資料線Col[n],第一行的穿透子畫素T則不連接至第一條資料線Col[n]而是連接至第二條資料線Col[n+1]。第二行穿透子畫素T也連接至第二條資料線Col[n+1],第二行反射子畫素R則連接至第三條資料線Col[n+2]。以下各行依此類推,相鄰的兩行的反射子畫 素R共用一條資料線,相鄰的兩列的穿透子畫素T共用一條資料線,直到最後一列(第2圖中為第6行)的反射子畫素R連接至第七條資料線Col[n+6]。 Fig. 8 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 3 of the present invention. As shown in Fig. 8, the gate lines are generally arranged, and the gate lines of each column are connected to the column including all sub-pixels that penetrate the sub-pixel T and the reflection sub-pixel R. However, only the reflective sub-pixel R of the first row is connected to the first data line Col[n], and the penetrating sub-pixel T of the first row is not connected to the first data line Col[n] but is connected. To the second data line Col[n+1]. The second line of penetrating sub-pixels T is also connected to the second data line Col[n+1], and the second line of reflecting sub-pixels R is connected to the third data line Col[n+2]. The following lines and so on, the adjacent two rows of reflectors The prime R shares a data line, and the adjacent two columns of the penetrating sub-pixels T share a data line until the reflective sub-pixel R of the last column (the sixth line in FIG. 2) is connected to the seventh data line. Col[n+6].

根據前述對實施例1、2的構造的命名方式,實施例3的構造可稱之為「閘極線正常配置,資料線翻轉配置」。在實施例3中,穿透子畫素T與反射子畫素R各自連接至不同的資料線,換言之,每一資料線只用來輸出資料至穿透子畫素T與反射子畫素R中的一者。與習知技術相比,雖然需要多出一條資料Col[n+6],但對任一資料線而言,可持續地提供同一伽瑪曲線所對應的電壓來驅動穿透子畫素T或反射子畫素R,因此不需要隨著掃描而切換不同的伽瑪曲線,能減低驅動複雜度,達成省電效果。 According to the above-described naming manner of the structures of the first and second embodiments, the configuration of the third embodiment can be referred to as "normal configuration of the gate line, configuration of the data line flipping". In Embodiment 3, the penetrating sub-pixel T and the reflecting sub-pixel R are each connected to different data lines. In other words, each data line is only used to output data to the penetrating sub-pixel T and the reflecting sub-pixel R. One of them. Compared with the prior art, although one piece of data Col[n+6] needs to be added, for any data line, the voltage corresponding to the same gamma curve can be continuously supplied to drive the penetrating sub-pixel T or Reflecting the sub-pixel R, it is not necessary to switch different gamma curves with scanning, which can reduce the driving complexity and achieve power saving effect.

第9圖係顯示本發明實施例4的半穿透半反射式面板的子畫素陣列的構造。如第9圖所示,資料線Col[m]及Col[n+1]配置在第一行子畫素與第二行子畫素之間;資料線Col[n+2]及Col[n+3]配置在第三行子畫素與第四行子畫素之間;資料線Col[n+4]及Col[n+5]配置在第五行子畫素與第六行子畫素之間。資料線Col[n]連接第一行及第二行全部的反射子畫素R,資料線Col[n+1]連接第一行及第二行全部的穿透畫素T。同理,資料線Col[n+2]連接第三行及第四行全部的反射子畫素R,資料線Col[n+3]連接第三行及第四行全部的穿透子畫素T。資料線Col[n+4]連接第五行及第六行全部的反射子畫素R,資料線Col[n+5]連接第五行及第六行全部的穿透子畫素T。 Fig. 9 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 4 of the present invention. As shown in Fig. 9, the data lines Col[m] and Col[n+1] are arranged between the first row of subpixels and the second row of subpixels; the data lines Col[n+2] and Col[n +3] is configured between the third row of subpixels and the fourth row of subpixels; the data lines Col[n+4] and Col[n+5] are arranged in the fifth row of subpixels and the sixth row of subpixels between. The data line Col[n] connects all of the reflection sub-pixels R of the first row and the second row, and the data line Col[n+1] connects all of the penetrating pixels T of the first row and the second row. Similarly, the data line Col[n+2] connects all the reflective sub-pixels R in the third row and the fourth row, and the data line Col[n+3] connects all the penetrating sub-pixels in the third row and the fourth row. T. The data line Col[n+4] is connected to all the reflection sub-pixels R in the fifth row and the sixth row, and the data line Col[n+5] is connected to all the penetrating sub-pixels T in the fifth row and the sixth row.

實施例4與實施例3同樣地,每一資料線只用來提供資料至穿透子畫素T與反射子畫素R中的一者,因此可以達成與實 施例3相同的效果。然而,實施例4的構造是兩條資料線配置於每一對相鄰的子畫素行之間,由於一條資料線在行方向上必須交替地連接上一行的子畫素與下一行的子畫素,因此其中一資料線會採用架橋的方式跨過另一資料線,可參考實施例2之第7b圖,改變兩條資料線在列方向上的相對位置。閘極線則採用一般的配置方式,每一列的閘極線皆連接該列包括穿透子畫素T及反射子畫素R的所有的畫素。因此,實施例4的構造可稱之為「閘極線正常配置,資料線交錯配置」。 In the fourth embodiment, as in the third embodiment, each data line is only used to provide data to one of the penetrating sub-pixel T and the reflection sub-pixel R, so that it can be achieved. Example 3 has the same effect. However, the configuration of Embodiment 4 is that two data lines are arranged between each pair of adjacent sub-pixel rows, since one data line must alternately connect the sub-pixels of the previous row and the sub-pixels of the next row in the row direction. Therefore, one of the data lines will be bridged across another data line. Referring to Figure 7b of Embodiment 2, the relative positions of the two data lines in the column direction are changed. The gate lines are generally arranged, and the gate lines of each column are connected to the column including all the pixels that penetrate the sub-pixel T and the reflection sub-pixel R. Therefore, the configuration of the fourth embodiment can be referred to as "normal configuration of gate lines, staggered configuration of data lines".

以上的實施例應用於穿透子畫素T及反射子畫素R在列方向及行方向上均以一個為單位交替排列的子畫素陣列上。然而,半穿透半反射式面板的子畫素陣列並不限定於上述布局,可採用穿透子畫素T及反射子畫素R在列方向以兩個、三個或四個為單位交替排列,在行方向上以一個為單位交替排列的構造。在這種構造下,可採用本發明實施5、6的導線配置。 The above embodiment is applied to a sub-pixel array in which the sub-pixel T and the reflection sub-pixel R are alternately arranged in one unit in the column direction and the row direction. However, the sub-pixel array of the transflective panel is not limited to the above layout, and the penetrating sub-pixel T and the reflective sub-pixel R may be alternated in the column direction by two, three or four. Arrangement, a structure in which the rows are alternately arranged in units of one row. In this configuration, the wire arrangement of the embodiments 5 and 6 of the present invention can be employed.

第10圖係顯示本發明實施例5的半穿透半反射式面板的子畫素陣列的構造。實施例5採用「閘極線翻轉配置,資料線一般配置」的配置方式,並搭配穿透子畫素T及反射子畫素R在列方向以三個為單位交替排列,在行方向上以一個為單位交替排列的構造。因此,實施例5實質上與實施例1的概念相同,並且也可以達成與實施例1相同的效果。面板驅動時每掃描一列,源極驅動器不需要同時輸出穿透區伽瑪曲線所對應的電壓以及反射區伽瑪曲線所對應的電壓至全部的資料線,而只要輸出其中一種伽瑪曲線所對應的電壓,因此能減低驅動複雜度。 Fig. 10 is a view showing the construction of a sub-pixel array of the transflective panel of Embodiment 5 of the present invention. In the fifth embodiment, the configuration of the "gate line flip configuration, the data line general configuration" is adopted, and the penetrating sub-pixel T and the reflection sub-pixel R are alternately arranged in the column direction in three units, and one in the row direction. A configuration in which the units are alternately arranged. Therefore, the fifth embodiment is substantially the same as the concept of the first embodiment, and the same effects as those of the first embodiment can be achieved. When scanning the panel for each column, the source driver does not need to simultaneously output the voltage corresponding to the gamma curve of the penetration region and the voltage corresponding to the gamma curve of the reflection region to all the data lines, and only one of the gamma curves corresponding to the output is output. The voltage can therefore reduce drive complexity.

第11圖係顯示本發明實施例6的半穿透半反射式面 板的子畫素陣列的構造。實施例6採用「閘極線交錯配置,資料線一般配置」的配置方式,並搭配穿透子畫素T及反射子畫素R在列方向以三個為單位交替排列,在行方向上以一個為單位交替排列的構造。因此,實施例6實質上與實施例2的概念相同,並且也可以達成與實施例2相同的效果。 Figure 11 is a view showing a transflective surface of Embodiment 6 of the present invention. The construction of the subpixel array of the board. In the sixth embodiment, the configuration of the "gate line interleaving configuration, the data line general configuration" is adopted, and the penetrating sub-pixel T and the reflection sub-pixel R are alternately arranged in the column direction in three units, and one in the row direction. A configuration in which the units are alternately arranged. Therefore, the sixth embodiment is substantially the same as the concept of the second embodiment, and the same effects as those of the second embodiment can be achieved.

半穿透半反射式面板的畫素陣列也可採用穿透子畫素T及反射子畫素R在行方向以兩個、三個或四個為單位交替排列,在列方向上以一個為單位交替排列的構造。在這種構造下,可採用本發明實施7、8的導線配置。 The pixel array of the transflective panel can also be alternately arranged in the row direction by two, three or four in the penetrating sub-pixel T and the reflecting sub-pixel R, one in the column direction The structure in which the units are alternately arranged. In this configuration, the wire arrangement of the embodiments 7 and 8 of the present invention can be employed.

第12圖係顯示本發明實施例7的半穿透半反射式面板的子畫素陣列的構造。實施例7採用「閘極線一般配置,資料線翻轉配置」的配置方式,並搭配穿透子畫素T及反射子畫素R在行方向以三個為單位交替排列,在列方向上以一個為單位交替排列的構造。因此,實施例7實質上與實施例3的概念相同,並且也可以達成與實施例3相同的效果。對任一資料線而言,可持續地提供同一伽瑪曲線所對應的電壓來驅動穿透子畫素T或反射子畫素R,因此不需要隨著掃描而切換不同的伽瑪曲線,能減低驅動複雜度。 Fig. 12 is a view showing the construction of a sub-pixel array of a transflective panel of Embodiment 7 of the present invention. In the seventh embodiment, the configuration of the "gate line general configuration, data line flip configuration" is adopted, and the penetrating sub-pixel T and the reflection sub-pixel R are alternately arranged in three rows in the row direction, in the column direction. A configuration in which the units are alternately arranged. Therefore, the embodiment 7 is substantially the same as the concept of the embodiment 3, and the same effects as those of the third embodiment can be achieved. For any data line, the voltage corresponding to the same gamma curve can be continuously supplied to drive the penetrating sub-pixel T or the reflection sub-pixel R, so there is no need to switch different gamma curves with scanning, Reduce drive complexity.

第13圖係顯示本發明實施例8的半穿透半反射式面板的子畫素陣列的構造。實施例8採用「閘極線一般配置,資料線交錯配置」的配置方式,並搭配穿透子畫素T及反射子畫素R在行方向以三個為單位交替排列,在列方向上以一個為單位交替排列的構造。因此,實施例8實質上與實施例4的概念相同,並且也可以達成與實施例4相同的效果。 Figure 13 is a view showing the construction of a sub-pixel array of a transflective panel of Embodiment 8 of the present invention. In the eighth embodiment, the configuration of the "gate line general configuration, data line interleaving configuration" is adopted, and the penetrating sub-pixel T and the reflection sub-pixel R are alternately arranged in three rows in the row direction, in the column direction. A configuration in which the units are alternately arranged. Therefore, the embodiment 8 is substantially the same as the concept of the embodiment 4, and the same effects as those of the embodiment 4 can be achieved.

除了上述實施例1~8的配置方式外,本發明提出「閘極線翻轉配置,資料線翻轉配置」的配置方式。第14圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列的構造。如第14圖所示,任一閘極線只連接到穿透子畫素T及反射子畫素R中的一者,任一資料線也只連接到穿透子畫素T及反射子畫素R中的一者。因此,結合了實施例1及實施例3的效果,面板驅動時每掃描一列,源極驅動器不需要同時輸出穿透區伽瑪曲線所對應的電壓以及反射區伽瑪曲線所對應的電壓至全部的資料線,而只要輸出其中一種伽瑪曲線所對應的電壓。又,對任一資料線而言,可持續地提供同一伽瑪曲線所對應的電壓來驅動穿透子畫素T或反射子畫素R,因此不需要隨著掃描而切換不同的伽瑪曲線,能減低驅動複雜度。 In addition to the arrangement of the above-described first to eighth embodiments, the present invention proposes an arrangement of "gate line inversion configuration and data line inversion configuration". Fig. 14 is a view showing the construction of a sub-pixel array of a transflective panel of Embodiment 9 of the present invention. As shown in Fig. 14, any gate line is connected only to one of the penetrating sub-pixel T and the reflection sub-pixel R, and any data line is only connected to the penetrating sub-pixel T and the reflector sub-picture. One of the prime R. Therefore, in combination with the effects of Embodiment 1 and Embodiment 3, the source driver does not need to simultaneously output the voltage corresponding to the gamma curve of the penetration region and the voltage corresponding to the gamma curve of the reflection region to every time one column is scanned during panel driving. The data line, as long as the voltage corresponding to one of the gamma curves is output. Moreover, for any data line, the voltage corresponding to the same gamma curve can be continuously supplied to drive the penetrating sub-pixel T or the reflection sub-pixel R, so that it is not necessary to switch different gamma curves with scanning. Can reduce drive complexity.

第14b圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列資料極性的佈局。如第14b圖所示,於一圖框時間(frame)內,穿透子畫素T極性為正(+),而反射子畫素R極性為負(-),於混合模式(mixed mode)下,呈現點反轉(dot inversion)顯示型態,因此可以得到較佳的顯示畫面。但由於穿透子畫素T及反射子畫素R的驅動電壓變化差異,例如回踢電壓(feed-though)等,使得穿透子畫素T及反射子畫素R於反轉驅動所呈現不同的亮度所造成的閃爍(flicker)容易被觀察。 Figure 14b is a diagram showing the layout of the sub-pixel array data polarity of the transflective panel of Embodiment 9 of the present invention. As shown in Fig. 14b, in a frame time frame, the penetrating sub-pixel T polarity is positive (+), and the reflection sub-pixel R polarity is negative (-) in mixed mode (mixed mode). Next, a dot inversion display type is presented, so that a better display picture can be obtained. However, due to the difference in driving voltage variation between the sub-pixel T and the reflection sub-pixel R, such as a feed-though, the penetrating sub-pixel T and the reflection sub-pixel R are rendered by the inversion driving. Flickers caused by different brightness are easily observed.

第14c圖係顯示本發明實施例9的半穿透半反射式面板的子畫素陣列資料極性的另一佈局。如第14c圖所示,相鄰行之子畫素之間具有兩資料線,並共同連接至同一解多工器(DEMUX)及同一資料輸出端S,並以二開關訊號SW控制開啟或關閉。相鄰 行之穿透子畫素T以隔列方式分別連接於鄰近之資料線,相鄰行之反射子畫素R亦以隔列方式分別連接於鄰近之資料線,於一圖框時間(frame)內,穿透子畫素T極性為正(+)負(-)相間,而反射子畫素R極性亦為正(+)負(-)相間,如此將可補償反轉趨動時的亮度差異,降低閃爍情況,提升畫面品質。 Fig. 14c is another layout showing the polarity of the sub-pixel array data of the transflective panel of the ninth embodiment of the present invention. As shown in Fig. 14c, the sub-pixels of adjacent rows have two data lines, and are connected to the same demultiplexer (DEMUX) and the same data output terminal S, and are controlled to be turned on or off by the two switching signals SW. Adjacent The penetrating sub-pixels T are respectively connected to adjacent data lines in an interlaced manner, and the reflected sub-pixels R of the adjacent rows are also connected to adjacent data lines in an interlaced manner, at a frame time (frame). Inside, the penetrating sub-pixel T polarity is positive (+) negative (-) phase, and the reflective sub-pixel R polarity is also positive (+) negative (-) phase, which will compensate for the brightness when the inversion is reversed. Differences, reduce flicker and improve picture quality.

以上雖詳細說明本發明的實施型態,但本發明並不限定於上述的實施型態,只要符合申請專利範圍內所記載的發明要旨,本發明包括各種變形及變更。 The embodiments of the present invention are described in detail above, but the present invention is not limited to the above-described embodiments, and the present invention includes various modifications and changes as long as it conforms to the gist of the invention described in the claims.

T‧‧‧穿透子畫素 T‧‧‧ penetrating sub-pixel

R‧‧‧反射子畫素 R‧‧‧reflector

Col‧‧‧資料線 Col‧‧‧ data line

Row‧‧‧閘極線 Row‧‧‧ gate line

Claims (13)

一種半穿透半反射式液晶面板,包括:複數子畫素,排列於行方向及列方向而構成一子畫素陣列;複數第一導線,延伸於列方向;以及複數第二導線,平行於該第一導線,其中該第一導線及該第二導線為延伸於列方向的閘極線,其中該複數子畫素包括穿透子畫素及反射子畫素,且該子畫素陣列的每一列及每一行均同時具有該些穿透子畫素及該些反射子畫素,各該第一導線連接並驅動位於該第一導線兩側的該些穿透子畫素,且各該第二導線連接並驅動位於該第二導線兩側的該些反射子畫素。 A transflective liquid crystal panel comprising: a plurality of sub-pixels arranged in a row direction and a column direction to form a sub-pixel array; a plurality of first wires extending in a column direction; and a plurality of second wires parallel to The first wire, wherein the first wire and the second wire are gate lines extending in a column direction, wherein the plurality of sub-pixels include a penetrating sub-pixel and a reflection sub-pixel, and the sub-pixel array Each of the columns and each of the rows have the penetrating sub-pixels and the reflective sub-pixels, and each of the first wires connects and drives the penetrating sub-pixels on both sides of the first wire, and each of the wires The second wire connects and drives the reflective sub-pixels on both sides of the second wire. 如申請專利範圍第1項所述之半穿透半反射式液晶面板,其中該第一導線及該第二導線在行方向上交替排列。 The transflective liquid crystal panel of claim 1, wherein the first wire and the second wire are alternately arranged in a row direction. 如申請專利範圍第1項所述之半穿透半反射式液晶面板,其中該第一導線及該第二導線配置於每一對相鄰的該些子畫素列之間。 The transflective liquid crystal panel of claim 1, wherein the first wire and the second wire are disposed between each pair of adjacent sub-pixel columns. 如申請專利範圍第3項所述之半穿透半反射式液晶面板,其中該第一導線包括一第一電極層及一第二電極層。 The transflective liquid crystal panel of claim 3, wherein the first wire comprises a first electrode layer and a second electrode layer. 如申請專利範圍第2至4項任一項所述之半穿透半反射式液晶面板,其中在列方向及行方向上一個該穿透子畫素及一個該反射子畫素交替排列。 The transflective liquid crystal panel according to any one of claims 2 to 4, wherein the penetrating sub-pixel and one of the reflecting sub-pixels are alternately arranged in the column direction and the row direction. 如申請專利範圍第2至4項任一項所述之半穿透半反射式液晶面板,其中在行方向上一個該穿透子畫素及一個該反射子畫素交替排列,在列方向上三個該些穿透子畫素及三個該些反射子畫素交替排列。 The transflective liquid crystal panel of any one of claims 2 to 4, wherein one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the row direction, three in the column direction. The penetrating sub-pixels and the three reflecting sub-pixels are alternately arranged. 如申請專利範圍第2項所述之半穿透半反射式液晶面板,更包括:複數第三導線及複數第四導線,係延伸於行方向的資料線,其中該些穿透子畫素連接該第三導線並由該第三導線驅動,該些反射子畫素連接該第四導線並由該第四導線驅動,該第三導線及該第四導線在列方向上交替排列。 The transflective liquid crystal panel of claim 2, further comprising: a plurality of third wires and a plurality of fourth wires, wherein the data lines extending in the row direction, wherein the penetrating sub-pixels are connected The third wire is driven by the third wire, and the reflective sub-pixels are connected to and driven by the fourth wire, and the third wire and the fourth wire are alternately arranged in the column direction. 一種半穿透半反射式液晶面板,包括:複數子畫素,排列於行方向及列方向而構成一子畫素陣列;複數第一導線,延伸於行方向;以及複數第二導線,平行於該第一導線,其中該第一導線及該第二導線為延伸於行方向的資料線,其中該複數子畫素包括穿透子畫素及反射子畫素,且該子畫素陣列的每一列及每一行均同時具有該些穿透子畫素及該些反射子畫素,各該第一導線連接並驅動位於該第一 導線兩側的該些穿透子畫素,且各該第二導線連接並驅動位於該第二導線兩側的該些反射子畫素。 A transflective liquid crystal panel comprising: a plurality of sub-pixels arranged in a row direction and a column direction to form a sub-pixel array; a plurality of first wires extending in a row direction; and a plurality of second wires parallel to The first wire, wherein the first wire and the second wire are data lines extending in a row direction, wherein the plurality of sub-pixels include a penetrating sub-pixel and a reflection sub-pixel, and each of the sub-pixel arrays Each row and each row have the penetrating sub-pixels and the reflective sub-pixels, and each of the first wires is connected and driven at the first The penetrating sub-pixels on both sides of the wire, and each of the second wires connects and drives the reflective sub-pixels on both sides of the second wire. 如申請專利範圍第8項所述之半穿透半反射式液晶面板,其中該第一導線及該第二導線在列方向上交替排列。 The transflective liquid crystal panel of claim 8, wherein the first wire and the second wire are alternately arranged in a column direction. 如申請專利範圍第8項所述之半穿透半反射式液晶面板,其中該第一導線及該第二導線配置於每一對相鄰的該些子畫素行之間。 The transflective liquid crystal panel of claim 8, wherein the first wire and the second wire are disposed between each pair of adjacent sub-pixel rows. 如申請專利範圍第10項所述之半穿透半反射式液晶面板,其中該第一導線包括一第一電極層及一第二電極層。 The transflective liquid crystal panel of claim 10, wherein the first wire comprises a first electrode layer and a second electrode layer. 如申請專利範圍第8、10、11項任一項所述之半穿透半反射式液晶面板,其中在列方向及行方向上一個該穿透子畫素及一個該反射子畫素交替排列。 The transflective liquid crystal panel according to any one of claims 8, wherein the one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the column direction and the row direction. 如申請專利範圍第8、10、11項任一項所述之半穿透半反射式液晶面板,其中在列方向上一個該穿透子畫素及一個該反射子畫素交替排列,在行方向上三個該些穿透子畫素及三個該些反射子畫素交替排列。 The transflective liquid crystal panel according to any one of claims 8, wherein the one of the penetrating sub-pixels and one of the reflecting sub-pixels are alternately arranged in the column direction. Up to three of these penetrating sub-pixels and three of these reflecting sub-pixels are alternately arranged.
TW103140384A 2014-09-23 2014-11-21 Transflective liquid crystal panel TWI564640B (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US14/848,617 US9766495B2 (en) 2014-09-23 2015-09-09 Transflective type liquid crystal panel
JP2015184531A JP6632119B2 (en) 2014-09-23 2015-09-17 Transflective liquid crystal panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US201462053856P 2014-09-23 2014-09-23

Publications (2)

Publication Number Publication Date
TW201612607A TW201612607A (en) 2016-04-01
TWI564640B true TWI564640B (en) 2017-01-01

Family

ID=55503788

Family Applications (1)

Application Number Title Priority Date Filing Date
TW103140384A TWI564640B (en) 2014-09-23 2014-11-21 Transflective liquid crystal panel

Country Status (2)

Country Link
CN (1) CN105425483B (en)
TW (1) TWI564640B (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050146657A1 (en) * 2003-05-29 2005-07-07 Chi-Jain Wen Transflective liquid crystal display
US20070046606A1 (en) * 2005-08-30 2007-03-01 Kim Il-Gon Liquid crystal display device, module for driving the same and method of driving the same
TW200712707A (en) * 2005-09-30 2007-04-01 Au Optronics Corp Liquid crystal display substrate and manufacturing method thererof
US20080252804A1 (en) * 2007-04-13 2008-10-16 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW544940B (en) * 2002-07-03 2003-08-01 Au Optronics Corp Thin film transistor array
CN102566133B (en) * 2010-12-17 2014-11-12 上海天马微电子有限公司 Semi-transmitting semi-reflecting liquid crystal display
CN102789101A (en) * 2012-07-27 2012-11-21 京东方科技集团股份有限公司 Blue-phase liquid crystal panel and display device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050146657A1 (en) * 2003-05-29 2005-07-07 Chi-Jain Wen Transflective liquid crystal display
US20070046606A1 (en) * 2005-08-30 2007-03-01 Kim Il-Gon Liquid crystal display device, module for driving the same and method of driving the same
TW200712707A (en) * 2005-09-30 2007-04-01 Au Optronics Corp Liquid crystal display substrate and manufacturing method thererof
US20080252804A1 (en) * 2007-04-13 2008-10-16 Toshiba Matsushita Display Technology Co., Ltd. Liquid crystal display device

Also Published As

Publication number Publication date
CN105425483B (en) 2018-11-27
TW201612607A (en) 2016-04-01
CN105425483A (en) 2016-03-23

Similar Documents

Publication Publication Date Title
TWI595467B (en) Display device
US10614742B2 (en) Pixel structure, array substrate, display device and method for driving the display device
TWI598864B (en) Display device
TWI431606B (en) 3d display and driving method thereof
CN101295483B (en) Liquid crystal display device and method of driving the same
US8477127B2 (en) Liquid crystal display device and method of driving the same
WO2017219420A1 (en) High-resolution demultiplexer driving circuit
JP5336581B2 (en) Display device, liquid crystal display device, driving method of display device, and television receiver
TWI396178B (en) Liquid crystal display panel and driving method thereof
CN110956921B (en) Array substrate, driving method thereof, pixel driving device and display device
TWI417606B (en) High picture quality LCD display panel
TW201421113A (en) Array substrate of a display panel and the driving method thereof
JP6632119B2 (en) Transflective liquid crystal panel
JP2006259135A (en) Display apparatus and color filter substrate
WO2020077898A1 (en) Display panel and driving method therefor
CN104299557A (en) Pixel structure, display substrate and display device
KR20160066654A (en) Display apparatus
CN107272290A (en) A kind of array base palte and display panel
US9472143B2 (en) Pixel structure and driving method thereof, display panel and display device
WO2018223479A1 (en) Pixel structure and display panel thereof
US10930235B2 (en) Driving method and device of display panel, and display device
JP2013020188A (en) Liquid crystal display device
TWI398713B (en) Array substrate and flat display device
CN101295480A (en) Alternation contra-rotation scanning type indication method and device
CN106597773B (en) Array substrate and liquid crystal display panel

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees