TWI564557B - Automatic concrete anomaly detection system and method - Google Patents

Automatic concrete anomaly detection system and method Download PDF

Info

Publication number
TWI564557B
TWI564557B TW104115687A TW104115687A TWI564557B TW I564557 B TWI564557 B TW I564557B TW 104115687 A TW104115687 A TW 104115687A TW 104115687 A TW104115687 A TW 104115687A TW I564557 B TWI564557 B TW I564557B
Authority
TW
Taiwan
Prior art keywords
concrete structure
concrete
automatic
data
tapper
Prior art date
Application number
TW104115687A
Other languages
Chinese (zh)
Other versions
TW201640112A (en
Inventor
xi-qiang Zhou
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to TW104115687A priority Critical patent/TWI564557B/en
Publication of TW201640112A publication Critical patent/TW201640112A/en
Application granted granted Critical
Publication of TWI564557B publication Critical patent/TWI564557B/en

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

自動化混凝土異常檢測系統及方法Automated concrete anomaly detection system and method

本發明關於一種自動化混凝土異常檢測系統及方法,特別是指一種可置於混凝土結構旁自動檢測結構,並利用電腦內建音效卡進行快速分析之自動化混凝土異常檢測系統及方法。The invention relates to an automatic concrete anomaly detecting system and method, in particular to an automatic concrete anomaly detecting system and method which can be placed under the concrete structure and automatically detected by a computer built-in sound card.

按,國內土木建築結構物大部分以鋼筋混凝土為營建材料,其結構主要係由鋼筋骨架以及利用灌漿方式包圍在鋼筋骨架外圍的混凝土兩種性質完全不同之材料凝結構成密實之非均質構材;其中,混凝土的組成其實相當廣泛,基本上包括水泥(包含波特蘭水泥、抗硫水泥等等),細砂及粗細骨材等拌合料以及視需求而添加的其他材料(例如飛灰、強塑劑及速凝劑等)。According to the domestic civil engineering structure, most of the reinforced concrete is used as the construction material. The structure is mainly composed of the steel frame and the concrete which is surrounded by the concrete in the periphery of the steel bar by the grouting method. Among them, the composition of concrete is quite extensive, basically including cement (including Portland cement, sulfur-resistant cement, etc.), mixing materials such as fine sand and coarse and coarse aggregates, and other materials added as needed (such as fly ash, Strong plasticizers and accelerators, etc.).

由不同材料所組成的混凝土,可以產生不同的功能,以提供各種特定用途之使用。鋼筋骨架對混凝土的圍束效應則可以增加結構的韌性及能量吸收、消散能力,並使得外層混凝土剝落之後,其柱心(鋼筋骨架)仍有圍束效應。Concrete consisting of different materials can produce different functions to provide a variety of specific uses. The confining effect of the steel frame on the concrete can increase the toughness and energy absorption and dissipation ability of the structure, and the core (reinforcement skeleton) still has a converging effect after the outer concrete is peeled off.

然而,對於一個位處菲律賓及歐亞大陸板塊交界帶,地質運動頻繁之區域,建物結構往往會因此造成嚴重或局部的損壞,這些受損之建物通常無法由外表目視分辨出損壞程度。當地震產生時,只要拉應力超過混凝土拉力強度,混凝土即產生破裂,開始時破裂縫短而微小,然後逐漸擴大並侵入樑柱斷面內部;以致於混凝土建築物遭受地震破壞後,其損壞程度與範圍可能及於整棟建築物之全部或局部。However, for a region in the Philippine and Eurasia plate boundary, where the geological movements are frequent, the structure of the building often causes serious or partial damage. These damaged structures are usually unable to visually distinguish the damage. When an earthquake occurs, as long as the tensile stress exceeds the tensile strength of the concrete, the concrete will be cracked. At the beginning, the crack is short and small, and then gradually enlarges and invades the inside of the beam-column section; so that the damage of the concrete building after the earthquake damage And the scope may be in whole or in part of the entire building.

並且,一般習有建築物之鋼筋骨架與其外層的混凝土在環境氣候影響下,因為熱漲冷縮或者輕微地震發生之後容易產生空洞層或裂痕,而使外部空氣進入混凝土中,甚至深入到鋼筋骨架處,慢慢造成鋼筋骨架的侵蝕毀損,這就是整棟建築物傷害點的開始,當有更大的地震發生時,將形成更大的災害。因此,及時檢測並發現混凝土內部結構損壞之工作也變得額外重要。Moreover, in general, the steel frame of the building and the concrete of the outer layer are affected by the environmental climate. Because of the heat expansion and contraction or the occurrence of a void layer or crack after the slight earthquake, the external air enters the concrete and even penetrates into the steel skeleton. At the beginning, the corrosion of the steel skeleton is slowly damaged. This is the beginning of the damage point of the whole building. When a larger earthquake occurs, a larger disaster will be formed. Therefore, the timely detection and discovery of the internal structural damage of concrete has become additional importance.

而檢測混凝土內部結構是否損壞之方式,近年來多以由1998年美國材料測試協會(American Society for Testing and Materials, ASTM)研究敲擊回音法並提出的混凝土板結構P波波速和厚度標準方法作為判斷方式,取代了較為昂貴費時的鑽心取樣方法。敲擊回音法是屬於一種非破壞性檢測(Non-Destructive Testing, NDT),非破壞性檢測在撿測時不會對建物造成損害,檢測施行時亦能不影響其正常使用(在線檢測),擁有機動性高、便利性佳,為一般人所能接受,是一種可在短時間內快速評估結構物內部是否劣化及劣化狀況的一種方式。敲擊回音法利用低頻率暫態應力波傳遞原理之非破壞檢測來偵測混凝土內部瑕疵的方法。在發展初期主要用於檢測板狀混凝土結構(例如:擋土牆、梁、柱、隧道邊牆…等)的內部缺陷,包括,鋼筋混凝土板內部空洞及裂縫、蜂窩狀混凝土、瀝青混凝土內部斷層及孔隙等。目前敲擊回音法應用趨向於多元化,其中包括桿狀結構(梁、柱)內部空洞、裂縫、蜂窩的檢測,隧道混凝土襯砌結構內部缺陷的檢測;混凝土結構品質檢測;以及混凝土結構裂縫最小檢測寬度及裂縫深度的確定。In recent years, the method of detecting the internal structure of concrete is damaged. In recent years, the American Society for Testing and Materials (ASTM) researched the knocking echo method and proposed the standard method of P wave velocity and thickness of concrete slab structure. Judging method replaces the more expensive and time-consuming core sampling method. The tapping echo method belongs to a non-destructive testing (NDT). Non-destructive testing will not cause damage to the building during the speculation, and the detection will not affect its normal use (online detection). It has high mobility and convenience, and is acceptable to most people. It is a way to quickly assess whether the interior of the structure is degraded and deteriorated in a short time. The method of detecting the internal flaws of concrete by the non-destructive detection of the low-frequency transient stress wave transmission principle by the tapping echo method. In the early stage of development, it was mainly used to detect internal defects of slab-like concrete structures (such as retaining walls, beams, columns, tunnel sidewalls, etc.), including reinforced concrete slab internal voids and cracks, honeycomb concrete, and asphalt concrete internal faults. And pores, etc. At present, the application of tapping echo method tends to be diversified, including the detection of internal voids, cracks and honeycombs of rod-shaped structures (beams and columns), the detection of internal defects of tunnel concrete lining structures, the quality inspection of concrete structures, and the minimum detection of cracks in concrete structures. Determination of width and crack depth.

敲擊回音法可以在不破壞混凝土結構下進行檢測工作,然而,其必需有量測人員於現場操作敲擊裝置以執行檢測之動作,具有人力需求的限制,檢測的效率有限。不但如此,若待測量之混凝土結構位於橋墩、水壩等立足點不佳之處,對於攜帶量測裝置的人員來說,不僅不方便進行檢測工作,其意外發生的機率也大為增加。再者,目前分析非破壞性檢測訊號之方法多為利用擷取器進行訊號處理等複雜方式,不僅較為費時,步驟也更為繁複。The tapping echo method can perform the detecting work without damaging the concrete structure. However, it is necessary for the measuring personnel to operate the tapping device on site to perform the detecting action, which has the limitation of manpower requirement and the detection efficiency is limited. Not only that, if the concrete structure to be measured is located in a poor foothold such as a pier or a dam, it is not only inconvenient for the person carrying the measuring device, but the probability of accidental occurrence is also greatly increased. Moreover, the current methods for analyzing non-destructive detection signals are mostly complicated methods such as signal processing using a picker, which is not only time consuming but also complicated.

是以,如何提供一種有效率、安全以及自動化之混凝土異常檢測系統及方法,一直為從事此行業之研究者以及相關廠商所苦思之處。Therefore, how to provide an efficient, safe and automated concrete anomaly detection system and method has been a hard work for researchers and related manufacturers in this industry.

本創作之目的在於提供一種自動化混凝土異常檢測系統及方法,其藉由針對先前技術中混凝土檢測之人力需求以及檢測效率之問題給予改良,可設置於混凝土結構旁自動檢測結構,並將數據回傳快速分析。The purpose of the present invention is to provide an automated concrete anomaly detection system and method, which can improve the manpower requirement and the detection efficiency of the concrete detection in the prior art, and can automatically set the structure beside the concrete structure and return the data. Quick analysis.

為了達到上述目的,本創作係採取以下之技術手段予以達成,其中,本創作之自動化混凝土異常檢測系統,包括:一自動敲擊器,係設置於一混凝土結構旁,用以自動敲擊該混凝土結構;以及一運算裝置,係與該自動敲擊器電訊連接;其中,該自動敲擊器敲擊該混凝土結構並產生之一數據,該自動敲擊器收集該數據並將該數據傳送至該運算裝置,該運算裝置利用一音效卡將該數據轉換成一數位訊號,以及該運算裝置利用快速傅立葉轉換分析該數位訊號。In order to achieve the above objectives, the present invention is achieved by the following technical means, wherein the automatic concrete anomaly detection system of the present invention comprises: an automatic tapper disposed beside a concrete structure for automatically tapping the concrete And an arithmetic device electrically coupled to the automatic tapper; wherein the automatic tapper strikes the concrete structure and generates one of the data, the automatic tapper collects the data and transmits the data to the An arithmetic device that converts the data into a digital signal by using a sound card, and the computing device analyzes the digital signal by using fast Fourier transform.

在本創作較佳實施例中,該自動敲擊器至少包括:一馬達;一敲擊桿,透過一連接件與該馬達連接;一收音單元;一控制單元,與該馬達電性連接;以及一傳輸單元,與該控制單元及該收音單元電性連接。In a preferred embodiment of the present invention, the automatic tapper includes at least: a motor; a tapping rod connected to the motor through a connecting member; a sound receiving unit; and a control unit electrically connected to the motor; A transmission unit is electrically connected to the control unit and the sound pickup unit.

在本創作較佳實施例中,該運算裝置至少包括:一接收單元;一音效卡,與該接收單元電性連接;以及一運算單元,與該音效卡電性連接,用以計算該數位訊號波速、該混凝土結構厚度以及分析該混凝土結構內部瑕疵。In a preferred embodiment of the present invention, the computing device includes at least: a receiving unit; a sound card electrically connected to the receiving unit; and an arithmetic unit electrically connected to the sound card for calculating the digital signal The wave velocity, the thickness of the concrete structure, and the analysis of the internal enthalpy of the concrete structure.

在本創作較佳實施例中,該自動敲擊器透過無線網路將該數據傳送至該運算裝置。In a preferred embodiment of the present invention, the autopilot transmits the data to the computing device over a wireless network.

在本創作較佳實施例中,該數據係為一回音波。In the preferred embodiment of the present invention, the data is an echo.

在本創作較佳實施例中,該自動敲擊器於一間隔時間後自動敲擊該混凝土結構產生該數據。In a preferred embodiment of the present invention, the automatic tapper automatically strikes the concrete structure after an interval of time to generate the data.

此外,本創作更包括一種自動化混凝土異常檢測方法,至少包括以下步驟: (a) 提供一混凝土結構、一自動敲擊器以及一運算裝置,且該自動敲擊器設置於該混凝土結構旁,該自動敲擊器與該運算裝置電訊連接,該運算裝置具有一音效卡; (b)              該自動敲擊器敲擊該混凝土結構,並設定該自動敲擊器於一間隔時間後自動敲擊該混凝土結構; (c) 收集該自動敲擊器敲擊該混凝土結構產生之一數據,並透過無線網路將該數據傳送至該運算裝置; (d) 利用該音效卡將該數據轉換成一數位訊號;以及 (e) 利用快速傅立葉轉換分析該數位訊號。In addition, the present invention further includes an automated concrete anomaly detection method, comprising at least the following steps: (a) providing a concrete structure, an automatic tapper, and an arithmetic device, and the automatic tapper is disposed beside the concrete structure, An automatic tap is electrically connected to the computing device, the computing device has a sound card; (b) the automatic tapper strikes the concrete structure, and the automatic tapper is set to automatically tap the concrete after an interval of time (c) collecting the data generated by the automatic tapping device striking the concrete structure and transmitting the data to the computing device via the wireless network; (d) converting the data into a digital signal by using the sound card; And (e) analyzing the digital signal using fast Fourier transform.

由於本發明採用了以上技術方案可帶來以下技術效果: (1)本創作利用自動敲擊器取代人力,減少成本。 (2)本創作利用簡易可得之音效卡取代訊號擷取器。 (3)本創作利用無線傳輸技術,將數據傳輸至運算裝置計算及分析。Since the present invention adopts the above technical solutions, the following technical effects can be brought about: (1) The creation uses an automatic tapper to replace the manpower and reduce the cost. (2) This creation replaces the signal extractor with a simple sound card. (3) This creation uses wireless transmission technology to transmit data to the computing device for calculation and analysis.

為達成上述目的及功效,本創作所採用之技術手段及構造,茲繪圖就本創作較佳實施例詳加說明其特徵與功能如下,俾利完全了解,但須注意的是,該等內容不構成本發明的限定。In order to achieve the above objectives and effects, the technical means and structure adopted by this creation are described in detail in the preferred embodiment of the present creation. The features and functions are as follows, and the full understanding is made, but it should be noted that the contents are not It constitutes a limitation of the present invention.

請參閱圖1所示, 其為本創作自動化混凝土異常檢測系統一實施例之系統架構示意圖。本創作之自動化混凝土異常檢測系統,包括:一自動敲擊器 1以及一運算裝置 2。Please refer to FIG. 1 , which is a schematic diagram of a system architecture of an embodiment of an automated concrete anomaly detection system. The automatic concrete anomaly detection system of the present invention comprises: an automatic tapper 1 and an arithmetic device 2.

請同時參閱圖2所示, 其為本創作自動化混凝土異常檢測系統一實施例之自動敲擊器結構示意圖。該自動敲擊器 1係設置於一混凝土結構 3旁,用以自動敲擊該混凝土結構 3。該自動敲擊器 1包括,一馬達 11、一敲擊桿 12、一收音單元 13、一控制單元 14以及一傳輸單元 15。Please also refer to FIG. 2, which is a schematic diagram of the structure of the automatic tapper of an embodiment of the automatic concrete anomaly detection system. The automatic tapper 1 is placed beside a concrete structure 3 for automatically tapping the concrete structure 3. The automatic tapper 1 includes a motor 11, a tapping rod 12, a sound pickup unit 13, a control unit 14, and a transmission unit 15.

該敲擊桿 12為一桿狀金屬,其可透過一連接件 16與該馬達 11連接。值得一提的是,由於金屬材質敲擊混凝土結構易產生震盪過大之回音雜訊,不易於分析,因此於該敲擊桿 12前端設置木頭材質之敲擊頭,以提昇訊號之精準度。該收音單元 13可選擇低阻抗、低雜訊以及高靈敏度的麥克風,較佳的,為了使訊號更為精確,該收音單元 13可盡量靠近該敲擊桿 12,與該敲擊桿 12敲擊該混凝土結構 3處之距離應不超過5公分。該控制單元 14與該馬達 11電性連接,其可為一電路板,藉由該控制單元 14內部的電路設計,寫入程式可以定時的啟動產生連續訊號輸出控制該馬達 11正反轉動,達到自動敲擊效果。該傳輸單元 15與該收音單元 13以及該控制單元 14電性連接,該傳輸單元 15的傳輸方式係透過一無線網路如3G、LTE、WIFI、GPRS等,亦或是此等之組合。The striking rod 12 is a rod-shaped metal that is connectable to the motor 11 through a connecting member 16. It is worth mentioning that, due to the metal material striking the concrete structure, it is easy to generate excessive echo noise, which is not easy to analyze. Therefore, a tapping head of wood material is arranged on the front end of the tapping rod 12 to improve the precision of the signal. The sounding unit 13 can select a low impedance, low noise, and high sensitivity microphone. Preferably, in order to make the signal more accurate, the sounding unit 13 can be as close as possible to the tapping rod 12, and the tapping rod 12 can be tapped. The distance between the concrete structures 3 should not exceed 5 cm. The control unit 14 is electrically connected to the motor 11, and can be a circuit board. The circuit design of the control unit 14 can be started at a time to generate a continuous signal output to control the forward and reverse rotation of the motor 11 to reach Automatic tapping effect. The transmission unit 15 is electrically connected to the radio unit 13 and the control unit 14. The transmission mode of the transmission unit 15 is transmitted through a wireless network such as 3G, LTE, WIFI, GPRS, etc., or a combination thereof.

該運算裝置 2包括一接收單元 21、一音效卡 22以及一運算單元 23。該接收單元 21夠過一無線網路與該傳輸單元 15電訊連接。該音效卡 22分別與該接收單元 21以及該運算單元 23電性連接。於本創作一實施例中,該運算裝置 2為一電腦,本創作利用電腦中內含之音效卡 22,取代訊號擷取器,以簡化訊號擷取及分析時繁複之步驟,並達到降低成本之功效。The computing device 2 includes a receiving unit 21, a sound card 22, and an arithmetic unit 23. The receiving unit 21 is connected to the transmission unit 15 via a wireless network. The sound card 22 is electrically connected to the receiving unit 21 and the computing unit 23, respectively. In an embodiment of the present invention, the computing device 2 is a computer, and the creation uses a sound card 22 included in the computer instead of the signal extractor to simplify complicated steps in signal acquisition and analysis, and achieve cost reduction. The effect.

藉由上述之結構、組成設計,茲就本創作之使用及作動情形其說明如下:With the above structure and composition design, the following is the use and operation of this creation:

該自動敲擊器 1係設置於一混凝土結構 3旁,該控制單元 14可設定為一時間間隔後自動啟動該自動敲擊器 1運作。該自動敲擊器 1啟動後,該馬達 11即驅動該敲擊器撞擊該混凝土結構 3產生一應力波,該收音單元 13收集該應力波傳動至該混凝土結構 3底部所產生之一數據 41,該數據 41可以為一回音波,並透過該傳輸單元 15利用無線網路將該數據 41傳送至該運算裝置 2。The automatic tapper 1 is disposed adjacent to a concrete structure 3, and the control unit 14 can be set to automatically activate the automatic tapper 1 operation after a time interval. After the automatic tapper 1 is started, the motor 11 drives the tapper to strike the concrete structure 3 to generate a stress wave, and the sound collecting unit 13 collects one of the data 41 generated by the stress wave transmission to the bottom of the concrete structure 3, The data 41 can be an echo and transmitted to the computing device 2 via the wireless network via the transmission unit 15.

該運算裝置 2利用該接收單元 21接收該數據 41,透過該音效卡 22將該數據 41轉換成一數位訊號 42,並將該數位訊號 42放大以方便分析。該運算單元 23運算及分析該數位訊號 42,計算該數位訊號 42波速、該混凝土結構 3厚度以及分析該混凝土結構 3內部瑕疵。The computing device 2 receives the data 41 by using the receiving unit 21, converts the data 41 into a digital signal 42 through the sound card 22, and amplifies the digital signal 42 to facilitate analysis. The arithmetic unit 23 calculates and analyzes the digital signal 42, calculates the wave speed of the digital signal 42, the thickness of the concrete structure 3, and analyzes the internal flaw of the concrete structure 3.

該數位訊號 42波速的計算方式為當該敲擊器敲擊該混凝土結構 3時為第一時間點,該收音單元 13接收到訊號為第二時間點,則波速可以表示如公式(1)所示: (1) 其中, 為第一時間點, 為第二時間點, 為敲擊點與收音點之距離。 The wave speed of the digital signal 42 is calculated as the first time point when the hammer hits the concrete structure 3, and the sound receiving unit 13 receives the signal as the second time point, and the wave speed can be expressed as in the formula (1). Show: (1) Among them, For the first time, For the second time, The distance between the hit point and the radio point.

混凝土結構厚度的計算公式可以表示如公式(2)所示: (2) 其中, T為混凝土結構厚度, f為頻率。 The formula for calculating the thickness of the concrete structure can be expressed as shown in formula (2): (2) where T is the thickness of the concrete structure and f is the frequency.

該運算單元 23利用由快速傅利葉轉換(FFT)將該數位訊號 42轉換為一系列不同頻率的連續正弦波疊加,以分析該數位訊號 42頻率位置與頻率分佈情形。以工程的應用方面來說,利用快速傅立葉轉換(FFT)方法來觀察頻譜上的能量分佈,目的是為了要避免外來的頻率與結構本身的自然頻率造成共振,進而得知結構物裂縫形成。The operation unit 23 converts the digital signal 42 into a series of continuous sine wave superpositions of different frequencies by fast Fourier transform (FFT) to analyze the frequency position and frequency distribution of the digital signal 42. In terms of engineering applications, the fast Fourier transform (FFT) method is used to observe the energy distribution on the spectrum. The purpose is to avoid the external frequency from resonating with the natural frequency of the structure itself, and then to know the crack formation of the structure.

請同時參閱圖3至6所示,圖3為本創作自動化混凝土異常檢測系統正常混凝土結構之檢測時間波形圖,圖4為本創作自動化混凝土異常檢測系統正常混凝土結構之檢測頻率波形圖,圖5為本創作自動化混凝土異常檢測系統異常混凝土結構之檢測時間波形圖,圖6為本創作自動化混凝土異常檢測系統異常混凝土結構之檢測頻率波形圖。該運算裝置 2分析該數位訊號 42後可得到該訊號之時間波形圖,再經過快速傅利葉轉換可以得到頻率波形圖,並根據公式1及2可以算出波速以及該混凝土結構 3厚度。Please also refer to Figures 3 to 6 at the same time. Figure 3 is the waveform of the detection time of the normal concrete structure of the automatic concrete anomaly detection system. Figure 4 is the waveform of the detection frequency of the normal concrete structure of the automatic concrete anomaly detection system. For the detection time waveform of the abnormal concrete structure of the automatic concrete anomaly detection system of the creation, Fig. 6 is the waveform of the detection frequency of the abnormal concrete structure of the automatic concrete anomaly detection system. The arithmetic device 2 analyzes the digital signal 42 to obtain a time waveform diagram of the signal, and then obtains a frequency waveform diagram through fast Fourier transform, and calculates the wave velocity and the thickness of the concrete structure 3 according to the formulas 1 and 2.

透過比較圖4及6可以很明顯看出圖4大部分顯著振幅集中在低頻,亦表示表層反射訊號較少,無明顯振幅反射訊號僅顯示一明顯的主波峰,得知混凝土內部極為均勻,並無瑕疵反應。而圖6除了主波峰外還在一明顯之副波峰,可以得知該副波峰來自於瑕疵反應,而透過公式1及2可以算出該混凝土結構 3瑕疵處之深度位置。By comparing Figures 4 and 6, it can be clearly seen that most of the significant amplitudes of Figure 4 are concentrated at low frequencies, which means that there are fewer surface reflection signals, and no significant amplitude reflection signals only show a distinct main peak, and it is known that the interior of the concrete is extremely uniform, and Innocent reaction. In Fig. 6, in addition to the main peak, there is a distinct sub-peak, which can be known from the enthalpy reaction, and the depth position of the concrete structure can be calculated by the formulas 1 and 2.

請同時參閱圖7所示,其為本創作自動化混凝土異常檢測方法流程圖。本創作還包括一種自動化混凝土異常檢測方法,該方法包括以下步驟:Please also refer to Figure 7, which is a flow chart of the artificial concrete anomaly detection method. The creation also includes an automated concrete anomaly detection method that includes the following steps:

步驟(a):提供一混凝土結構、一自動敲擊器以及一運算裝置,且該自動敲擊器設置於該混凝土結構旁,該自動敲擊器與該運算裝置電訊連接,該運算裝置具有一音效卡。Step (a): providing a concrete structure, an automatic tapper, and an arithmetic device, and the automatic tapper is disposed beside the concrete structure, the automatic tapper is electrically connected to the computing device, and the computing device has a Sound Card.

步驟(b):該自動敲擊器敲擊該混凝土結構。Step (b): The automatic tapper strikes the concrete structure.

步驟(c):收集該自動敲擊器敲擊該混凝土結構產生之一數據。Step (c): collecting one of the data generated by the automatic tapper striking the concrete structure.

步驟(d):利用該音效卡將該數據轉換成一數位訊號。Step (d): converting the data into a digital signal by using the sound card.

步驟(e):利用快速傅立葉轉換分析該數位訊號。Step (e): analyzing the digital signal by using fast Fourier transform.

於本創作一實施例中,該步驟(b)更包括:設定該自動敲擊器於一間隔時間後自動敲擊該混凝土結構。In an embodiment of the present invention, the step (b) further comprises: setting the automatic tap to automatically tap the concrete structure after an interval of time.

於本創作一實施例中,該步驟(c)更包括:透過無線網路將該數據傳送至該運算裝置。In an embodiment of the present invention, the step (c) further comprises: transmitting the data to the computing device via a wireless network.

於本創作一實施例中,該步驟(e)更包括:計算該數位訊號波速、該混凝土結構厚度以及分析該混凝土結構內部瑕疵。In an embodiment of the present invention, the step (e) further comprises: calculating the digital signal wave velocity, the thickness of the concrete structure, and analyzing the internal flaw of the concrete structure.

綜合上述,本創作提出之自動化混凝土異常檢測系統及方法與習用技術相較,確實具有下列優點: (1) 本創作利用自動敲擊器取代人力,減少成本。 (2)本創作可定時檢測混凝土結構,達到即時監控及預防之效果。 (3)本創作利用簡易可得之音效卡取代訊號擷取器。 (4)本創作利用無線傳輸技術,將數據傳輸至運算裝置計算及分析。In summary, the automatic concrete anomaly detection system and method proposed by the present invention has the following advantages compared with the conventional technology: (1) This creation uses an automatic tapper to replace manpower and reduce costs. (2) This creation can regularly detect the concrete structure to achieve immediate monitoring and prevention. (3) This creation replaces the signal extractor with a simple sound card. (4) This creation uses wireless transmission technology to transmit data to the computing device for calculation and analysis.

以上所述僅為本發明較佳的實施例,並非因此限制本發明的實施方式及保護範圍,對於本領域技術人員而言,應當能夠意識到凡運用本發明說明書及圖示內容所作出的等同替換和顯而易見的變化所得到的方案,均應當包含在本發明的保護範圍內。The above is only a preferred embodiment of the present invention, and is not intended to limit the scope of the embodiments and the scope of the present invention, and those skilled in the art should be able to Alternatives and obvious variations are intended to be included within the scope of the invention.

1自動敲擊器 11馬達 12敲擊桿 13收音單元 14控制單元 15傳輸單元 16連接件 2運算裝置 21接收單元 22音效卡 23 運算單元 3混凝土結構 41數據 42 數位訊號 步驟(a):提供一混凝土結構、一自動敲擊器以及一運算裝置 步驟(b):該自動敲擊器敲擊該混凝土結構 步驟(c):收集該自動敲擊器敲擊該混凝土結構產生之一數據 步驟(d):利用該音效卡將該數據轉換成一數位訊號 步驟(e):利用快速傅立葉轉換分析該數位訊號1 automatic tapper 11 motor 12 tapping rod 13 sound pickup unit 14 control unit 15 transmission unit 16 connector 2 arithmetic device 21 receiving unit 22 sound card 23 arithmetic unit 3 concrete structure 41 data 42 digital signal step (a): provide a Concrete structure, an automatic tapper and an arithmetic device step (b): the automatic tapper tapping the concrete structure step (c): collecting the automatic tapper to strike the concrete structure to generate one of the data steps (d) ): using the sound card to convert the data into a digital signal step (e): analyzing the digital signal by using fast Fourier transform

圖1為本創作自動化混凝土異常檢測系統一實施例之系統架構示意圖。 圖2為本創作自動化混凝土異常檢測系統一實施例之自動敲擊器結構示意圖。 圖3為本創作自動化混凝土異常檢測系統一實施例之正常混凝土結構之檢測時間波形圖。 圖4為本創作自動化混凝土異常檢測系統一實施例之正常混凝土結構之檢測頻率波形圖。 圖5為本創作自動化混凝土異常檢測系統一實施例之異常混凝土結構之檢測時間波形圖。 圖6為本創作自動化混凝土異常檢測系統一實施例之異常混凝土結構之檢測頻率波形圖。 圖7為本創作自動化混凝土異常檢測方法流程圖。FIG. 1 is a schematic diagram of a system architecture of an embodiment of an automated concrete anomaly detection system. FIG. 2 is a schematic structural view of an automatic tapper according to an embodiment of the present invention. Fig. 3 is a waveform diagram showing the detection time of a normal concrete structure according to an embodiment of the automatic concrete anomaly detecting system of the present invention. Fig. 4 is a waveform diagram showing the detection frequency of a normal concrete structure according to an embodiment of the automatic concrete anomaly detecting system of the present invention. Fig. 5 is a waveform diagram showing the detection time of an abnormal concrete structure according to an embodiment of the automatic concrete anomaly detecting system of the present invention. Fig. 6 is a waveform diagram showing the detection frequency of an abnormal concrete structure according to an embodiment of the automatic concrete anomaly detecting system. Figure 7 is a flow chart of the artificial concrete anomaly detection method.

1自動敲擊器 2運算裝置 21接收單元 22音效卡 23 運算單元 3混凝土結構 41數據1 automatic tapper 2 arithmetic device 21 receiving unit 22 sound card 23 arithmetic unit 3 concrete structure 41 data

Claims (10)

一種自動化混凝土異常檢測系統,包括:一自動敲擊器,係設置於一混凝土結構旁,用以自動敲擊該混凝土結構以產生一應力波;以及一運算裝置,係與該自動敲擊器電訊連接;其中,該自動敲擊器敲擊該混凝土結構並產生之一數據,該數據為該應力波傳動至該混凝土結構底部所產生,該數據產生公式為Cp=d/(t2-t1),T=Cp/2f,其中,t1為第一時間點(該敲擊器敲擊該混凝土結構),t2為第二時間點(該混凝土結構回傳接收時間點),d為敲擊點與收音點之距離,Cp為波速,T為混凝土結構厚度,f為頻率,該自動敲擊器收集該數據並將該數據傳送至該運算裝置,該運算裝置利用一音效卡將該數據轉換成一數位訊號,以及該運算裝置利用快速傅立葉轉換分析該數位訊號。 An automated concrete anomaly detection system comprising: an automatic tapper disposed adjacent to a concrete structure for automatically tapping the concrete structure to generate a stress wave; and an arithmetic device coupled to the automatic tapper telecommunications Connecting; wherein the automatic tapper strikes the concrete structure and generates a data generated by the stress wave being transmitted to the bottom of the concrete structure, the data generating formula is C p =d/(t 2 -t 1 ), T=C p /2f, where t 1 is the first time point (the tap hits the concrete structure), t 2 is the second time point (the concrete structure returns the receiving time point), d The distance between the hitting point and the collecting point, C p is the wave speed, T is the thickness of the concrete structure, f is the frequency, the automatic tapper collects the data and transmits the data to the computing device, and the computing device utilizes a sound card The data is converted into a digital signal, and the computing device analyzes the digital signal using fast Fourier transform. 如申請專利範圍第1項所述之自動化混凝土異常檢測系統,其中,該自動敲擊器至少包括:一馬達;一敲擊桿,透過一連接件與該馬達連接;一收音單元;一控制單元,與該馬達電性連接;以及一傳輸單元,與該控制單元及該收音單元電性連接。 The automatic concrete anomaly detection system of claim 1, wherein the automatic percussion device comprises at least: a motor; a tapping rod connected to the motor through a connecting member; a sound receiving unit; and a control unit And electrically connected to the motor; and a transmission unit electrically connected to the control unit and the sound pickup unit. 如申請專利範圍第1項所述之自動化混凝土異常檢測系統,其中,該運算裝置至少包括:一接收單元; 一音效卡,與該接收單元電性連接;以及一運算單元,與該音效卡電性連接,用以計算該數位訊號波速、該混凝土結構厚度以及分析該混凝土結構內部瑕疵。 The automated concrete anomaly detection system of claim 1, wherein the computing device comprises at least: a receiving unit; An audio card is electrically connected to the receiving unit; and an arithmetic unit is electrically connected to the sound card for calculating the digital signal wave velocity, the thickness of the concrete structure, and analyzing the internal flaw of the concrete structure. 如申請專利範圍第1或2或3項所述之自動化混凝土異常檢測系統,其中,該自動敲擊器透過無線網路將該數據傳送至該運算裝置。 The automated concrete anomaly detection system of claim 1 or 2 or 3, wherein the autopilot transmits the data to the computing device via a wireless network. 如申請專利範圍第1或2或3項所述之自動化混凝土異常檢測系統,其中,該數據係為一回音波。 The automated concrete anomaly detection system of claim 1 or 2 or 3, wherein the data is an echo. 如申請專利範圍第1或2或3項所述之自動化混凝土異常檢測系統,其中,該自動敲擊器於一間隔時間後自動敲擊該混凝土結構產生該數據。 The automated concrete anomaly detection system of claim 1 or 2 or 3, wherein the automatic tapper automatically strikes the concrete structure after an interval to generate the data. 一種自動化混凝土異常檢測方法,至少包括以下步驟:(a)提供一混凝土結構、一自動敲擊器以及一運算裝置,且該自動敲擊器設置於該混凝土結構旁,該自動敲擊器與該運算裝置電訊連接,該運算裝置具有一音效卡;(b)該自動敲擊器敲擊該混凝土結構產生一應力波;(c)收集該自動敲擊器敲擊該混凝土結構產生之一數據,該數據為該應力波傳動至該混凝土結構底部所產生,該數據產生公式為Cp=d/(t2-t1),T=Cp/2f,其中,t1為第一時間點(該敲擊器敲擊該混凝土結構),t2為第二時間點(該混凝土結構回傳接收時間點),d為敲擊點與收音點之距離,Cp為波速,T為混凝土結構厚度,f為頻率; (d)利用該音效卡將該數據轉換成一數位訊號;以及(e)利用快速傅立葉轉換分析該數位訊號。 An automated concrete anomaly detecting method includes at least the following steps: (a) providing a concrete structure, an automatic tapper, and an arithmetic device, and the automatic tapper is disposed beside the concrete structure, the automatic tapper and the An arithmetic device telecommunications connection, the computing device having a sound card; (b) the automatic tapper tapping the concrete structure to generate a stress wave; (c) collecting the data generated by the automatic tapper striking the concrete structure, The data is generated by the stress wave being transmitted to the bottom of the concrete structure, and the data is generated by C p =d/(t 2 -t 1 ), T=C p /2f, where t 1 is the first time point ( The tapper strikes the concrete structure), t 2 is the second time point (the concrete structure returns the receiving time point), d is the distance between the tapping point and the collecting point, C p is the wave speed, and T is the thickness of the concrete structure , f is the frequency; (d) converting the data into a digital signal by using the sound card; and (e) analyzing the digital signal by using fast Fourier transform. 如申請專利範圍第7項所述之自動化混凝土異常檢測方法,其中,該步驟(b)更包括:設定該自動敲擊器於一間隔時間後自動敲擊該混凝土結構。 The automatic concrete anomaly detection method of claim 7, wherein the step (b) further comprises: setting the automatic tap to automatically tap the concrete structure after an interval of time. 如申請專利範圍第7項所述之自動化混凝土異常檢測方法,其中,該步驟(c)更包括:透過無線網路將該數據傳送至該運算裝置。 The automated concrete anomaly detection method of claim 7, wherein the step (c) further comprises: transmitting the data to the computing device via a wireless network. 如申請專利範圍第7或8或9項所述之自動化混凝土異常檢測方法,其中,該步驟(e)更包括:計算該數位訊號波速、該混凝土結構厚度以及分析該混凝土結構內部瑕疵。 The automatic concrete anomaly detecting method according to claim 7 or 8 or 9, wherein the step (e) further comprises: calculating the digital signal wave velocity, the thickness of the concrete structure, and analyzing the internal flaw of the concrete structure.
TW104115687A 2015-05-15 2015-05-15 Automatic concrete anomaly detection system and method TWI564557B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW104115687A TWI564557B (en) 2015-05-15 2015-05-15 Automatic concrete anomaly detection system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW104115687A TWI564557B (en) 2015-05-15 2015-05-15 Automatic concrete anomaly detection system and method

Publications (2)

Publication Number Publication Date
TW201640112A TW201640112A (en) 2016-11-16
TWI564557B true TWI564557B (en) 2017-01-01

Family

ID=57850636

Family Applications (1)

Application Number Title Priority Date Filing Date
TW104115687A TWI564557B (en) 2015-05-15 2015-05-15 Automatic concrete anomaly detection system and method

Country Status (1)

Country Link
TW (1) TWI564557B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI723588B (en) * 2019-10-17 2021-04-01 國立中央大學 System and method of thickness measurement based on synthetic aperture focusing technique
US11486860B2 (en) 2017-03-31 2022-11-01 Nec Corporation Inspection apparatus, method and program of controlling inspection apparatus

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509604A (en) * 2009-03-20 2009-08-19 武汉大学 Method and device for detecting and assessing deposit in metal pipe
TW201428257A (en) * 2013-01-14 2014-07-16 Univ Nat Taiwan Automatic impact device and method thereof
TWM490003U (en) * 2012-12-26 2014-11-11 zhi-yuan Zhang Building inspection device
TWM501052U (en) * 2015-01-19 2015-05-11 Liang-Zhi Zheng Clip type microphone transceiver

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101509604A (en) * 2009-03-20 2009-08-19 武汉大学 Method and device for detecting and assessing deposit in metal pipe
TWM490003U (en) * 2012-12-26 2014-11-11 zhi-yuan Zhang Building inspection device
TW201428257A (en) * 2013-01-14 2014-07-16 Univ Nat Taiwan Automatic impact device and method thereof
TWM501052U (en) * 2015-01-19 2015-05-11 Liang-Zhi Zheng Clip type microphone transceiver

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11486860B2 (en) 2017-03-31 2022-11-01 Nec Corporation Inspection apparatus, method and program of controlling inspection apparatus
TWI723588B (en) * 2019-10-17 2021-04-01 國立中央大學 System and method of thickness measurement based on synthetic aperture focusing technique

Also Published As

Publication number Publication date
TW201640112A (en) 2016-11-16

Similar Documents

Publication Publication Date Title
Basu et al. Nonlinear ultrasonics-based technique for monitoring damage progression in reinforced concrete structures
Dong et al. Experimental studies on void detection in concrete-filled steel tubes using ultrasound
Hussain et al. Review of non-destructive tests for evaluation of historic masonry and concrete structures
CN107192624A (en) A kind of concrete strength detecting method based on impact elasticity ripple
CN103926313B (en) A kind of composite porosity Numerical evaluation method based on ultrasound detection
KR101686735B1 (en) Non-destruct ive strength measurement device and method of materials to utilize sound signal
JP2017090101A (en) Non-destructive inspection method and non-destructive inspection system of prefabricated concrete pile installed underground
Sadri Application of impact-echo technique in diagnoses and repair of stone masonry structures
CN101694479A (en) Grouting quality detection method of bridge prestress pore channel
CN106546661B (en) A kind of interference ultrasonic synthetic aperture is to inside concrete imaging method
Li et al. Influence of grouted sleeve and concrete strength of fabricated shear wall on acoustic emission detection method for sleeve compactness
TWI564557B (en) Automatic concrete anomaly detection system and method
Ji et al. A state-of-the-art review of concrete strength detection/monitoring methods: With special emphasis on PZT transducers
Lei et al. An automatic extraction algorithm for measurement of installed rock bolt length based on stress wave reflection
JP4919396B2 (en) Nondestructive inspection method for the degree of corrosion of reinforcing bars in concrete structures
CN106501285A (en) The equipment of the mud jacking degree of compaction of Non-Destructive Testing prestress pipe and detection method
CN117607251A (en) Method for detecting grouting compactness of subway segment by utilizing elastic wave energy characteristic value
CN210465310U (en) Grouting metal sleeve compactness detection device based on electromagnetic wave time domain reflection
Seshu et al. Non destructive testing of bridge pier-a case study
CN113639846A (en) Laser vibration test inspection method for detecting pasting quality of thin-plastering heat-preservation and heat-insulation system
Liu et al. Nondestructive testing for crack of tunnel lining using GPR
TWM506288U (en) Automatic concrete abnormality detecting device
CN113914387B (en) Method for detecting defects of underwater grouting connecting section of offshore wind power jacket foundation
Gorzelanczyk et al. Nondestructive tests aimed at determining the thickness of the concrete shell of a heat pipe carrying tunnel
CN111413739A (en) Method for detecting grouting defect of bridge stress pipeline based on ground penetrating radar method

Legal Events

Date Code Title Description
MM4A Annulment or lapse of patent due to non-payment of fees